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Geiger-Mueller

Introduction

The main objective of this experiment is multiple. On the one hand, we are going to study
the behavior of a Geiger-Mueller counter measuring some of its characteristics as the oper-
ating voltage or the dead time (or better the resolving time). On the other hand we are going
to use the setup to study some characteristics of the radiation as its statistical nature or the
absorption coefficients of photons.

Equipment required

• A Geiger-Mueller tube and its support stand

• Module SPETECH ST360 Spectrum : HV generator and counting

• Set of calibrated absorbers

• Radioactive sources: 60Co, 204Tl, radioactive source split disk, 116mIn

• A PC with STX software installed

Setup description

The setup, sketched in figure 1, is relatively simple. It consists of a Geiger-Mueller tube
placed in a support in which we can place radioactive samples at different heights. The
readout electronics, HV supply and connection to the computer is fully integrated in the
module SPTECH ST350. Unfortunately it’s not possible to have direct access to the electronic
chain. User Guide of both the module itself as well as the software can be found in the
webpage www.spectrumtechniques.com.

Figure 1: GM experimental setup
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IMPORTANT:

- Please do not forget to clear the measurement before you start an experiment and to
save your measurements once you have finished.

- In all cases, you should estimate the errors of both direct and derived measurements.
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EXPERIMENT 1: Operating Plateau for the Geiger Tube

Description

The purpose of this part is to determine the voltage plateau for the GM tube and to establish
an optimal operation point. In Figure 2 it’s represented a graph of the counts vs voltage
curve. The region between C1 and C2, corresponding to operation voltages V 1 and V 2
contains a "plateau" where the Geiger regime is obtained. If voltage is V < V 1 we will work
in the proportional region, and if V > V 2 we will work in the discharge region. The optimal
operation point is the middle of the "plateau" region.

Figure 2: GM: Plateau Curve

Procedure

Estimated time for data taking: 5 minutes

1. Place a 60Co radioactive source in a position close to the window.

2. Go to: Experiments→ Plateau

• High Voltage range: Start: 600 V

Stop: 1150 V

• Step Voltage: 25 V

• Time : 10 seconds

• Check the case Show Graph Results

3. Start Run. After counting has begun, it will automatically stop when runs equals zero.

4. Save the data to a file. Before saving, a description of the data may be entered into the
Description box.
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ATTENTION:

Notice that the counts increase rapidly for high voltages (V > 1100 V). This indicates that
the tube is entering its breakdown region. Do not continue to operate the tube in this region.
You may damage the tube

Questions

1. Plot the counts vs voltage graph and determine:

(a) The voltage V 1 where the plateau start, and the voltage V 2 where the plateau
ends. What’s is the width of plateau?

(b) Determine the operating voltage in the midpoint.

2. Evaluate the GM tube by measuring the slope of the plateau. It should be less that 10%
per 100 V.

Slope(in %) =
C2 − C1

(C1 + C2)/2

100

V2 − V1
× 100

3. Can you explain the existence of this plateau?
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EXPERIMENT 2: Counting Statistics. Background determina-
tion

Description

Radioactive decays is an excellent example (if not the paradigm) of a random process. Each
measurement of a radioactive activity is independent and repeated individual measure-
ments of the activity vary randomly. However, if a large sample of measurements is taken
into account, the deviation from the mean behaves in a predictive way, being small devi-
ations more probable than large deviations. The subjacent process in radioactive decay is
well described by a Poisson distribution, where there is only one parameter, the mean (µ):

P (n;µ) =
µne−µ

n!
→

mean = µ

σ2 = µ

The standard deviation of this distribution is σ =
√
µ and the best estimator of the mean is

simply the arithmetic mean. In case that µ is large enough (µ > 20) the distribution can be
approximated with a gaussian where the σ =

√
µ

The purpose of this experiment is to check counting statistics by measuring the statistical
fluctuations in two cases:

• Measurement of the background, where count rate is relative small. At the same time
we check the Poisson statistics we will estimate the background that we may use later
to correct rate measurements

• Measurement of the relatively high rate source. In this case we will see the

Procedure

Estimated time for data taking: 35 minutes

1. Set the operating voltage of the GM tube at the value determined in Experiment 1.

2. Take out all radioactive sources around the GM tube

3. Take 100 independent runs of 10 seconds each

(a) Preset→ Number of Runs = 100

(b) Preset→ Time = 10

(c) Start run

4. Save data in a file and clear the data

5. Place now a 60Co radioactive source at distance of the source such that the number of
counts in 10 seconds is ∼100 times of the background count

6. Take 100 independent runs of 10 seconds each.

7. Save data in a file.
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Questions

For each measurement

1. Plot the 100 measurements as histograms. Do not forget to draw the errors.

2. Calculate the mean and the sampling variance

3. Perform the χ2 test to compare the sampling variance and the sigma predicted by the
counting statistics. Do they agree?

Special question.

4. BONUS QUESTION. Fit both histograms to a Poisson and a Gaussian distribution (us-
ing minimum square root or maximum likelihood method) and compare the obtained
parameters with the mean and sampling variance obtained previously.

(a) Please comment on the quality of the fit

(b) Does the curve follow the data?
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EXPERIMENT 3: Dead time determination

Description

As we have studied, G-M tubes are very slow detectors. It takes of the order of a microsec-
ond to the detector to develop its full response to the passage of a particle and few hundred
microseconds to restore the detector to be fully operational. Besides this dead time, associ-
ated only with the detector characteristics, we need to add the time it takes to subsequent
events to recover to a sufficient amplitude to cross the discriminator. Indeed the net effect is
not only the contribution of the dead time due to the detector but the overall contributions,
including, those from the electronics.

Large dead times from G-M tubes distort the measured counting rate for counting rates
above few thousand events per minute. In this cases, it’s necessary to make a dead-time
correction to get the correct counting rates. The purpose of this experiment is to measure
the dead time with the two sources method. The measured dead time will be used to correct
counting rates in the subsequent experiments.

G-M dead time is well described by a non-paralyzable dead time model. In this model
the true rate (n) is related with the measured rate (m) and the dead time (τ ) as

n =
m

1−mτ
m =

n

1 + nτ

A useful way to express the dead time is the percent dead time loss:

Percent Dead Time =
n−m
n
× 100% = Tτ × 100% =

nτ

1 + nτ

In order to better measure the dead time we should be sure that the counting rates are such
that the effect of dead time is sizable. As the dead times we want to measure are of the
order of 100 µm, to obtain dead times corrections in the order of 10% to 20%, the measured
counting rates should be in the range of 1000-2000 counts/s

In the two sources method we are going to use a radioactive source that has been sec-
tioned in two halves. We are going to perform three rate measurements: R12, rate generated
by the two sources, R1, rate of only source 1 and R2, rate of only source 2.

Dead time correction can be computed as:

• n1, n2, n12, nb true counting rates

• m1,m2,m12,mb observed rates

n12 − nb = (n1 − nb) + (n2 − nb)
n12 + nb = n1 + n2

Assuming non-paralyzable model n = m
1−mτ

m12

1−m12τ
+

mb

1−mbτ
=

m1

1−m1τ
+

m2

1−m2τ

Solving this equation gives

τ =
X(1−

√
1− Z)

Y

X=m1m2−mbm12

Y=m1m2(m12+mb)−mbm12(m1+m2)

Z=
Y (m1+m2−m12−mb)

X2
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In case we neglect the background the solution becomes:

τ =
R1R2 − [R1R2(R12 −R1)(R12 −R2)]

1
2

R1R2R12

An approximation that is sometimes employed is:

τ ' R1 +R2 −R12

2R1R2

Dead time correction should be applied whenever the percent dead time exceeds 1%.

Procedure

Estimated time for data taking: 10 minutes

1. Take out all radioactive sources around the GM tube and perform a measurement for
1 minute. This measurement is Mb

2. Place the split radioactive source in the sample holder at a distance such that the count-
ing rate is between 1000 and 2000 counts/s. The source is a beta source, please note
the the beta sources have a sense. Beta particles are heavily attenuated in one of the
sides of the source

3. Measure the counts for 1 minute. This measurement is M12

4. Take one of the halves and place in its place the blank half disk.

5. Measure the counts for 1 minutes. This measurement is M1

6. Take out the halve still in place and place the blank half disk in its place. Replace the
half removed previously

7. Measure the counts for 1 minute. This measurement is M2

Questions

1. Calculate the errors of the previous measurements as well as the errors on the mea-
sured rates.

2. Compute and compare the dead time corrections as described in the three previous
formulas. Express dead time both in absolute value (in µs) as well as in percent dead
time. Are they compatible?

3. Figure out a method to compute the error on the dead time
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EXPERIMENT 4: Measurement of the Linear Absorption Co-
efficient

Description

One of the main characteristics of gamma radiation is their exponential attenuation when
passing through matter:

I(x) = I0e
−µx

where I0 is the initial intensity and µ the so called linear absorption coefficient. In principle,
µ depends of the material, but this dependence can be easily removed if we use surface
density units for the distance (s = xρ). In this case the previous expression becomes:

µx =
µ

ρ
xρ = µρs

I = I0e
µρs ln I = ln I0 + µρs

The coefficient µρ is call the mass attenuation coefficient.

Procedure

Estimated time for data taking: 35 minutes

1. Set the G-M tube at the operating voltage determined in Experiment 1.

2. Place a 60Co source in the G-M stand,but taking care to leave at least two free slots
between the source and the G-M tube

3. Take the box with the 20 calibrated absorbers. Place the thinner in one of the free slots
and take a 30 seconds measurement.

4. Repeat the previous steps with all the absorbers.

5. In case you want to have intermediate values combine two absorbers

6. Save data to a file and clear the measurements

7. Repeat the procedure but this time with the 204Tl beta source.

8. Save data to a file

Questions

For the 60Co measurements:

1. Draw a graph with the number of events (or rate) versus the surface density units.
Comment qualitatively the graph obtained.
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2. Fit an straight line using the points leading to an attenuation less than 25%. From this
fit give an estimation of the mass attenuation coefficient.

For the 204Tl measurements

1. Draw a graph with the number of events (or rate) versus the surface density units.
Comment qualitatively the graph obtained.

2. Can you estimate the range of beta particles from this plot? How does this measure-
ment compares with the range provided by ESTAR?

In both cases, please do not forget to well estimate and quote the errors.
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EXPERIMENT 5: Half-Life determination

Description

The purpose of this experiment is to determine the half-life of a relatively short half-life
isotope. We know that the activity (A) or the number of decays in a time period T (N ) follow
an exponential decay:

A(t) = A0e
−λt → A(t)T = A0Te

−λt → N(t) = N0e
−λt

where A0 is the activity at t=0, as well as N0 is the number of decays in a period T for t=0.
The decay constant (λ) is related with the half-life (T1/2) as:

λ =
ln 2

T1/2
=

0.693

T1/2

We can introduce this in the previous equation:

N(t) = N0e
− 0.693t
T1/2

and taking logarithms we obtain:

lnN(t) = lnN0 −
0.693

T1/2
t

Thus plotting the counts measurement versus time on semilog paper will yield a straight
line. The decay constant and the half-life can be obtained from the slope of that line.

Procedure

Estimated time for data taking: 12 hours

1. Set the G-M tube at the operating voltage determined in Experiment 1.

2. Ask the the short live source to the assistant and place it as close as possible of the G-M
tube.

3. In the control program set the parameters of the "Half-life experiment":

• Number of runs: 720

• Time: 60 s

4. The experiment will take few hours to finish. Leave the experiment running and to-
morrow the assistant will send you the file with the results by email.
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Questions

1. The isotope we are going to use 116mIn is generated by bombarding an Indium foil
with neutrons generated from an americium-beryllium source. The whole reaction
that produce it is:

115In+ n→116m In→116∗ Sn+ e− + νe

Find all characteristics of this decay in the data sources provided during the lectures:
energy of the beta, lifetime, etc...

2. Plot the measurements versus time (with errors) and comment it qualitatively.

3. Make an estimation of the background rate and compare it with the rate obtained in
Experiment 2. Should the background be subtracted from the raw data? Associate an
error to this measurement.

4. Discuss if the dead time correction should be done.

5. Make an estimation of the half-time of the 116mIn.

6. BONUS QUESTION. Fit the spectrum obtained to an exponential+flat background

(a) Please comment on the quality of the fit

(b) Compare the errors with the one obtained previously.
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