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2
Atomic Structure and Atomic Radiation

2.1
The Atomic Nature of Matter (ca. 1900)

The work of John Dalton in the early nineteenth century laid the foundation for
modern analytic chemistry. Dalton formulated and interpreted the laws of definite,
multiple, and equivalent proportions, based on the existence of identical atoms as
the smallest indivisible unit of a chemical element. The law of definite proportions
states that in every sample of a chemical compound, the proportion by mass or
weight of the constituent elements is always the same. When two elements com-
bine to form more than one compound, the law of multiple proportions says that
the proportions by mass of the different elements are always in simple ratios to
one another. When two elements react completely with a third, then the ratio of
the masses of the two is the same, regardless of what the third element is, a fact
expressed by the law of equivalent proportions. Dalton also assumed a rule of great-
est simplicity—that elements forming only a single compound do so by means of
a simple one-to-one combination of atoms. This rule does not always hold.

These ideas were supported by the work of Dalton’s contemporary, Gay-Lussac,
on the law of combining volumes of gases. This law states that the volumes of
gases that enter into chemical combination with one another are in the ratio of
simple whole numbers when all volumes are measured under the same conditions
of pressure and temperature. Avogadro hypothesized that equal volumes of any
gases at the same pressure and temperature contain the same number of mole-
cules. Avogadro also suggested that the molecules of some gaseous elements could
be composed of two or more atoms of that element.

Today we recognize that a gram atomic weight of any element contains Avo-
gadro’s number, N0 = 6.022 × 1023, of atoms.1) Furthermore, a gram molecular
weight of any gas also contains N0 molecules and occupies a volume of 22.41 L
(liters) at standard temperature and pressure [STP, 0◦C (=273 K on the absolute
temperature scale) and 760 torr (1 torr = 1 mm Hg)]. The modem scale of atomic
and molecular weights is set by stipulating that the gram atomic weight of the car-
bon isotope, 12C, is exactly 12.000. . . g. A periodic chart, giving atomic numbers,

1 See Appendices A and B for physical
constants, units, and conversion factors.
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atomic weights, densities, and other information about the chemical elements, is
shown in the back of this book.

Example

How many grams of oxygen combine with 2.3 g of carbon in the reaction C + O2 →
CO2? How many molecules of CO2 are thus formed? How many liters of CO2 are
formed at 20◦C and 752 torr?

Solution

In the given reaction, 1 atom of carbon combines with one molecule (2 atoms) of oxy-
gen. From the atomic weights given on the periodic chart in the back of the book, it
follows that 12.011 g of carbon reacts with 2×15.9994 = 31.9988 g of oxygen. Round-
ing off to three significant figures, letting y represent the number of grams of oxygen
asked for, and taking simple proportions, we have y = (2.3/12.0) × 32.0 = 6.13 g.
The number N of molecules of CO2 formed is equal to the number of atoms in 2.3
g of C, which is 2.3/12.0 times Avogadro’s number: N = (2.3/12.0) × 6.02 × 1023 =
1.15 × 1023. Since Avogadro’s number of molecules occupies 22.4 L at STP, the vol-
ume of CO2 at STP is (1.15 × 1023/6.02 × 1023) × 22.4 = 4.28 L. At the given higher
temperature of 20◦C = 293 K, the volume is larger by the ratio of the absolute temper-
atures, 293/273; the volume is also increased by the ratio of the pressures, 760/752.
Therefore, the volume of CO2 made from 2.3 g of C at 20◦C and 752 torr is 4.28
(293/273) (760/752) = 4.64 L. This would also be the volume of oxygen consumed in
the reaction under the same conditions of temperature and pressure, since 1 mole-
cule of oxygen is used to form 1 molecule of carbon dioxide.

As mentioned in Chapter 1, mid-nineteenth century scientists could analyze light
to identify the elements present in its source. Light entering an optical spectrome-
ter is collimated by a lens and slit system, through which it is then directed toward
an analyzer (e.g., a diffraction grating or prism). The analyzer disperses the light,
changing its direction by an amount that depends on its wavelength. White light,
for example, is spread out into the familiar rainbow of colors. Light that is dis-
persed at various angles with respect to the incident direction can be seen with
the eye, photographed, or recorded electronically. Light from a single chemical ele-
ment is observed as a series of discrete line images of the entrance slit that emerge
at various angles from the analyzer. The spectrometer can be calibrated so that
the angles at which the lines occur give the wavelengths of the light that appears
there. Each chemical element produces its own unique, characteristic series of lines
which identify it. The series is referred to as the optical, or line, spectrum of the
element, or simply as the spectrum. When a number of elements are present in
a light source, their spectra appear superimposed in the spectrometer, and the in-
dividual elemental spectra can be sorted out. Elements absorb light of the same
wavelengths they emit.

Figure 2.1 shows the lines in the visible and near-ultraviolet spectrum of atomic
hydrogen. [The wavelength of visible light is between about 4000 Å (violet) and
7500 Å (red).] In 1885 Balmer published an empirical formula that gives these
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Fig. 2.1 Balmer series of lines in the spectrum of atomic hydrogen.

observed wavelengths, λ, in the hydrogen spectrum. His formula is equivalent to
the following:

1
λ

= R∞
(

1
22 –

1
n2

)
, (2.1)

where R∞ = 1.09737 × 107 m–1 is called the Rydberg constant and n = 3, 4, 5, . . .
represents any integer greater than 2. When n = 3, the formula gives λ = 6562 Å;
when n = 4, λ = 4861 Å; and so on. The series of lines, which continue to get
closer together as n increases, converges to the limit λ = 3647 Å in the ultraviolet
as n → ∞. Balmer correctly speculated that other series might exist for hydrogen,
which could be described by replacing the 22 in Eq. (2.1) by the square of other
integers. These other series, however, lie entirely in the ultraviolet or infrared por-
tions of the electromagnetic spectrum. We shall see in Section 2.3 how the Balmer
formula (2.1) was derived theoretically by Bohr in 1913.

As mentioned in Section 1.3, J. J. Thomson in 1897 measured the charge-to-mass
ratio of cathode rays, which marked the experimental “discovery” of the electron as
a particle of matter. The value he found for the ratio was about 1700 times that
associated with the hydrogen atom in electrolysis. One concluded that the elec-
tron was less massive than the hydrogen atom by this factor. Thomson pictured
atoms as containing a large number of the negatively charged electrons in a pos-
itively charged matrix filling the volume of the electrically neutral atom. When a
gas was ionized by radiation, some electrons were knocked out of the atoms in the
gas molecules, leaving behind positive ions of much greater mass. Thomson’s con-
cept of the structure of the atom is sometimes referred to as the “plum pudding”
model.
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2.2
The Rutherford Nuclear Atom

The existence of alpha, beta, and gamma rays was known by 1900. With the dis-
covery of these different kinds of radiation came their use as probes to study the
structure of matter itself.

Rutherford and his students, Geiger and Marsden, investigated the penetration
of alpha particles through matter. Because the range of these particles is small,
an energetic source and thin layers of material were employed. In one set of ex-
periments, 7.69-MeV collimated alpha particles from 214

84Po (RaC′) were directed at
a 6 × 10–5 cm thick gold foil. The relative number of particles leaving the foil at
various angles with respect to the incident beam could be observed through a mi-
croscope on a scintillation screen. While most of the alpha particles passed through
the foil with only slight deviation from their original direction, an occasional par-
ticle was scattered through a large angle, even backwards from the foil. About 1
in 8000 was deflected more than 90◦. An enormously strong electric or magnetic
field would be required to reverse the direction of the fast and relatively massive
alpha particle. (In 1909 Rutherford conclusively established that alpha particles are
doubly charged helium ions.) “It was about as credible as if you had fired a 15-in.
shell at a piece of tissue paper and it came back and hit you,” said Rutherford of
this surprising discovery. He reasoned that the large-angle deflection of some alpha
particles was evidence for the existence of a very small and massive nucleus, which
was also the seat of the positive charge of an atom. The rare scattering of an alpha
particle through a large angle could then be explained by the large repulsive force it
experienced when it approached the tiny nucleus of a single atom almost head-on.
Furthermore, the light electrons in an atom must move rapidly about the nucleus,
filling the volume occupied by the atom. Indeed, atoms must be mostly empty
space, allowing the majority of alpha particles to pass right through a foil with little
or no scattering. Following these ideas, Rutherford calculated the distribution of
scattering angles for the alpha particles and obtained quantitative agreement with
the experimental data. In contrast to the plum pudding model. Rutherford’s atom
is sometimes called a planetary model, in analogy with the solar system.

Today we know that the radius of the nucleus of an atom of atomic mass number
A is given approximately by the formula

R ∼= 1.3A1/3 × 10–15 m. (2.2)

The radius of the gold nucleus is 1.3(197)1/3 × 10–15 = 7.56 × 10–15 m. The atomic
radius of gold is 1.79 × 10–10 m. The ratio of the two radii is (7.56 × 10–15/1.79 ×
10–10) = 4.22 × 10–5. In physical extent, the massive nucleus is only a tiny speck at
the center of the atom.
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Nuclear size increases with atomic mass number A. Equation (2.2) indicates
that the nuclear volume is proportional to A. The so-called strong, or nuclear,
forces2) that hold nucleons (protons and neutrons) together in the nucleus have
short ranges (∼ 10–15 m). Nuclear forces saturate; that is, a given nucleon inter-
acts with only a few others. As a result, nuclear size is increased in proportion as
more and more nucleons are merged to form heavier atoms. The size of all atoms,
in contrast, is more or less the same. All electrons in an atom, no matter how
many, are attracted to the nucleus and repelled by each other. Electric forces do not
saturate—all pairs of charges interact with one another.

2.3
Bohr’s Theory of the Hydrogen Atom

An object that does not move uniformly in a straight line is accelerated, and an
accelerated charge emits electromagnetic radiation. In view of these laws of classi-
cal physics, it was not understood how Rutherford’s planetary atom could be stable.
Electrons orbiting about the nucleus should lose energy by radiation and spiral into
the nucleus.

In 1913 Bohr put forward a bold new hypothesis, at variance with classical laws,
to explain atomic structure. His theory gave correct predictions for the observed
spectra of the H atom and single-electron atomic ions, such as He+, but gave wrong
answers for other systems, such as He and H+

2. The discovery of quantum mechan-
ics in 1925 and its subsequent development has led to the modem mathematical
theory of atomic and molecular structure. Although it proved to be inadequate,
Bohr’s theory gives useful insight into the quantum nature of matter. We shall see
that a number of properties of atoms and radiation can be understood from its
basic concepts and their logical extensions.

Bohr assumed that an atomic electron moves without radiating only in certain
discrete orbits about the nucleus. He further assumed that the transition of the
electron from one orbit to another must be accompanied by the emission or ab-
sorption of a photon of light, the photon energy being equal to the orbital energy
lost or gained by the electron. In principle, Bohr’s ideas thus account for the exis-
tence of discrete optical spectra that characterize an atom and for the fact that an
element emits and absorbs photons of the same wavelengths.

Bohr discovered that the proper electronic energy levels, yielding the observed
spectra, were obtained by requiring that the angular momentum of the electron
about the nucleus be an integral multiple of Planck’s constant h divided by 2π

(� = h/2π ). (Classically, any value of angular momentum is permissible.) For an

2 The four fundamental forces in nature are
(1) gravitational, (2) electromagnetic,
(3) strong (nuclear), and (4) weak
(responsible for beta decay). The attractive
nuclear force is strong enough to overcome

the mutual Coulomb repulsion of protons in
the nucleus (Section 3.1). The
electromagnetic and weak forces are now
recognized as a single, unified force.
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Fig. 2.2 Schematic representation of electron (mass m, charge
–e) in uniform circular motion (speed v, orbital radius r) about
nucleus of charge +Ze.

electron of mass m moving uniformly with speed v in a circular orbit of radius r

(Fig. 2.2), we thus write

mvr = n�, (2.3)

where n is a positive integer, called a quantum number (n = 1, 2, 3, . . .). [Angular
momentum, mvr, is defined in Appendix C; and � = 1.05457 × 10–34 J s (Appen-
dix A)]. If the electron changes from an initial orbit in which its energy is Ei to a
final orbit of lower energy Ef, then a photon of energy

hν = Ei – Ef (2.4)

is emitted, where ν is the frequency of the photon. (Ef > Ei if a photon is absorbed.)
Equations (2.3) and (2.4) are two succinct statements that embody Bohr’s ideas
quantitatively. We now use them to derive the properties of single-electron atomic
systems.

When an object moves with constant speed v in a circle of radius r, it experiences
an acceleration v2/r, directed toward the center of the circle. By Newton’s second
law, the force on the object is mv2/r, also directed toward the center (Problem 10).
The force on the electron in Fig. 2.2 is supplied by the Coulomb attraction between
the electronic and nuclear charges, –e and +Ze. Therefore, we write for the equation
of motion of the electron,

mv2

r
= k0Ze2

r2 , (2.5)

where k0 = 8.98755 × 109 N m2 C–2 (Appendix C). Solving for the radius gives

r = k0Ze2

mv2 . (2.6)

Solving Eq. (2.3) for v and substituting into (2.6), we find for the radii rn of the
allowed orbits

rn = n2
�

2

k0Ze2m
. (2.7)
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Substituting values of the constants from Appendix A, we obtain

rn = n2(1.05457 × 10–34)2

(8.98755 × 109Z)(1.60218 × 10–19)2(9.10939 × 10–31)

= 5.29 × 10–11 n2

Z
m. (2.8)

The innermost orbit (n = 1) in the hydrogen atom (Z = 1) thus has a radius of
5.29 × 10–11 m = 0.529 Å, often referred to as the Bohr radius.

In similar fashion, eliminating r between Eqs. (2.3) and (2.6) yields the orbital
velocities

vn = k0Ze2

n�
= 2.19 × 106 Z

n
m s–1. (2.9)

The velocity of the electron in the first Bohr orbit (n = 1) of hydrogen (Z = 1) is
2.19 × 106 m s–1. In terms of the speed of light c, the quantity v1/c = k0e2/�c ∼=
1/137 is called the fine-structure constant. Usually denoted by α, it determines the
relativistic corrections to the Bohr energy levels, which give rise to a fine structure
in the spectrum of hydrogen.

It follows that the kinetic and potential energies of the electron in the nth orbit
are

KEn = 1
2

mv2
n = k2

0Z2e4m

2n2�2 (2.10)

and

PEn = –
k0Ze2

rn

= –
k2

0Z2e4m

n2�2 , (2.11)

showing that the potential energy is twice as large in magnitude as the kinetic
energy (virial theorem). The total energy of the electron in the nth orbit is therefore

En = KEn + PEn = –
k2

0Z2e4m

2n2�2 = –
13.6Z2

n2 eV. (2.12)

[The energy unit, electron volt (eV), given in Appendix B, is defined as the en-
ergy acquired by an electron in moving freely through a potential difference of
1 V: 1 eV = 1.60 × 10–19 J.] The lowest energy occurs when n = 1. For the H
atom, this normal, or ground-state, energy is –13.6 eV; for He+ (Z = 2) it is
–13.6 × 4 = –54.4 eV. The energy required to remove the electron from the ground
state is called the ionization potential, which therefore is 13.6 eV for the H atom
and 54.4 eV for the He+ ion.

It remains to calculate the optical spectra for the single-electron systems based on
Bohr’s theory. Balmer’s empirical formula (2.1) gives the wavelengths found in the
visible spectrum of hydrogen. According to postulate (2.4), the energies of photons
that can be emitted or absorbed are equal to the differences in the energy values
given by Eq. (2.12). When the electron makes a transition from an initial orbit with
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quantum number ni to a final orbit of lower energy with quantum number nf (i.e.,
ni > nf), then from Eqs. (2.4) and (2.12) the energy of the emitted photon is

hν = hc

λ
= k2

0Z2e4m

2�2

(
–

1
n2

i
+

1
n2

f

)
, (2.13)

where λ is the wavelength of the photon and c is the speed of light. Substituting
the numerical values3) of the physical constants, one finds from Eq. (2.13) that

1
λ

= 1.09737 × 107Z2
(

1
n2

f

–
1
n2

i

)
m–1. (2.14)

When Z = 1, the constant in front of the parentheses is equal to the Rydberg con-
stant R∞ in Balmer’s empirical formula (2.1). The integer 2 in the Balmer formula
is interpretable from Bohr’s theory as the quantum number of the orbit into which
the electron falls when it emits the photon. Derivation of the Balmer formula and
calculation of the Rydberg constant from the known values of e, m, h, and c pro-
vided undeniable evidence for the validity of Bohr’s postulates for single-electron
atomic systems, although the postulates were totally foreign to classical physics.

Figure 2.3 shows a diagram of the energy levels of the hydrogen atom, calculated
from Eq. (2.12), together with vertical lines that indicate the electron transitions
that result in the emission of photons with the wavelengths shown. There are in-
finitely many orbits in which the electron has negative energy (bound states of the
H atom). The orbital energies get closer together near the ionization threshold,
13.6 eV above the ground state. When an H atom becomes ionized, the electron
is not bound and can have any positive energy. In addition to the Balmer series,
Bohr’s theory predicts other series, each corresponding to a different final-orbit
quantum number nf and having an infinite number of lines. The set that results
from transitions of electrons to the innermost orbit (nf = 1, ni = 2, 3, 4, . . .) is called
the Lyman series. The least energetic photon in this series has an energy

E = –13.6
(

1
22 –

1
12

)
= –13.6

(
–

3
4

)
= 10.2 eV, (2.15)

as follows from Eqs. (2.4) and (2.12) with Z = 1. Its wavelength is 1216 Å. As ni

increases, the Lyman lines get ever closer together, like those in the Balmer series,
converging to the energy limit of 13.6 eV, the ionization potential of H. The photon
wavelength at the Lyman series limit (nf = 1, ni → ∞) is obtained from Eq. (2.14):

1
λ

= 1.09737 × 107
(

1
12 –

1
∞2

)
= 1.09737 × 107 m–1, (2.16)

or λ = 911 Å. The Lyman series lies entirely in the ultraviolet region of the electro-
magnetic spectrum. The series with nf ≥ 3 lie in the infrared. The shortest wave-
length in the Paschen series (nf = 3) is given by 1/λ = (1.09737 × 107)/9 m–1, or
λ = 8.20 × 10–7 m = 8200 Å.

3 For high accuracy, the reduced mass of the
electron must be used. See last paragraph in
this section.
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Fig. 2.3 Energy levels of the hydrogen atom. Vertical lines
represent transitions that the electron can make between
various levels with the associated emitted photon wavelengths
shown.

Example

Calculate the wavelength of the third line in the Balmer series in Fig. 2.1. What is the
photon energy in eV?

Solution

We use Eq. (2.14) with Z = 1, nf = 2, and ni = 5:

1
λ

= 1.09737 × 107
(

1
4

–
1
25

)
= 2.30448 × 106 m–1. (2.17)
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Thus λ = 4.34 × 10–7 m = 4340 Å. A photon of this wavelength has an energy

E = hc

λ
= 6.63 × 10–34 × 3 × 108

4.34 × 10–7 = 4.58 × 10–19 J, (2.18)

or 2.86 eV. Alternatively, we can obtain the photon energy from Eq. (2.12). The en-
ergy levels involved in the electronic transition are 13.6/4 = 3.40 eV and 13.6/25 =
0.544 eV; their difference is 2.86 eV.

Example

What is the largest quantum number of a state of the Li2+ ion with an orbital radius
less than 50 Å?

Solution

The radii of the orbits are described by Eq. (2.8) with Z = 3. Setting rn = 50 Å =
5 × 10–9 m and solving for n, we find that

n =
√

rnZ

5.29 × 10–11 =
√

5 × 10–9 × 3
5.29 × 10–11 = 16.8. (2.19)

A nonintegral quantum number is not defined in the Bohr theory. Equation (2.19)
tells us, though, that rn > 50 Å when n = 17 and rn < 50 Å when n = 16. Therefore,
n = 16 is the desired answer.

Example

Calculate the angular velocity of the electron in the ground state of He+.

Solution

With quantum number n, the angular velocity ωn in radians s–1 is equal to 2π fn,
where fn is the frequency, or number of orbital revolutions of the electron about the
nucleus per second. In general, fn = vn/(2πrn); and so ωn = vn/rn. With n = 1 and
Z = 2, Eqs. (2.8) and (2.9) give ω1 = v1/r1 = 1.66 × 1017 s–1, where the dimensionless
angular unit, radian, is understood.

In deriving Eq. (2.14) it was tacitly assumed that an electron of mass m orbits
about a stationary nucleus. In reality, the electron and nucleus (mass M) orbit about
their common center of mass. The energy levels are determined by the relative
motion of the two, in which the effective mass is the reduced mass of the system
(electron plus nucleus), given by

mr = mM

m + M
. (2.20)

For the hydrogen atom, M = 1836m, and so the reduced mass mr = 1836m/1837 =
0.9995m is nearly the same as the electron mass. The heavier the nucleus, the closer
the reduced mass is to the electron mass. The symbol R∞ is used to denote the
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Rydberg constant for a stationary (infinitely heavy) nucleus, with mr = m. Then the
Rydberg constant for ions with different nuclear masses M is given by

RM = R∞
1 + m/M

. (2.21)

Problem 29 shows an example in which the reduced mass plays a significant role.
Problem 31 indicates how Eq. (2.20) can be derived for motion in one dimension.

2.4
Semiclassical Mechanics, 1913–1925

The success of Bohr’s theory for hydrogen and single-electron ions showed that
atoms are “quantized” systems. They radiate photons with the properties described
earlier by Planck and by Einstein. At the same time, the failure of the Bohr theory
to give correct predictions for other systems led investigators to search for a more
fundamental expression of the quantum nature of atoms and radiation.

Between Bohr’s 1913 theory and Heisenberg’s 1925 discovery of quantum me-
chanics, methods of semiclassical mechanics were explored in physics. A general
quantization procedure was sought that would incorporate Bohr’s rules for single-
electron systems and would also be applicable to many-electron atoms and to mole-
cules. Basically, as we did above with Eq. (2.5), one used classical equations of mo-
tion to describe an atomic system and then superimposed a quantum condition,
such as Eq. (2.3).

A principle of “adiabatic invariance” was used to determine which variables of
a system should be quantized. It was recognized that quantum transitions occur
as a result of sudden perturbations on an atomic system, not as a result of gradual
changes. For example, the rapidly varying electric field of a passing photon can re-
sult in an electronic transition with photon absorption by a hydrogen atom. On the
other hand, the electron is unlikely to make a transition if the atom is simply placed
in an external electric field that is slowly increased in strength. The principle thus
asserted that those variables in a system that were invariant under slow, “adiabatic”
changes were the ones that should be quantized.

A generalization of Bohr’s original quantum rule (2.3) was also worked out (by
Wilson and Sommerfeld, independently) that could be applied to pairs of variables,
such as momentum and position. So-called phase integrals were used to quantize
systems after the classical laws of motion were applied.

These semiclassical procedures had some successes. For example, elliptical or-
bits were introduced into Bohr’s picture and relativistic equations were used in
place of the nonrelativistic Eq. (2.5). The relativistic theory predicted a split in some
atomic energy levels with the same quantum number, the magnitude of the energy
difference depending on the fine-structure constant. The existence of the split gives
rise to a fine structure in the spectrum of most elements in which some “lines”
are observed under high resolution to be two closely separated lines. The well-
known doublet in the sodium spectrum, consisting of two yellow lines at 5890 Å
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and 5896 Å, is due to transitions from two closely spaced energy levels, degener-
ate in nonrelativistic theory. In spite of its successes in some areas, semiclassical
atomic theory did not work for many-electron atoms and for such simple systems
as some diatomic molecules, for which it gave unambiguous but incorrect spectra.

As a guide for discovering quantum laws, Bohr in 1923 introduced his corre-
spondence principle. This principle states that the predictions of quantum physics
must be the same as those of classical physics in the limit of very large quantum
number n. In addition, any relationships between states that are needed to obtain
the classical results for large n also hold for all n. The diagram of energy levels in
Fig. 2.3 illustrates the approach of a quantum system to a classical one when the
quantum numbers become very large. Classically, the electron in a bound state has
continuous, rather than discrete, values of the energy. As n → ∞, the bound-state
energies of the H atom get arbitrarily close together.

Advances toward the discovery of quantum mechanics were also being made
along other lines. The classical Maxwellian wave theory of electromagnetic radi-
ation seemed to be at odds with the existence of Einstein’s corpuscular photons
of light. How could light act like waves in some experiments and like particles in
others? The diffraction and interference of X rays was demonstrated in 1912 by
von Laue, thus establishing their wave nature. The Braggs used X-ray diffraction
from crystal layers of known separation to measure the wavelength of X rays. In
1922, discovery of the Compton effect (Section 8.4)—the scattering of X-ray pho-
tons from atoms with a decrease in photon energy—demonstrated their nonwave,
or corpuscular, nature in still another way. The experimental results were explained
by assuming that a photon of energy E has a momentum p = E/c = hν/c, where ν

is the photon frequency and c is the speed of light. In 1924, de Broglie proposed
that the wave/particle dualism recognized for photons was a characteristic of all
fundamental particles of nature. An electron, for example, hitherto regarded as a
particle, also might have wave properties associated with it. The universal formula
that links the property of wavelength, λ, with the particle property of momentum,
p, is that which applies to photons: p = hν/c = h/λ. Therefore, de Broglie proposed
that the wavelength associated with a particle be given by the relation

λ = h

p
= h

γmv
, (2.22)

where m and v are rest mass and speed of the particle and γ is the relativistic factor
defined in Appendix C.

Davisson and Germer in 1927 published the results of their experiments, which
demonstrated that a beam of electrons incident on a single crystal of nickel is dif-
fracted by the regularly spaced crystal layers of atoms. Just as the Braggs mea-
sured the wavelength of X rays from crystal diffraction, Davisson and Germer
measured the wavelength for electrons. They found excellent agreement with Eq.
(2.22). The year before this experimental confirmation of the existence of electron
waves, Schroedinger had extended de Broglie’s ideas and developed his wave equa-
tion for the new quantum mechanics, as described in the next section.
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A convenient formula can be used to obtain the wavelength λ of a non-relativistic
electron in terms of its kinetic energy T. (An electron is nonrelativistic as long as
T is small compared with its rest energy, mc2 = 0.511 MeV.) The nonrelativistic
formula relating momentum p and kinetic energy T is p = √

2mT (Appendix C). It
follows from Eq. (2.22) that

λ = h√
2mT

. (2.23)

It is often convenient to express the wavelength in Å and the energy in eV. Using
these units for λ and T in Eq. (2.23), we write

λÅ × 10–10 = 6.6261 × 10–34√
2 × 9.1094 × 10–31 × TeV × 1.6022 × 10–19

, (2.24)

or

λÅ = 12.264√
TeV

= 12.3√
TeV

. (Nonrelativistic electrons) (2.25)

The subscripts indicate the units for λ and T when this formula is used.
An analogous expression can be derived for photons. Since the photon energy is

given by E = hν, the wavelength is λ = c/ν = ch/E. Analogously to Eq. (2.25), we
find

λÅ = 12398
EeV

= 12400
EeV

. (Photons) (2.26)

Example

In some of their experiments, Davisson and Germer used electrons accelerated
through a potential difference of 54 V. What is the de Broglie wavelength of these
electrons?

Solution

The nonrelativistic formula (2.25) gives, with TeV = 54 eV, λÅ = 12.3/
√

54 = 1.67 Å.
Electron wavelengths much smaller than optical ones are readily obtainable. This is
the basis for the vastly greater resolving power that electron microscopes have over
optical microscopes (wavelengths � 4000 Å).

Example

Calculate the de Broglie wavelength of a 10-MeV electron.

Solution

We must treat the problem relativistically. We thus use Eq. (2.22) after determining γ

and v. From Appendix C, with T = 10 MeV and mc2 = 0.511 MeV, we have

10 = 0.511(γ – 1), (2.27)
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giving γ = 20.6. We can compute v directly from γ. In this example, however, we
know that v is very nearly equal to c. Using v = c in Eq. (2.22), we therefore write

λ = h

γmc
= 6.63 × 10–34

20.6 × 9.11 × 10–31 × 3 × 108 = 1.18 × 10–13 m. (2.28)

For the last example one can, alternatively, derive the relativistic form of Eq. (2.25)
for electrons. The result is (Problem 42)

λÅ = 12.264√
TeV

(
1 + TeV

1.022×106

) . (Relativistic electrons) (2.29)

The last term in the denominator is TeV/(2mc2) and is, therefore, not important
when the electron’s kinetic energy can be neglected compared with its rest energy.
Equation (2.29) then becomes identical with Eq. (2.25).

Also, in the period just before the discovery of quantum mechanics, Pauli formu-
lated his famous exclusion principle. This rule can be expressed by stating that no
two electrons in an atom can have the same set of four quantum numbers. We shall
discuss the Pauli principle in connection with the periodic system of the elements
in Section 2.6.

2.5
Quantum Mechanics

Quantum mechanics was discovered by Heisenberg in 1925 and, from a com-
pletely different point of view, independently by Schroedinger at about the same
time. Heisenberg’s formulation is termed matrix mechanics and Schroedinger’s
is called wave mechanics. Although they are entirely different in their mathemati-
cal formulation, Schroedinger showed in 1926 that the two systems are completely
equivalent and lead to the same results. We shall discuss each in turn.

Heisenberg associated the failure of the Bohr theory with the fact that it was
based on quantities that are not directly observable, like the classical position and
speed of an electron in orbit about the nucleus. He proposed a system of mechanics
based on observable quantities, notably the frequencies and intensities of the lines
in the emission spectrum of atoms and molecules. He then represented dynamical
variables (e.g., the position x of an electron) in terms of observables and worked
out rules for representing x2 when the representation for x is given. In so doing,
Heisenberg found that certain pairs of variables did not commute multiplicatively
(i.e., xp �= px when x and p represent position and momentum in the direction of x),
a mathematical property of matrices recognized by others after Heisenberg’s orig-
inal formulation. Heisenberg’s matrix mechanics was applied to various systems
and gave results that agreed with those predicted by Bohr’s theory where the latter
was consistent with experiment. In other instances it gave new theoretical predic-
tions that also agreed with observations. For example, Heisenberg explained the
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pattern of alternating strong and weak lines in the spectra of diatomic molecules, a
problem in which Bohr’s theory had failed. He showed that two forms of molecular
hydrogen should exist, depending on the relative directions of the proton spin, and
that the form with spins aligned (orthohydrogen) should be three times as abun-
dant as the other with spins opposed (parahydrogen). This discovery was cited in
the award of the 1932 Nobel Prize in physics to Heisenberg.

The concept of building an atomic theory on observables and its astounding suc-
cesses let to a revolution in physics. In classical physics, objects move with certain
endowed properties, such as position and velocity at every moment in time. If one
knows these two quantities at any one instant and also the total force that an object
experiences, then its motion is determined completely for all times by Newton’s
second law. Such concepts are applied in celestial mechanics, where the positions
of the planets can be computed backwards and forwards in time for centuries. The
same determinism holds for the motion of familiar objects in everyday life. How-
ever, on the atomic scale, things are inherently different. In an experiment that
would measure the position and velocity of an electron in orbit about a nucleus,
the act of measurement itself introduces uncontrollable perturbations that prevent
one’s obtaining all the data precisely. For example, photons of very short wave-
length would be required to localize the position of an electron within an atomic
dimension. Such photons impart high momentum in scattering from an electron,
thereby making simultaneous knowledge of the electron’s position and momen-
tum imprecise.

In 1927 Heisenberg enunciated the uncertainty principle, which sets the limits
within which certain pairs of quantities can be known simultaneously. For momen-
tum p and position x (in the direction of the momentum) the uncertainty relation
states that

�p�x ≥ �. (2.30)

Here �p and �x are the uncertainties (probable errors) in these quantities, deter-
mined simultaneously; the product of the two can never be smaller than �, which
it can approach under optimum conditions. Another pair of variables consists of
energy E and time t, for which

�E�t ≥ �. (2.31)

The energy of a system cannot be measured with arbitrary precision in a very short
time interval. These uncertainties are not due to any shortcomings in our measur-
ing ability. They are a result of the recognition that only observable quantities have
an objective meaning in physics and that there are limits to making measurements
on an atomic scale. The question of whether an electron “really” has a position and
velocity simultaneously—whether or not we try to look—is metaphysical. Schools
of philosophy differ on the fundamental nature of our universe and the role of the
observer.

Whereas observation is immaterial to the future course of a system in classical
physics, the observer’s role is a basic feature of quantum mechanics, a formal-
ism based on observables. The uncertainty relations rule out classical determinism
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for atomic systems. Knowledge obtained from one measurement, say, of an elec-
tron’s orbital position, will not enable one to predict with certainty the result of a
second measurement of the orbital position. Instead of this determinism, quan-
tum mechanics enables one to predict only the probabilities of finding the electron
in various positions when the second measurement is made. Operationally, such
a probability distribution can be measured by performing an experiment a large
number of times under identical conditions and compiling the frequency distribu-
tion of the different results. The laws of quantum mechanics are definite, but they
are statistical, rather than deterministic, in nature. As an example of this distinc-
tion, consider a sample of 1016 atoms of a radioactive isotope that is decaying at an
average rate of 104 atoms per second. We cannot predict which particular atoms will
decay during any given second nor can we say exactly how many will do so. How-
ever, we can predict with assurance the probability of obtaining any given number
of counts (e.g., 10,132) in a given second, as can be checked by observation.

Example

What is the minimum uncertainty in the momentum of an electron that is localized
within a distance �x = 1 Å, approximately the diameter of the hydrogen atom? How
large can the kinetic energy of the electron be, consistent with this uncertainty?

Solution

The relation (2.30) requires that the uncertainty in the momentum be at least as large
as the amount

�p ∼= �

�x
= 1.05 × 10–34 J s

10–10 m
∼ 10–24 kg m s–1. (2.32)

To estimate how large the kinetic energy of the electron can be, we note that its mo-
mentum p can be as large as �p. With p ∼ �p, the kinetic energy T of the electron
(mass m) is

T = p2

2m
∼ (10–24)2

2 × 9.11 × 10–31 ∼ 5 × 10–19 J, (2.33)

or about 3 eV. This analysis indicates that an electron confined within a distance
�x ∼ 1 Å will have a kinetic energy in the eV range. In the case of the H atom we
saw that the electron’s kinetic energy is 13.6 eV. The uncertainty principle implies
that electrons confined to even smaller regions become more energetic, as the next
example illustrates.

Example

If an electron is localized to within the dimensions of an atomic nucleus, �x ∼
10–15 m, estimate its kinetic energy.

Solution

In this case, we have p ∼ �p ∼ �/�x ∼ 10–34/10–15 ∼ 10–19 kg m s–1. Comparison
with the last example (p ∼ 10–24 kg m s–1) indicates that we must use the relativistic
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formula to find the kinetic energy from the momentum in this problem (Appendix C).
The total energy ET of the electron is given by

E2
T = p2c2 + m2c4 (2.34)

= (10–19)2(3 × 108)2 + (9 × 10–31)2(3 × 108)4 (2.35)

= 9 × 10–22 J2, (2.36)

from which we obtain ET ∼ 200 MeV. It follows that electrons in atomic nuclei would
have energies of hundreds of MeV. Before the discovery of the neutron in 1932 it was
speculated that a nucleus of atomic number Z and atomic mass number A consists
of A protons and A – Z electrons. The uncertainty principle argued against such a
picture, since maximum beta-particle energies of only a few MeV are found. (In addi-
tion, some nuclear spins would be different from those observed if electrons existed
in the nucleus.) The beta particle is created in the nucleus at the time of decay.

We turn now to Schroedinger’s wave mechanics. Schroedinger began with de
Broglie’s hypothesis (Eq. 2.22) relating the momentum and wavelength of a parti-
cle. He introduced an associated oscillating quantity, ψ , and constructed a differen-
tial equation for it to satisfy. The coefficients in the equation involve the constants h

and the mass and charge of the particle. Equations describing waves are well known
in physics. Schroedinger’s wave equation is a linear differential equation, second
order in the spatial coordinates and first order in time. It is linear, so that the sum
of two or more solutions is also a solution. Linearity thus permits the superposition
of solutions to produce interference effects and the construction of wave packets
to represent particles. The wave-function solution ψ must satisfy certain bound-
ary conditions, which lead to discrete values, called eigenvalues, for the energies of
bound atomic states. Applied to the hydrogen atom, Schroedinger’s wave equation
gave exactly the Bohr energy levels. It also gave correct results for the other sys-
tems to which it was applied. Today it is widely used to calculate the properties of
many-electron atomic and molecular systems, usually by numerical solution on a
computer.

A rough idea can be given of how wave mechanics replaces Bohr’s picture of the
H atom. Instead of the concept of the electron moving in discrete orbits about the
nucleus, we envision the electron as being represented by an oscillating cloud. Fur-
thermore, the electron cloud oscillates in such a way that it sets up a standing wave
about the nucleus. A familiar example of standing waves is provided by a vibrating
string of length L stretched between two fixed points P1 and P2, as illustrated in
Fig. 2.4. Standing waves are possible only with wavelengths λ given by

L = n
λ

2
, n = 1, 2, 3, . . . . (2.37)

This relation describes a discrete set of wavelengths λ. In an analogous way, an
electron standing-wave cloud in the H atom can be envisioned by requiring that
an integral number of wavelengths nλ fit exactly into a circumferential distance
2πr about the nucleus: 2πr = nλ. Using the de Broglie relation (2.22) then implies
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Fig. 2.4 Examples of standing waves in string of length L
stretched between two fixed points P1 and P2. Such waves exist
only with discrete wavelengths given by λ = 2L/n, where
n = 1, 2, 3, . . . .

nonrelativistically (γ = 1) that 2πr = nh/mv, or mvr = n�. One thus arrives at Bohr’s
original quantization law, Eq. (2.3).

Schroedinger’s wave equation is nonrelativistic, and he proposed a modification
of it in 1926 to meet the relativistic requirement for symmetry between space and
time. As mentioned earlier, the Schroedinger differential equation is second order
in space and first order in time variables. His relativistic equation, which contained
the second derivative with respect to time, led to a fine structure in the hydrogen
spectrum, but the detailed results were wrong. Taking a novel approach, Dirac pro-
posed a wave equation that was first order in both the space and time variables. In
1928 Dirac showed that the new equation automatically contained the property of
intrinsic angular momentum for the electron, rotating about its own axis. The pre-
dicted value of the electron’s spin angular momentum was �/2, the value ascribed
experimentally in 1925 by Uhlenbeck and Goudsmit to account for the structure of
the spectra of the alkali metals. Furthermore, the fine structure of the hydrogen-
atom spectrum came out correctly from the Dirac equation. Dirac’s equation also
implied the existence of a positive electron, found later by Anderson, who discov-
ered the positron in cosmic radiation in 1932. In 1927 Dirac also laid the foundation
for quantum electrodynamics—the modern theory of the emission and absorption
of electromagnetic radiation by atoms. The reader is referred to the historical out-
line in Section 1.3 for a chronology of events that occurred with the discovery of
quantum mechanics.
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2.6
The Pauli Exclusion Principle

Originally based on the older, semiclassical quantum theory, the Pauli exclusion
principle plays a vital role in modern quantum mechanics. The principle was de-
veloped for electrons in orbital states in atoms. It holds that no two electrons in an
atom can be in the same state, characterized by four quantum numbers which we
now define. The Pauli principle enables one to use atomic theory to account for the
periodic system of the chemical elements.

In the Bohr theory with circular orbits, described in Section 2.3, only a single
quantum number, n, was used. This is the first of the four quantum numbers,
and we designate it as the principal quantum number. In Bohr’s theory each value
of n gives an orbit at a given distance from the nucleus. For an atom with many
electrons, we say that different values of n correspond to different electron shells.
Each shell can accommodate only a limited number of electrons. In developing
the periodic system, we postulate that, as more and more electrons are present in
atoms of increasing atomic number, they fill the innermost shells. The outer-shell
electrons determine the gross chemical properties of an element; these properties
are thus repeated successively after each shell is filled. When n = 1, the shell is
called the K shell; n = 2 denotes the L shell; n = 3, the M shell; and so on.

The second quantum number arises in the following way. As mentioned in Sec-
tion 2.4, elliptical orbits and relativistic mechanics were also considered in the older
quantum theory of the hydrogen atom. In nonrelativistic mechanics, the mean en-
ergy of an electron is the same for all elliptical orbits having the same major axis.
Furthermore, the mean energy is the same as that for a circular orbit with a diam-
eter equal to the major axis. (The circle is the limiting case of an ellipse with equal
major and minor axes.) Relativistically, the situation is different because of the in-
crease in velocity and hence mass that an electron experiences in an elliptical orbit
when it comes closest to the nucleus. In 1916 Sommerfeld extended Bohr’s theory
to include elliptical orbits with the nucleus at one focus. The formerly degenerate
energies of different ellipses with the same major axis are slightly different rela-
tivistically, giving rise to the fine structure in the spectra of elements. The observed
fine structure in the hydrogen spectrum was obtained by quantizing the ratio of
the major and minor axes of the elliptical orbits, thus providing a second quantum
number, called the azimuthal quantum number. In modern theory it amounts to
the same thing as the orbital angular-momentum quantum number, l, with values
l = 0, 1, 2, . . . , n – 1. Thus, for a given shell, the second quantum number can be any
non-negative integer smaller than the principal quantum number. When n = 1,
l = 0 is the only possible azimuthal quantum number; when n = 2, l = 0 and l = 1
are both possible.

The magnetic quantum number m is the third. It was introduced to account for
the splitting of spectral lines in a magnetic field (Zeeman effect). An electron or-
biting a nucleus constitutes an electric current, which produces a magnetic field.
When an atom is placed in an external magnetic field, its own orbital magnetic
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field lines up only in certain discrete directions with respect to the external field.
The magnetic quantum number gives the component of the orbital angular mo-
mentum in the direction of the external field. Accordingly, m can have any inte-
gral value between +l and –l; viz., m = 0,±1,±2, . . . ,±l. With l = 1, for example,
m = –1, 0, 1.

Although the Bohr–Sommerfeld theory explained a number of features of atomic
spectra, problems still persisted. Unexplained was the fact that the alkali-metal
spectra (e.g., Na) show a doublet structure even though these atoms have only a sin-
gle valence electron in their outer shell (as we show in the next section). In addition,
spectral lines do not split into a normal pattern in a weak magnetic field (anom-
alous Zeeman effect). These problems were cleared up when Pauli introduced a
fourth quantum number of “two-valuedness,” having no classical analogue. Then,
in 1925, Uhlenbeck and Goudsmit proposed that the electron has an intrinsic an-
gular momentum 1

2 � due to rotation about its own axis; thus the physical signifi-
cance of Pauli’s fourth quantum number was evident. The electron’s intrinsic spin
endows it with magnetic properties. The spin quantum number, s, has two values,
s = ± 1

2 . In an external magnetic field, the electron aligns itself either with “spin
up” or “spin down” with respect to the field direction.

The Pauli exclusion principle states that no two electrons in an atom can occupy
a state with the same set of four quantum numbers n, l, m, and s. The principle can
also be expressed equivalently, but more generally, by saying that no two electrons
in a system can have the same complete set of quantum numbers. Beyond atomic
physics, the Pauli exclusion principle applies to all types of identical particles of
half-integral spin (called fermions and having intrinsic angular momentum 1

2 �,
3
2 �, etc.). Such particles include positrons, protons, neutrons, muons, and others.
Integral-spin particles (called bosons) do not obey the exclusion principle. These
include photons, alpha particles, pions, and others.

We next apply the Pauli principle as a basis for understanding the periodic sys-
tem of the elements.

2.7
Atomic Theory of the Periodic System

The K shell, with n = 1, can contain at most two electrons, since l = 0, m = 0, and
s = ± 1

2 are the only possible values of the other three quantum numbers. The two
electrons in the K shell differ only in their spin directions. The element with atomic
number Z = 2 is the noble gas helium. Like the other noble-gas atoms it has a
completed outer shell and is chemically inert. The electron configurations of H and
He are designated, respectively, as 1s1 and 1s2. The symbols in the configurations
give the principal quantum number, a letter designating the azimuthal quantum
number (s denotes l = 0; p denotes l = 1; d, l = 2; and f, l = 3), and a superscript
giving the total number of electrons in the states with the given values of n and l.
The electron configurations of each element are shown in the periodic table in the
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back of this book, to which the reader is referred in this discussion. The first period
contains only hydrogen and helium.

The next element, Li, has three electrons. Two occupy the full K shell and the
third occupies a state in the L shell (n = 2). Electrons in this shell can have l = 0
(s states) or l = 1 (p states). The 2s state has lower energy than the 2p, and so the
electron configuration of Li is 1s22s1. With Z = 4 (Be), the other 2s state is occupied,
and the configuration is 1s22s2. No additional s electrons (l = 0) can be added in
these two shells. However, the L shell can now accommodate electrons with l = 1
(p electrons) and with three values of m: –1, 0, +1. Since two electrons with opposite
spins (spin quantum numbers ± 1

2 ) can occupy each state of given n, l, and m, there
can be a total of six electrons in the 2p states. The configurations for the next six
elements involve the successive filling of these states, from Z = 5 (B), 1s22s2p1,
to Z = 10 (Ne), 1s22s2p6. The noble gas neon has the completed L shell. To save
repeating the writing of the identical inner-shell configurations for other elements,
one denotes the neon configuration by [Ne]. The second period of the table begins
with Li and ends with Ne.

With the next element, sodium, the filling of the M shell begins. Sodium has
a 3s electron and its configuration is [Ne]3s1. Its single outer-shell electron gives
it properties akin to those of lithium. One sees that the other alkali metals in the
group IA of the periodic table are all characterized by having a single s electron in
their outer shell. The third period ends with the filling of the 3s2p6 levels in the
noble gas, Ar (Z = 18). The chemical and physical properties of the eight elements
in the third period are similar to those of the eight elements in the second period
with the same outer-shell electron configurations.

The configuration of Ar (Z = 18), which is [Ne]3s2p6, is also designated as [Ar].
All of the states with n = 1, l = 0; n = 2, l = 0, 1; and n = 3, l = 0, 1 are occupied in
Ar. However, the M shell is not yet filled, because d states (l = 2) are possible when
n = 3. Because there are five values of m when l = 2, there are five d states, which
can accommodate a total of ten electrons (five pairs with opposite spin), which is the
number needed to complete the M shell. It turns out that the 4s energy levels are
lower than the 3d. Therefore, the next two elements, K and Ca, that follow Ar have
the configurations [Ar]4s1 and [Ar]4s2. The next ten elements, from Sc (Z = 21)
through Zn (Z = 30), are known as the transition metals. This series fills the 3d
levels, sometimes in combination with 4s1 and sometimes with 4s2 electrons. The
configuration of Zn is [Ar]3d104s2, at which point the M shell (n = 3) is complete.
The next six elements after Zn fill the six 4p states, ending with the noble gas, Kr,
having the configuration [Ar]3d104s2p6.

After Ar, the shells with a given principal quantum number do not get filled
in order. Nevertheless, one can speak of the filling of certain subshells in order,
such as the 4s subshell and then the 3d in the transition metals. The lanthanide
series of rare-earth elements, from Z = 58 (Ce) to Z = 71 (Lu), occurs when the 4f
subshell is being filled. For these states l = 3, and since –3 ≤ m ≤ 3, a total of 7×2 =
14 elements compose the series. Since it is an inner subshell that is being filled,
these elements all have very nearly the same chemical properties. The situation is
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repeated with the actinide elements from Z = 90 (Th) to Z = 103 (Lr), in which the
5f subshell is being filled.

The picture given here is that of an independent-electron model of the atom,
in which each electron independently occupies a given state. In reality, the atomic
electrons are indistinguishable from one another and an atomic wave function is
one in which any electron can occupy any state with the same probability as any
other electron. Moreover, hybrid atomic states of mixed configurations are used to
explain still other phenomena (e.g., the tetrahedral bonds in CH4).

2.8
Molecules

Quantum mechanics has also been very successful in areas other than atomic
structure and spectroscopy. It has also explained the physics of molecules and
condensed matter (liquids and solids). Indeed, the nature of the chemical bond
between two atoms, of either the same or different elements, is itself quantum
mechanical in nature, as we now describe.

Consider the formation of the H2 molecule from two H atoms. Experimentally, it
is known from the vibrational spectrum of H2 that the two protons’ separation os-
cillates about an equilibrium distance of 0.74 Å and the dissociation energy of the
molecule is 4.7 eV. The two electrons move very rapidly about the two nuclei, which,
by comparison, move slowly back and forth along the direction between their cen-
ters. When the nuclei approach each other, their Coulomb repulsion causes them
to reverse their directions and move apart. The electrons more than keep pace and
move so that the separating nuclei again reverse directions and approach one an-
other. Since the electrons move so quickly, they make many passes about the nuclei
during any time in which the latter move appreciably. Therefore, one can gain con-
siderable insight into the structure of H2 and other molecules by considering the
electronic motion at different fixed separations of the nuclei (Born-Oppenheimer
approximation).

To analyze H2, we begin with the two protons separated by a large distance R,
as indicated in Fig. 2.5(a). The lowest energy of the system will then occur when
each electron is bound to one of the protons. Thus the ground state of the H2

system at large nuclear separations is that in which the two hydrogen atoms, HA

and HB, are present in their ground states. We denote this structure by writing
(HA1, HB2), indicating that electron number one is bound in the hydrogen atom
HA and electron number two in HB. Another stable structure at large R is an ionic
one, (HA12–, H+

B), in which both electrons orbit one of the protons. This structure
is shown in Fig. 2.5(b). Since 13.6 eV is required to remove an electron from H and
its binding energy in the H– ion is only 0.80 eV, the ionic structure in Fig. 2.5(b)
has less binding energy than the natural one in (a). In addition to the states shown
in the figure, one can consider the same two structures in which the two electrons
are interchanged, (HA2, HB1) and (HA21–, H+

B).
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Fig. 2.5 At large internuclear separation R, the structure of the
H2 molecule can approach (a) that of two neutral H atoms, H
+ H, or (b) that of two ions, H– + H+. These structures merge
at close separations in (c). The indistinguishability of the two
electrons gives stability to the bond formed through the
quantum-mechanical phenomenon of resonance.

Next, we consider what happens when R becomes smaller. When the nuclei move
close together, as in Fig. 2.5(c), the electron wave functions associated with each
nucleus overlap. Detailed calculations show that neither of the structures shown
in Fig. 2.5(a) or (b) nor a combination of the two leads to the formation of a stable
molecule. Instead, stability arises from the indistinguishable participation of both
electrons. The neutral structure alone will bind the two atoms when, in place of
either (HA1, HB2) or (HA2, HB1) alone, one uses the superposed structure (HA1,
HB2) + (HA2, HB1). The need for the superposed structure is a purely quantum-
mechanical concept, and is due to the fact that the two electrons are indistinguish-
able and their roles must be exchangeable without affecting observable quantities.
The energy contributed to the molecular binding by the electron exchange is called
the resonance energy, and its existence with the neutral structure in Fig. 2.5(c) ac-
counts for ∼80% of the binding energy of H2. The type of electron-pair bond that
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Fig. 2.6 Total energy of the H2 molecule as a function of
internuclear separation R. A stable molecule is formed when
the spins of the two electrons are antiparallel. A nonbonding
energy level is formed when the spins are parallel. The two
energies coincide at large R.

is thus formed by the exchange is called covalent. Resonance also occurs between
the ionic structures (HA12–, H+

B) and (HA21–, H+
B) from Fig. 2.5(b) and contributes

∼5% of the binding energy, giving the H2 bond a small ionic character. The re-
maining 15% of the binding energy comes from other effects, such as deformation
of the electron wave functions from the simple structures discussed here and from
partial shielding of the nuclear charges by each electron from the other. In general,
for covalent bonding to occur, the two atoms involved must have the same number
of unpaired electrons, as is the case with hydrogen. However, the atoms need not
be identical.

The character of the bond in HF and HCl, for example, is more ionic than in
the homonuclear H2 or N2. The charge distribution in a heteronuclear diatomic
molecule is not symmetric, and so the molecule has a permanent electric dipole
moment. (The two types of bonds are called homopolar and heteropolar.)

Figure 2.6 shows the total energy of the H2 molecule as a function of the inter-
nuclear separation R. (The total energy of the two H atoms at large R is taken as the
reference level of zero energy.) The bound state has a minimum energy of –4.7 eV
at the equilibrium separation of 0.74 Å, in agreement with the data given earlier
in this section. In this state the spins of the bonding electron pair are antiparallel.
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A second, nonbonding state is formed with parallel spins. These two energy levels
are degenerate at large R, where the wave functions of the two atomic electrons do
not overlap appreciably.

Molecular spectra are very complicated. Changes in the rotational motion of
molecules accompany the emission or absorption of photons in the far infrared.
Vibrational changes together with rotational ones usually produce spectra in the
near infrared. Electronic transitions are associated with the visible and ultraviolet
part of molecular spectra. Electronic molecular spectra have a fine structure due
to the vibrational and rotational motions of the molecule. Molecular spectra also
show isotopic structure. The presence of the naturally occurring 35Cl and 37Cl iso-
topes in chlorine, for example, gives rise to two sets of vibrational and rotational
energy-level differences in the spectrum of HCl.

2.9
Solids and Energy Bands

We briefly discuss the properties of solids and the origin of energy bands, which are
essential for understanding how semiconductor materials can be used as radiation
detectors (Chapter 10).

Solids can be crystalline or noncrystalline (e.g., plastics). Crystalline solids, of
which semiconductors are an example, can be put into four groups according to
the type of binding that exists between atoms. Crystals are characterized by regular,
repeated atomic arrangements in a lattice.

In a molecular solid the bonds between molecules are formed by the weak, attrac-
tive van der Waals forces. Examples are the noble gases, H2, N2, and O2, which are
solids only at very low temperatures and can be easily deformed and compressed.
All electrons are paired and hence molecular solids are poor electrical conductors.

In an ionic solid all electrons are also paired. A crystal of NaCl, for example,
exists as alternating charged ions, Na+ and Cl–, in which all atomic shells are filled.
These solids are also poor conductors. The electrostatic forces between the ions
are very strong, and hence ionic solids are hard and have high melting points.
They are generally transparent to visible light, because their electronic absorption
frequencies are in the ultraviolet region and lattice vibration frequencies are in the
infrared.

A covalent solid is one in which adjacent atoms are covalently bound by shared
valence electrons. Such bonding is possible only with elements in Group IVB of
the periodic system; diamond, silicon, and germanium are examples. In diamond,
a carbon atom (electronic configuration 1s22s2p2) shares one of its four L-shell elec-
trons with each of four neighbors, which, in turn, donates one of its L electrons for
sharing. Each carbon atom thus has its full complement of eight L-shell electrons
through tight binding with its neighbors. Covalent solids are very hard and have
high melting points. They have no free electrons, and are therefore poor conduc-
tors. Whereas diamond is an insulator, Si and Ge are semiconductors, as will be
discussed in Chapter 10.
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In a metallic solid (e.g., Cu, Au) the valence electrons in the outermost shells are
weakly bound and shared by all of the atoms in the crystal. Vacancies in these shells
permit electrons to move with ease through the crystal in response to the presence
of an electric field. Metallic solids are good conductors of electricity and heat. Many
of their properties can be understood by regarding some of the electrons in the
solid as forming an “electron gas” moving about in a stationary lattice of positively
charged ions. The electrons satisfy the Pauli exclusion principle and occupy a range
of energies consistent with their temperature. This continuous range of energies
is called a conduction band.

To describe the origin of energy bands in a solid, we refer to Fig. 2.6. We saw
that the twofold exchange degeneracy between the electronic states of two widely
separated hydrogen atoms was broken when their separation was reduced enough
for their electron wave functions to overlap appreciably. The same twofold split-
ting occurs whenever any two identical atoms bind together. Moreover, the excited
energy levels of isolated atoms also undergo a similar twofold splitting when the
two atoms unite. Such splitting of exchange-degenerate energy levels is a general
quantum-mechanical phenomenon. If three identical atoms are present, then the
energy levels at large separations are triply degenerate and split into three different
levels when the atoms are brought close together. In this case, the three levels all
lie in about the same energy range as the first two if the interatomic distances are
comparable. If N atoms are brought together in a regular arrangement, such as a
crystal solid, then there are N levels in the energy interval.

Figure 2.7 illustrates the splitting of electronic levels for N = 2, 4, and 8 and the
onset of band formation. Here the bound-state energies E are plotted schematically
as functions of the atomic separations R, with R0 being the normal atomic spacing
in the solid. When N becomes very large, as in a crystal, the separate levels are
“compressed together” into a band, within which an electron can have any energy.
At a given separation, the band structure is most pronounced in the weakly bound
states, in which the electron cloud extends over large distances. The low-lying lev-
els, with tightly bound electrons, remain discrete and unperturbed by the presence
of neighboring atoms. Just as for the discrete levels, electrons cannot exist in the
solid with energies between the allowed bands. (The existence of energy bands also
arises directly out of the quantum-mechanical treatment of the motion of electrons
in a periodic lattice.)

While the above properties are those of “ideal” crystalline solids, the presence
of impurities—even in trace amounts—often changes the properties markedly. We
shall see in Chapter 10 how doping alters the behavior of intrinsic semiconductors
and the scintillation characteristics of crystals.

2.10
Continuous and Characteristic X Rays

Roentgen discovered that X rays are produced when a beam of electrons strikes a
target. The electrons lose most of their energy in collisions with atomic electrons



2.10 Continuous and Characteristic X Rays 41

Fi
g.

2.
7

En
er

gy
-le

ve
ld

ia
gr

am
sc

he
m

at
ic

al
ly

sh
ow

in
g

th
e

sp
lit

tin
g

of
di

sc
re

te
at

om
ic

en
er

gy
le

ve
ls

w
he

n
N

=
2,

4,
an

d
8

at
om

s
ar

e
br

ou
gh

tt
og

et
he

ri
n

a
re

gu
la

ra
rr

ay
.W

he
n

N
is

ve
ry

la
rg

e,
co

nt
in

uo
us

en
er

gy
ba

nd
sr

es
ul

t,
as

in
di

ca
te

d
at

th
e

rig
ht

of
th

e
fig

ur
e.



42 2 Atomic Structure and Atomic Radiation

Fig. 2.8 Schematic diagram of modern X-ray tube with fixed target anode.

in the target, causing the ionization and excitation of atoms. In addition, they can
be sharply deflected in the vicinity of the atomic nuclei, thereby losing energy by
irradiating X-ray photons. Heavy nuclei are much more efficient than light nuclei in
producing the radiation because the deflections are stronger. A single electron can
emit an X-ray photon having any energy up to its own kinetic energy. As a result, a
monoenergetic beam of electrons produces a continuous spectrum of X rays with
photon energies up to the value of the beam energy. The continuous X rays are also
called bremsstrahlung, or “braking radiation.”

A schematic diagram, showing the basic elements of a modern X-ray tube, is
shown in Fig. 2.8. The tube has a cathode and anode sealed inside under high
vacuum. The cathode assembly consists of a heated tungsten filament contained
in a focusing cup. When the tube operates, the filament, heated white hot, “boils
off” electrons, which are accelerated toward the anode in a strong electric field
produced by a large potential difference (high voltage) between the cathode and
anode. The focusing cup concentrates the electrons onto a focal spot on the anode,
usually made of tungsten. There the electrons are abruptly brought to rest, emitting
continuous X rays in all directions. Typically, less than 1% of the electrons’ energy
is converted into useful X rays that emerge through a window in the tube. The
other 99+ % of the energy, lost in electronic collisions, is converted into heat, which
must be removed from the anode. Anodes can be cooled by circulating oil or water.
Rotating anodes are also used in X-ray tubes to keep the temperature lower.

Figure 2.9 shows typical continuous X-ray spectra generated from a tube operated
at different voltages with the same current. The efficiency of bremsstrahlung pro-
duction increases rapidly when the electron energy is raised. Therefore, the X-ray
intensity increases considerably with tube voltage, even at constant current. The
wavelength of an X-ray photon with maximum energy can be computed from Eq.
(2.26). For the top curve in Fig. 2.9, we find λmin = 12400/50000 = 0.248 Å, where
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Fig. 2.9 Typical continuous X-ray spectra from tube operating
at three different peak voltages with the same current.

this curve intersects the abscissa. The X-ray energies are commonly referred to in
terms of their peak voltages in kilovolts, denoted by kVp.

If the tube voltage is sufficient, electrons striking the target can eject electrons
from the target atoms. (The K-shell binding energy is EK = 69.525 keV for tung-
sten.) Discrete X rays are then also produced. These are emitted when electrons
from higher shells fill the inner-shell vacancies. The photon energies are charac-
teristic of the element of which the target is made, just as the optical spectra are
in the visible range. Characteristic X rays appear superimposed on the continuous
spectrum, as illustrated for tungsten in Fig. 2.10. They are designated Kα , Kβ , and
so forth, when the K-shell vacancy is filled by an electron from the L shell, M shell,
and so on. (In addition, when L-shell vacancies are filled, characteristic Lα , Lβ , and
so forth, X rays are emitted. These have low energy and are usually absorbed in the
tube housing.)

Because the electron energies in the other shells are not degenerate, the K X rays
have a fine structure, not shown in Fig. 2.10. The L shell, for example, consists
of three subshells, in which for tungsten the electron binding energies in keV are
ELI = 12.098, ELII = 11.541, and ELIII = 10.204. The transition LIII → K gives a Kα1

photon with energy EK – ELIII = 69.525 – 10.204 = 59.321 keV; the transition LII →
K gives a Kα2 photon with energy 57.984 keV. The optical transition LI → K is
quantum mechanically forbidden and does not occur.

The first systematic study of characteristic X rays was carried out in 1913 by
the young British physicist, H. G. J. Moseley, working in Rutherford’s laboratory.
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Fig. 2.10 Spectrum showing characteristic Kα and Kβ discrete
X rays in addition to the continuous X rays. Characteristic K X
rays are present only when the tube operating voltage is high
enough to give the incident electrons sufficient energy to eject
an electron from the K shell in the target atoms. Potential
difference across the tube in volts is then practically ≥ K-shell
binding energy in eV.

The diffraction of X rays by crystals had been discovered by von Laue in 1912,
and Moseley used this process to compare characteristic X-ray wavelengths. He
found that the square root of the frequencies of corresponding lines (e.g., Kα1)
in the characteristic X-ray spectra increases by an almost constant amount from
element to element in the periodic system. Alpha-particle scattering indicated that
the number of charge units on the nucleus is about half the atomic weight. Moseley
concluded that the number of positive nuclear charges and the number of electrons
both increase by one from element to element. Starting with Z = 1 for hydrogen,
the number of charge units Z determines the atomic number of an element, which
gives its place in the periodic system.

The linear relationship between
√

ν and Z would be predicted if the electrons
in many-electron atoms occupied orbits like those predicted by Bohr’s theory for
single-electron systems. As seen from Eq. (2.13), the frequencies of the photons
for a given transition i → f in different elements are proportional to Z2.
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In view of Moseley’s findings, the positions of cobalt and nickel had to be re-
versed in the periodic system. Although Co has the larger atomic weight, 58.93
compared with 58.70, its atomic number is 27, while that of Ni is 28. Moseley also
predicted the existence of a new element with Z = 43. Technetium, which has no
stable form, was discovered after nuclear fission.

2.11
Auger Electrons

An atom in which an L electron makes a transition to fill a vacancy in the K shell
does not always emit a photon, particularly if it is an element of low Z. A different,
nonoptical transition can occur in which an L electron is ejected from the atom,
thereby leaving two vacancies in the L shell. The electron thus ejected from the
atom is called an Auger electron.

The emission of an Auger electron is illustrated in Fig. 2.11. The downward ar-
row indicates the transition of an electron from the LI level into the K-shell vacancy,

Fig. 2.11 Schematic representation of an atomic transition that
results in Auger-electron emission.
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Fig. 2.12 K fluorescence yield as a function of atomic number Z.

thus releasing an energy equal to the difference in binding energies, EK –ELI. As the
alternative to photon emission, this energy can be transferred to an LIII electron,
ejecting it from the atom with a kinetic energy

T = EK – ELI – ELIII. (2.38)

Two L-shell vacancies are thus produced. The Auger effect can occur with other
combinations of the three L-shell levels. Equations analogous to (2.38) provide the
possible Auger-electron energies.

The Auger process is not one in which a photon is emitted by one atomic elec-
tron and absorbed by another. In fact, the LI → K transition shown in Fig. 2.11 is
optically forbidden.

The K fluorescence yield of an element is defined as the number of K X-ray pho-
tons emitted per vacancy in the K shell. Figure 2.12 shows how the K fluorescence
yield varies from essentially zero for the low-Z elements to almost unity for high Z.
Auger-electron emission is thus favored over photon emission for elements of low
atomic number.

The original inner-shell vacancy in an Auger-electron emitter can be created
by orbital electron capture, internal conversion, or photoelectric absorption of a
photon from outside the atom. (These processes are described in Chapter 3.) As
pointed out previously, emission of an Auger electron increases the number of va-
cancies in the atomic shells by one unit. Auger cascades can occur in relatively
heavy atoms, as inner-shell vacancies are successively filled by the Auger process,
with simultaneous ejections of the more loosely bound atomic electrons. An orig-
inal, singly charged ion with one inner-shell vacancy can thus be converted into a
highly charged ion by an Auger cascade. This phenomenon is being studied in radi-
ation research and therapy. Auger emitters can be incorporated into DNA and other
biological molecules. For example, 125I decays by electron capture. The ensuing cas-
cade can release some 20 electrons, depositing a large amount of energy (∼1 keV)
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within a few nanometers. A highly charged 125Te ion is left behind. A number of
biological effects can be produced, such as DNA strand breaks, chromatid aberra-
tions, mutations, bacteriophage inactivation, and cell killing.
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2.13
Problems

1. How many atoms are there in 3 L of N2 at STP?
2. What is the volume occupied by 1 kg of methane (CH4) at 23◦C

and 756 torr?
3. How many hydrogen atoms are there in the last problem?
4. What is the mass of a single atom of aluminum?
5. Estimate the number of atoms/cm2 in an aluminum foil that is

1 mm thick.
6. Estimate the radius of a uranium nucleus. What is its

cross-sectional area?
7. What is the density of the nucleus in a gold atom?
8. What was the minimum distance to which the 7.69-MeV alpha

particles could approach the center of the gold nuclei in
Rutherford’s experiments?

9. How much energy would an alpha particle need in order to
“just touch” the nuclear surface in a gold foil?

10. Figure 2.13 represents a particle moving with constant speed
v(= |v1| = |v2|) in a circular orbit of radius r. When the particle
advances through a small angle �θ about the center of the
circle, the change in velocity �v = v2 – v1 is indicated. Denoting
the elapsed time by �t, one has �θ = ω�t, where ω = v/r is the
angular velocity expressed in radians per unit time.
(a) For small �t, show that the acceleration of the particle is

given by a ∼= �v/�t ∼= v�θ/�t.
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Fig. 2.13 See Problem 10.

(b) In the limit �t → 0, show that the acceleration of the
particle is directed toward the center of the circle and has a
magnitude a = ωv = v2/r, as used in writing Eq. (2.5).

11. How much force acts on the electron in the ground state of the
hydrogen atom?

12. What is the angular momentum of the electron in the n = 5
state of the H atom?

13. How does the angular momentum of the electron in the n = 3
state of H compare with that in the n = 3 state of He+?

14. Calculate the ionization potential of Li2+.
15. Calculate the radius of the n = 2 electron orbit in the Bohr

hydrogen atom.
16. Calculate the orbital radius for the n = 2 state of Li2+.
17. Do H and He+ have any states with the same orbital radius?
18. What is the principal quantum number n of the state of the H

atom with an orbital radius closest to that of the n = 3 state of
He+?

19. What are the energies of the photons with the two longest
wavelengths in the Paschen series (Fig. 2.3)?

20. Calculate the wavelengths in the visible spectrum of the He+

ion in which the electron makes transitions from higher states
to states with quantum number n = 1, 2, 3, or 4.

21. How many energy levels of the He+ ion lie below –1 eV?
22. Calculate the current of the electron in the ground state of the

hydrogen atom.
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Fig. 2.14 See Problem 31.

23. What is the lowest quantum number of an H-atom electron
orbit with a radius of at least 1 cm?

24. According to Bohr theory, how many bound states of He+ have
energies equal to bound-state energies in H?

25. How much energy is needed to remove an electron from the
n = 5 state of He+?

26. (a) In the Balmer series of the hydrogen atom, what is the
smallest value of the principal quantum number of the
initial state for emission of a photon of wavelength less
than 4200 Å?

(b) What is the change in the angular momentum of the
electron for this transition?

27. Calculate the reduced mass for the He+ system.
28. What percentage error is made in the Rydberg constant for

hydrogen if the electron mass is used instead of the reduced
mass?

29. The negative muon is an elementary particle with a charge
equal to that of the electron and a mass 207 times as large. A
proton can capture a negative muon to form a hydrogen-like
“mesic” atom. (The muon was formerly called the mu meson.)
For such a system, calculate

(a) the radius of the first Bohr orbit
(b) the ionization potential.
Do not assume a stationary nucleus.

30. What is the reduced mass for a system of two particles of equal
mass, such as an electron and positron, orbiting about their
center of mass?

31. Figure 2.14 shows two interacting particles, having masses m1

and m2 and positions x1 and x2. The particles are free to move
only along the X-axis. Their total energy is
E = 1

2 m1ẋ2
1 + 1

2 m2ẋ2
2 + V(x), where ẋ1 = dx1/dt and ẋ2 = dx2/dt

are the velocities, and the potential energy V(x) depends only
on the separation x = x2 – x1 of the particles. Let z be the
coordinate of the center of mass C : m1(z – x1) = m2(x2 – z).
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Show that E = 1
2 (m1 + m2)ż2 + 1

2 mrẋ
2 + V(x), where mr, is the

reduced mass, given by Eq. (2.20), and ẋ = dx/dt. The total
energy is thus the sum of the translational kinetic energy of the
motion of the total mass along the X-axis and the total energy
associated with the relative motion (coordinate x and mass mr).

32. What is meant by the fine structure in the spectrum of
hydrogen and what is its physical origin?

33. Calculate the momentum of an ultraviolet photon of
wavelength 1000 Å.

34. What is the momentum of a photon of lowest energy in the
Balmer series of hydrogen?

35. Calculate the de Broglie wavelength of the 7.69-MeV alpha
particles used in Rutherford’s experiment. Use nonrelativistic
mechanics.

36. What is the energy of a proton that has the same momentum
as a 1-MeV photon?

37. What is the energy of an electron having a wavelength of
0.123 Å?

38. Calculate the de Broglie wavelength of a 245-keV electron.
39. (a) What is the momentum of an electron with a de Broglie

wavelength of 0.02 Å?
(b) What is the momentum of a photon with a wavelength of

0.02 Å?
40. Calculate the kinetic energy of the electron and the energy of

the photon in the last problem.
41. A microscope can resolve as distinct two objects or features

that are no closer than the wavelength of the light or electrons
used for the observation.
(a) With an electron microscope, what energy is needed for a

resolution of 0.4 Å?
(b) What photon energy would be required of an optical

microscope for the same resolution?
42. Show that Eq. (2.29) follows from Eq. (2.22) for relativistic

electrons.
43. Estimate the uncertainty in the momentum of an electron

whose location is uncertain by a distance of 2 Å. What is the
uncertainty in the momentum of a proton under the same
conditions?

44. What can one conclude about the relative velocities and
energies of the electron and proton in the last problem? Are
wave phenomena apt to be more apparent for light particles
than for heavy ones?

45. The result given after Eq. (2.36) shows that an electron
confined to nuclear dimensions, �x ∼ 10–15 m, could be
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expected to have a kinetic energy T ∼ 200 MeV. What would be
the value of �x for T ∼ 100 eV?

46. (a) Write the electron configuration of carbon.
(b) How many s electrons does the C atom have?
(c) How many p electrons?

47. The configuration of boron is 1s22s2p1.
(a) How many electrons are in the L shell?
(b) How many electrons have orbital angular-momentum

quantum number l = 0?
48. How many electrons does the nickel atom have with azimuthal

quantum number l = 2?
49. What is the electron configuration of the magnesium ion,

Mg2+?
50. What is incorrect in the electron configuration

1s22s2p63s2p8d10?
51. (a) What are the largest and the smallest values that the

magnetic quantum number m has in the Zn atom?
(b) How many electrons have m = 0 in Zn?

52. Show that the total number of states available in a shell with
principal quantum number n is 2n2.

53. What is the wavelength of a photon of maximum energy from
an X-ray tube operating at a peak voltage of 80 kV?

54. If the operating voltage of an X-ray tube is doubled, by what
factor does the wavelength of a photon of maximum energy
change?

55. (a) How many electrons per second strike the target in an
X-ray tube operating at a current of 50 mA?

(b) If the potential difference between the anode and cathode
is 100 kV, how much power is expended?

56. If the binding energies for electrons in the K, L, and M shells of
an element are, respectively, 8979 eV, 951 eV, and 74 eV, what
are the energies of the Kα and Kβ characteristic X rays? (These
values are representative of Cu without the fine structure.)

57. Given that the Kα1 characteristic X ray of copper has an energy
of 8.05 keV, estimate the energy of the Kα1 X ray of tin.

58. The oxygen atom has a K-shell binding energy of 532 eV and
L-shell binding energies of 23.7 eV and 7.1 eV. What are the
possible energies of its Auger electrons?
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2.14
Answers

1. 1.61 × 1023

2. 1530 L
7. 1.81 × 1017 kg m–3

9. 23.6 MeV
11. 8.23 × 10–8 N
12. 5.27 × 10–34 J s
14. 122 eV
16. 0.705 Å
18. 2
19. 0.661 eV; 0.967 eV
20. 4030, 4100, 4200,

4340, 4540, 4690,
4860, 5420, and
6560 Å

21. 7
22. 1.05 mA
26. (a) 6

(b) 4�

27. 0.99986m

29. (a) 2.84 × 10–13 m

(b) 2.53 keV
33. 6.63 × 10–27 kg m s–1

35. 5.19 × 10–5 Å
36. 533 eV
38. 0.0222 Å
40. 0.294 MeV;

0.621 MeV
41. (a) 946 eV

(b) 31.0 keV
43. 5.27 × 10–25 kg m s–1;

same
45. 0.2 Å
47. (a) 3

(b) 4
51. (a) ±2

(b) 14
53. 0.155 Å
55. (a) 3.12 × 1017 s–1

(b) 5000 W
57. 24 keV


