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Preface

Physics students typically take a wide range of advanced classes in mechanics, electromag-
netism, quantum mechanics, thermodynamics, and statistical mechanics, but sadly, receive
only limited formal training in data analysis techniques. Most students in experimental
physics indeed end up gleaning the required material by reading parts of a plurality of
books and scientific articles. They typically end up knowing a lot about one particular
analysis technique but relatively little about others. Paradoxically, modern experiments in
particle and nuclear physics enable an amazingly wide range of very sophisticated mea-
surements based on diverse analytical techniques. The end result is that beginning students
may have a rather limited understanding of the many papers they become coauthors of by
virtue of being members of a large scientific collaboration. After twenty years of teaching
“physics” and carrying out research in heavy-ion physics, I figured I should make an effort
to remedy this situation by creating a book that covers all the basic tools required in the
data analysis of experiments at RHIC, the LHC, and other large experimental facilities.

This was a fairly ambitious project given that the range of techniques employed in today’s
experiments is actually quite large and rather sophisticated. In the interest of full disclosure,
I should state that the scope of the project changed several times, at times growing and at
others shrinking. Eventually, I decided for a book in three parts covering (I) foundational
concepts in probability and statistics, (II) basic and commonly used advanced measurement
techniques, and (III) introductory techniques in Monte Carlo simulations targeted, mostly,
toward the analysis and interpretation of experimental data. As such, it became impossible
to present detailed descriptions of detector technologies or the physical principles they are
based on. But as it turns out, high-quality data analyses are possible even if one is not
familiar with the many technical details involved in the design or construction of detectors.
Detector attributes relevant for data analyses can in general be reduced to a statement of
a few essential properties, and it is thus possible to carry out quality analyses without a
full knowledge of all aspects of a detector’s design and operation. I have thus opted to
leave out detailed descriptions of detector technologies as well as particle interactions with
matter and focus the discussion on some representative and illustrative examples of data
calibration and analyses. Detailed discussions of detector technologies used in high-energy
nuclear and particle physics may, however, be found in a plurality of graduate textbooks
and technical texts. Additionally, I have also omitted few big and important topics such as
interferometry (HBT), jet reconstruction, and neutral networks, for which very nice and
comprehensive books or scientific reviews already exist.

Overall, this book essentially covers all basic techniques necessary for sound analyses
and interpretation of experimental data. And, although it cannot cover all analysis tech-
niques used by modern physicists, it lays a solid foundation in probability and statistics,

xi
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xii Preface

simulation techniques, and basic measurement methods, which should equip conscientious
and dedicated students with the skill set they require for a successful career in experimental
nuclear or particle physics, and such that they can explore more advanced techniques on
their own.

I should note, in closing, that although this book targets primarily students in nuclear and
particle physicists, it should, I believe, prove to be a useful introduction to data analysis for
students working in other fields, including astronomy and basically all other areas of the
physical sciences. It should also, I hope, provide a useful reference for more advanced and
seasoned scientists.

I would like to express my sincere acknowledgments to the many people who, through
discussions and advices, have helped shape this book. These include Monika Sharma,
Rosie Reed, Robert Harr, Paul Karchin, and Sergei Voloshin, who through questions and
comments have helped me plan or contributed various improvements to the book. I also
wish to acknowledge the important contributions of several undergraduate and graduate
students, most particularly Nick Elsey, Derek Everett, Derek Hazard, Ed Kramkowski, Jin-
jin Pan, Jon Troyer, and Chris Zin, who served as guinea-pigs for some fractions of the ma-
terial. I am grateful to my colleagues Giovanni Bonvicini, from the CLEO Collaboration,
for providing a Dalitz plot; Yuri Fisyak and Zhangbu Xu, from the STAR (Solenoidal De-
tector at Relativistic Heavy Ion Collider [RHIC]) Collaboration, for their contribution of a
dE/dx plot; and my former postdoctoral student, Sidharth Prasad, for producing exemplars
of unfolding. I also acknowledge use of several sets of results from the STAR collaboration,
publicly available from the collaboration’s website, for the generation of figures presenting
examples of flow measurements and correlation functions. I am particularly indebted to
colleagues Drs. Jean Barrette, Ron Belmont, Jana Bielcikova, Panos Christakoglou, Kolja
Kauder, William Llope, Prabhat Pujahari, Sidharth Prasad, Joern Putschke, and William
Zajc for their detailed reading and feedback on various sections of the book corresponding
to their respective areas of expertise and interest. I also wish to acknowledge Ms. Heidi
Kenaga and Ms. Theresa Kornak for their meticulous proofreading of the manuscript and
for being so nice in correcting my Frenglish.

Finally, I wish to acknowledge that a large fraction of the graphs and figures featured in
this book were created with ROOT, Keynote, and Graphic Converter. Several of the ROOT
macros I wrote for the generation of figures will be made available at the book website.

Claude A. Pruneau
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How to Read This Book

Not all students, instructors, and practitioners of the field of experimental physics may
have the inclination, the time, or the need to study this book in its entirety. Indeed, only a
selected few may have the opportunity to read the book from cover to cover. This should
not be a problem, however, because the material is organized in large blocks that are rea-
sonably self-sufficient, and ample references to earlier or upcoming chapters, as the case
may be, are included in the narrative. The book also includes a number of specialized or
in-depth topics that may be skipped in a first reading. Such topics include, for instance, the
formal definition of probability in §2.2, the notion of Fisher information discussed in §4.7,
the technique of Kalman filtering introduced in §5.6 and for which a detailed example of
application is presented in §9.2.3, as well as discussions of track and vertex reconstruc-
tion presented in §§ 9.2 and 9.3. This said, the book is designed to progressively develop
and approach topics, and it should then be possible to study the material in a variety of
ways, adapting the depth and breadth of coverage. The following are recommended lists of
chapters and sections that should be covered given specific and targeted needs.! Introductory course in probability and statistics:

Chapters 2 (§§2.1, 2.3–2.11), 3 (§§3.1–3.13), 4 (§§4.1–4.6), 5 (§§5.1–5.5), 6 (§§6.1–6.6),
7 (§§7.1, 7.2, 7.4, 7.7), 13! Advanced course in probability and statistics:
Chapters 1, 2, 3, 4, 5, 6, 7, 13! Introductory course in data analysis techniques (one semester):
Chapters 1, 2 (§§2.1, 2.3–2.11), 3 (§§3.1–3.13), 4 (§§4.1–4.6), 5 (§§5.1–5.5), 6 (§§6.1–
6.6), 8 (§§8.1–8.6), 9 (§§9.1, 9.2), 13! Advanced course in data analysis techniques (two semesters):
Chapters 1, 2 (§§2.1, 2.3–2.11), 3 (§§3.1–3.13), 4 (§§4.1–4.6), 5 (§§5.1–5.6), 6 (§§6.1–
6.7), 7, 8 (§§81–8.6), 9 (§§9.1, 9.2), 12, 13, 14! Course on correlation functions (one semester):
Chapters 2 (§§2.5–2.13), 4 (§§4.3, 4.5, 4.6), 10, 11, 12, 13

Of course, instructors using this book should feel free to select and change the order of
topics to suit their specific needs. For instance, Monte Carlo methods are formally intro-
duced in Chapter 13 but it is often useful and inconvenient to use and discuss some of these
concepts along with materials of the early chapters (e.g., Chapters 2–7).

xiii
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1 The Scientific Method

1.1 What the Brain Does

From the moment a child is born, her brain is flooded with signals generated by her senses,
including smells, sounds, images, touches, and tastes, as well as various other messages
produced by her internal organs. Her brain readily engages in processes of pattern recog-
nition and classification to “organize” all these data. This pattern recognition forms the
basic elements of perception or views of reality the child will gather from this moment on.
Slowly but surely, her brain will start to organize the data into mental models of the world
that surrounds her: If I cry, somebody comes, feeds me, holds me, and it feels good.

At first, her perceptions are crude and simple, but with time, they progressively become
more and more sophisticated. And soon, with the emergence of language abilities, her
modeling of the world acquires tags and labels. She communicates the things she likes
and dislikes, her wants, and what she doesn’t want. And, as her senses and motor skills
develop, she becomes an avid explorer of her immediate environment, discovering and
adding to the categories, that is, the models already partially in place. The process is slow,
sometimes laborious, but ineluctably, her brain engages in increasingly sophisticated pat-
tern recognition and progressively forms complex and subtle representations of the world.
This process eventually explodes in a rich and intense search for meaning, through her ado-
lescence and early adulthood, as her brain nears full maturity. In time, her brain becomes
a sophisticated pattern recognition engine that excels at detecting, sometimes inventing,
patterns of all kinds, and making connections between the various entities that inhabit her
world. Quite naturally, and with perhaps relatively limited awareness of her mental pro-
cesses, she becomes an intuitive model builder, arguably some form of prescientific state
of mind endowed with curiosity, a vast capacity for inquiry, and extensive intellectual re-
sources that enable her not only to witness the world, but also become one of its actors, to
experiment, and even to shape reality.

Though the storyline of the development of a human from infant to adulthood is fasci-
nating, the reader might ask why it is relevant as an introduction to a book on data analysis
techniques?

The answer is rather simple: much like a growing child, modeling the world and exper-
imenting is in fact what scientists do. Indeed, the raison d’être of scientists is to discover,
observe, and formulate models of the world and reality. Could it be then that we humans are
scientists by our very nature, that is, by simple virtue of the inner workings of our minds?
Surely, the evolution of a child’s brain and mental processes just briefly depicted seems a

1
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2 The Scientific Method

rather universal process, and this does suggest that all humans are endowed with a natural
and innate ability to become scientists. The fact that only relatively few among us end up
making science their primary occupation and profession may not diminish this capacity
in the least, but we need to acknowledge that as each of us emerges into adulthood, we
develop varied interests and skill sets and engage in diverse activities, each accompanied
by distinct and at times seemingly incompatible forms of discourse. Our capacity to detect
or make up patterns does not vanish, however, and we continue through adulthood to seek
understanding and meaning in the people and events that surround us. Evidently, given that
our models of the world are based on our individual experiences and circumstances (in-
cluding formal and informal education), we collectively end up having a plurality of views
and interpretations of reality, some of which may clash drastically, or even violently.

Can all these views and forms of discourse be true simultaneously, or are there models
that constitute a closer representation of reality? And if so, is there a privileged form of
discourse and method that can enable us to reach, progressively perhaps, a more robust and
truthful model of reality? Is there, in fact, such a thing as reality? These are both powerful
and complex questions that many great thinkers have reflected upon through time. Indeed,
ideas on such matters abound and many philosophers, through history, have claimed own-
ership of the truth. Amid all these ideas, one particular form of discourse and inquiry has
risen and developed. It is both humble and powerful: it admits its innate incapacity to reach
a perfect truth, but provides the means to progressively and systematically identify better
views of reality. We call it the scientific method.

1.2 Critics of the Scientific Method

Science, as an empirical form of inquiry, finds its roots in the work of Copernicus, Galileo,
and Newton. In Europe, before and around their times, the dominant philosophical view
was that human perceptions and reasonings are intrinsically fallible and cannot be trusted,
and that we should consequently rely on the word of God embodied in the Bible to guide
our views and interpretation of reality. Copernicus, who had an interest in the motion of
heavenly bodies, most particularly the planets, came to the realization that the Ptolemaic
tables that had been used to describe the motion of the planets for several centuries were
quite inaccurate and developed the notion that better observations of their positions through
time would reveal the geocentric Ptolemaic model is wrong and that the planets, Earth
included, all revolve around the Sun. Galileo and Newton, much like Copernicus, would
champion the notion that the heavens are not perfect, and that careful observations can
reveal much about the nature of things.

Arguably, it was Galileo who made the greatest breakthrough. Equipped with the tele-
scopes he had built, he proceeded to discover mountains on the Moon, spots on the surface
of the Sun, the Sun’s rotation, phases of Venus, and satellites orbiting Jupiter. He would
then conclude that the heavens are not immutable or perfect, and demonstrably show that
empirical observations are not only possible but also powerful in their capacity to reveal
new phenomena and new worlds.
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3 1.2 Critics of the Scientific Method

Newton would later use precise observations of Mars, in particular, to demonstrate that
the planets follow elliptical orbits with the Sun at one foci, and formulate a theory postu-
lating the existence of a force acting at a distance between the Sun and the planets: gravity.

Together, the work of Galileo and of Newton would exemplify the notion that empirical
knowledge is possible, particularly when the senses are enhanced (e.g., with a telescope)
and reasonings framed into a powerful mathematical language (e.g., calculus). Together,
these works would provide the impetus for a new view of the world and a new approach
to scholarly works: empirical observations coupled with detailed mathematical represen-
tations of world entities and their relations can lead to great advances in our ability to
understand and shape the world. Science, or the Scientific Method, as we now think of it,
was born.

In spite of these great early successes, several philosophers would argue that while
empirical methods have merits and do enable the formulation of models or theories of
the world that work, such models could never be proven absolutely correct. David Hume
(1711–1776), in particular, argued that it is factually impossible to deduce universal gen-
eralizations (i.e., models that always apply) from series of finitely many observations, and
consequently, that inductive reasoning, and therefore causality, cannot, ultimately, be justi-
fied rationally. The notion has obvious merits. For instance, to use a rather trivial example,
consider whether the fact that all zebras you might have so far seen in your life featured
a black and white striped mane implies that all zebras are necessarily striped black and
white? Obviously not: you have not seen all zebras in existence on our planet and thus
cannot conclude all zebras feature black and white stripes. In fact, golden zebras, featuring
a pigmentation abnormality characterized by the lack of melanin color pigments, do exist.

A less trivial example of Hume’s point involves Newton’s three laws of mechanics and
his Law of Universal Gravitation. Following the initial successes of the theory in explain-
ing the observations of Mars’ orbit, Newton’s laws of mechanics and gravity were tested
repeatedly throughout the eighteenth and nineteenth centuries and found to be exquisitely
accurate. Universal Gravitation also featured great predictive power best exemplified by
the discovery of the planet Neptune based on calculations by the French astronomer Ur-
bain Le Verrier, that accounted for observed anomalies in the orbit of Uranus. It seemed
fitting, indeed, to qualify the law as universal. Yet, neither the three laws of mechanics nor
the law of gravity would indefinitely survive the test of time. Indeed, with the publication
of a paper, in 1907, by Albert Einstein, it emerged that the laws of Newton were in fact
incorrect, or as many physicists prefer to say, incomplete. Evidently, demonstrating the in-
adequacy of Newton’s laws (or more properly stated, the underlying principle of Galilean
transformations) would require observations involving light and objects moving at large
velocities. A few years later, in 1915, with the publication of a paper on general relativ-
ity, Einstein would also put into question Newton’s amazingly successful theory of gravity.
General relativity would eventually find confirmation in observations of the precession of
the orbit of Mercury and the deflection of light by the Sun’s gravity measured by Sir Arthur
Eddington in 1919 [78]. No matter how many observations could be successfully explained
by Newton’s Law of Universal Gravitation, its failure to successfully explain the magnitude
of Mercury’s precession and the proper deflection of light by the Sun would provide tangi-
ble evidence of its inaccuracy as a model of reality. Hume was certainly right. Yet, he also
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4 The Scientific Method

obviously overstated the case. Though not perfect, Newton’s laws proved to be immensely
useful in explaining the world as well as building devices and artifacts that would ease
humans’ lives. Indeed, effective empirical knowledge is possible, even though it is bound
to forever be tentative.

1.3 Falsifiability and Predictive Power

The notion of empirical knowledge as tentative was properly clarified by Sir Karl Popper,
who argued that although a scientific theory cannot be proven correct by any finite number
of experiments, it can be falsified; that is, it may be proven false (wrong) in the appro-
priate context. Indeed, it suffices to observe a single non-black and white striped zebra to
conclude that the theory that all zebras are black and white striped is incorrect. Likewise,
measurements of the precession of Mercury and the deflection of light would demonstrate
the inadequacy of Newton’s Law of Universal Gravitation. The theory could not be proven
right, but it could be proven wrong. Limited empirical knowledge is thus possible, insofar
as it can be falsified, that is, demonstrated false in an appropriate context. We will see in
Chapter 6 that falsifiability has led to the notion of null hypothesis and (scientific) hy-
pothesis testing. A null hypothesis typically champions the accepted theory (e.g., Law of
Universal Gravitation). Experiments are then conducted to test the null hypothesis and the
theory remains unchallenged as long as it is deemed acceptable based on measured data.
An accumulation of observations that support the null hypothesis increases its plausibil-
ity (degree of belief) without ever proving it is universally correct. However, if (reliably)
measured data are observed to deviate sizably from the null hypothesis (i.e., data values
predicted based on the null hypothesis), the null hypothesis is considered rejected (false)
and the theory challenged. And if the number of observations that challenge the null hy-
potheses becomes large, or the observed deviations can be considered irreconcilably large,
the theory is eventually abandoned.

Alas, nothing is that simple. An experiment can go wrong and produce results that im-
properly reject the null hypothesis. The rejection is then considered an error of the first
kind (type I). Alternatively, experimental results can also falsely support the null hypoth-
esis, and the unwarranted acceptance of the hypothesis is known as an error of the second
kind (type II). Regrettably, pushing this argument to its absurd limit, postmodern philoso-
phers have formulated the notion that even falsification is impossible. Is the golden zebra
actually a zebra or something else? Can one be sure of anything at all; can one reliably
say anything at all? This absurd line of argument has led to the postmodern notion that all
theories are equally valid; that all forms of discourse and inquiries are equally valid; and
science, most particularly the scientific method, does not constitute a privileged vehicle to
acquire and validate (or falsify) knowledge. This view, however, is considered far too ex-
treme by most modern scientists given that it blindly neglects the tangible and significant
advances made by science in the last three centuries. The post-postmodernistic view, as one
might call it, accepted by most modern scientists, is that Popper was in fact essentially cor-
rect but the notion of predictive power must augment basic falsification. In other words,
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5 1.5 Science as an Empirical Study of Nature

scientific models must be capable of making predictions that can be tested against careful
and reproducible observations or measurements.

Indeed, much like a child’s brain evolves to become a model builder and learn to learn,
philosophers and scientists have, over time, examined and pondered how to learn from Na-
ture and eventually formulated what is now known as the scientific method. This said, the
scientific method is not fundamentally different today than it was, say, fifty or one hun-
dred years ago. Although certainly more articulated, debated, and written about, it remains
rather simple at its very core: observe a phenomenon of interest, formulate a mathematical
model, verify how the model accounts for past observations, and use it to predict variants of
the phenomenon and future observations. And, following Popper, models shall be readily
abandoned if falsified by observed data. However, falsifiability is often largely insufficient:
models based on distinct and perhaps incompatible assumptions may often be concomi-
tantly supported by a specific dataset. It is thus necessary to identify extensions to existing
measurements and examine where conflicting models may deviate appreciably from each
other, and thereby provide grounds for additional testing and falsification.

1.4 A Flawed but Effective Process!

At this point, it is important to stress that perceptions and experimental measurements do
not in fact need to be perfect for science to progress. As we will discuss at length in Chap-
ter 12, no perception or measurement is in fact ever perfect: there are invariably resolution
effects that smear the values of measured (physical) quantities; there are signal recognition
or reconstruction issues that lead to signal losses and biases; and there may be background
signals that may interfere with a measurement. But it is in the very nature of the scien-
tific method to base measurements on techniques and processes that are well established
and can be modeled with a high degree of reliability, and as such, can be corrected for
experimental or instrumental effects. Indeed, a detailed understanding of the measurement
process enables the formulation of (measurement) models that enable precise and reliable
corrections of measured data. Although our sensory perceptions may not provide an objec-
tive view of reality, our technology-based measurements can. And if and when corrections
applied to data are deemed questionable, the correction procedures can usually be studied
and improved through better design of the measurement apparatus and protocol.

1.5 Science as an Empirical Study of Nature

The first model assumption to be made is perhaps that a particular phenomenon might
be interesting or useful to study. Although such a statement may seem trivial, particu-
larly in modern scientific cultures, it amounts to a relatively new idea, which dates back
to the times of Copernicus and Galileo. Before the Copernican revolution,1 the prevalent

1 And sadly still today in some conservative religious cultures.
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6 The Scientific Method

attitude, among learned individuals and scholars, was that wisdom cannot be gained by ob-
servations of the world but must rather be based on sacred texts, such as the Bible, and the
writings of ancient Greek philosophers, most particularly those of Aristotle and Plato. But
the tremendous discoveries Galileo achieved with his small telescope made it abundantly
clear that new knowledge and wisdom can in fact be gained by observing Nature with our
own senses, or with “machines” that enhance them.

Early scientific observations mostly involved direct sensory inputs. But in time it be-
came clear that our senses suffer from several limitations. Indeed, there is great variance
as to what might be considered a loud sound or a bright light intensity by different in-
dividuals. There is also great variability or lack of reproducibility in the observations of
a single observer. Our eyes and ears, in particular, dynamically adapt to the environment
and thus do not provide reliable measurements of luminosity and loudness, among several
other observables. Our senses are also limited in their sensitivity. For instance, our eyes
and ears cannot perceive very weak light and sound signals, and they may easily be dam-
aged by excessively bright or loud sources. They also have rather crude abilities to detect
the difference between two distinct sensory inputs (e.g., just noticeable loudness differ-
ence, pitch difference, etc.). In stark contrast, technologies based on previously acquired
scientific knowledge alleviate most, if not all, of our senses’ shortcomings.

In the course of time, scientists and engineers have learned to design and build devices
that vastly surpass human sensory capabilities in sensitivity, precision, and accuracy, as
well as dynamic range. Consider that Galileo’s first telescope, with an aperture of 26 mm,
could collect roughly four times the light his unaided eyes could and provided modest
magnification (14×). So equipped, Galileo was able to “see” phenomena and features of
Nature that were otherwise impossible to detect with human eyes alone, such as the phases
of Venus, mountains on the Moon, and so forth. But modern telescopes have far surpassed
the reach and prowess of Galileo’s first telescope. The Hubble Space Telescope (HST) in
Earth’s orbit and the Keck telescopes atop Mauna Kea, Hawaii, have effective apertures
90,000 and 1,600,000 times larger than those of the human eye, respectively, thereby en-
abling astronomers to “see” objects at distances that Galileo himself could perhaps not even
comprehend. Other orbital telescopes, such as the Wilkinson Microwave Anisotropy Probe,
the Spitzer Space Telescope, the Chandra X-ray Observatory, and the Fermi Gamma-ray
Space Telescope have extended the range of the human eye so it is now essentially pos-
sible to exploit the entire electromagnetic spectrum in our study of the Universe. Recent
technological advances have also made it possible to detect and study gravitational waves
produced by large objects in rapid motion, thereby also extending humans’ very crude and
primitive ability to sense gravity.

Technology not only amplifies, extends, or improves human perceptions; it also enables
scientists to select, prepare, and repeat the conditions of particular observations. It is then
possible to bring specific phenomena into focus while eliminating others, or at the very
least suppress uninteresting and spurious effects. This is perhaps best epitomized by exper-
iments at the Large Hadron Collider (LHC), such as ATLAS, CMS, and ALICE, that study
collisions of specific beams of well-defined energy with vast arrays of high-granularity
and high-sensitivity sensors that enable precise detection of particles produced by colli-
sions. Much like the Keck and HST telescopes, the LHC detectors provide observational
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7 1.6 Defining Scientific Models

capabilities that far surpass any individual human ability, and thereby enable detailed ex-
ploration of the structure of elementary particles and the forces that govern them.

Obtaining such fantastic capabilities evidently involves many challenges. The cost of
these facilities is extremely large, and their complexity is commensurate with their cost.
The design, construction, and operation of these very complex machines require large in-
ternational collaborations with scientists and engineers of varied and advanced skill sets.
Complexity also brings challenges in the areas of student training, detector maintenance
and operation, as well as data analysis, and thus often necessitates narrow training and
specialization. It also brings about the need for elaborate detector calibration and data cor-
rection procedures. Fortunately, these large experimental facilities stand on the shoulders
of prior facilities and experiments. They were indeed not designed totally from scratch and
scientists involved in these organizations have inherited and perfected clear and precise
protocols to handle all matters of data calibration and reconstruction, some of which are
briefly discussed in Chapters 12 and 14.

1.6 Defining Scientific Models

While the notion that humans are natural-born modelers is enticing, it tells us very little
about the requirements for scientific modeling, that is, the elaboration of scientific models
or theories of the world that are falsifiable and endowed with predictive power. Surely, the
plurality of religions and philosophies humans adopt or inherit from their parents should be
a clear sign that reaching an objective view of reality is anything but a simple process. Yet,
the fact that we all share a common predicament is a good indicator that we partake in the
same reality and that although it may be difficult to reach an objective and comprehensive
view of this reality, the task nonetheless remains feasible, if only by small increments.
What then should be the defining elements of a scientific model of reality?

Broadly speaking, a model may consist of any constructs used to represent, describe,
or predict observations. In this context, quantum mechanics, the theory of evolution, and
creationism may then qualify as models of reality, at least to the extent that they provide
a means to represent and interpret reality. These models, however, differ greatly in their
capacity for falsification as well as in their predictive power. To be scientific, and thus
used reliably or in a credible authoritative fashion, a model must satisfy a few minimal
requirements that, alas, are not met by all models elaborated, shared, or inherited by humans
in their daily lives. To be scientific, a model must reasonably circumscribe its range or scope
of applicability; it must identify and clearly define observables or quantities of interest to
the model; it must be internally consistent and logical; and it must be capable, following
Popper’s argument, of falsification as well as genuine and meaningful predictive power.

To be clear, Popper’s notion of models as tentative implies models are not reality but
at best fragmentary representations or images of reality. But three hundred years of mod-
ern science have taught us that although all models remain tentative, one can nonetheless
have very high expectations from scientific models, and that in fact it is possible to reach
increasingly sophisticated and powerful insights into the inner workings of our universe.
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8 The Scientific Method

Parenthetically, it should be stressed that a person or organization presenting a model or
set of ideas as the ultimate and final view of reality (i.e., reality itself) should most likely
not be trusted...

Scientific models are built on the basis of well-defined entities and designed to describe
these and the relations between them. Although a mathematical formulation of these rela-
tions is not absolutely required, it is typically useful because it enables, in most cases, a
clear path to falsifiability and model predictability.

Roadmaps constitute an interesting basic example of a model of reality. Typically pre-
sented on a flat surface, they depict the position of entities of interest (e.g., roads, land-
marks, and various artifacts) relative to a reference position, and are designed to provide
guidance to travelers. Representation as flat surfaces is of course not meant to imply the
world is flat but merely a necessity imposed by the media used to present maps. Roads,
landmarks, and artifacts are labeled and coded to help users find their location and a path
to their destination. Although somewhat simplistic as a model of reality, a map provides a
good example of a basic scientific model. It is based on well-defined entities, has a clear
purpose (representation of the human environment), provides predictive power (i.e., how
to reach one’s destination), and is falsifiable. The reliability of a map is particularly im-
portant. If roads are improperly represented or labeled, users of the map may experience
delays and frustrations in reaching their destination. The map is thus easily falsified: if you
reach an intersection and the road names posted at the section do not match those shown on
the map, suggests that the map may not be accurate. There might be a typo on the map. It
could be dated and not representative of recent changes in the road structure, and so forth.
But it is also conceivable that postings are missing or improperly placed. The user could
also be confused about his or her actual location. In essence, both the data (observed street
names) and the model (road names shown on the map) can be wrong. The map remains
nonetheless useful insofar as the number of typos or mistakes is relatively modest. A prac-
tical user would thus not dispose of the map simply because it features a few mistakes or
inaccuracies. In fact, a savvy road traveler would figure out how to use her location to up-
date and correct the map. The model could then be salvaged and thus reusable in the future
without a repeat of the same frustrations. But then again, if whole regions of a city have
been remodeled, an old map has lost its utility and should be disposed of, unless perhaps
its uniqueness justifies keeping it as a museum piece.

While somewhat trivial, the roadmap example illustrates many of the facets and proper-
ties of a scientific model. It models well-defined entities of the real world, it indicates their
relations (e.g., the Empire State building is south of the Chrysler building), it is falsifiable,
and has some predictive power (i.e., how to get to one’s destination). But as a model of
reality, it is rather primitive and limited. It does not tell us why the streets were built the
way they were, who named them, why the given names were chosen, and so forth. It is
descriptive and useful but features no dynamics, evolution, or causal relationships.

Scientific models formulated in the physical and biological sciences typically seek
to provide not only a descriptive account of reality but also the dynamics, that is, the
causal and evolutionary interrelationships connecting the entities of a model. Classical
mechanics (Newton’s laws) is a prime example of a scientific model featuring descriptive
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9 1.6 Defining Scientific Models

components (kinematics: representation of motion) and causal components (dynamics:
forces and causes of the motion). Likewise, the theory of evolution involves a descrip-
tive component, the taxonomy of species, and a dynamic component that describes how
species are connected through time, how they evolve. In both cases, it is the dynamical
component of the theory that is of greatest interest because it tells us how systems change,
and indeed how they evolve. Dynamical models feature great predictive power and capacity
for falsifiability. For instance, not only does classical mechanics provide for a description
of the motion of objects, called kinematics; it also features dynamics, which enables pre-
dictions of where objects will be in the future based on their current location and models
of the forces through which they interact. If these force models are wrong, so will be the
predictions. Likewise, the theory of evolution, first formulated by Darwin, empowers us
to understand the relations and connections between species and how environmental con-
straints shaped them over long periods of time to become what they are today.

By stark contrast, creationism, as well as intelligent design, are models of reality that are
totally devoid of content, falsifiability, and predictive power. To be sure, one is obviously at
a liberty to posit that God created the Universe on a Sunday, exactly 6,000 years ago. That
includes, of course, photons traveling through space as if they came from galaxies located
hundreds of millions of light years away. And given there are billions of galaxies in the
visible universe (e.g., a simple extrapolation from the Ultra Deep Field survey completed
by the Hubble Space Telescope), that makes God an amazing being indeed. But why are
some stars red and others blue? Why are some galaxies shaped like spirals and others like
footballs? Why does Earth have an atmosphere rich in oxygen and capable of sustaining
life, while the other planets do not? Because God made it that way? But why did God make
these things that way? The faithful respond: Don’t ask. It is the mystery of the creation.
But how does this inform us about the world we live in? Are you sure the Universe was
created on a Monday, not a Tuesday, or was it a Saturday? Did the wise men who wrote the
Bible know about other galaxies, dinosaurs, and stellar nucleo-synthesis? Does the Bible
provide a path to such discoveries and for a falsifiable representation of reality? Sadly, it
does not. For sure, it tells an evocative story. But the story has no reliable markers, no real
capacity for cross-checks and thus no falsifiability. And more importantly, it has no factual
predictive power. It is thus of little use as a basis to model reality. Change the religion,
change the book (e.g., the Koran, the Torah, the Bhagavad Gita, the Vedas, the Avestan,
etc.), and the actors change names, the narrative changes, the commandments also change
a little, but the conclusion remains the same: sadly, as models of reality these books have
no trustworthy content, no falsifiability, no predictive power, and thus no real usefulness.

No reliable model of reality means no trustworthy path to knowledge, no tangible and
reliable source of meaning and ethics. It means chaos. And chaos it is across our beautiful
blue planet. Witness cultural and religious factions claiming they own their lands as well
as the truth, and worst, readily conducting genocides, in the name of God, to eliminate
whatever groups disagree with them and stand in their path. But it does not have to be that
way. The scientific method does work. It is slow but robust and the models (knowledge)
of reality it provides, while innately tentative and incomplete, are steadily bringing our
scientific civilization to a greater and clearer vision of our Universe, our origins, and our
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10 The Scientific Method

nature. To quip, I would suggest that those who wish to get a true spiritual experience
should pick up a physics or biology textbook, because there is sure no better way to embrace
reality than science. But brace yourself, it takes work!

1.7 Challenges of the Scientific Method: Paradigm Shifts
and Occam’s Razor

Though science works, scientific modeling of reality is not without challenges of its own.
One such challenge was clearly put to light by Thomas Kuhn in his book, The Structure of
Scientific Revolutions [132]. To understand the issue, let us briefly consider the transition
between the geocentric and heliocentric views of the world that occurred at the eve of the
scientific revolution following the works and writings of Nicolaus Copernicus.

Born in 1473 in the town of Torun, Poland, Copernicus was orphaned at an early age
and taken under the tutelage of his maternal uncle, Lucas Watzenrode the Younger (1447–
1512), a very influential bishop of Poland, who provided for his education. Copernicus
studied law and medicine, but his true passion was astronomy. Noticing that the positions
of the planets were considerably off compared to predictions provided by the Alfonsine
tables,2 he became convinced that Ptolemy’s geocentric view of the world was incorrect and
he proposed a heliocentric model in which all the planets revolve around the Sun, except
the Moon, which revolves around the Earth. Much time would pass before Copernicus’s
heliocentric model became widely accepted, but it eventually did, thanks in part to the work
of Kepler, Galileo, and Newton. In time, astronomers would successively also dethrone the
Sun and our galaxy as the center of the Universe.

The central point of this story is the geocentric model with its deferents and epicycles.
The fact of the matter is that an arbitrary number of nested epicycles could be added to
the geocentric model to fix it and provide a very accurate model of the apparent motion
of the planets. With sufficiently many epicycles, the model could be made reliable for sev-
eral decades, perhaps centuries. Kuhn’s point is that based on observations of the apparent
motion of the planets alone, it would not have been possible to readily falsify the geocen-
tric model augmented with an arbitrary number of nested epicycles. Thankfully, several
other observations, including the fact that Venus has phases incompatible with Ptolemy’s
geocentric model, the aberration of light, and Foucault’s pendulum, would provide incon-
trovertible falsification power to reject the geocentric model in favor of the heliocentric
model.

The capacity to mathematically represent the apparent motion of the planets with the
wrong model, however, remains a serious issue. Thomas Kuhn realized the same type of
issue could arise within models discussing various other aspects of reality. In essence,
Kuhn understood that mathematical models describing a portion of reality (e.g., geocentric
motion of the planets, classical description of particle motion, etc.) may be artificially

2 Astronomical tables prepared on the request of thirteenth century King Alfonso X of Castile, based on Claudius
Ptolemy’s geocentric model of the motion of planets.
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augmented with fixes and artifices until drastically different types of observations render a
model untenable and requires what he called a paradigm shift.

Figuratively speaking, the need for the addition of epicycles may in part arise because of
the limited quality of the data or poorly understood features of the measurement process. It
could also amount to an attempt to temporarily fix the model while waiting for additional
and better quality data, or a new model capable of providing a more encompassing view of
the phenomenon or system of interest, and so on. One could obviously expound further on
this topic, but the main point of interest, as far as this book is concerned, is that mathemat-
ical models used for the representation of natural phenomena can always be made more
complicated to account for unusual features of the data. How then can scientists judge
whether a scientific model and its mathematical realization provide a proper and sufficient
representation of a phenomenon of interest (i.e., reality)? Why is Newton’s model of orbital
motion better than Ptolemy’s? Why was it necessary to invent quantum mechanics?

An answer to such questions is often provided in the form of Occam’s razor,3 a principle
stating that among competing hypotheses, the simplest, that is, the one with the fewest
assumptions, should be selected. In mathematical terms, this translates into selecting the
(fit) model with the least number of free parameters that is consistent with the data. Indeed,
why use a cubic or quartic polynomial to fit a set of data if the precision of the data does
not warrant it? A straight line or parabola might be sufficient, unless perhaps one has
prior reasons to believe a higher degree polynomial must be used. An important aspect of
data analysis then involves the evaluation of errors and of the techniques to assess or test
whether a model or hypothesis constitutes an appropriate and sufficient representation of
the data.

Understanding experimental errors and how they propagate to model properties derived
from the data is thus a central aspect of the scientific method. We thus devote several
sections, throughout the book, on this very important topic. An intuitive notion of error
and techniques of error propagation are first discussed in Chapter 2 after the introduction of
the concept of probability. A more precise definition of the concept of errors is introduced
in Chapter 4 on the basis of estimators and statistics. A full characterization of errors,
however, requires the notions of confidence level and confidence intervals discussed in
Chapter 6. The notion of confidence interval is slightly modified in Bayesian inference and
renamed credible interval in Chapter 7. Equipped with the notions of confidence intervals
and data probability models, it then becomes possible, in Chapter 6, to fully address the
notion of (scientific) hypothesis tests. A mathematical implementation of Occam’s razor,
based on the Bayesian interpretation is finally discussed in Chapter 7.

Occam’s razor alone, however, is usually insufficient to abandon a particular model. A
more convincing line of arguments is generally needed. Indeed, and to get back to our
example, it is not Occam’s razor that made scientists reject Ptolemy’s model, but the ob-
servation of phenomena completely inconsistent with a geocentric universe, including the
existence of Venus phases, the aberration of light, and Foucault’s pendulum, and just as
importantly the immense predictive power of Newton’s mechanics and Law of Univer-
sal Gravitation. Newton’s model is not better than Ptolemy’s merely because it has fewer

3 A problem-solving principle attributed to William of Ockham (c. 1287–1347).
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parameters (in fact, it has quite a few as well, the mass of the planets, the size and eccen-
tricity of their orbits, etc.) but because its higher level of abstraction provides a unifying
principle (e.g., the force of gravity) that enables falsifiable predictions of the motion of
objects on Earth as well as in the heavens. Likewise, the nonclassical concepts of wave
function and quantization enabled accurate quantitative descriptions of large classes of
phenomena that were otherwise intractable within the classical physics paradigm.

Kuhn argued that competing paradigms are frequently incommensurable, as competing
and irreconcilable accounts of reality, and that scientists cannot rely on objectivity alone.
Accordingly, the necessity for paradigm shifts may then involve a certain degree of sub-
jectivity. It remains nonetheless that it would have been completely impossible to realize
a flyby of Pluto (NASA Horizon spacecraft, summer 2015) based on Ptolemy’s geocentric
model but the exploit was readily achievable based on Newton mechanics. Likewise, de-
signing microtransistors and computer chips would be inconceivable within the framework
of classical mechanics but became a tremendously successful outcome of the develop-
ment of quantum mechanics. Similar conclusions may also be stated for the tremendous
progress achieved in biology, most particularly in genetics. It is rather clear that such ad-
vances could not have been possible without the guiding principles of Darwin’s theory of
evolution. There is little or no subjectivity associated with these facts. Falsifiability may be
temporarily compromised by the addition of epicycles but the overarching predictive power
and technical prowess of scientific theories developed after successive paradigm shifts are
objective indications that although our models of reality remain tentative, science as a
whole has made tremendous progress in formulating meaningful and powerful theories of
reality. There is indeed little doubt that science is closer to the true nature of reality today
than it was 50, 100, or 2,000 years ago.

1.8 To Err Is Human, to Control Errors, Science!

One of the very first things science students learn in the laboratory is that making mistakes
in the execution of an experimental procedure and the acquisition of data is terribly easy.
Committed students usually figure out how to improve their lab work and reduce or even
eliminate the number of mistakes made in their execution of experimental protocols. But
students must also learn that although the capacity to conduct reliable experiments is a
skill one can hone through training and repetition, the risk of errors, and the need to under-
stand them, never goes away. There are many types and sources of errors, of course, but at
the end of the day, even if an experimental procedure is executed flawlessly, there remain
irreducible sources of errors and uncertainties determined by the measurement process it-
self, known as process noise, and the instrument read-out, known as measurement noise.
And although improvements in the design of an experimental apparatus or procedure may
reduce these errors, they can never eliminate them completely.

But, as we have argued earlier, the true power of the scientific method resides in its
capacity to falsify models and its ability to make accurate predictions. This implies it is
absolutely necessary to understand the errors of a measurement, identify their sources and
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types, and make the best efforts to reduce their amplitude. Indeed, the capacity to reject a
model (falsification of the null hypothesis), and adopt another one (adoption of an alterna-
tive hypothesis), based on a specific measurement is chiefly determined by the measure-
ment’s precision.

Evidently, having an estimate of the error involved in a measurement does not mean one
knows the value of the error (unless perhaps, the value being measured is already known).
If one did, it would suffice to subtract the error from the measured value and one would
achieve an error-free measurement. Having an estimate of the error of measurement instead
means that one can assess the likelihood of deviations of any given size from the true value
of the observable. In this context, measured values are viewed as random variables, that is,
observables that may deviate uncontrollably from their true value due either to their intrin-
sic nature (e.g., the exact decay time of a radioactive nuclei cannot be predicted, only the
average lifetime is known) or variability associated with a macroscopic process involving
a large number of elementary subprocesses (e.g., fluctuations of the number of collisions
experienced by a high-energy particle traversing a large chunk of material). One is thus
constrained to model measurements according to the language of probability and statis-
tics. Assessing experimental errors thus requires a probabilistic model of the measurement
process, and extraction of meaningful scientific results necessitates statistical analysis and
inference. This is largely what this book is about.

1.9 Goals, Structure, and Layout of This Book

Traditionally, scientists, most particularly physicists, have made use of probability and sta-
tistical techniques rooted in the so-called frequentist interpretation of probabilities, which
basically regards probabilities as relative frequencies observed in the limit of an infinite
number of trials or measurements. However, a growing number of scientists, including
physicists, now make use of techniques based on the Bayesian interpretation of probabili-
ties, which assigns hypotheses a certain degree of belief or plausibility. This rapid increase
in the adoption of Baysian probabilities and inference techniques stems in part from the
relatively recent developments of the theory of probability as logic by Jaynes and others,
the elegance and power of the interpretation, as well as the development and articulation
of numerous tools to deal with practical scientific problems. The majority of works and
scientific publications, however, are still based on the traditional methods of the frequentist
interpretation. This book thus attempts to cover data analysis techniques commonly used
in astro-, nuclear, and particle physics based on both approaches.

This book targets graduate students and young scientists. It is not intended as a text for
mathematicians or statisticians. So, while we spend a fair amount of time introducing the
foundations of the theory of probability, and discuss, among other topics, properties of
estimators and statistical inference in great detail, we leave out detailed proofs of many of
the theorems and results presented in the book, and rather concentrate on the interpretation
and applications of the concepts. Note that at variance with more elementary books on
probability and statistics, we assume the reader to be reasonably proficient in elementary
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mathematical and computational techniques, and thus also leave out many of the detailed
numerical calculations and derivations found in such texts.

The book is divided into three parts. The first part provides a foundation in probability
and statistics beginning with a formal definition of the concepts of probability and detailed
discussions of notions of statistics, estimators, fitting methods, confidence intervals, and
statistical tests. These concepts are first explored from a classical or frequentist perspective
in Chapters 4–6, but also discussed within the Bayesian paradigm in Chapter 7.

The second part of the book introduces a variety of measurements techniques commonly
utilized in nuclear and particle physics. It begins, in Chapter 8, with the introduction of ba-
sic observables of interest in particle/nuclear physics and exemplars of basic measurement
methods. Selected advanced topics are presented in Chapters 9–11. Chapter 9 introduces
the notion of event reconstruction, and presents examples of track reconstruction and fit-
ting, as well as primary and secondary vertex reconstruction techniques, while Chapters 10
and 11 present extensive descriptions of correlation function measurement methods. These
topics then form grounds for a detailed discussion of error assessment and data correc-
tion methods, including efficiency corrections, spectrum unfolding techniques, and vari-
ous other techniques involved in the correction of correlation functions and flow measure-
ments, presented in Chapter 12.

Part III introduces basic Monte Carlo techniques, in Chapter 13, and elementary exam-
ples of their use for simulations of real-world phenomena, as well as for detailed evalua-
tions of the performance and response of complex detection apparatuses, in Chapter 14.

There is much to discuss. Let us begin!
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2 Probability

2.1 Modeling Measurements: A Need for Probability

Gambling aficionados are accustomed to the notion that when they roll a pair of dice re-
peatedly, they obtain, each time, very different number combinations, and unless the dice
have been heavily tampered with, it is impossible to control or predict which faces will roll
up. The same may be said of the balls in a lottery machine: it is not possible to actually
predict which balls will be drawn. This seems rather obvious. Is it not? Well, actually no!
The classical mechanics that govern these processes is wholly deterministic. Given enough
information about the initial kinematic conditions of a roll as well as the properties of the
dice and the table they are rolled on, it should be possible to calculate, at least in princi-
ple, which face the dice will actually land on. This is perhaps less obvious, but it is true.
Phenomena such as a roll of dice or the breakdown of a window by an impact are ruled
by deterministic laws of physics and should thus be predictable. The problem, of course,
is that they are immensely complicated phenomena involving a large succession of events.
For instance, a proper calculation of the trajectory of a set of dice would require knowledge
of their exact speed and orientation when they leave the player’s hand. One would also need
to account for friction, the air pressure and temperature, the exact elasticity of the dice and
all components of the table on which they roll, etc. And because dice can bounce several
times against each other and on the table, one should have to follow their complete trajec-
tory, accounting for whatever imperfections the dice or the table might feature. This is a
rather formidable task that is unlikely to ever be accomplished, even with modern super-
computers. Effectively, if dice are thrown with enough vigor, they should bounce and roll
so many times as to make the calculation practically impossible. For all intents and pur-
poses, the roll of fair dice is truly a random phenomenon: its outcome is unpredictable and
all faces have an equal probability of rolling up.

Scientific experiments are obviously not a form of gambling, but the many physicochem-
ical processes involved in measurements have much in common with a dice roll. Typical
measurements involve a large succession of macroscopic and microscopic processes that
randomly alter their outcome. Effectively, repeated measurements of a given physical quan-
tity (e.g., the position, momentum, or energy of an object) also yield different values that
seemingly fluctuate and adopt a random pattern, which, at best, clusters near the actual
value of the observable of interest.

The fluctuations stem in part from the technique used to carry out the measurements.
For instance, ten people who measure the length of, say, a table with a tape measure, will
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18 Probability

report slightly different values, even though they might use the same tape measure. The
differences have to do with the way these different people position the tape measure next to
the table, how they read the tape measure, whether they keep it extended without stretching
it, and so on. Measurement accuracy may also be limited by the physical process used to
carry out the measurement as well as the observable measured. For example, scatterings
and energy losses in a detector randomly affect the momentum of the particles measured
in a magnetic spectrometer. If a given particle is kicked this or that way, its direction and
energy are slightly altered, and the momentum determined based on the particle’s trajectory
is slightly off from the actual value.

The bottom line is that measured values of physical observables are likely to vary from
measurement to measurement. Additionally, inspection of the values obtained in a se-
quence of measurements will reveal that the specific value obtained in a given measure-
ment cannot be predicted. The measured values appear as a sequence of seemingly random
numbers. Yet a table has a length, and measurements of this length yield values that cluster
around a typical value that one expects should be representative of the actual length of the
table. Likewise, repeated measurements of particle positions, momenta, and so on shall
yield values that vary from measurement to measurement but should cluster around the
actual values of these observables.

Throughout this book, we adopt the view that the outcome of measurements of scientific
observables is, for all intents and purposes, a random process. The outcomes of a given
measurement, or a succession of measurements, shall be considered random variables. But
randomness does not imply all values of an observable are equally probable: a reasonably
well designed and carefully carried out experiment shall yield values that cluster near and
about the actual value of the observable. Whoever has carried out a succession of measure-
ments of a well-defined observable according to a specific measurement protocol can in
fact attest that such clustering occurs. We will assume that it is possible, at least in princi-
ple, to formulate a probabilistic model of the measurement process and the clustering of its
outcomes. In other words, although it is impossible to predict the value of a specific mea-
surement with absolute certainty, it should be possible to formulate a model that provides
the probability of any given outcome or the distribution of values obtained after several
measurements. Although each specific outcome is random, the probability model should
describe, overall, the probability of any given outcome according to a specific mathematical
function called the probability distribution.

Evidently, a model of the measurement process shall be as good as the efforts put into
understanding it as well as the prior knowledge available about the process and the appara-
tus used to carry out the experiment. The job of a statistician shall thus be to find and apply
statistical methods that enable a trustworthy characterization or inference of measured ob-
servables and scientific models used to describe phenomena of interest, even though the
measurement model may not be completely accurate. A difficulty arises that statistical in-
ference is contingent on the notion of probability and how this notion is applied to the
description and characterization of experimental results.

Two main paradigms, known as frequentist and Bayesian, are commonly used to define
and interpret the notion of probability. The frequentist paradigm assumes measurement
fluctuations are determined by a parent distribution representing the relative frequency of
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19 2.2 Foundation and Definitions

values or ranges of values of an observable. The parent distribution is a priori unknown but
can be determined, at least in principle, in the limit of an infinite number of measurements.
The Bayesian paradigm dispenses with the need for an infinite number of measurements
by shifting the discussion into a hypothesis space in which all components of the measure-
ment process, including the probability model of the measurement and its parameters, are
considered as hypotheses, each endowed with a degree of plausibility, that is, a probability.

It is the purpose of §2.2 of this chapter to motivate and introduce the two interpretations
of probability these paradigms are based on. A discussion of the pros and cons of the two
interpretations is initiated in §2.3 but will continue throughout the first part of this book.
The remainder of this chapter discuss mathematical concepts pertaining to and used in
both paradigms. Section 2.4 introduces Bayes’ theorem, the notions of inference, as well
as the concepts of sample and hypothesis space, while §2.5 defines discrete and contin-
uous random variables, probability distribution, probability density distributions, as well
as cumulative distributions and densities. Sections 2.6 and 2.7 next introduce functions
of random variables and techniques for the characterization of distributions. Multivariate
distributions and their moments are discussed in §2.8 and §2.9, respectively. Section 2.10
introduces the notions of characteristic function, moment-generating function, and exam-
ples of their application, including a proof of the very important central limit theorem. With
these tools in hand, we proceed to introduces notions of measurement errors and random
walk processes in §2.11 and §2.12, respectively. The chapter ends, in §2.13, with the defi-
nition of cumulants, which have broad utility in probability and statistics, and constitute, in
particular, an essential component of correlation and flow analyses conducted in the field
of high-energy heavy-ion collisions.

2.2 Foundation and Definitions

The notion of probability can be intuitively introduced on the basis of the relative frequency
of the phenomena of interest. For instance, to establish that a cubic die has been tampered
with, it suffices, in principle, to roll it a very large number of times, and count how many
times each face rolls up. The relative frequency of each face, fi, with i = 1, . . . , 6 is the
number of times, Ni, each face rolls up divided by the total number of rolls, NTot.

fi = Ni

NTot
(2.1)

The frequencies fi provide an indication of the likelihood, that is, the probability, of rolling
any face i in subsequent rolls of this same die. A die is considered fair if all faces have the
same probability, that is, the same frequency.

The notion of frequency as a probability also applies in virtually all forms of experi-
mental measurement. For example, repeated measurements of the universal gravitational
constant, G (Big G), are expected to yield values in the neighborhood of the actual value
of the constant. The number of times values are observed in a specific ranges [G, G + dG],
relative to the total number of observations, can then be used to estimate the probability
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20 Probability

of observing G in that range. It is thus natural to establish a connection between notions
of probability and relative frequency. This leads to the frequentist interpretation of the
notion of probability.

The frequentist interpretation of probability is most concerned with the outcome of mea-
surements or observations. The observations, either discrete or continuous numbers, are
elements of sets, known as sample space, defining the domain of observable values. One
can thus naturally and formally introduce the notion of probability based on values asso-
ciated with elements or subsets of the sample space. Such a definition, introduced in 1933
by Kolmogorov, is presented in §2.2.1. The frequentist interpretation becomes problematic
if and when dealing with systems involving phenomena that cannot be observed more than
once (e.g., the collapse of the Tacoma Narrows bridge, a star exploding in a supernova, or
the Big Bang), or when trying to express the plausibility or truthfulness of statements about
the world. How indeed does one quantify the probability that a statement about dark matter
or the Higgs boson is correct if it does not involve numerical values, whether discrete or
continuous (e.g., dark matter does not consist of known baryons, or there exists only one
Higgs boson)? Obviously such statements are the result of inference based on prior knowl-
edge of the world and the outcome of experimental measurements with specific measured
data. One then needs a robust and well-defined method to translate one’s certainty about
prior knowledge and experimental results into statements about the world. One must also
be able to combine such statements according to the rules of logic. This then creates the
need to extend logic (or the calculus of predicates) to include the notion of plausibility or
likelihood. Such an extension was developed largely by E. T. Jaynes and his collaborators
in the 1970s. We briefly present the basic tenets and rules of the foundation of probability
as logic in §§ 2.2.3 and 2.2.4.

2.2.1 Probability Based on Set Theory

The concept of probability embodies the notion of randomness, in other words, the fact
that one cannot predict with complete certainty the outcome, or value, of a particular mea-
surement. It may be formally defined in the context of set theory. Indeed, measurement
outcomes can be viewed as members of a set. We call sample space, denoted S, the set
consisting of elements corresponding to actual and possible outcomes of a measurement.
The set S can be divided into subsets A, B, C, and so on. A subset A of S, noted A ⊆ S,
may be empty and contain no elements. It may alternatively contain one, few, or all ele-
ments of S. It is then possible to assign A with a real number, noted p(A). This number is
called the probability of A provided it obeys the following three axioms:

p(A) ≥ 0 for A ⊆ S, (2.2)

p(A ∪ B) = p(A) + p(B) for A ∩ B = 0, (2.3)

p(S) = 1. (2.4)

The first axiom stipulates that every subset A belonging to S has a probability p(A) larger
than or equal to zero. The second axiom states that the probability assigned to the union
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21 2.2 Foundation and Definitions

A ∪ B of two disjoint subsets A and B (i.e., A ∩ B = 0) is the sum of their probabilities
p(A) and p(B). The third axiom states that the probability assigned to S is unity.

Introducing the notation A to mean the complement of A in S, such that A ∪ A = S, one
can demonstrate the following properties (see Problem 2.1):

p(Ā) = 1 − p(A), (2.5)

p(Ā ∪ A) = p(S) = 1, (2.6)

0 ≤ p(A) ≤ 1, (2.7)

if A ⊂ B, then p(A) ≤ p(B), (2.8)

if A is a null subset, then p(A) = 0. (2.9)

The first expression indicates that the probability of the complement of A is equal to 1
minus the probability of A itself. The second expression indicates that the probability of
the union of A and its complement, which can be identified as S, has a probability equal to
one. The third expression states that the probability of A can take any value in the range
[0, 1], including the values 0 and 1. The last expression states that the probability of an
empty subset is null.

Consider a “measurement” of an observable (variable) X that can take any specific value
or group of values corresponding to elements of the set S. Further consider that a measure-
ment of X might yield any values in the set. This variable is then considered a random
variable, and the axioms (2.2–2.4) define the probability of measuring X within a given
subset A. Note that X may represent a single value, a range, or combinations of values, as
we will illustrate in the text that follows. Additionally, if values of X are restricted to the
set of integers, such as in counting experiments (e.g., number of people recovering from
an illness thanks to a medication or the number of particles produced in a nucleus–nucleus
collision), X is said to be a discrete random variable, whereas if X belongs to a subset or
the entire set of real numbers R, it constitutes a continuous random variable.

2.2.2 Conditional Probability and Statistical Independence

Let us now consider a sample space S, with subsets A and B such that p(B) ̸= 0. One then
defines the conditional probability, noted p(A|B), as the probability of A given B:

p(A|B) = p(A ∩ B)
p(B)

. (2.10)

This corresponds to the probability of observing the random variable X within A when
it is also within B. It is relatively straightforward to show that the notion of conditional
probability satisfies the axioms of probability introduced previously (see Problem 2.2). In
fact, the probability p(A) can itself be viewed as a conditional probability p(A) = p(A|S)
since p(S) = 1 by construction.

Two subsets A and B, and the measurement outcomes they represent, are said to be
independent if they satisfy the condition

p(A ∩ B) = p(A)p(B). (2.11)
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22 Probability

This condition means that the probability that X is a member of A and B simultaneously is
equal to the product of the probabilities of X being in A and B independently. This enables
the evaluation of the conditional probability p(A|B):

p(A|B) = p(A ∩ B)
p(B)

= p(A)p(B)
p(B)

= p(A) (statistical independence). (2.12)

Consequently, when A and B are statistically independent, the conditional probability of A
given B is equal to the probability of A itself, in other words, the probability of A does not
depend on B. Likewise, the conditional probability of B given A is equal to the probability
of B itself:

p(B|A) = p(A ∩ B)
p(A)

= p(A)p(B)
p(A)

= p(B) (statistical independence). (2.13)

It is quite important to realize that the notion of statistical independence or indepen-
dent subsets, p(A ∩ B) = p(A)p(B), differs from that of disjoint subsets, A ∩ B = 0. In-
deed, if the intersection A ∩ B is empty, it is not possible for an element x (a measurement
outcome) to be simultaneously part of A and B; the probability of observing such an ele-
ment (measurement value) is thus null, and therefore different in general from p(A)p(B).

Clearly, the conditional probabilities p(A|B) and p(B|A) are not independent. To estab-
lish their relation, first consider that by definition of the conditional probability, one has

p(A|B) = p(A ∩ B)
p(B)

, (2.14)

and similarly,

p(B|A) = p(B ∩ A)
p(A)

. (2.15)

Given the commutativity of the intersection of two sets, B ∩ A = A ∩ B, one finds that the
two conditional probabilities are related as follows:

p(A ∩ B) = p(B|A)p(A) = p(A|B)p(B), (2.16)

provided neither p(A) nor p(B) is null. This implies it is possible to calculate the condi-
tional probability p(B|A) as follows:

p(B|A) = p(A|B)p(B)
p(A)

. (2.17)

This expression, known as Bayes’ theorem,1 is a fundamental relationship in probability
theory and finds use in a wide range of practical applications, as we shall discuss in this
and subsequent chapters of this book.

It is useful to further explore the properties of conditional probabilities by partitioning
the set S into finitely many subsets, Ai with i = 1, . . . , n. Consider, for instance, n subsets
Ai, whose union is by construction equal to S, in other words, such that S =

⋃
i Ai. Assume

1 Thomas Bayes (1702–1761) was an English mathematician and Presbyterian minister known for the develop-
ment of the mathematical theorem that bears his name.
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23 2.2 Foundation and Definitions

further that none of these subsets are null, p(Ai) ̸= 0, and that they are all disjoint, Ai ∩
A j = 0 for i ̸= j. Then it is possible to show (see Problem 2.3) that

p(B) =
∑

i

p(B|Ai)p(Ai). (2.18)

This result is known as the law of total probability.
Combining the law of total probability with Bayes’ theorem, one finds

p(A|B) = p(B|A)p(A)∑
i

p(B|Ai)p(Ai)
, (2.19)

which is particularly useful in the estimation of the probability of a specific hypothesis
given measured results. We present an example of an application of Bayes’ theorem and
the law of total probability in the following subsection.

Example: A Problem about Problematic Parts
Statement of the Problem

10P100Bad, a famous auto-parts supplier, conducted a study of the parts it produces in
a year. The study revealed 90% of the produced parts are within specifications while
the remainder 10% are not. Stricken with revenue losses, the company decided to hide
this fact and sell both the good and defective parts. A client, the struggling car company
Don’tFoolMe, suspected there was a problem with the parts and designed its own test to
determine whether the components it bought from 10P100Bad were within tolerances. Un-
fortunately, their test was not very precise. They estimated that their test had a probability
of 1% to identify a component as nondefective even though it was, and a probability of
0.5% to reject a nondefective part. Calculate the probability a bad part would not be re-
jected by their test and used in the construction of a car.

Solution
Let us establish what we know from the statement of the problem. First, we know that the
prior probability, p(D), a part is defective is 10%:

p(D) = 0.1, (2.20)

p(D̄) = 0.9. (2.21)

We also know the probability, p(A|D), of accepting a defective part is 1%,

p(A|D) = 0.01, (2.22)

p(Ā|D) = 0.99, (2.23)

and the probability, p(Ā|D̄), of rejecting a nondefective part is 0.5%. One thus writes

p(A|D̄) = 0.995, (2.24)

p(Ā|D̄) = 0.005. (2.25)
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24 Probability

We now seek the probability, p(D|A), that a part accepted in the fabrication of the cars is
defective. By virtue of the total probability theorem, one writes

p(D|A) = p(A|D)p(D)

p(A|D)p(D) + p(A|D̄)p(D̄)
,

= 0.01 × 0.1
0.01 × 0.1 + 0.995 × 0.9

, (2.26)

= 0.001
0.001 + 0.8955

= 0.0011.

One then concludes the car maker Don’tFoolMe has a probability of 0.1% of integrating
defective parts in its fleet. That sounds like a financial disaster in the making. . .

2.2.3 A Need for Probability as an Extension of Logic

The notion of probability based on a sample space as a set of numbers representing the
outcome of measurements is rather restrictive. Indeed, as already stated, one would also like
to quantify the plausibility of general statements about the world or specific phenomena.
For instance, modern cosmologists are concerned with the notion that the expansion of
the universe (e.g., the fact that all observable galaxies recede from one another at speeds
that grow proportionally to the distance that separate them) might accelerate over time.
One would then like to use existing data to quantify the plausibility of statements such
as the expansion of the universe has been constant through times, or the expansion has
accelerated during the last n billion years, and so forth. Indeed, one would like to express
a probability for either statements given the state or prior knowledge about the universe
and measured data (e.g., based on type Ia supernovae). In all scientific endeavors, one
is interested in stating/quantifying the plausibility of statements made about the world or
specific phenomena. The problem, of course, is that one typically deals with limited data
and that all data involve finite errors.

The scientific process, applied to a specific inquiry of a specific system, involves pre-
dictive statements about measurements based on one or several models of the system (e.g.,
space is warped by the presence of massive objects such as stars). Models can then be used
to make predictions concerning phenomena occurring in the realm of the system (e.g., the
warp of space around a star was used by A. Einstein to predict the deflection of star light
by the Sun observable during an eclipse of the Sun and a sizable contribution to the pre-
cession of planet Mercury in its orbit around the Sun). Measurements of observables of
interest (e.g., a shift in the apparent position of stars near the line of sight of the eclipse,
and the measured rate of precession of Mercury’s orbit) can then be used to infer, after due
statistical analysis of the measured values and their errors, whether the model predictions
are correct. It then becomes natural to enlarge (or replace) the notion of sample space with
the notion of hypothesis space consisting of (logical) statements about the phenomenon in
question (or the world in general). Probability may then be viewed as an extension of logic
where propositions (predicates) are ascribed a plausibility, likelihood, or degree of belief.
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Fig. 2.1 Schematic summary of the scientific method as a cyclical process involving stages of modeling, deductive (predictive)
inference, measurements, statistical analyses, and inference.

A proper foundation of this approach was progressively developed by several authors in-
cluding C. Shannon [172], H. Jeffreys [118, 119], and R. T. Cox [69], arguably culminating
with the work of Jaynes published posthumously in 2003 [117]. Several articles and books
have extended Jaynes’ work.

An extension of the notion of probability to include logic is attractive because one can
use the formally well-established rules of logic to combine logic statements and reason
based on these predicates in a sound and robust manner. Of course, the point of associating
probabilities to logical statements is that one can then express the probability of some
statements being true if logically derived from (or entailed by) prior statements when the
veracity of such statements is itself not perfectly well established. The probability of a
statement derived from several others thus depends on the individual probabilities of these
statements.

Probability as logic is also particularly useful because it enables a scientific discourse
based on logic while accounting formally and robustly for the limited amount of infor-
mation one may have about a specific phenomenon (or perhaps the universe as a whole).
The scientific method, which nominally involves the formulation of hypotheses and the
realization of measurements designed to test these hypotheses, may then be formulated
as a cycle, illustrated in Figure 2.1, involving predictive inference based on models, de-
ployment of one or several experiments whose results are analyzed statistically (statistics)
and used to carry out formal tests of the hypotheses or models (statistical inference), and
eventually to decide which of the models has the highest probability, that is, is most con-
sistent with the measured data. This may then be followed by theoretical work leading
to additional or tweaked hypotheses and models, which then form the basis for new ex-
periments or measurements. The cycle repeats, eventually leading to significant scientific
advances.
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26 Probability

Physical models of nature are well covered in courses on classical mechanics, electro-
dynamics, quantum field theory, and so forth. But such courses typically ignore the details
of the predictive process leading to the formulation of experiments, the statistical analysis
of the data, and the statistical inference involved in transforming observations (measure-
ments) into conclusions about the veracity or appropriateness of the models. One of the
purposes of this book is to fill this gap by providing a relatively detailed presentation of
the methods of predictive inference, data analysis techniques (including techniques used to
correct for instrumental effects, e.g., biases and defects), parameter estimation, hypothesis
testing, and statistical inference.

2.2.4 Probability as an Extension of Logic

Extending logic to include the notions of plausibility and probability is not a trivial matter.
Much like the generalization of geometry to non-Euclidean space, much freedom appears
to exist, at least at the outset, in the manner in which this can be done. Cox [69] and
Jaynes [117] formulated such an extension starting from three desiderata, that is, three
sets of properties or attributes a theory of probability based on logic should satisfy. The
desiderata and the foundational theoretical structure are here stated without much of a
discussion or proof. Readers interested in digging into the foundations of the theory should
consult the book by Jaynes [117] or the more recent book by Gregory [97].

Cox and Jaynes have reasoned that an extension of logic including probabilities should
satisfy the following three desiderata:

1. The degree of plausibility of statements is represented by real numbers.
2. The measure of plausibility must behave rationally: as new information supporting the

truth of a particular statement (predicate) is obtained, its plausibility must increase con-
tinuously and monotonically.

3. A theory of probability as logic must be consistent:
a. There must be structural consistency: if a conclusion can be reasoned along many

paths, all paths (based on the same information) must yield the same result, that is,
the same value of plausibility.

b. It should be possible to account for all information relevant to a particular problem
in a quantitative manner. In other words, it should be possible to assign a degree of
plausibility to prior information and account for it in the reasoning process.

c. Equivalent states of knowledge must be represented by equivalent values of plausi-
bility.

Jaynes demonstrated that these desiderata entail two rules, a sum rule and a product rule,
that provide a foundation for a probability theory based on logic. We here state these two
rules without demonstration. Derivations of these rules may be found in refs. [97, 117].

The sum rule is written

Sum Rule : p(A|B) + p(A|B) = 1 (2.27)

The notation p(X ), stated p of X , represents the probability (plausibility) of the predi-
cate X , which may consist of any properly constructed combinations of simpler predicates.
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The symbols A and B represent two such logic predicates (rather than subsets of a sample
space), that is, statements about the world or a particular phenomenon. The vertical bar is
used to indicate that one considers the probability of the predicate on the left, given or as-
suming that the predicate on the right is true. For instance, the notation p(A|B) corresponds
to the probability that the statement A is true when the statement B is known to be true.
A short horizontal line over a letter is here used to indicate the negation of the statement:
A (commonly stated non-A) represents the logical negation of the statement A. The sum
rule encodes the rather obvious and sensible notion that the sum of the probability of A
being true given B and the probability of its negation A (also given B) is equal to unity and
therefore exhausts all possibilities.

The product rule concerns conditional probabilities and is written

Product Rule : p(A, B|C) = p(B|A,C)p(A|C) (2.28)

The comma notation A, B expresses a logical conjunction, that is, a logic “AND” between
the propositions A and B. The statement A, B can be true if and only if both A and B are
true. The notation p(A, B|C) thus expresses the probability of A, B being true when C is
known to be true, whereas p(B|A,C) corresponds to the probability of B being true when
A,C is true, that is, when it is known that both A and C are true. The product rule tells us
that the probability of A, B being true given C is known to be true is equal to the product
of the probability of B being true when A and C are known to be true, and the probability
of A being true when C is known to be true.

Clearly, since the conjunction operation commutes, that is, A, B = B, A, the product rule
may also be written

p(A, B|C) = p(B, A|C) = p(A|B,C)p(B|C) (2.29)

We will see in the text below that the product rules entails Bayes’ theorem but let us first
consider the relation between the sum and product rules to the axioms of probability stated
in §2.10.

An attentive reader will have noted that the two rules are not mere accidents but were
essentially designed to be consistent with the axioms of probability based on set theory.
Consider, for illustrative purposes, two statements A and B as follows:! A: Random variable X is found in the subset A of the sample space S.! B: Random variable X is found in the subset B of the sample space S.

Let us first consider a case where B is the complement of A in S, that is, B = A. The sum
rule applied to the statement A tells us

p(A|S) + p(A|S) = 1 (2.30)

Substituting B in lieu of A, one has

p(A|S) + p(B|S) = 1 (2.31)

In the language of set theory (§2.2.1), this may be written

p(A ∪ B) = p(A) + p(B) = 1 (2.32)
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given A ∩ B = 0 by virtue of the definition B = A. The sum rule, Eq. (2.27), thus embodies
the axioms given by Eqs. (2.2–2.4).

The product rule similarly includes and extends the conditional probability definition
given by Eq. (2.10): let C state that the random variable X is found within S. Since S
corresponds, by construction, to the entire sample space spanned by X , the statement C is
always true by construction. A logical AND between C and some arbitrary statement D is
thus equal to D (D,C = D). The proposition C can thus be omitted. The product rule

p(A, B|C) = p(A|B,C)p(B|C) (2.33)

may then be written

p(A, B) = p(A|B)p(B). (2.34)

For the statement A, B to be true, the variable X must be found simultaneously in A and B.
This is possible only if the intersection of these two subsets, A ∩ B, is nonempty. One then
finds that the conditional probability p(A|B) is given by

p(A|B) = p(A ∩ B)
p(B)

, (2.35)

which is precisely the definition of conditional probability given by Eq. (2.10).
Let us now return to the expression of the product rule given by Eq. (2.28). As stated

earlier, thanks to commutativity of the AND operation, one may write

p(A, B|C) = p(B, A|C). (2.36)

By virtue of the product rule, this expression may then be written

p(A|B,C)p(B|C) = p(B|A,C)p(A|C), (2.37)

which corresponds to Bayes’ theorem:

p(A|B,C) = p(B|A,C)p(A|C)
p(B|C)

(2.38)

Indeed, following the same line of arguments as earlier in this paragraph, that is, identifying
C as stating that the variable is found in the sample space S, one recovers Eq. (2.17):

p(A|B) = p(B|A)p(A)
p(B)

. (2.39)

We note in closing this section that the sum rule may also be written

Extended Sum Rule : p(A + B|C) = p(A|C) + p(B|C) − p(A, B)|C). (2.40)

The plus sign is here used to represent a logical disjunction, that is, a logical OR operation.
The expression p(A + B|C) thus corresponds to the probability of A or B being true, given
that C is known to be true. It is relatively straightforward to show that this expression is
consistent with the simpler sum rule (Eq. 2.27) as well as the axioms (2.2–2.4).
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29 2.3 Frequentist and Bayesian Interpretations of Probabilities

2.3 Frequentist and Bayesian Interpretations of Probabilities

The definitions based on set theory and probability as logic discussed in the previous sec-
tions naturally lead to two distinct interpretations of the notion of probability. In one, the
so-called frequentist interpretation, a probability is regarded as a limiting value of the
relative frequency of an outcome (either a discrete number or a range of values) when the
number of trials becomes infinite. In the other, often referred to as subjective probabil-
ity, the notion of probability expresses the plausibility of specific statements, which can
be interpreted as degree of belief said statements are true. It is also commonly referred as
Bayesian interpretation of probability.

Scientists, particularly physicists, have long made use of the frequentist interpretation
and developed a great many tools to assign errors to measurements, and conduct statisti-
cal tests of scientific hypotheses. Studies of phenomena where the notion of limiting fre-
quencies does not readily apply have prompted many scientists to pay more attention and
embrace the Bayesian interpretation in their experimental studies and toward the inference
of conclusions derived on their experiments. The Bayesian interpretation is now used in a
growing number of scientific applications.

2.3.1 Frequentist Interpretation

The frequentist interpretation derives its name from the fact that a probability can often
be regarded as a limiting relative frequency. In this context, the elements of a set S corre-
spond to the possible outcomes of a measurement considered to be repeatable an arbitrary
large number of times. A subset A of S, commonly referred to as an event, amounts to a
set of possible outcomes of the measurement or observation. A particular event is said to
occur whenever a measurement yields a member of a given subset (e.g., the subset A). A
subset consisting of one element denotes a single elementary outcome. The probability of
A thus corresponds to the fraction of all events yielding this particular outcome in the limit
when measurements are hypothetically repeated infinitely many times:

p(A) = lim
n→∞

number of occurrences of A
n

. (2.41)

The probability of the occurrence of nonelementary outcomes may be determined from the
probability of individual outcomes, consistent with the axioms expressed in Eqs. (2.2–2.4)
because, by construction, the fraction of occurrences is always greater than zero and less
than or equal to unity. The frequentist interpretation of probability forms the basis of the
branch of mathematics known as classical statistics, also known as classical inference
and frequentist statistics. All tasks, techniques, and methods based on the frequentist
interpretation of probability are also said to form or be part of the frequentist inference
paradigm.

Critics of the frequentist approach argue that given an infinite number of measurements
is clearly not possible, the limit n → ∞ cannot be achieved or verified in practice. The
probability p(A) of a set of outcomes, A, consequently cannot be determined with perfect
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precision. Effectively, one must assume that a particular measurement may be represented
by a specific parent probability distribution. A frequentist statistician must then establish,
on the basis of a finite number of measurements, whether a particular distribution or model
properly describes the measurement(s) at hand. This may fortunately be accomplished on
the basis of statistical tests discussed in §6.4. One may then compare several models and
tests, based on finite data samples, determine which model is best compatible with the
measured data.

In spite of the aforementioned conceptual difficulty, the frequentist interpretation is used
routinely in science texts on probability and statistics, and by scientists in their analyses. It
is typically considered appropriate and sufficient whenever one deals with scientific obser-
vations that can be repeated many times. It is, however, somewhat problematic whenever
a measurement or event (e.g., the Big Bang, a supernova, a volcanic eruption, or the col-
lapse of a bridge) cannot be repeated. It also makes it impossible to directly and explicitly
integrate scientific hypotheses in the probabilistic discourse.

2.3.2 Subjective Interpretation

The subjective interpretation of probability, also called Bayesian interpretation of
probability, is used increasingly in the physical sciences and many other scientific fields.
It can be formulated based on both set theory and probability as logic, but we will argue,
throughout this text, that a formulation based on probability as logic is far more interesting,
convenient, and powerful.

Within the foundation of probability based on set theory, an event is regarded as a state-
ment that the observable X is an element of the subset A. The quantity p(A) may then be
interpreted as the degree of belief the statement A might be true:

p(A) = degree of belief that the statement A is true. (2.42)

In this context, the Bayesian interpretation assumes it is possible to construct the sample
space S in terms of elementary hypotheses that are mutually exclusive, in other words,
implying that only one statement is actually true. A set consisting of multiple such disjoint
subsets is therefore true if any one of the subsets it contains is true. And one then has
p(S) = 1.

Jaynes’ definition of probability as an extension of logic readily extends the realm of
the probability discourse. Indeed, dealing with predicates rather than sets and subsets, it
becomes naturally possible to discuss the probability of statements about any world en-
tities that can be expressed within the calculus of predicate. This implies, in particular,
that the probabilistic discourse is no longer confined to the outcome of measurements and
observations (being members of sets) but can be augmented to include statements about
models, scientific hypotheses, and so forth. In this context, the quantity p(A) may then be
interpreted as the degree of belief the proposition A might be true:

p(A) = degree of belief that the proposition A is true, (2.43)
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where the proposition A is not restricted to statements about measurement outcomes but
can include statements about models, scientific hypotheses, and so forth.

The concept of subjective probability is closely related to Bayes’ theorem and forms the
basis of Bayesian statistics and Bayesian inference. It also forms the basis of the Bayesian
inference paradigm.

In this context, one can then consider probabilities of the form p(B|A), where A ex-
presses a specific scientific hypothesis (e.g., a statement about a model or a model parame-
ter), while B might represent the hypothesis that a specific experiment will yield a specific
outcome (i.e., a specific discrete value or a continuous value in specific range). The con-
ditional probability p(B|A) then represents the degree of belief that B is observed given
a hypothesis A is true. As such, the Bayesian inference paradigm provides a convenient
framework, discussed in great detail in Chapter 7, to gauge the merits of one or competing
models (or theories) relating to a specific measurement or set of measurements.

Given a certain theory, T , one might assign a certain prior probability, p(T ), that
this theory is a valid model of the world (or set of experimental results). The probabil-
ity, p(D|T ), called the likelihood, then provides an estimate of the degree to which mea-
sured data, D, can be expected based on the theory T . The conditional probability p(T |D)
thus provides a posterior probability that the theory, T , is true, conditioned by the data
(measurements). According to Bayes’ theorem, this posterior may be written

p(T |D) ∝ p(D|T ) × p(T ). (2.44)

In this context, data are considered as facts and thus taken as true.2 Bayes’ theorem then
enables the evaluation of the probability p(T |D) that the theory T might be true, given
the data. In other words, the merits of the theoretical hypothesis T can be gauged and
evaluated based on the available data. This leads to the notion of hypothesis testing, which
is first discussed in the context of the frequentist paradigm in Chapter 6 and more directly
and naturally within the Bayesian paradigms in Chapter 7.

Given a dataset D, the merits of different theories or hypotheses, T1, T2, . . . can in princi-
ple be compared. Ideally, a particular theory Ti might emerge to have a posterior probability
much larger than the others, p(Ti|D) ≫ p(Tj|D) for j ̸= i, and would then become the fa-
vored theory. In practice, it is often the case that several competing models or hypotheses
yield relatively weak and similar posterior probabilities. The available data are then con-
sidered insufficient to discriminate between the models.

It is fair to note that Bayesian statistics does not provide, ab initio, any particular method
to determine the prior probability, p(T ). In the absence of prior inferences based on other
theories, models, or data, it might be set to unity. The likelihood probability, p(D|T ), then
provides the sole basis for the evaluation of p(T |D). In other situations, there could be

2 One should bear in mind, however, that measured values might need substantial corrections to be fully repre-
sentative of the observable of interest. This implies that the probability model accounting for a specific mea-
surement should include a proper probabilistic description of relevant instrumental effects or that raw measure-
ment values can be “corrected” to account for such instrumental effects. This important topic is discussed in
Chapter 12.
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older data that enables an evaluation of the prior p(T ) before the experiment is conducted.
The “new” data can then be seen as improving the knowledge about T . Quite obviously,
the value of p(T |D) is subject to the prior hypothesis as well as the data. This then leads to
a framework that is subjective, hence the notion of subjective interpretation of probability.
Although this might be seen as a weakness, one should stress that once a prior p(T ) and the
likelihood p(D|T ) are determined, Bayes’ theorem unambiguously provides an estimate of
the posterior probability p(T |D). In a scientific context, this provides for a mechanism to
submit models and theories to strict and constraining tests of validity. Examples of such
tests are presented in Chapter 7.

Unfortunately, Bayesian statistics is often considered in opposition to classical (frequen-
tist) statistics. In fact, some problems discussed within the frequentist and Bayesian
paradigm yield contrasting and incompatible solutions. Hard-core frequentists argue that
the notion of degree of belief in a prior hypothesis leads to arbitrary posteriors and thus
reject the Bayesian paradigm altogether. Some Bayesian statisticians argue that the defi-
nition of probability in terms of a limit, Eq. (2.41), is itself artificial or arbitrary, and thus
reject the frequentist paradigm. Can there be a common ground?

It may be argued that Bayesian statistics in fact includes the frequentist interpretation as
a special case, and as such provides a broader and more comprehensive context for data
analysis. The formulation of probability as logic discussed in §2.2.4 naturally embodies
the Bayesian interpretation of probability. Indeed, probability defined as an extension of
logic deals with predicates or statements about the world (or a particular phenomenon),
and assigns a certain degree of plausibility to these predicates. Predicates are thus viewed
as elements of a hypothesis space rather than a simple set of numerical values. It is then
possible, as we already argued, to consider more general and elaborate problems of infer-
ence. We will come back to this idea in more detail in Chapter 7. This said, it should also
be clear that predicates considered in a particular analysis may also be formulated solely
on the basis of sets of values, and the corresponding probabilities of these values can then
be viewed as limiting frequencies, that is, frequencies that would be observed should an
infinite number of observations be made. For instance, it is reasonable to consider that the
outcome of a measurement will yield a certain element of S a certain fraction of the time.
A prior, p(A), may thus be regarded as the degree of belief that a certain probability dis-
tribution dictates the outcome of a measurement. The conditional probability p(B|A) then
provides the degree of belief that the given probability distribution yields an outcome B
within S. The subjective interpretation thus effectively encompasses the relative frequen-
tist interpretation if one admits the implicit proviso that p(A) = 1. A subjective interpreta-
tion may, however, also be associated with cases in which the concept of frequency is not
readily or meaningfully applicable. For instance, while the notion that a certain quantity X
lies within a specific interval can be determined in both interpretations, the determination
of confidence intervals with the frequentist interpretation assumes it is reasonable to use a
specific parent probability distribution to carry out the calculation of the interval. In effect,
this assumes one has a reasonably high degree of belief that a specific probability distri-
bution is a proper representation of the outcome of an experiment. Effectively, the prior,
which corresponds to the probability that a specific probability determines the outcome of
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a measurement, is assumed to have maximal probability. The frequentist interpretation can
thus indeed be viewed as “special case” of the subjective interpretation.

2.4 Bayes’ Theorem and Inference

Whether working within the frequentist interpretation or the Bayesian interpretation of
probability, Bayes’ theorem is ideally suited toward statistical inference analyses, that is,
analyses where one wishes to establish the optimal value of model parameters, estimates of
their errors, or which of many competing hypotheses has the highest probability of assert-
ing the truth about a particular system or phenomenon. Although frequentist inference can
and will be considered in this context, it is far more convenient to introduce the concept of
inference within the Bayesian paradigm using the notion of probability as an extension of
logic because generic statements about scientific hypotheses (i.e., models, model parame-
ters, etc.) can be evaluated in a single formal and robust mathematical setting where the
prior plausibility of hypotheses as well as data are considered.

2.4.1 Basic Concepts of Bayesian Inference

Let Hi, with i = 1, . . . , n, represent a set of n propositions asserting the truth of competing
hypotheses. Given the very nature of the scientific process, these hypotheses are formulated
out of a particular context. Let us represent relevant statements from this context (also
known as prior information) as I . We will additionally represent measured data in terms of
a proposition D. For inference purposes, Bayes’ theorem may then be written

p(Hi|D, I ) = p(D|Hi, I )p(Hi|I )
p(D|I )

. (2.45)

The quantity p(D|Hi, I ) represents the probability of observing the data D if both Hi and I
are true. It is commonly called likelihood of the data D based on the hypothesis Hi, or sim-
ply likelihood function, and noted L(Hi). The quantities p(Hi|I ) and p(Hi|D, I ) represent
the prior and posterior probability of the hypothesis Hi. The probability p(Hi|I ) is based
solely on prior knowledge whereas p(Hi|D, I ) includes both the prior knowledge and the
new knowledge provided by the measurement D. The denominator, p(D|I ), is seemingly
more cryptic but it corresponds to the probability of obtaining the data D given the prior
information available on the system or phenomenon. Although it may be difficult to as-
sess this probability directly, note that it can be computed in terms of the law of total
probability

p(D|I ) =
∑

i

p(D|Hi, I )p(Hi|I ) (2.46)

where the sum is taken over all hypotheses that can be formulated about the system. All in
all, this factor provides a normalization factor that ensures that the sum over the probability
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of all hypotheses, given the data and prior information, is equal to unity:

∑

i

p(Hi|D, I ) = 1. (2.47)

2.4.2 Hypothesis vs. Sample Space

Within the frequentist approach, one is focused on the outcome of measurements and tech-
niques mostly to utilize these measurements to extract information about a phenomenon
or system. Measured observables may be discrete (e.g., number of particles observed in a
specific proton–proton collision) or continuous (e.g., the momenta of produced particles).
Observed values, collectively called sample, may then be viewed as elements of either a
discrete set (i.e., a subset of Z, the set of integers) or a continuous set (i.e., a subset of
R, the set of real numbers). The measured values are thus considered random outcomes,
or random variables, either discrete or continuous, from a parent population known as a
sample space.

The Bayesian approach shifts the focus toward statements about the data and hypotheses
or models used to described the data. The goal is indeed to use the measured data to es-
tablish the plausibility (or degree of belief) of various hypotheses or statements formulated
about a system (phenomenon) and the data it produces. Hypotheses may concern various
characterizations of the data, model parameters, or even a model as a whole. They may be
formulated either in terms of discrete statements (e.g., dark matter exists; there is only one
Higgs boson; etc.) or in the form of continuous statements (e.g., the Hubble constant lies in
the range [H0, H0 + dH0]; the mass of the Higgs boson is in the range [M, M + dM], etc.).
The Bayesian approach thus enlarges, so to speak, the sample space associated with the out-
come of measurement observables to include a space of hypotheses or model statements
that can be made about a system both before and after the measurement is conducted. It is
then concerned with assigning degrees of belief, or plausibility, to each of these hypotheses
or model statements.

Strictly speaking, hypotheses are not random variables, but specific statements about a
phenomenon or reality at large. Indeed, dark matter either exists or does not, but it is not
a random phenomenon. Likewise, physical quantities such as the speed of light or Planck
constant have specific values and thus cannot be legitimately regarded as random variables.
The true (and precise) values of the observables factually remain unknown, however, so the
Bayesian notion of degree of belief that the value of a physical quantity might lie in a given
interval thus makes good sense. Yet, measurements involve a number of effects that may
effectively smear or seemingly randomize observed values. A Bayesian statistician must
then account for the measurement outcomes with a probability model of the measurement
process. One concludes that while an observable of interest might not be random, mea-
sured instances of the observable will invariably appear random. Consequently, insofar as
probabilities are regarded as degrees of belief, there is no philosophical difficulty or con-
tradiction in considering prior probabilities that an observable X might lie within a range
[x0, x0 + dx] while measurement instances have a probability p(x|x0), determined by the
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measurement process, to be found in the range [x, x + dx]. Effectively, we conclude that
both x0 and x can be treated as random variables.

2.5 Definition of Probability Distribution and Probability Density

Whether one adheres to the frequentist or Bayesian interpretation of probabilities, one is
faced with either discrete or continuous variables. With finitely many discrete values, it is
obviously possible to assign a (finite) probability to each value separately but if the number
of discrete values is infinite, or if the variables are continuous, one must introduce the
notion of probability density. We discuss basic features and properties of discrete variable
first, in §2.5.1, and consider continuous variables next, in §2.5.2.

2.5.1 Discrete Observables and Probability Distribution Functions

Consider, for instance, a game of dice in which players throw two cubic dice at a time
on a mat. The faces of the dice are labeled with numbers ranging from 1 to 6. The game
may then involve betting on the sum of the dice values rolled in a given throw. Clearly, the
sum of dice rolled takes only a finite number of discrete values from 2 to 12 and is thus a
discrete outcome. There is only one way to get a sum of 2 or 12, but several ways to roll a
6 or 7. The outcome of the bet should then be decided based on the probability of a given
roll.

One should remark, once again, that a roll of dice is nominally a phenomenon that can be
described in terms of deterministic laws of physics. Indeed, given specific initial conditions
(i.e., the position, orientation, translational and rotational speed of the dice), one could in
principle predict the outcome of a roll provided the elastic properties of the dice and the
table on which they roll are well known. In practice, the properties of the dice and table are
not so well known, and measuring the initial conditions of a roll with sufficient precision
is rather tricky. In essence, not enough is known about the system (the two dice and mat)
to enable an accurate calculation of the outcome of a roll, that is, on which face the dice
will stop rolling. The outcome of a dice roll thus appears unpredictable and the sum of the
top faces may then be regarded as a random variable. Given the geometrical symmetry of a
die, it is natural to assume all faces are equally likely. Within the frequentist interpretation,
and for a fair die, one expects that all six faces should have the same frequency after rolls
have been repeated a very large number of times, while in the Bayesian interpretation, one
may ab initio express the belief (or plausibility) that the perfect symmetry of a die implies
each face has a probability of 1/6 of rolling up.

More generally, one may be concerned with the determination of the probabilities of
values taken by one or several discrete random variables. For example, a marketer might
be concerned with the number of people showing up at a special public event based on
ads published in newspapers or played on radio stations, whereas an astronomer might be
interested in counting how many supernovae explosions were detected in a specific night
with a powerful telescope. In these and other discrete systems, as for a roll of dice, one
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assumes the systems are not sufficiently well known (either by virtue of their macroscopic
complexity or their inherent nondeterministic character) to predict a specific outcome with
certainty, and one must then assess either a frequency (frequentist approach) or degree of
plausibility (belief) that specific values might be observed.

In the case of a measurement of one discrete random variable, n, the sample space
consists of all (integer) values, or combinations of values, the variable can take. Assuming
the number of such values is finite, one is then concerned with the probability, p(n), of
each element individually. In a roll of a pair of dice, for instance, one might want to know
the probability of rolling a 7. The quantity p(n) is thus a function that represents how the
probability of values of n is distributed across the sample space S and is known as the
Probability Distribution Function, or PDF.

By virtue of the third axiom, Eq. (2.4), the sum of the probabilities of all outcomes must
be unity. The sum of the probabilities p(n) must thus satisfy the condition:

∑

n∈S

p(n) = 1. (2.48)

2.5.2 Continuous Observables and Probability Density Functions

Obviously, there are also cases in which measured observables can take continuous values.
Examples of continuous variables include the temperature of the atmosphere at sunset,
the barometric pressure during a storm, the strength of the electric and magnetic fields
produced by an antenna, or the momentum of particles produced by nuclear collisions, and
so on. One may be interested in studying how such quantities vary with time, position,
or other variables. Alternatively, one might be interested in the very precise determination
of “constants” of nature, such as the speed of light in vacuum, the lifetime of the 14C
radioisotope, or the cross section of a particular nuclear reaction. Within the context of
the Bayesian approach, one may also be interested in considering continuous hypotheses.
This is the case, for instance, when a particular model parameter or observable cannot be
observed directly but must be inferred from one or several other measurements. One can
then formulate continuous hypotheses stating that a continuous observable O lies with a
given range [O, O + !O].3

While a physical quantity is known (or assumed) to have a single and unique value, re-
peated measurements would yield continuous values that fluctuate, seemingly arbitrarily,
from measurement to measurement. One is thus faced with continuous random variables,
which are either elements of a continuous sample space (frequentist approach) or a con-
tinuous hypothesis space (Bayesian approach). Either way, a space of continuous (random)
variables, or combination of random variables, is obviously infinite. It is thus not mean-
ingful to talk about the probability of a specific value. One is instead concerned with the
probability of measuring values in specific finite intervals (e.g., [O, O + !O]). However,

3 Note that the same letter is here used to represent both a logical proposition and the observable it is concerned
with.
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in the limit of vanishingly small intervals, !O → 0, one can introduce the notion of prob-
ability density.

Let us consider an experiment whose outcome consists of a single continuous observable
X . The sample space S associated with this measurement may thus consists of a subset
of R, the set of real numbers. Given continuous subsets of R have infinite cardinality,
it is not meaningful to consider the probability of a single value, x. One can, however,
consider the probability that such an observed value x will be found within the infinitesimal
interval [x, x + dx]. We shall here assume this probability exists and can be evaluated with
a function f (x) known as Probability Density Function, hereafter noted, PDF:

Probability to observe X in [x, x + dx] = f (x) dx. (2.49)

Note 1: In general, statisticians use capital letters (e.g., X , Y , W , etc.) to denote or
identify the name of observables (observable quantities, variables), while lowercase let-
ters (e.g., x, y, w) are used to label specific instances of these variables. For instance, the
variable identifying the position of a particle might be defined as X while a specific mea-
surement (i.e., a specific instance) of the observable would be typically written as x. In
physics, however, lowercase and uppercase letters are typically used to denote different
quantities or observables (although perhaps related). The uppercase/lowercase convention
used by statisticians may then become difficult to apply. We thus (mostly) adhere to the
convention in Part I when introducing generic and foundational concepts and relinquish
the convention in Parts II and III of the book when discussing physics concepts.

In the frequentist interpretation, f (x) dx corresponds to the fraction of times the value
x is found in the interval [x, x + dx] in the limit that the total number of measurements is
infinitely large, while in the Bayesian interpretation, this quantity provides the degree of
belief an observed value x might be in that range, without any particular assumption as to
whether the experiment can actually be repeated. Additionally, note that in this context, a
continuous variable X could also represent a statement or hypothesis about a parameter
of a model used to describe the system or phenomenon. It is thus legitimate to consider
probability densities in hypothesis space as well as in sample space.

By virtue of the third axiom (Eq. 2.4), a PDF must be normalized such that the probabil-
ity of any outcome is unity. The sum of the probabilities of all outcomes is thus the integral
of the function f (x) over the entire sample space S (or hypothesis space as the case may
be) spanned by the observable X :

∫

S
f (x) dx = 1. (2.50)

It is important to reemphasize that the notion of probability density function applies to
both measurement outcomes and continuous model hypotheses. In fact, much of the dis-
cussion that follows in this and following chapters about probability densities is applicable
to continuous variables in both sample and hypothesis spaces without much regard as to
whether they are discussed in the context of either interpretation.

Note 2: Throughout this text, we use the abbreviation PDF and the notations f (x)
and p(x) for both probability distribution functions and probability density functions. In
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38 Probability

general, it shall be clear from the context whether one is considering discrete or continu-
ous variables and, correspondingly, probability distributions or probability densities.

2.5.3 Cumulative Distribution and Density Functions

It is useful to introduce the notions of Cumulative Distribution Function and Cumulative
Density Function, both hereafter denoted CDF. Given a PDF f (x), the CDF F (x), may
be formally defined as a cumulative (sometimes called running) sum or integral of the
function f (x). For a discrete probability distribution, one has

Fn =
n∑

i=0

f (xi). (2.51)

whereas for a density one has

F (x) =
∫ x

−∞
f (x′) dx′. (2.52)

Obviously, the function F (x) amounts to the probability a random variable X takes a value
smaller or equal to x. One can thus alternatively first define F (x) as the probability of
obtaining an outcome less than or equal to x and evaluate the PDF, f (x), as a derivative of
F :

f (x) = dF (x)
dx

. (2.53)

The two definitions are equivalent if the distribution F (x) is well behaved, that is, if it is
everywhere differentiable. This can be formalized mathematically, but the notion of “ev-
erywhere differentiable” will be sufficient for the remainder of this text.

The concept of cumulative distribution is illustrated in Figure 2.2, which displays the cu-
mulative integral, Eq. (2.52), of the uniform distribution (top panel) and the standard nor-
mal distribution (bottom panel). The definitions of these distributions and their properties
are formally introduced in §§3.4 and 3.9. Note that since both distributions are symmetric
relative to their median,4 indicated with a vertical dash line, F (x) takes a value of 0.5 at
that point. This means there is a probability of 50% that the value of x will be smaller than
x = 0. Additionally, note that in the limit of x → ∞, the cumulative function F (x) con-
verges to unity; in other words, the probability of observing any value of x is unity. This is
indeed guaranteed by the normalization of f (x) defined by Eq. (2.50).

It is useful to introduce an alternative notation for PDFs. Given a PDF f (x) expresses
the probability of occurrences, or events, being observed in the interval [x, x + dx], one
may also write

f (x) ≡ 1
N

dN
dx

, (2.54)

4 The notion of median is formally defined in §2.7.
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Fig. 2.2 Illustration of the concept of cumulative distribution for a uniform distribution (top) and (bottom) a standard normal
(Gaussian) distribution.

where N represents the integral of the function dN/dx over its domain which corresponds
to the sample (or hypothesis) space of x. One gets

∫ ∞

−∞

1
N

dN
dx

dx = 1
N

∫
dN = 1

N
N = 1, (2.55)

which satisfies the normalization condition given by Eq. (2.50). The function dN/dx thus
represents a density of counts or events in the interval [x, x + dx], and dividing this density
by its integral yields the probability density f (x) with proper normalization.

The function notation, f (x), has the advantage of being compact and is used pre-
dominantly throughout this book. However, the differential notation N−1dN/dx explicitly
presents f (x) for what it is: a density. We thus use it whenever it is important to emphasize
the notion of density, most particularly when discussing differential cross sections and cor-
relation functions in Chapters 8 and 9, and toward the definition of histograms introduced
in §4.6.

2.6 Functions of Random Variables

Consider a measurement of the momentum, p, of particles produced in proton–proton col-
lisions at some fixed energy. Given the production of particles is a stochastic (random)
phenomenon, the momentum of the measured particles can be regarded as a random quan-
tity. Assuming all produced particles are pions, one can determine their energy based on the
relativistic relation, E =

√
p2c2 + m2c4, where m is the mass of the pion and c the speed of
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40 Probability

light. Since p is a random variable, E is consequently also a random variable. This is true
in general: functions of random variables are themselves random variables and it is often
of interest to determine or characterize the probability density of such random variables.

Let us first introduce a continuous function, q(x), of a single continuous random variable
X . Since X is random, the application of q(x) on observed values x yields random values,
and it is thus legitimate to consider these as instances of a random variable Q. Our goal
shall be to determine the PDF of Q given a PDF for X .

Let f (x) be the PDF of X . By definition, it represents the probability of observing X
in the range [x, x + dx].5 An observation is an event, and the specific variable used to
represent this event should thus be immaterial. This means the probability of observing
that event is conserved or invariant when the variable representing the event is changed
or transformed. Let us then consider the same event from the point of view of the variables
X and Q. Within the sample space of X , the probability of the event may be expressed

f (x) dx = Probability an event takes place in [x, x + dx], (2.56)

whereas from within the sample space of Q, one has

g(q) dq = Probability an event takes place in [q(x), q(x + dx)], (2.57)

where we introduced g(q) as the PDF of the random variable Q. These two expressions
represent the same subset of events and must then be equal. In order to find a relation
between g(q) and f (x), let us write the function q(x + dx) as a truncated Taylor series:

q(x + dx) = q(x) + dq
dx

∣∣∣∣
x
dx + O(2). (2.58)

In the limit dx → 0, the quantity dq may then be written

dq = q(x + dx) − q(x) = dq
dx

∣∣∣∣
x
dx. (2.59)

Now, given the expressions (2.56) and (2.57) are equal, one can write

g(q) = f (x(q))

∣∣∣∣
dq
dx

∣∣∣∣
−1

. (2.60)

Since the function g(q) represents a probability density, one ensures it is positive definite by
using the absolute value |dq/dx| in Eq. (2.60). Additionally, note that if x(q) is multivalued,
one must include all values of x that map onto a specific value of q.

As a simple example of a multivalued problem, consider the function q(x) = x2 with
inverse x = ±√

q, and
∣∣∣∣
dx
dq

∣∣∣∣ = 1
2
√

q
.

5 In this context, the interpretation of densities in terms of limiting frequency or degree of belief is somewhat
immaterial and we carry out the discussion in terms of the frequentist interpretation for convenience, but the
reasonings and results are identical within the Bayesian interpretation.

1::79�  .�2��80 ������� 
�	���	���
����������291/.����2�/�� ���4�82.0/���2�/892: �8/99

https://doi.org/10.1017/9781108241922.004


41 2.7 PDF Characterization

Given there are two roots with equal contributions, one must include a factor of 2 in
Eq. (2.60). One thus gets

g(q) = f (x(q))
√

q
. (2.61)

The concept of probability density is readily extended to functions of multiple random
variables in §2.8, but first it is useful and convenient to introduce commonly used properties
of PDFs.

2.7 PDF Characterization

While a PDF carries the maximum amount of information on the behavior of a random
variable and the phenomenon or physical quantity it represents, it is often desirable, con-
venient, and at times sufficient to reduce or transform this information into a set of ap-
propriately chosen properties or functions. For a known PDF, these properties are uniquely
defined and can usually be calculated exactly. If the PDF is unknown or partially known,
the properties must be estimated based on functions of sampled (measured) data known as
statistics and estimators.6 Several types of properties are of interest toward the character-
ization of PDFs and for the modeling of data. We first introduce and discuss, in this sec-
tion, the notions of α-point, mode, expectation value, moments, centered moments, and
standardized moments. The notions of characteristic function and moment-generating
functions are introduced in §2.10 whereas cumulants are defined in §2.13. The notions of
covariance and factorial moments are discussed in §2.9 and §10.2 respectively, after the
introduction of multivariate random functions in §2.8.

2.7.1 α-Point and Median

The concept of alpha-point, also called quantile of order α, and noted α-point, is in-
troduced by defining a quantity xα that demarcates the probability of x being smaller
than α:

F (xα ) = α with 0 ≤ α ≤ 1. (2.62)

The corresponding value xα is thus the inverse:

xα ≡ F−1(α). (2.63)

The value x1/2, called the median, is a special case of the α-point commonly used to esti-
mate the typical value of a random variable, given there is a 50% probability that measured
values of x are smaller. The uniform and Gaussian PDFs shown in Figure 2.2 are symmet-
ric about x = 0. Their 1/2-point is consequently x1/2 = 0 and the probabilities of x being
smaller or larger than 0 are equal.

6 A formal definition of the notion of a statistics is presented in §4.3.
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42 Probability

For a discrete random variable xi, with probability p(xi), the cumulative distribution

F (x) =
∑

xi≤x

p(xi) (2.64)

spans discrete values only. The α-point determined by Eq. (2.63) is thus strictly exact only
for discrete values xα .

2.7.2 Mode

The mode of a PDF f (x) is defined as the value of the random variable x for which the
PDF has a maximum.

A PDF with a single maximum is called a unimodal distribution. The position of the
mode may be obtained either by inspection or by finding the extremum of the distribution,
in other words, by finding the value x where the PDF has a null first derivative with respect
to x. Given that

f ′(x) ≡ df (x)
dx

, (2.65)

the mode of the distribution is thus

xmode = f ′−1(0). (2.66)

PDFs with two or more maxima are known as bimodal and multimodal, respectively.
As for unimodal distributions, their modes can be obtained either by direct inspection or
by finding the zeros of the function f ′(x).

Figure 2.3 illustrates the concepts of median, mode, and mean of a unimodal PDF as
well as the notion of a bimodal PDF.

2.7.3 Expectation Value (Mean)

The expectation value, noted E[x], of a continuous random variable distributed according
to a PDF f (x) is defined as

E[x] ≡
∫ ∞

−∞
x f (x) dx ≡ µ. (2.67)

This expression is commonly called population mean, mean, or average value of x. In
this book, depending on the context, it will also be denoted as µ, µx, or ⟨x⟩, where the
brackets ⟨ ⟩ refer to a population or domain average:

E[x] ≡ µ ≡ µx ≡ ⟨x⟩. (2.68)

The expression E[x] is also commonly referred to as first moment, noted µ1
′, of the PDF

f (x) for reasons that will become obvious in the following discussion. Brackets [x] rather
than parentheses (x) are used to indicate that E[x] is not a function of x but rather represents
a certain value of x determined by the shape of the distribution f (x). Indeed, it is a property
of the PDF itself and thus not a function of a particular value of x. If f (x) is a strongly
peaked function, then the mean is likely to be near the mode of the function. However,
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Fig. 2.3 (Top) Illustration of the concepts of median, mode, and mean for a single mode distribution. (Bottom) Example of a
bimodal distribution.

for bimodal or multimodal functions, the mean is typically not representative of a specific
peak, unless perhaps one peak strongly dominates the others.

As an example of calculation of the expectation value of a function, let us evaluate the
mean of the uniform distribution pu(x) defined in the range a ≤ x ≤ b according to

pu(x|a, b) =

⎧
⎨

⎩

1
b−a for a ! x ! b,

0 elsewhere,
(2.69)

where the denominator b − a ensures the proper normalization of the distribution when
pu(x|a, b) is integrated over R. The mean of x is defined according to

⟨x⟩ ≡ µx ≡
∫ ∞

−∞
pu(x|a, b)x dx. (2.70)

Substituting the definition, Eq. (2.69), for pu(x|a, b), and proceeding with the integration,
one finds

⟨x⟩ = 1
b − a

∫ b

a
x dx, (2.71)

= 1
b − a

x2

2

∣∣∣∣
b

a
, (2.72)

= a + b
2

, (2.73)
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44 Probability

which corresponds to the middle of the interval [a, b], and is thus indeed representative of
typical values of x determined by pu(x|a, b).

The notion of expectation value is quite general. In fact, instead of the expectation value
of x, one can calculate the expectation value of any functions of x. Let us here denote such
a function as q(x). Clearly, since x is a random variable, so shall be q(x). As in §2.6, let
g(q) denote the PDF of q. By definition, the expectation value of q shall be

E[q] ≡
∫ ∞

−∞
qg(q) dq. (2.74)

Recall from §2.6 that the probability of x being in the interval from x to x + dx must be
equal to the probability of q being in the interval from q(x) to q(x + dx). The preceding
expectation value may then be written

E[q] =
∫ ∞

−∞
q(x) f (x)

dx
dq

dq =
∫ ∞

−∞
q(x) f (x) dx. (2.75)

The expectation value of the function q(x), given the PDF f (x), is thus equal to the inner
product of q(x) by f (x).

2.7.4 Moments, Centered Moments, and Standardized Moments

A special and important case of the function q(x) involves powers of x. One defines the nth
algebraic moment (also simply called the nth moment) of the PDF f (x), denoted µ′

n, as

µ′
n ≡ E[xn] =

∫ ∞

−∞
xn f (x) dx. (2.76)

Obviously, the mean, µ, is a special case of Eq. (2.76) and corresponds to the first (n = 1)
moment µ′

1.
It is also convenient to consider moments relative to the mean µ. These are defined

according to

µn ≡ E[(x − E[x])n] =
∫ ∞

−∞
(x − µ)n f (x) dx, (2.77)

and are named centered moments or moments about the mean. Hereafter, we use the
expression centered moment exclusively.

A first special and important case to consider is the second centered moment µ2. It
corresponds to the variance, noted Var[x], of the PDF,

µ2 ≡ Var[x] ≡ E[(x − E[x])2] =
∫ ∞

−∞
(x − µ)2 f (x) dx = σ 2, (2.78)

where σ corresponds to what is commonly known as the standard deviation of the PDF.
Note that the notation for the variance varies across texts: many authors use the notations
V [x], V (x), or Var(x). In this text, we use the [ ] notation to emphasize that the variance
is a functional of the PDF, that is, a property of the PDF rather than, strictly speaking,
a function of x. Additionally, depending on the context of our discussions, we shall use
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several alternative notations for the variance of x as follows:

µ2 ≡ Var[x] ≡ σ 2 ≡ σ 2
x ≡ ⟨(x − µ)2⟩ ≡ ⟨!x2⟩, (2.79)

where !x ≡ x − µ, and the brackets ⟨ ⟩ here again refer to a population or domain average.
One can then show (see Problem 2.4) that the variance may be expressed in terms of the

second and first moments:

µ2 ≡ E[x2] − µ2 = µ′
2 − µ2. (2.80)

One also readily verifies that the variance Var[x] measures the spread of x about its mean
value µ, as illustrated in Figure 2.4 with four selected Gaussian distributions. The Gaussian
distribution pG(x|µ, σ ), formally introduced in §3.9, is defined according to

pG(x|µ, σ 2) = 1√
2πσ

exp

[

− (x − µ)2

2σ 2

]

, (2.81)

where the factor
√

2πσ enables proper normalization of the distribution when it is inte-
grated over R. Distributions shown in Figure 2.4 are symmetric about the origin and thus
have a mean ⟨x⟩ equal to zero. Setting µ = 0 in Eq. (2.81), one proceeds to calculate the
variance of x according to

Var[x] = E[x2] − µ2 = E[x2], (2.82)

= 1√
2πσ

∫ ∞

−∞
exp

(
− x2

2σ 2

)
x2 dx. (2.83)

Substituting z = x/σ , the preceding expression becomes

Var[x] = σ 2

√
2π

∫ ∞

−∞
exp

(
− z2

2

)
z2 dz. (2.84)

The integral is readily determined to equal
√

2π from basic definite integral tables. The
variance of the Gaussian distribution is then

Var[x] = σ 2. (2.85)

Comparing the distributions plotted in Figure 2.4 for selected values of σ , one finds,
indeed, that a Gaussian with a large spread in x features a large variance, whereas a narrow
Gaussian has a small variance. This result can be readily extended to distributions of arbi-
trary shapes: broadly distributed PDFs have a large variance whereas narrowly distributions
have a small variance.

It is often useful to compare the higher moments, n > 2, of a distribution to the standard
deviation. This may be accomplished with standardized moments, µstd

k , defined as ratios
of the kth centered moments and the kth power of the standard deviation:

µstd
k = µk

σ k
. (2.86)

The standard moments hence correspond to kth moments normalized with respect to the
standard deviation. The power of k is required in the normalization given moments scale
as xk . This implies the standardized moments are scale invariant; in other words, rescaling
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Fig. 2.4 Four Gaussian PDFs (see §3.9) with mean,µ = 0, and standard deviationsσ of 0.5, 1.0, 2.0, and 4.0. The
variance measures the breadth of a distribution. The distribution shown as a solid line is the narrowest and has the
smallest variance. The other distributions are wider and thus have larger variances.

of the variable x by an arbitrary factor α leads to changes in the kth moment and the
standard deviation by a factor αk , but their ratio is invariant, that is, independent of α. The
standardized moments µstd

k are dimensionless numbers for the same reason. Also note that
the first standardized moment vanishes because the first moment about the mean is null,
while the second standardized moment equals unity because the second moment about the
mean is the variance. The third and fourth standardized moments are called skewness and
kurtosis, respectively. These are discussed in the next two sections.

2.7.5 Skewness

The skewness of a distribution is commonly denoted γ1 or Skew[x] in the literature. It is
formally defined as the third standardized moment of a distribution:

γ1 ≡ Skew[x] ≡ µstd
3 = µ3

σ 3
. (2.87)

Skewness is essentially a measure of the asymmetry of a distribution. Consider, for
instance, the distributions shown in Figure 2.5. The solid line curve displays a Gaussian
distribution (defined in §3.9) with mean, µ = 0, and width, σ = 0.6. It is by construction
symmetric about its mean and therefore has null skewness. The dash and dotted curves are
constructed as two juxtaposed half Gaussian distributions. Their peaks are both at x = 0
(same as for the black curve) but the left and right widths of the dash (dotted) curve are
0.6 (2.0) and 1.5 (0.6), respectively. Focusing on the dash curve, one finds the right side
of the distribution tapers differently than the left side. These tapering sides, called low
and high side tails, provide a visual means for determining the sign of the skewness of a
distribution. The skewness is typically negative if the low side (left) tail is longer than the
high side (right) tail. It is then said to be left-skewed (dotted curve in Figure 2.5). If the
high side (right) tail is longer, the distribution is said to be right-skewed (dashed curve). In
a skewed (unbalanced, lopsided) distribution, the mean is farther out in the long tail than is
the median. Distributions with zero skewness, such as normal distributions, are symmetric
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Fig. 2.5 Illustration of the notion of skewness. The solid line curve is by construction symmetric and has, as such, zero
skewness. The dashed and dotted curves have longer high side and low side tails and consequently have positive and
negative skewness, respectively.

about their mean: in effect, their mean equals their median and mode. Note, however, that
it is not sufficient for the mean of a distribution to be right (left) of the median to conclude
it is right (left) skew. Multimodal and discrete distributions, in particular, may violate this
simple expectation.

Karl Pearson7 (1857–1936) suggested several alternative measures of skewness:

Pearson mode skewness:
µ − mode

σ
, (2.88)

Pearson’s 1st skewness coefficient: 3
µ − mode

σ
, (2.89)

Pearson’s 2nd skewness coefficient: 3
µ − median

σ
. (2.90)

These are, however, not frequently used to characterize data in nuclear and particle physics.

2.7.6 Kurtosis

Two definitions of kurtosis are commonly used in modern statistical literature. The first
corresponds to the old kurtosis and is often noted Kurt[x]. It is defined as the fourth stan-
dardized moment of a distribution. As such, it corresponds to the ratio of the fourth cen-
tered moment by the fourth power of the standard deviation:

Kurtold[x] ≡ µ4

σ 4
. (2.91)

Modern kurtosis is usually called excess kurtosis. Denoted γ2, it is defined as the ratio of
the fourth cumulant by the square of the second cumulant (see §2.13.1 for the definition

7 Influential English mathematician generally credited for establishing the discipline of mathematical statistics.
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(0) Mesokurtic [Normal]

(+) Leptokurtic [Thin]

(–) Platykurtic [Stubby]

Fig. 2.6 Illustration of the notion of kurtosis. The solid line is a Gaussian distribution and has zero excess kurtosis. The dashed
curve has a peaked distribution with long tails and thus has a positive kurtosis while the dotted curved has a flat top
with short tails and hence is characterized by a negative kurtosis.

of cumulants):

γ2 = κ4

κ2
2

= µ4

σ 4
− 3. (2.92)

The “minus 3” conveniently makes kurtosis of the Gaussian distribution equal to zero.
More importantly, the definition in terms of cumulants implies the (excess) kurtosis of a
sum of n independent random variables xi is equal to the sum of the kurtosis of these n
variables divided by n2. This can be written (see Problem 2.6):

γ2

[
n∑

i=1

xi

]

= 1
n2

n∑

i=1

γ2 [xi]. (2.93)

Such a simple scaling by n2 does not arise with the “old” kurtosis definition.
Figure 2.6 schematically illustrates the notion of kurtosis. A high kurtosis distribution

has a sharper peak and longer, fatter tails than a Gaussian distribution, while a low kurto-
sis distribution has a more rounded peak and shorter, thinner tails. Distributions with zero
excess kurtosis are called mesokurtic, or mesokurtotic. The most obvious example of a
mesokurtic distribution is the Gaussian distribution (see §3.9). A few other well-known
distributions can be mesokurtic, depending on their parameter values. For example, the bi-
nomial distribution (see §3.1) is mesokurtic for p = 1/2 ±

√
1/12. A distribution with pos-

itive excess kurtosis is called leptokurtic, or leptokurtotic. A leptokurtic distribution has
a more acute peak around its mean and fatter tails than a Gaussian distribution (narrower
peak and more probable extreme values). Examples of leptokurtic distributions include
the Laplace distribution and the logistic distribution; such distributions are sometimes
called super-Gaussian. A distribution with negative excess kurtosis is called platykur-
tic, or platykurtotic. The shape of a platykurtic distribution features a lower, wider peak
around the mean (i.e., a lower probability than a normally distributed variable of values
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49 2.8 Multivariate Systems

near the mean) and thinner tails; in other words, extreme values (both smaller and larger
than the mean) have a larger probability than a normally distributed variable. The uniform
distribution (see §3.4) is a prime example of a platykurtic distribution. Another example
involves the Bernoulli distribution (see §3.1), with p = 1/2, obtained, for example, for the
number of times one obtains “heads” when flipping a coin (i.e., a coin toss), for which
kurtosis is −2. Such distributions are sometimes termed sub-Gaussian.

The notion of kurtosis is not as frequently used as the notion of variance but nonetheless
remains of interest in general to characterize the shape of a distribution. It finds specific ap-
plications in nuclear physics with the study of net charge fluctuations and the determination
of the charge susceptibility of the quark gluon plasma (see §11.3.3).

2.7.7 Credible Range

Perhaps the most basic way to characterize a set of data is to describe the range it covers.
The range of the data, as the word suggests, is simply the difference between the highest
and lowest observed values of a random variable. It is consequently straightforward to
determine, although it may be somewhat misleading for distributions with long low or
high side tails (with low probability). In such cases, the range is subject to large fluctuations
when dealing with small samples and is thus rather unreliable in characterizing the bulk of
a distribution. It may then be preferable to use the notion of interquartile range instead,
which is evaluated as the difference between the higher and lower quartiles. The lower and
higher quartiles correspond to 1/4-point and 3/4-point, respectively.

The notions of deciles and percentiles are also commonly used to report place-
ments within a distribution as fractions of a population, sample, or distribution with values
smaller or equal to a given decile or percentile. For instance, students receiving a 99 per-
centile score on a physics exam have good reasons to be proud because they were among
the top 1% of all test-takers.

The dispersion or spread of a distribution may also be reported by quoting its full width
at half maximum (or FWHM), as illustrated in Figure 2.7. The FWHM presents the ad-
vantage, relative to the standard deviation, of being fairly immune to the effects associated
with low or high side tails. As such, it is useful to characterize the width of the main body of
unimodal distributions. It is easy to verify (see Problem 2.9) that the FWHM of a Gaussian
distribution is

FWHM = 2.35σ Gaussian distribution. (2.94)

2.8 Multivariate Systems

Practical scientific problems are rarely limited to measurements of a single (random) vari-
able. Especially in particle and nuclear physics, modern experiments involve measurements
of large numbers of physical variables simultaneously. At the detector level, measured
quantities amount to voltages produced by sensors, which can eventually be interpreted
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f(x)
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x

Fig. 2.7 Illustration of the notion of full width at half maximum (FWHM).

as particle positions, momenta, or energies, and possibly a host of other physical quanti-
ties. Nuclear collisions produce varying number of particles with random values of mo-
mentum, energy, or even particle species. The number of physical variables involved in
nucleus–nucleus interactions may vary from a handful in soft proton–proton interactions
to thousands in head-on Pb on Pb collisions at the Large Hadron Collider. A fraction of
these variables may be correlated, while others may be completely independent. However,
it is usually not known a priori which variables are statistically independent and which
others are correlated. One is then compelled, at least conceptually, to formulate the notion
of multivariate (i.e., multiple variables) probability densities that encompass all measured
variables. However, for simplicity’s sake and without loss of generality, we will first exam-
ine the notion of multivariate probability densities using two variables only.

This discussion can be carried out equivalently in terms of the frequentist and Bayes ap-
proaches to probability. Here, we will adopt the Bayesian perspective and use the language
of probability as logic. See [67] for an introduction of the same concepts based on sets and
the frequentist approach.

2.8.1 Joint Probability Density Functions

Let us consider a system involving two continuous random observables (or model parame-
ters). Let X represent the hypothesis (or statement) that the first observable lies in the range
[x, x + dx] and Y that the second lies in the range [y, y + dy] given some prior information
about the system, I . The conjunction (AND) of the two hypotheses, X ,Y , is true if both
hypotheses are true. The quantity p(X ,Y |I ) then expresses the degree of belief that the
hypotheses X and Y might be true jointly (i.e., simultaneously). Given X and Y are contin-
uous hypotheses, the conjunction X ,Y is also a continuous hypothesis, and p(X ,Y |I ) thus
corresponds to a joint probability density function

p(X ,Y |I ) = lim
!x,!y→0

p(x ≤ X < x + !x, y ≤ Y < y + !y|I )
!x!y

, (2.95)

that expresses the degree of belief the variables X and Y be found jointly in the intervals
[x, x + dx] and [y, y + dy], respectively.
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Fig. 2.8 Contour plot of the joint probability f (x, y) of two variables X andY generated according to a 2D Gaussian model. The
horizontal dashed lines delimit hypothesisY while the vertical dashed lines represent the range of hypothesis X . The
probability of a pair (x, y) to lie within the square given by the conjunction of X andY is equal to f (x, y)!x!y,
with!x!y being the surface area of the square.

Evidently, one could also consider alternative hypotheses that the observables X and
Y are found in other intervals. Summing probabilities of hypotheses spanning the entire
hypothesis space, H, yields unity. One thus gets the normalization condition

∫∫

H
p(X ,Y |I ) dX dY = 1. (2.96)

The notion of joint probability density is illustrated in Figure 2.8 which shows a prob-
ability density function of two variables, x and y, in the form of an iso-contour plot (the
boundaries between different shades of gray delineate loci of equal probability density).
While x and y are both random variables with Gaussian distributions, their values are not
independent of one another: large values of x tend to be accompanied by small (i.e., neg-
ative) values of y and small (i.e., negative) values of x tend to be observed in conjunction
with large values of y. The two variables are then said to be correlated. A measure of the
degree of correlation between two variables can be obtained with the notion of covariance
discussed in §2.9.3.

2.8.2 Marginal Probability Density Functions

Let us now assume that the PDF p(X ,Y |I ) is given. It is obviously also of interest to deter-
mine the probability density p(X |I ) corresponding to the probability that the hypothesis X
is true irrespective of other hypotheses. We next show p(X |I ) is readily obtained by inte-
gration of p(X ,Y |I ) over all hypotheses Y . This operation is referred to as marginalization
in the statistics literature.
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To demonstrate this result, let us first assume the hypotheses Y are discrete and may
be labeled Yi, with i = 1, . . . , n. Let us further assume the Yi are collectively exhaustive,∑n

i=1 Yi = 1, and mutually exclusive, Yi,Yj = 0 for i ̸= j. One can then write

p

(
n∑

i=1

Yi|I
)

= 1. (2.97)

Let us then consider the probability p(X ,
∑n

i=1 Yi|I ) asserting the degree of belief that X
and

∑n
i=1 Yi are jointly true. Application of the product yields

p

(

X ,

n∑

i=1

Yi|I
)

= p

(
n∑

i=1

Yi|I
)

p

(

X |
n∑

i=1

Yi, I

)

(2.98)

= 1 × p

(

X |
n∑

i=1

Yi, I

)

. (2.99)

But since
∑n

i=1 Yi = 1, the conjunction of this and the prior I is simply I , and one gets

p

(

X ,

n∑

i=1

Yi|I
)

= p(X |I ), (2.100)

which is the result we are looking for. We must now express the left-hand side of this
expression in terms of probabilities p(X ,Yi|I ). This is readily accomplished by noting that
a conjunction (AND) can be distributed onto a disjunction (OR), that is,

X ,

n∑

i=1

Yi =
n∑

i=1

X ,Yi. (2.101)

Since the Yi are mutually exclusive, the propositions X ,Yi are also mutually exclusive, and
one can use the extended sum rule, Eq. (2.40), to obtain

p(X |I ) = p

(

X ,

n∑

i=1

Yi|I
)

=
n∑

i=1

p(X ,Yi|I ). (2.102)

Our derivation was based on discrete statements Yi. Let us now assume there is an infinite
number of such statements (collectively exhaustive and mutually exclusive); we must then
replace the sum by an integral and the probabilities by densities, and one gets the sought
for result:

p(X |I ) dx =
(∫

H
p(X ,Y |I ) dy

)
dx (2.103)

or simply

p(X |I ) =
∫

H
p(X ,Y |I ) dy. (2.104)

The probability density function p(X |I ) is said to be the marginal probability density of
p(X ,Y |I ), or alternatively, one can say that p(X ,Y |I ) has been marginalized or that the
“uninteresting” parameter Y has been eliminated by marginalization. Quite obviously,
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given conjunctions commute, that is, A, B = B, A, one can achieve the marginalization of
X in the same fashion:

p(Y |I ) =
∫

H
p(X ,Y |I ) dx. (2.105)

The use of probability notation p(X |I ), p(Y |I ), p(X ,Y |I ), and so forth, may become
rapidly tedious. It is thus convenient to introduce an alternative notation based on more
traditional function notation (common in the frequentist interpretation). For instance, rep-
resenting the density p(X ,Y |I ) by a function f (x, y), it is common to denote marginal
probabilities p(X |I ) as fx(x) and one writes

fx(x) =
∫

f (x, y), dy, (2.106)

fy(y) =
∫

f (x, y), dx, (2.107)

where the integrals are taken over the domains of the integrated variables.
Experimentally, the PDF f (x, y) may be estimated using a two-dimensional histogram

involving a very large number of measurements of pairs (x, y). The marginal PDFs fx(x)
and fy(y) may then be estimated from projections of the two-dimensional histogram onto
axes x and y, respectively, as illustrated in Figure 2.9. Two-dimensional and multidimen-
sional histograms and their projections are formally discussed in §4.6.

2.8.3 Conditional Probability Density Functions

Given a known joint PDF p(X ,Y |I ) and the marginal PDFs p(X |I ) and p(Y |I ) (or in more
traditional notation: f (x, y), fx(x), and fy(y)), it is also of interest to evaluate the proba-
bility density, p(X |Y, I ), corresponding to the probability density that X is true when Y is
known to be true. Since X and Y are continuous hypotheses, this amounts to the condi-
tional probability density for X to be in the interval [x, x + dx] given that Y is known to be
in [y, y + yx]. Applying the product rule onto p(X ,Y |I ), we readily get

p(X ,Y |I ) = p(Y |I )p(X |Y, I ). (2.108)

Rearranging, and substituting the expression obtained in Eq. (2.105) for p(Y |I ), one gets

p(X |Y, I ) = p(X ,Y |I )
p(Y |I )

(2.109)

= p(X ,Y |I )∫
H p(X ,Y |I ) dx

, (2.110)

which is the Conditional Probability Density Function of X given Y . Evidently, the
commutativity of the conjunction operation implies one can also write

p(Y |X , I ) = p(X ,Y |I )
p(X |I )

(2.111)

= p(X ,Y |I )∫
H p(X ,Y |I ) dy

, (2.112)

which is the Conditional Probability Density Function of Y given X .
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Fig. 2.9 Illustration of the notion of marginal probability. The contour plot presents the joint probability f (x, y) of two
variables x and y defined according to a 2D Gaussian model. The right and top panels show the marginal probabilities
fy(y) and fx(x) obtained by integrating f (x, y) over x and y, respectively.

Here again, it also convenient to introduce a somewhat more traditional function nota-
tion, and one writes

hx(x|y) ≡ f (x, y)
fy(y)

= f (x, y)∫
f (x′, y) dx′ (2.113)

hy(y|x) ≡ f (x, y)
fx(x)

= f (x, y)∫
f (x, y′), dy′ , (2.114)

which defines hx(x|y) as a conditional probability density of x given y and hy(y|x) as a
conditional probability density of y given x.

We stress that the conditional PDF p(X |Y, I ), or equivalently hx(x|y), must be regarded
as a function of a single variable x in which y is treated as a constant value. It expresses the
probability (density) of getting a certain value of x given a specific value of y has already
been observed, and conversely for p(Y |X , I ).

We discuss in §4.6.3 how to obtain estimates of hy(y|x), experimentally, from a two-
dimensional histogram by projection onto the x-axis of a slice taken at a specific value
of y. In general, different choices of the constant y, for instance y1 and y2, lead to dif-
ferent conditional probabilities noted hx(x|y1) ̸= hx(x|y2), as illustrated in Figure 2.10.
Note, however, that given both functions are PDFs, they both satisfy the normalization
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Fig. 2.10 Illustration of the notion of Conditional Probability Density Function. The scatterplot presents the joint probability
density f (x, y) of two variables x and y randomly generated according to a 2D Gaussian model. The bottom panel
show the conditional probabilities hx(x|y1) (solid line) and hx(x|y2) (dashed line) obtained by integrating f (x, y)
along y in the ranges [y1 − ϵ, y1 + ϵ] and [y2 − ϵ, y2 + ϵ], respectively (with ϵ = 0.2).

condition:
∫ −∞

−∞
hx(x|y1) dx = 1, (2.115)

∫ −∞

−∞
hx(x|y2) dx = 1. (2.116)

2.8.4 Bayes’ Theorem and Probability Densities

Combining Eqs. 2.109 and 2.111 (or equivalently Eqs. 2.113 and 2.114), one arrives at an
expression of Bayes’ theorem in terms of the marginal and conditional PDFs of continuous
variables x and y:

p(X |Y, I ) = p(Y |X , I )p(X |I )
p(Y |I )

(2.117)

where the functions p(X |Y, I ), p(Y |X , I ), p(X |I ), and p(Y |I ) are probability density func-
tions. Using the alternative function notation introduced in the preceding text, this may be
written:

hx(x|y) =
hy(y|x) fx(x)

fy(y)
. (2.118)
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Continuing with this notation, we note that Eqs. (2.113, 2.114) can also be written

f (x, y) = hy(y|x) fx(x) = hx(x|y) fy(y), (2.119)

One then obtains the expressions

fx(x) =
∫ −∞

−∞
hx(x|y) fy(y) dy, (2.120)

fy(y) =
∫ −∞

−∞
hy(y|x) fx(x) dx, (2.121)

which correspond to the law of total probability applied towards the determination of
marginal probabilities fx(x) and fy(y).

Indeed, given fy(y) and hx(x|y), one can use Eq. (2.120) to derive the density fx(x). As
we shall discuss in §12.3, Eq. (2.120) can be used, in particular, to fold and unfold smearing
and efficiency effects associated with instrumental artifacts provided a model of the detec-
tor performance is available. One can also use Eq. (2.120), or Eq. (2.121), to account for
physical effects. For instance, the function fy(y) might represent the momentum spectrum
of a full particle jet (composed of neutral and charged particles) produced in elementary
nuclear interactions, and hx(x|y) could model the probability of measuring charged jet mo-
menta x given a full jet momentum y. The function fx(x), calculated with Eq. (2.120),
would then represent the momentum distribution of charged jets.

Next, recall from Eq. (2.11) that if two hypotheses A and B are independent, the proba-
bility of their conjunction must satisfy p(A, B|I ) = p(A|I )p(B|I ). Two continuous variables
x and y can thus be considered statistically independent if their joint PDF factorizes as
follows:

f (x, y) = fx(x) fy(y) (statistical independence). (2.122)

This, in turn, implies that the conditional PDFs hy(y|x) and hx(x|y) are the same for all
values of x and y. Indeed, substituting the preceding expression for f (x, y) in Eqs. (2.113)
and (2.114), one gets

hy(y|x) =
fx(x) fy(y)

fx(x)
= fy(y) (statistical independence), (2.123)

hx(x|y) =
fx(x) fy(y)

fy(y)
= fx(x) (statistical independence), (2.124)

from which we conclude that if two variables x and y are statistically independent, their
conditional probability densities equal their marginal densities. This implies that having
knowledge of one variable does not influence the probability of the other in any way. Con-
versely, finding that conditional densities hy(y|x) and hx(x|y) depend on x and y, respec-
tively, would be a sure indication that the two variables are not statistically independent.

2.8.5 Extension tom > 2 random variables

The preceding discussion can be readily extended to measurements involving any number
m of random variables, xi, i = 1, . . . , m. The probability of measuring the m variables in
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ranges [xi, xi + dxi] defines the joint PDF f (x1, x2, . . . , xm). Given this PDF is a function
of multiple variables, one can define several marginal probabilities fxi (xi):

fxi (xi) =
∫

· · ·
∫

f (x1, x2, . . . , xm) dx1dx2 . . . dxi−1dxi+1 . . . dxm. (2.125)

One can also define marginal PDFs that are functions of several variables. For two vari-
ables, e.g., x1 and x2, one gets

fx1,x2 (x1, x2) =
∫

· · ·
∫

f (x1, x2, . . . , xm) dx3dx4 . . . dxm, (2.126)

which can easily be generalized to any two (or more) variables.
The extension of conditional probabilities to multiple variables proceeds similarly. For

instance, the conditional probability density of getting x1 given values x2,…, xm may be
written

hx1 (x1|x2, . . . xm) = f (x1, x2, . . . , xm)∫
f (x′

1, x2, . . . , xm) dx′
1

. (2.127)

This expression can be generalized to obtain the conditional PDF of finding several vari-
ables. For instance, the conditional PDF of x1, x2, given x3,…, xm is given by

hx1,x2 (x1, x2|x3, . . . xm) = f (x1, x2, . . . , xm)∫
f (x′

1, x′
2, . . . , xm) dx′

1dx′
2

. (2.128)

The methods based on Bayes’ theorem and the law of total probability presented earlier for
functions of two variables can be readily extended to calculate marginal and conditional
PDFs of several variables (see Problem 2.11).

2.8.6 Multivariate Functions of Random Variables

Equipped with the notion of multivariate probability densities introduced earlier in §2.8,
we proceed to discuss multivariate functions of random variables.

Let q(x1, . . . , xn) represent a function of multiple random variables x1, x2, . . . , xn.8 Ob-
viously, given the xi are continuous random variables, the value q(x1, . . . , xn) may also be
regarded as a random variable characterized by a probability density g(q). The probability
(density) of specific values q is determined in part by the function itself and in part by the
likelihood of getting combinations of x1, x2, . . . , xn that yield that given value. In turn, this
likelihood is determined by the joint probability density f (x1, x2, . . . , xn) of the variables.
The probability of observing a value q in the range [q, q + dq] may then be obtained by
summing all relevant combinations of values of x1, . . . , xn, that is, all such values that yield
a value q in that range. This may be written

g(q) dq =
∫

d(

f (x1, x2, . . . , xn) dx1dx2 · · · dxn, (2.129)

8 Again here, the variables xi may represent continuous hypotheses (Bayesian interpretation) or the outcome of
some series of measurements (frequentist interpretation).
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where the volume element d( encloses the region in x1, x2, . . . , xn space between the two
hypersurfaces q(x1, x2, . . . , xn) = q and q(x1, x2, . . . , xn) = q + dq. The size and shape of
d( are obviously determined by the function q(x1, . . . , xn) itself. The preceding integral
is thus generally nontrivial and its evaluation may require numerical methods, including
Monte Carlo methods discussed in §13.2. However, there are several interesting cases that
can be handled analytically, a few of which we examine in the following because they are
frequently encountered in data analysis problems.

First, consider a case where two independent random variables X and Y are distributed
according to PDFs fx(x) and fy(y), respectively. Suppose we wish to calculate the PDF fz(z)
corresponding to a function z(x, y) of the two variables. Because X and Y are independent
variables, the joint PDF f (x, y) is simply the product of the functions fx(x) and fy(y). The
determination of fz(z) thus reduces to the relatively simple integral

fz(z) dz =
∫

d(

fx(x) fy(y) dxdy, (2.130)

where the domain of integration d( includes all combinations of x and y satisfying z ≡
z(x, y).

Let us proceed with three specific examples, starting with the integration for z = x ± y.
One writes

fz(z) dz =
∫ ∞

−∞
fx(x) dx

∫ (z+dz)±x

z±x
fy(y) dy. (2.131)

The inner integral is carried over an infinitesimal range dz across which the function fy

does not change. One gets

fz(z) dz = dz
∫ ∞

−∞
fx(x) fy(z ± x) dx, (2.132)

which implies the density fz(z) may be written

fz(z) =
∫ ∞

−∞
fx(x) fy(z ± x) dx. (2.133)

Alternatively, reversing the order of integrations, one finds

fz(z) =
∫ ∞

−∞
fx(z ± y) fy(y) dy. (2.134)

This result can also be obtained using δ-functions. We can enforce the requirement
z = x ± y by inserting a δ-function δ (z − (x ± y)) into Eq. (2.130) while carrying out the
integration over all possible values of both x and y. The integration over one of the variables
then becomes trivial and one gets

fz(z) =
∫ ∞

−∞
fx(x) dx

∫ ∞

−∞
fy(y)δ(z − (x ± y)) dy, (2.135)

=
∫ ∞

−∞
fx(x) fy(z ± x) dx. (2.136)

1::79�  .�2��80 ������� 
�	���	���
����������291/.����2�/�� ���4�82.0/���2�/892: �8/99

https://doi.org/10.1017/9781108241922.004


59 2.8 Multivariate Systems

This expression is commonly written fz = fx ⊗ fy and is called the Fourier convolution of
fx and fy. Note that in practical situations, complications may arise because measurements
of the function fx and fy may be limited to ranges xmin ≤ x ≤ xmax and ymin ≤ y ≤ ymax, be-
yond which the functions do not necessarily vanish but cannot be measured. The evaluation
of the integral must consequently be limited to the boundaries of the measurement exclu-
sively. Such cases are encountered, for instance, in measurements of correlation functions
discussed in Chapter 10. Fourier convolutions are also commonly encountered in smearing
or resolution modeling of the response of detectors (see, e.g., §12.2.3).

A generalization of the preceding result for a function z(x1, x2, . . . , xn) which is a linear
combination of the variables xi

z =
n∑

i=1

cixi, (2.137)

yields

fz(z) =
∫ ∞
−∞ dx1 · · ·

∫ ∞
−∞ dxn−1 f

(
x1, . . . , xn−1,

[
z − 1

cn

∑n−1
i=1 cixi

])
. (2.138)

Next, consider the integration of Eq. (2.130) for z = xy, which we carry out by inserting
the δ-function δ (z − xy) into the convolution integral:

fz(z) =
∫ ∞

−∞
dx

∫ ∞

−∞
dy fx(x) fy(y)δ (z − xy) . (2.139)

The δ-function δ (g(x)) may be written

δ (g(x)) =
∑

i

δ (x − xi)
|g′(xi)|

, (2.140)

where g′(xi) is the derivative of g(x) with respect to x evaluated at the roots xi of g(x). In
the case under consideration, we have g(x) = z − xy. There is a single root xo = z/y and
|g′(xo)| = |y|. One then gets

fz(z) =
∫ ∞

−∞
fx(z/y)

fy(y)
|y|

dy. (2.141)

This function fz is known as the Mellin convolution of fx and fy. Mellin convolutions
are very useful in physics. They provide, in particular, a convenient technique toward the
calculation of jet fragmentation functions and DGLAP evolution (see, e.g., [150] § 20).

As a third case, we consider the function z = x/y. The convolution integral may then be
written

fz(z) =
∫ ∞

−∞
dx

∫ ∞

−∞
dy fx(x) fy(y)δ (z − x/y) , (2.142)

which yields after integration over x:

fz(z) =
∫ ∞

−∞
|y| fx(yz) fy(y) dy. (2.143)
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2.9 Moments of Multivariate PDFs

We proceed to extend the notion of expectation value introduced in §2.7.3 to include
functions of several variables. For instance, the mean or expectation values of a function
q(x1, x2, . . . , xn) may be written

µq ≡ E[q(x⃗)] =
∫ ∞

−∞
· · ·

∫ ∞

−∞
q(x⃗) f (x⃗) dx1 · · · dxn, (2.144)

where for the sake of simplicity, we have introduced a vector x⃗ = (x1, . . . , xn) to denote the
dependence over the variables x1, x2, . . . , xn and the function f (x⃗) corresponds to the joint
PDF f (x1, x2, . . . , xn) of the variables x1, x2, . . . , xn. Let us examine the calculation of the
expectation value, Eq. (2.144), for selected and particularly relevant cases of the function
q(x⃗).

2.9.1 First-Order Moments of xi

In general, the function q(x⃗) may consist of linear or nonlinear functions of the variables
xi. However, as a first and simple case, it is useful to choose any of the n random variables
xi and calculate their first moments µi according to

µi ≡ E[xi] =
∫ ∞

−∞
· · ·

∫ ∞

−∞
xi f (x⃗) dx1 · · · dxn. (2.145)

In this context, the symbols µi correspond to the means of each of the random variables xi

and should not be confused with the higher moments of a single variable introduced earlier
in this chapter. It is convenient to represent the means µi as a vector of n elements

µ⃗ = (µ1, µ2, . . . , µn) , (2.146)

which one can interpret as the mean of the PDF in the full n-dimension space spanned by
the random variables xi.

2.9.2 Variance of xi

Next, consider the variance of the function q(x⃗). By definition, one has

σ 2
q ≡ Var[q] = E[

(
q(x⃗) − µq

)2
] (2.147)

=
∫ ∞

−∞
· · ·

∫ ∞

−∞

(
q(x⃗) − µq

)2
f (x⃗) dx1 · · · dxn.

Choosing once again q(x⃗) = xi, one obtains the variance of the multivariate PDF relative
to each of the n random variables xi:

σ 2
i ≡ Var[xi] = E[(xi − µi)

2] (2.148)

=
∫ ∞

−∞
· · ·

∫ ∞

−∞
(xi − µi)

2 f (x⃗) dx1 · · · dxn.
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61 2.9 Moments of Multivariate PDFs

2.9.3 Covariance of Two Variables xi and x j

It is also useful to consider the expectation value of products such as xix j for i, j =
1, . . . , n, and i ̸= j. We are more specifically interested in centered moments of two vari-
ables xi and x j relative to their respective means and define the covariance, Cov[xi, x j], of
variables xi and x j, with i ̸= j as:

Cov[xi, x j] ≡ E[(xi − µi)
(
x j − µ j

)
], (2.149)

=
∫ ∞
−∞ · · ·

∫ ∞
−∞ (xi − µi)

(
x j − µ j

)
f (x⃗) dx1 · · · dxn. (2.150)

The covariance of two random variables measures the degree to which the variables are
correlated, or covarying. Consider, for instance, the covariance of two variables x1 and x2

for a density f (x1, x2). The preceding expression becomes

Cov[x1, x2] =
∫

(x1x2 − x1µ2 − µ1x2 + µ1µ2) f (x1, x2) dx1dx2, (2.151)

where µ1 and µ2 are the mean values of variables x1 and x2, respectively. Splitting the four
terms of the integrand, we get

Cov[x1, x2] =
∫

x1x2 f (x1, x2) dx1dx2 − µ2

∫
x1 f (x1, x2) dx1dx2 (2.152)

− µ1

∫
x2 f (x1, x2) dx1dx2 + µ1µ2

∫
f (x1, x2) dx1dx2,

and noting that the integrals of the second and third terms are simply µ1 and µ2, respec-
tively, while the integral of the last term is unity by virtue of the normalization of f (x1, x2),
Eq. (2.152) reduces to

Cov[x1, x2] =
∫

x1x2 f (x1, x2) dx1dx2 − µ1µ2 (2.153)

A null covariance indicates the variables x1 and x2 may be statistically independent. Indeed,
Cov[x1, x2] = 0 means one can write

∫
x1x2 f (x1, x2) dx1dx2 = µ1µ2 =

∫
x1 fx1 (x1) dx

∫
x2 fx2 (x2) dx2. (2.154)

which in turn suggests f (x1, x2) = fx1 (x1) fx2 (x2) as expected, if the variables x1 and
x2 are statistically independent. However, we will see later in this section that the fac-
torization (and statistical independence) is not strictly guaranteed by a null covariance,
Cov[x1, x2] = 0.

The interpretation of the notion of covariance is best illustrated with the practical
examples of joint probability densities of two random variables X and Y presented in
Figure 2.11. The joint distributions shown in panels (a–c), are defined as product of two
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Fig. 2.11 Illustration of the notion of covariance of two random continuous variables. Panels (a), (b), and (c) present examples of
uncorrelated variables whereas panels (d) and (e) show examples of fluctuations with positive and negative
covariance, respectively. Panel (f) presents a special case where the covariance is maximal (Pearson coefficient is
unity). See text for details.
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63 2.9 Moments of Multivariate PDFs

independent Gaussians according to

pa−c(x, y) = 1√
2π

exp

[

− (x − µx)2

2σ 2
x

]

× 1√
2π

exp

[

−
(
y − µy

)2

2σ 2
y

]

(2.155)

with means µx, µy and standard deviations σx, σy, for variables x and y, respectively. The
joint PDF shown in (a) features equal standard deviations σx = σy whereas those shown in
(b) and (c) are defined with σx > σy and σx < σy, respectively. Given their definition as a
product of independent Gaussian distributions, one readily verifies that the covariance of x
and y for these distributions may be written

Cov[x, y] = 1√
2π

∫
exp

[

− (x − µx)2

2σ 2
x

]
(x − µx) dx

× 1√
2π

∫
exp

[

−
(
y − µy

)2

2σ 2
y

]
(
y − µy

)
dy

and is thus null because the expectation values of x and y equal µx and µu, respectively, by
definition of the Gaussian distribution.

The distributions shown in panels (d–f) represent correlated joint distributions of the
variables X and Y defined according to

x = µx + r1 + αr2,

y = µy + r1 − αr2,
(2.156)

where r1 and r2 represent independent Gaussian distributed random variables

p1(r1) = 1√
2π

exp
[
− r2

1
2σ 2

1

]
,

p2(r2) = 1√
2π

exp
[
− r2

2
2σ 2

2

]
,

(2.157)

with null expectation values, E[r1] = E[r1] = 0, and standard deviations σ1 and σ2, re-
spectively. The parameter α is set to unity in panels (d-e) and to zero in panel (f). Panel
(d) illustrates a case with σ1 ≫ σ2 implying fluctuations of r1 are much larger than those
of r2 and thus dominate the values of both x and y, whereas panel (d) features a case with
σ1 ≪ σ2 in which fluctuations of r2 are much larger than those of r1. Dominant fluctuations
of r1 (over those of r2) lead to covarying values of x and y: when x increases, so does y on
average as seen in panel (d). In contrast, dominant fluctuations of r2 lead to anti-correlated
values of x and y: as x increases, y tends to decrease (on average).

In order to calculate the covariance of x and y for these three distributions, we first
express r1 and r2 in terms of x and y by inversion of Eq. (2.156) with α = 1:

r1 = 1
2

(
x + y − µx − µy

)
,

r2 = 1
2

(
x − y − µx + µy

)
.

(2.158)
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64 Probability

On can then calculate the joint PDFs of x and y in terms of the joint PDF of r1 and r2 as
follows:

pd− f (x, y) = d2N
dxdy

= d2N
dr1dr2

∣∣∣∣
∂ (r1, r2)
∂ (x, y)

∣∣∣∣ . (2.159)

The Jacobian |∂ (r1, r2) /∂ (x, y) | = 1/2 is readily calculated from Eq. (2.158). One then
obtains

pd− f (x, y) ≡ 1
2

1√
2πσ1

exp
(

− r2
1

2σ 2
1

)
1√

2πσ2
exp

(
− r2

2

2σ 2
2

)
. (2.160)

Substituting values for r1 and r2 from Eq. (2.158), one gets

pd− f (x, y) = 1
2

1√
2πσ1

exp

[

−
(
x + y − µx − µy

)2

8σ 2
1

]

× 1√
2πσ2

exp

[

−
(
x − y − µx + µy

)2

8σ 2
2

]

, (2.161)

which cannot be factorized in terms of functions of x and y independently, owing to the
fact that the two variables are correlated. Calculation of the covariance of x and y for these
distributions is best accomplished in terms of the variables r1 and r2 as follows:

Cov[x, y] =
∫

pd− f (x − µx)
(
y − µy

)
dxdy, (2.162)

=
∫

d2N
dr1dr2

(r1 + r2) (r1 − r2) dr1dr2, (2.163)

=
∫

p1(r1)p2(r2)
(
r2

1 − r2
2

)
dr1dr2, (2.164)

=
∫

p1(r1)r2
1dr1 −

∫
p1(r2)r2

2dr2, (2.165)

= σ 2
1 − σ 2

2 , (2.166)

where in the third line we used the fact that d2N/dr1dr2 factorizes, in the fourth line the
normalization to unity of the Gaussian distribution, and in the last line, we substituted the
variance σ 2

1 and σ 2
2 of r1 and r2, respectively. One finds that for σ1 > σ2, when the fluctu-

ations of r1 are larger than those of r2, that the covariance of x and y is positive, reflecting
that an increase of x is on average accompanied by an increase of y, while for σ1 < σ2, the
covariance is negative, corresponding to the reverse behavior, that is, an increase of x is on
average accompanied by a decrease of y. Lastly, we remark that in the case of panel (f), the
variables x and y are perfectly correlated (α = 0), thereby implying that the covariance of
x and y equals the variance of x.

2.9.4 Covariance MatrixVi j

For a multivariate distributions, f (x⃗), with x⃗ = (x1, x2, . . . , xn), it is useful to extend the
notion of covariance to also encompass the notion of variance. This enables the definition
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65 2.9 Moments of Multivariate PDFs

of a covariance matrix, Vi j, as follows:

Vi j ≡ E[(xi − µi)
(
x j − µ j

)
], (2.167)

=
∫ ∞

−∞
· · ·

∫ ∞

−∞
(xi − µi)

(
x j − µ j

)
f (x⃗) dx1 · · · dxn, (2.168)

where all values i, j = 1, . . . , n are allowed, including i = j.
More generally, given two functions q1(x⃗) and q2(x⃗) of n variables x⃗ = (x1, x2, . . . , xn),

the covariance Cov[q1, q2] is calculated as follows:

Cov[q1, q2] ≡ E[
(
q1 − µq1

) (
q2 − µq2

)
],

= E[q1q2] − µq1µq2 ,

=
∫ ∞

−∞

∫ ∞

−∞
q1q2g(q1, q2) dq1dq2 − µq1µq2 , (2.169)

=
∫ ∞

−∞
· · ·

∫ ∞

−∞
q1(x⃗)q2(x⃗) f (x⃗) dx1 · · · dxn − µq1µq2 ,

where g(q1, q2) is the joint probability density for q1 and q2 while f (x⃗) is the joint PDF for
x⃗ = (x1, x2, . . . , xn). Obviously, Cov[q1, q2] is by construction invariant under permutation
of the variables q1 and q2:

Cov[q1, q2] = Cov[q2, q1]. (2.170)

This implies the matrix Vi j defined earlier is symmetric by construction and its elements
satisfy

Vi j = Vji. (2.171)

2.9.5 Correlation Coefficientsρi j

The off-diagonal matrix elements Vi j, i ̸= j, measure the degree of correlation between the
random variables xi and x j. Given each of the variables in general exhibits a finite variance,
Vii > 0, it is useful to quantify the covariances of two variables xi and x j relative to their
respective variances by introducing correlation coefficients ρi j defined as

ρi j =
Vi j√
ViiVj j

=
Vi j

σiσ j
. (2.172)

These coefficients are commonly referred to as Pearson correlation coefficients in the lit-
erature. It can be shown they are bound in the range −1 ≤ ρi j ≤ 1 (see Problem 2.12).

2.9.6 Interpretation and Special Cases

The covariance Cov[x, y] characterizes the degree of correlation between the random vari-
ables X and Y . There are phenomena such that when x is greater than its mean µx, y is
also likely (on average) to be larger than its mean µy, and conversely, when x < µx so
does y < µy. The differences x − µx and y − µy are together positive or negative, which
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implies the two quantities are positively correlated, Cov[x, y] > 0. Other phenomena show
a negative correlation, Cov[x, y] < 0. In this case, when x < µx, one is more likely to ob-
serve y > µy, and conversely when x > µx, one observes y < µy. In still other phenomena,
there is no preference y < µy or y > µy when x is smaller or larger than its mean; the two
variables are thus uncorrelated. This occurs when the joint PDF f (x, y) can be factorized,
f (x, y) = f (x) f (y). Then clearly one gets Cov[x, y] = 0:

f (x, y) = f (x) f (y) implies E[x, y] = E[x]E[y]. (2.173)

However, the converse is not necessarily true. A null covariance does not always guarantee
the joint PDF factorizes. Indeed, there can be cases where the integral, Eq. (2.149), is null
even though the joint PDF does not factorize. For instance, consider the case y = x2 for
a uniform PDF, f (x), defined in the range [−1, 1]. Obviously, y and x are then perfectly
correlated by construction. Yet one finds

Cov [y, x] = Cov
[
x2, x

]
,

= E
[
x3] − E

[
x2] E [x] , (2.174)

= 0 − 0 × E
[
x2] ,

= 0.

This implies that although a null covariance, Cov [y, x] = 0, in general suggests the vari-
ables x and y are statistically independent, one must be cautious to reach this conclusion
too hastily and verify against pathological cases such as the foregoing one.

2.10 Characteristic andMoment-Generating Functions

The characteristic function (CF), noted φx(t ), of a real valued random variable is defined,
in the complex plane, as the inverse Fourier transform of the probability density function
(PDF) of this variable while the Moment-Generating Function (MGF), denoted Mx(t ), is
defined on the set of real numbers as the Laplace transform of the PDF. By construction,
a CF (or MGF) is uniquely defined by its PDF, and conversely, a PDF is uniquely defined
by a CF (or MGF). CF and MGF may then be used as alternative definitions and char-
acterizations of the behavior of a random variable. CF and MGF are particularly useful
toward the calculation of the moments of PDFs. They also are useful in the calculation of
other PDF properties, such as their limiting behavior, and in the demonstration of several
important theorems of probability and statistics. The CF and MGF of a PDF have very
similar definitions based on Fourier and Laplace transforms and can often be used inter-
changeably. It is important to note, however, that the MGF of a PDF does not always exist.
This is particularly the case when one or more of the expectation values E[xk] of a PDF
diverge (e.g., the Breit–Wigner PDF). By contrast, one can show that the characteristic
function of a real-valued PDF always exists, although it does not entail the existence of its
moments.
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2.10.1 Definitions ofφx(t ) andMx(t )

The characteristic functions φx(t ) of a random variable x with PDF f (x) is defined as the
expectation value of the function eitx

φx(t ) = E
[
eitx] =

∫ ∞

−∞
eitx f (x) dx, (2.175)

and as such essentially corresponds to the inverse Fourier transform of the function f (x).
The MGF, Mx(t ), is defined as the Laplace transform of f (x) for values t limited to the set
of real numbers:

Mx(t ) = E
[
etx] =

∫ ∞

−∞
etx f (x) dx, t ∈ R (2.176)

There appears to be very little difference between the two definitions. We will, however,
see that the expectation value E

[
ets

]
of some PDFs diverges and Mx(t ) consequently does

not always exist. At the same time, one can show that φx(t ) always exists although it may
be of limited use in practice.

Equation (2.175) establishes a one-to-one relationship between the PDF f (x) of a vari-
able x and its characteristic function φx(t ). This implies that if f (x) is not known a priori, it
may be determined on the basis of the Fourier transform of its characteristic function φ(x):

f (x) = 1
2π

∫ ∞

−∞
e−itxφx(t ) dt. (2.177)

This property is useful, as we shall see in Section 2.10.3, to determine the PDF of sums of
variables and to derive several important results in probability and statistics.

2.10.2 Calculation of the Momentsµ′
k of a PDF

Let us first show that both φx(t ) and Mx(t ) can be used to calculate the moments of a PDF.
Expansion of the exponential etx in series yields

etx = 1 + tx + t2x2

2!
+ t3x3

3!
+ · · · + tnxn

n!
+ · · · (2.178)

The expectation value E
[
etx

]
may then be written

E
[
etx] = 1 + tE [x] +

t2E
[
x2

]

2!
+

t3E
[
x3

]

3!
+ · · · + tnE [xn]

n!
+ · · · (2.179)

given t is here considered a “parameter” of the function. Since the expectation values E
[
xk

]

correspond to the moments µ′
k of the PDF, one may then write

E
[
etx] = 1 + tµ′ + t2µ′

2

2!
+

t3µ′
3

3!
+ · · · + tnµ′

n

n!
+ · · · (2.180)

Derivatives of this expression with respect to t evaluated at t = 0 yield the moments µ′
k of

the PDF:

µ′
k = dk

dtk
E

[
etx]

∣∣∣∣
t=0

= dk

dtk
Mx(t )

∣∣∣∣
t=0

. (2.181)
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68 Probability

The same reasoning for φx(t ) yields (see Problem 2.18)

µ′
k = i−k dk

dtk
φx(t )

∣∣∣∣
t=0

. (2.182)

We demonstrate the use of this expression for the calculation of the moments of the
Gaussian distribution. The characteristic function of the Gaussian distribution is obtained
by calculating the integral

φ(t ) = E
[
eitx] =

∞∫

−∞

e− (x−µ)2

2σ2

√
2πσ

eitx dx. (2.183)

Using integration tables, and after some basic algebra, one gets

φ(t ) = exp
(
iµt − 1

2σ 2t2) . (2.184)

The first moment (i.e., the mean) of the Gaussian PDF is obtained by evaluating the first
derivative of Eq. (2.184) at t = 0, with respect to t. One gets

µ′
1 = i−1 d

dt
φ(t )

∣∣∣∣
t=0

= i−1 (
iµ − σ 2t

)
exp

(
iµt − 1

2σ 2t2)∣∣
t=0 = µ, (2.185)

which is the anticipated result. Similarly, calculation of the second moment µ′
2 requires a

second derivative of the characteristic function, also evaluated at t = 0. One finds

µ′
2 = i−2 d2

dt2
φ(t )

∣∣∣∣
t=0

(2.186)

= i−2
{
−σ 2 exp

(
iµt − 1

2σ 2t2) +
(
iµ − σ 2t

)2
exp

(
iµt − 1

2σ 2t2)
}∣∣∣

t=0

= σ 2 + µ2,

which yields

Var[x] = µ′
2 − (µ′

1)2 = σ 2, (2.187)

also as anticipated. The calculation of higher moments of the Gaussian distribution pro-
ceeds in a similar fashion.

The CFs and MGFs of the probability distributions used in this textbook are provided in
Tables 3.1 to 3.8, as are moments of these distributions.

Note that although the characteristic function of a PDF always exist, its derivatives, Eq.
(2.182), may not. This is, for instance, the case of the Cauchy PDF and, by extension, the
Breit–Wigner PDF (see §3.15). One can show that the characteristic function of the Cauchy
distribution is φ(t ) = exp(−|t|). This function is not differentiable at t = 0. Its moments
consequently do not exist (i.e., they diverge).

2.10.3 Sum of Random Deviates

Imagine one has n independent random variables x1,…, xn, with respective PDFs f1(x1),…,
fn(xn) and their corresponding characteristic functions φ1(t ),…, φn(t ). Let us construct a
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69 2.10 Characteristic and Moment-Generating Functions

new random variable z as the sum of the variables x1,…, xn:

z =
n∑

i=1

xi. (2.188)

We wish to determine the probability density function f (z) on the basis of the PDFs
f1(x1), … , and fn(xn). Rather than explicitly integrating the product of the functions fi(xi)
as in Section 2.8.6, it turns out to be simpler to first calculate the characteristic function
φz(t ).

φz(t ) = E
[
eitz] , (2.189)

=
∫

· · ·
∫

exp

(

it
n∑

i=1

xi

)

f1(x1) · · · fn(xn) dx1 · · · dxn, (2.190)

which may also be written

φz(t ) =
∫

eitxi f1(x1) dx1 · · ·
∫

eitxn fn(xn) dxn, (2.191)

= φ1(t ) · · ·φn(t ). (2.192)

The characteristic function of a random variable z, which is a sum of random variables xi,
is thus simply the product of the characteristic functions of these variables. The PDF f (z)
can then be obtained by inverse Fourier transform:

f (z) = 1
2π

∫ ∞

−∞
φz(t )e−itz dt, (2.193)

= 1
2π

∫ ∞

−∞
φ1(t ) · · ·φn(t )e−itz dt. (2.194)

As a first example of application of this theorem, let us determine the probability density
function, f (z), of a variable z defined as the sum of two Gaussian variables x1 and x2

with means µ1 and µ2 and widths σ1 and σ2, respectively. Using (2.191), we write the
characteristic function of the sum of Gaussian variables as

φz(t ) = φ1(t )φ2(t ), (2.195)

where φ1(t ) and φ2(t ) are characteristic functions of the Gaussian variables x1 and x2, re-
spectively. Substituting the expression of the characteristic function for a Gaussian variable,
Eq. (2.184), we find

φz(t ) = exp
[
iµ1t − 1

2σ 2
1 t2] exp

[
iµ2t − 1

2σ 2
2 t2] , (2.196)

= exp
[
i (µ1 + µ2) t − 1

2

(
σ 2

1 + σ 2
2

)
t2] . (2.197)

Introducing the variables µz = µ1 + µ2 and σz =
√

σ 2
1 + σ 2

2 , we find that the preceding
expression may be rewritten

φz(t ) = exp
[
iµzt − 1

2σ 2
z t2] , (2.198)

which is itself the expression of the characteristic function of a Gaussian PDF with mean µz

and σz. We have thus demonstrated the notion that the sum of two Gaussian variables yields
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another Gaussian variable with a mean equal to the sum of the means of the individual
variables and a width equal to the sum, in quadrature, of their respective widths.

The preceding calculation can easily be applied to the difference between two Gaussian
variables !x = x1 − x2 (see Problem 2.20). One finds the difference has a mean µ!x =
µ1 − µ2 and a variance σ 2

!x =
√

σ 2
1 + σ 2

2 . One may also extend the preceding calculation
(see Problem 2.21) to a sum of an arbitrary number n of Gaussian deviates xi with mean
µi and width σi. Note that a similar result applies for a sum of n Poisson variables (see
Problem 2.22).

2.10.4 Central Limit Theorem

The Central Limit Theorem (CLT) stipulates that the sum X of n independent continuous
random variables, xi, i = 1, …, n, taken from distributions of mean µi and variance Vi (or
σ 2

i ), respectively, has a probability density function f (X ) with the following properties:

1. The expectation value of X is equal to the sum of the means µi,

⟨X ⟩ ≡ E [X ] =
n∑

i=1

µi. (2.199)

2. The variance of f (X ) is given by the sum of the variances σ 2
i ,

⟨!X 2⟩ ≡ Var [X ] =
n∑

i=1

Vi =
n∑

i=1

σ 2
i . (2.200)

3. The function f (X ) becomes a Gaussian in the limit n → ∞.

The CLT finds applications in essentially all fields of scientific study. Whether discussing
the behavior of complex systems, or scrutinizing the details of scientific measurements,
one finds that measured variables are in general influenced by a large number of distinct
effects and processes. The more complex they are, the larger the number of effects and
processes. This means that fluctuations, and consequently measurement errors tend to have
a Gaussian distribution. The CLT is thus truly important, and that is why so much emphasis
is also given to discussions of Gaussian distributions.

The proof of items 1 and 2 of the CLT is straightforward and is here presented first. The
third item is less obvious and discussed next at greater length.

Let us assume the variables xi follow PDFs fi(xi) of mean µi and variance Vi. Given X
is defined as a sum

X =
n∑

i=1

xi, (2.201)

one can write

E [X ] = E

[
n∑

i=1

xi

]

=
n∑

i=1

E [xi] (2.202)
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71 2.10 Characteristic and Moment-Generating Functions

since sum operations commute. Thus, insofar as the mean µi are defined, one gets item 1
of the theorem

E [X ] =
n∑

i=1

µi. (2.203)

The calculation of the variance of f (X ) proceeds similarly:

Var [X ] = E
[
(X − E[X ])2] , (2.204)

= E

⎡

⎣
(

n∑

i=1

xi −
n∑

i=1

µi

)2
⎤

⎦ , (2.205)

= E

⎡

⎣
(

n∑

i=1

(xi − µi)

)2
⎤

⎦ . (2.206)

To calculate the square within the expectation value, note that one can write
(∑n

i=1 ai
)2 =∑n

i=1 a2
i +

∑n
i̸= j=1 aia j, where diagonal terms are separated from nondiagonal terms. The

variance thence becomes

Var [X ] =
n∑

i=1

E
[
(xi − µi)2] +

n∑

i̸= j=1

E
[
(xi − µi)(x j − µ j )

]
. (2.207)

The expectation value in the first term corresponds to the variance of the variables xi,
whereas the expectation value in the second term yields the covariances of variables xi and
x j. Since the variables xi and x j are assumed to be independent, these covariances vanish,
and one is left with the anticipated result

Var [X ] =
n∑

i=1

Var [xi] . (2.208)

If the measurements are not independent, Eq. (2.199) still holds but Eqs. (2.200, 2.208) do
not and Eq. (2.207) must be used instead.

We next turn to the derivation of the third item of the central limit theorem, i.e., the
notion that in the large n limit, the sum of n variables follows a Gaussian distribution. It
is already clear from the addition theorem presented in §2.10.3 that the CLT applies for n
variables xi that are Gaussian distributed. Our task is now to demonstrate that the theorem
holds also for deviates with arbitrary PDFs.

Equation (2.208) tells us that the variance of the sum z is equal to the sum of the vari-
ances σ 2

i . Introducing the average variance σ 2 = (
∑n

i=1 σ 2
i )/n, one thus expects the vari-

ance of the sum z to scale as nσ 2. It is then convenient to introduce

yi = xi − µi√
n

, (2.209)

which satisfies E[yi] = 0 and Var[yi] = σ 2
i /n. We may thus recast the problem of finding

the PDF of z =
∑

xi in terms of z′ =
∑

yi, which by construction shall have a null mean
and a variance equal to σ 2. Our task is thus reduced to the calculation of the characteristic
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function φz′ (t ) given by

φz′ (t ) =
n∏

i=1

φi(t ), (2.210)

where φi(t ) are the characteristic functions of variables yi. Rather than using specific ex-
pressions for the functions φi(t ), let us use a generic expansion of the function eityi and
write

φi(t ) = E[eityi ] =
∞∑

m=0

1
m!

(it )mE[ym
i ]. (2.211)

Insertion of this expression in Eq. (2.210) with values from Eq. (2.209) for yi yields

φz′ (t ) =
n∏

i=1

( ∞∑

m=0

imtm

m!nm/2
E[(xi − µi)

m]

)

. (2.212)

Let us introduce the shorthand notation V m
i = E[(xi − µi)m] and recall that by construction

V 1
i = 0. The calculation of the foregoing product of sums, although tedious, is simple if

terms are grouped in powers of t. One gets at the lowest order in the following expression:

φz′ (t ) = 1 − t2

2n

n∑

j=1

V 2
j − it3

3!n3/2

n∑

j=1

V 3
j (2.213)

+ t4

4!n2

n∑

j=1

V 4
j + t4

2!2!n2

n∑

j1=1

V 2
j1

n∑

j2=1

V 2
j1 + O(5).

For the sake of convenience, let us further introduce the average of the moments Em
j :

V m = 1
n

n∑

j=1

Em
j . (2.214)

Note the special case σ 2 = V 2. In Eq. (2.213), we replace the sums by factors nV m. The
characteristic function then reduces to

φz′ (t ) = 1 − t2

2
V 2 − it3

3!n1/2
V 3 + t4

4!n
V 4 + t4

2!2!
V 2V 2 + O(5). (2.215)

Terms in 1/n vanish in the large n limit. After substitution of V 2 by σ 2, this expression
thus further reduces to

φz′ (t ) = 1 − t2σ 2

2
+ t4σ 4

4
+ O(6) = exp(−σ 2t2/2), (2.216)

which corresponds to the characteristic function of a Gaussian with mean zero and variance
σ 2. Transforming back to the variable

∑
i xi, one obtains a Gaussian with mean equal to∑

i µi and variance nσ 2 =
∑

i σ
2
i . This completes the proof of the CLT.

A few words of caution are in order. First, the preceding discussion is strictly valid only
when moments of the PDFs f (xi) exist. Distributions with very long tails, such as the
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Fig. 2.12 Illustration of the Central Limit Theorem: Histograms of scaled sums (z = 1
n

∑n
i=1 xi) of n = 2, 3, 5, and 10 uniformly

distributed random deviates in the range [0, 1] obtained with 1million entries. Dashed curves: Gaussian distribution
with standard deviationsσ = 1/

√
12n.

Breit–Wigner distribution or the Landau distribution,9 which have divergent expectation
values E[xk], will thus elude the CLT. In practice, in specific analyses one may be more
concerned with the rate at which the PDF of a finite sum of many random variables con-
verges to a Gaussian distribution. Obviously, as per Eq. (2.198), a sum of Gaussian deviates
itself follows a Gaussian distribution. It is, however, difficult to quantify the rate at which
the sum of variables with arbitrary PDFs might converge to a Gaussian distribution without
a sophisticated and detailed analysis. Still, it is usually relatively easy to test whether suf-
ficient convergence is achieved at given n by using simple Monte Carlo simulations such
as those illustrated in Figure 2.12 in which scaled sums of n uniformly distributed devi-
ates, z = 1

n

∑n
i=1 xi, are compared with a normal distribution of mean µ = 0.5 and standard

deviation σ = 1/
√

12n.

2.11 Measurement Errors

Consider repeated measurements of a set of m observables X⃗ = (X1, X2, . . . , Xm) yield-
ing a set of n random variables {x⃗1, x⃗2, . . . , x⃗n}. If the experimental conditions of the n

9 A probability distribution named after Soviet physicist Lev Landau and commonly used to model the energy of
particles traversing a medium of finite thickness.
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measurements are identical, the dispersion of values is a result of the measurement pro-
cess and it is reasonable to assume that the measured values are drawn from a common
parent population with a PDF f (x⃗). The PDF f (x⃗) is evidently not completely known but
one can use the measured sample to obtain estimates of the means µ⃗ = (µ1, µ2, . . . , µm)
and covariance matrix Vi j of the variables xi. Techniques to obtain such estimates will be
discussed in detail in Chapter 4. In this section, let us simply assume these estimates are
somehow available.

2.11.1 Error Propagation

Suppose we wish to evaluate a certain observable Y based on a function y(x⃗) of the vari-
ables Xi. If the PDF f (x⃗) was known, one could proceed, as in §2.8.6, and obtain the PDF
g(y) corresponding to the function y(x⃗). With this PDF in hand, it would then be possible to
evaluate the mean value µy, which one could then adopt as the known value of the observ-
able Y . The standard deviation σy would then characterize the uncertainty on µy. But, since
f (x⃗) is unknown, it is not possible to determine g(y) ab initio. What can then be done?

It turns out that although it is not possible to fully determine the PDF g(y), one can
nonetheless estimate its mean µy and variance σy based solely on the means µ⃗ and the
covariance matrix Vi j. This can be accomplished by calculating the Taylor expansion of the
function f (x⃗) in the vicinity of x⃗ = µ⃗ truncated to first order:

y(x⃗) = y(µ⃗) +
n∑

i=1

[
∂y
∂xi

]

x⃗=µ⃗

(xi − µi) + O(2). (2.217)

By definition, one has E[xi − µi] = 0, and the expectation value of y is thus to first order:

E[y(x⃗)] ≈ y(µ⃗). (2.218)

Let us next calculate the expectation value of y2 to estimate the variance of the preceding
estimate:

E[y2(x⃗)] = y2(µ⃗) + 2y(µ⃗)
n∑

i=1

[
∂y
∂xi

]

µ⃗

E [xi − µi] (2.219)

+ E

⎡

⎣
(

n∑

i=1

[
∂y
∂xi

]

µ⃗

(xi − µi)

) ⎛

⎝
n∑

j=1

[
∂y
∂x j

]

µ⃗

(
x j − µ j

)
⎞

⎠

⎤

⎦ + O(3).

The second term cancels out because E[xi − µi] = 0, and we must therefore keep the next
order in the Taylor expansion. Given the derivatives ∂y/∂xi|x⃗=µ⃗ are constants, the third
term can be rewritten

n∑

i=1

n∑

j=1

([
∂y
∂x j

]

x⃗=µ⃗

[
∂y
∂xi

]

x⃗=µ⃗

E
[(

x j − µ j
)

(xi − µi)
]
)

. (2.220)
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The expectation value E
[(

x j − µ j
)

(xi − µi)
]

is the covariance of the variables xi and x j,
which we denote Vi j. The expectation value E[y2(x⃗)] may thus be written

E[y2(x⃗)] ≈ y2(µ⃗) +
n∑

i, j=1

[
∂y
∂xi

]

x⃗=µ⃗

[
∂y
∂x j

]

x⃗=µ⃗

Vi j, (2.221)

from which we conclude that the variance σ 2
y is given to first order by

σ 2
y ≈

n∑

i, j=1

[
∂y
∂xi

∂y
∂x j

]

x⃗=µ⃗

Vi j. (2.222)

More generally, given a set of function of m functions y1(x⃗), · · · , ym(x⃗), the covariance
matrix of these variables may be calculated as follows (see Problem 2.24):

Ukl = Cov[yk, yl] ≈
n∑

i, j=1

[
∂yk

∂xi

∂yl

∂x j

]

x⃗=µ⃗

Vi j. (2.223)

Given that the quantities involved have finitely many indices, k, l = 1, . . . , m and i, j =
1, . . . , n, it is convenient to represent Eq. (2.223) in matrix notation as follows:

U = AVAT , (2.224)

where we introduced a matrix of derivatives A defined as

Ai j = ∂yi

∂x j

∣∣∣∣
x⃗=µ⃗

, (2.225)

and the notation AT stands for the transpose of matrix A:
(
AT )

i j = (A) ji . (2.226)

Equations (2.222, 2.223) provide the basis for error propagation used in multivariate
scientific problems. They are also used in signal processing, for example, with Kalman
filtering discussed in §5.6.

2.11.2 Uncorrelated Error Propagation

Error propagation readily simplifies when the n variables xi are mutually independent, that
is, uncorrelated. In such cases, one has Vii = σ 2

i and Vi j = 0 for i ̸= j. Eqs. (2.222, 2.223)
thus reduce to

σ 2
y =

n∑

i=1

[
∂y
∂xi

]2

x⃗=µ⃗

σ 2
i , (2.227)

and

Ukl =
n∑

i=1

[
∂yk

∂xi

∂yl

∂xi

]

x⃗=µ⃗

σ 2
i . (2.228)
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It is important to note that the partial derivatives ∂yk/∂xi and ∂yl/∂xi are generally nonzero,
the off-diagonal matrix elements Ukl , k ̸= l are thus nonvanishing, and the matrix U is
nondiagonal even though the covariance matrix V is.

2.11.3 Basic Examples of Error Propagation

Equations (2.222–2.228) may be used, for instance, to estimate the errors on sums and
products of random variables. For a sum y = x1 + x2, one finds the error is (see Problem
2.25)

σ 2
y ≈ σ 2

1 + σ 2
2 + 2V12 (error on y = x1 + x2), (2.229)

whereas for a product y = x1 × x2, one gets (see Problem 2.27)

σ 2
y

y2
≈ σ 2

1

x2
1

+ σ 2
2

x2
2

+ 2V12

x1x2
(error on y = x1 × x2). (2.230)

The preceding expressions simplify to the usual equations introduced in elementary
physics courses when variables x and y are independent, i.e., when V12 = 0.

Note that, as per our discussion of the sum of Gaussian deviates in §2.10.3, the estimate
given by Eq. (2.229) of the variance of a sum y = x1 + x2 is exact if the variables x1 and x2

are Gaussian deviates.

2.11.4 Covariance Matrix Diagonalization

Consider once again a large set of joint measurements of m random variables x1, . . . , xm

yielding mean values µ1, . . . , µm and a covariance matrix Vi j = Cov[xi, x j]. Nonvanishing
off-diagonal elements of this matrix shall indicate the random variables are correlated and
thus not independent of one another. Characterizing errors on such a system of variables
is nontrivial in general. It should indeed be clear that it is factually incorrect to use only
the variances Vii to state uncertainty estimates for the variables xi. Indeed, since the xi are
mutually correlated, so are their errors. We will see in §6.1.5 that statements about the
uncertainties of correlated variables require correlated error regions, which may be quite
cumbersome to represent for m > 2. However, should there be a way to obtain a system of
m variables y1, . . . , ym by linear transformation of the random variables xi

yi =
m∑

j=1

Ri jx j, (2.231)

such that the covariance matrix Ui j = Cov[yi, y j] is diagonal, the characterization and mod-
eling of the system could be carried out in terms of m independent variables and would thus
be far simpler.

Let us verify that the preceding linear transformation exists by inserting Eq. (2.231) for
yi in the formula of the covariance matrix elements Ui j:

Ui j =
m∑

k,k′=1

RikR jk′Cov [xk, xk′ ]. (2.232)
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Substituting Vkk′ for Cov [xk, xk′ ], we get

Ui j =
m∑

k,k′=1

RikVkk′Rjk′ (2.233)

=
m∑

k,k′=1

RikVkk′RT
k′ j, (2.234)

which in matrix notation may be written

U = RVRT . (2.235)

In order to identify the elements of the matrix R, let us consider the linear equation

V r⃗ (i) = αir⃗ (i), (2.236)

where αi and r⃗ (i) are eigenvalues and eigenvectors of V, respectively. Techniques to de-
termine eigenvalues are presented in various textbooks on linear algebra and are thus not
discussed here. By construction, the eigenvectors are required to obey the orthogonality
condition

r⃗ (i) · r⃗ ( j) =
m∑

k=1

r(i)
k r( j)

k = δi j. (2.237)

In cases where two or more eigenvalues are equal, the direction of the corresponding vec-
tors are not uniquely defined but can be chosen arbitrarily to meet the foregoing condition.
The n rows of the transformation matrix R may then be written as the n eigenvectors r⃗ (i)

of the matrix V, and one can verify by simple substitution that U has the required property,
that is, it consists of a diagonal matrix:

Ui j =
m∑

k,l=1

RikVklRT
l j =

m∑

k,l=1

r(i)
k Vklr

( j)
l , (2.238)

= α j

m∑

k=1

r(i)
k r( j)

k , (2.239)

= α jδi j. (2.240)

We conclude that the variances of the transformed variables y1, . . . , yn are given by the
eigenvalues αi of the original covariance matrix V , and indeed that all off-diagonal ele-
ments of the covariance matrix U are null. It is thus possible to model or characterize the
system of variables {xi} on the basis of the n independent random variables yi.

Note in closing that by virtue of Eq. (2.237), one finds that the transpose of matrix R is
equal to its inverse, R−1 = RT (see Problem 2.32). The matrix R consequently corresponds
to an orthogonal transformation carrying a rotation of the vector x that leaves its norm
invariant.

Analytical solutions of Eq. (2.236) are simple for 2 × 2 and 3 × 3 matrices but rapidly
become cumbersome or even intractable for larger matrices. Problem 2.33 discusses a case
involving the diagonalization of a 2 × 2 covariance matrix analytically. Diagonalization of
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78 Probability

larger matrices are usually carried out numerically using popular software packages such
as MATLAB®, Mathematica®, and ROOT [59].

2.12 RandomWalk Processes

A random walk is a process consisting of a succession of random steps. It could be the path
followed by a molecule as it travels in a liquid or a gas, the behavior of financial markets, or
the production of particles with collective behavior (e.g., flow). As it turns out, the notion
of random walk is central to the description of many stochastic phenomena, most notably
diffusion processes and the description of collective flow phenomena observed in heavy-
ion collisions. Diffusion and scattering processes amounts to a succession (i.e., a sum) of
many “small” individual scattering processes. They thus constitute a natural application of
the central limit theorem.

We here discuss random walk processes of increasing complexity starting, in §2.12.1,
with random motion in one dimension. The discussion is then extended to two dimensions
in §2.12.2. Extensions to three or more dimensions are readily possible and addressed in
the problem section.

2.12.1 RandomWalks in One Dimension

Let us first consider a random walk in one dimension with fixed step size along the x-axis.
Starting from the origin, a walker flips a fair coin to decide in which direction to go next.
Heads, he moves along +x by one unit; tails, he moves along −x by one unit. After he lands
at the new position, he flips the coin, and repeats the process for several steps denoted by
an index i. Each move is represented by xi = ±1 and the two values have equal probability:
P(+1) = P(−1) = 0.5.

To determine the probability of finding the walker at certain position x after a large
number of steps n, let us consider the sum of all steps from the walker’s initial posi-
tion, Sn =

∑n
j=1 x j. Our task is thus to determine the probability density of finding the

walker at certain position Sn. The series {Sn} is called simple random walk on the set of
integers Z.

Let us first evaluate the mean and variance of Sn. Since the values x = +1 and x = −1
are equally probable, the expectation value of x (a single step) is ⟨x⟩ = E[x] = 0 and its
variance equal σ1 = Var[x] = 1. The mean and variance of Sn are thus, respectively,

⟨Sn⟩ = E[Sn] =
n∑

j=1

E[x j] = 0, (2.241)

σ 2
n = Var[Sn] =

n∑

j=1

E[x2
j ] +

n∑

i̸=k=1

E[xix j] = n, (2.242)

since E[xix j] = E[xi]E[x j] = 0 for all i ̸= j, and E[x2
j ] = 1.
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79 2.12 RandomWalk Processes

To find the PDF of Sn, we invoke the central limit theorem, and obtain in the large n
limit,

1
N

dN
dSn

= 1√
2πσn

exp
(

− S2
n

2σ 2
n

)
. (2.243)

The foregoing reasoning can be repeated for a one-dimensional random walk with vari-
able step size. Assuming for instance that the step size is uniformly distributed in the
range [−L/2, L/2], the expectation value of a single step remains null, and its variance
is σ 2

1 = L2/12, as per Eq. (3.89). The expectation value of the sum Sn thus also remains
null in the large n limit, and its variance becomes σ 2

n = nσ 2
1 , while the form of the PDF

remains the same.
It is also interesting to consider the introduction of a biased random step. Returning for

instance to the case of a fixed size step random walk, let us assume that the probability
of a step in the positive direction is p while that of a step in the negative direction is
1 − p. The expectation value of a single step then becomes E[x] = 2p − 1 and its variance
Var[x] = 2p(1 − p) = σ 2

1 . The mean of the sum is consequently shifted, ⟨Sn⟩ = n(2p − 1),
and the variance becomes σ 2

n = 2np(1 − p) = nσ 2
1 . The PDF of Sn is then

1
N

dN
dSn

= 1√
2πσn

exp
(

− (Sn − ⟨Sn⟩)2

2σ 2
n

)
. (2.244)

Alternatively, one may also consider a forward biased Gaussian distributed random walk.
Let the PDF of one step, x, be given by

1
N

dN
dx

= 1√
2πσ1

exp
(

− (x − ⟨x⟩)2

2σ 2
1

)
, (2.245)

where ⟨x⟩ and σ1 are respectively the mean and RMS of the step size. By virtue of the
addition theorem (2.193), the PDF of the sum Sn of n random steps thus has the same form
as Eq. (2.244) but with mean ⟨Sn⟩ = n⟨x⟩ and variance σ 2

n = nσ 2
1 .

2.12.2 RandomWalks in 2D

We next proceed to determine the characteristics of a two-dimensional random walk with
fixed step but arbitrary direction. Let xi = cos φi and yi = sin φi be the projections of the
unit step size in the the x–y plane along the x- and y-axes, respectively. All directions φi

being equally probable, we write P(φi) = (2π )−1 in the range [0, 2π ]. Sums of projections
along the x- and y-axes are denoted Sx,n =

∑n
j=1 xi and Sy,n =

∑n
j=1 yi, respectively. They

define a displacement vector S⃗n, with modulus Sn =
√

S2
x,n + S2

y,n, and direction relative to

the x-axis given by ψn = tan−1(Sy,n/Sx,n).
By construction, E[xi] = E[yi] = 0, E[x2

i ] = E[y2
i ] = E[cos2 φi] = 1/2, which entails

E[Sx,n] = E[Sy,n] = 0 and σ 2
n = Var[Sx,n] = Var[Sy,n] = n/2. In the large n limit, both Sx,n

and Sy,n are Gaussian distributed:

1
N

d2N
dSx,ndSy,n

= 1
2πσ 2

n
exp

(

−
S2

x,n

2σ 2
n

)

exp

(

−
S2

y,n

2σ 2
n

)

, (2.246)
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which simplifies to

1
N

d2N
SndSndψ

= 1
2πσ 2

n
exp

(
− S2

n

2σ 2
n

)
(2.247)

after substitution of the modulus of S⃗n for the sum of the square of its components. Note
that the PDF is independent of ψ . One thus concludes, as expected, that all directions are
equally probable. Integration over the angle ψ yields

1
N

dN
dSn

= Sn

σ 2
n

exp
(

− S2
n

2σ 2
n

)
. (2.248)

The variance σ 2
n = nσ1 implies the “typical” length of Sn scales as the square root of the

number of steps, that is,
√

n.
The foregoing two-dimensional random walk can be modified to describe motion biased

toward an arbitrary direction ψ . This type of biased random walk can be used to model
collective flow, that is, the concerted motion of produced particles, observed in the study
of heavy-ion collisions at medium to high energy. To this end, let P(φi) = (2π )−1[1 +
2vm cos(m(φi − ψ ))], where the coefficient vm, commonly called flow coefficient of order
m is usually much smaller than unity. For a fixed value of ψ , and a fixed step size, r, the
expectation values of xi = r cos(mφi) and yi = r sin(mφi) are (see Problem 2.35):

E[xi] = vmr cos(mψ ), (2.249)

E[yi] = vmr sin(mψ ), (2.250)

while the second moments are

E[x2
i ] = E[y2

i ] = r2

4π
. (2.251)

The variances of xi and yi are thus respectively

σx,1 ≡ Var[xi] = r2

4π
− r2v2

m cos2(mψ ) ≈ r2

4π
, (2.252)

σy,1 ≡ Var[yi] = r2

4π
− r2v2

m sin2(mψ ) ≈ r2

4π
, (2.253)

where the right-hand side approximations hold if the coefficients are small (vm << 1). The
expectation values of the sums Sx,n and Sy,n are consequently

⟨Sx,n⟩ = E[Sx,n] = nrvm cos(mψ ), (2.254)

⟨Sy,n⟩ = E[Sy,n] = nrvm sin(mψ ), (2.255)

while their standard deviations are

σx,n =
√

nσx,1, (2.256)

σy,n =
√

nσy,1. (2.257)
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81 2.13 Cumulants

In the large n limit, both Sx,n and Sy,n are Gaussians

1
N

dN
dSx,n

= 1√
2πσx,n

exp

[

− (Sx,n − ⟨Sx,n⟩)2

2σ 2
x,n

]

, (2.258)

1
N

dN
dSy,n

= 1√
2πσy,n

exp

[

−
(
Sy,n − ⟨Sy,n⟩

)2

2σ 2
y,n

]

. (2.259)

For small values of vm, one has σ 2
x,n ≈ σ 2

y,n = σ 2
n = n r2

4π
, and one can thus write (see Prob-

lem 2.36)

1
N

dN
SndSndθ

= 1
2πσ 2

n
exp

⎡

⎢⎣−

(
S⃗n − ⟨S⃗n⟩

)2

2σ 2
n

⎤

⎥⎦ , (2.260)

where we introduced S⃗n = (Sx,n, Sy,n), its average

⟨S⃗n⟩ = (nrvm cos(mψ ), nrvm sin(mψ )), (2.261)

and θ , the angle between the vectors S⃗n and ⟨S⃗n⟩.
The vectors ⟨S⃗n⟩ and S⃗n represent the expectation value and a particular realization of

the random walk with parameter vm, respectively. A single realization of the random walk,
S⃗n, can be regarded as a measurement of ⟨S⃗n⟩. It is thus interesting to consider how precise
the “measurements” of the modulus Sn and angle ψ are relative to the expectation values
⟨Sn⟩ and tan−1(⟨Sy,n⟩/⟨Sx,n⟩). Integration of (2.260) over Sn yields (see Problem 2.37)

1
N

dN
dθ

= 1
π

exp(−χ2)
{
1 + z

√
π [1 + erf(z)] exp(z2)

}
(2.262)

where z = χ cos(θ ), erf(x) is the error function, and χ ≡ ⟨Sn⟩/σn.
Integrations over θ gives (see Problem 2.37)

1
N

dN
dSn

= 1
σ 2

n
exp

(
− (S2

n + ⟨Sn⟩2)
2σ 2

n

)
I0

( ⟨Sn⟩|Sn|
σ 2

n

)
, (2.263)

where I0(z) represents the modified Bessel function of the first kind and of order 0. Note
that the expressions (2.262) and (2.263) are independent of the step size r but depend on
the magnitude of the coefficient vm.

2.13 Cumulants

Cumulants provide a powerful tool for the study of multiple variable correlations and are
the basis of several analysis techniques used in nuclear and particle physics, many of which
are presented in Chapters 10 and 11.
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2.13.1 Cumulant Definition

The cumulants κn of a random variable x, relative to a specific probability distribution, are
formally defined in terms of the cumulant-generating function g(t ), which is the logarithm
of the moment-generating function of that probability distribution:

g(t ) = ln
(
E

[
etx]) . (2.264)

The cumulants κn are obtained as coefficients of the power series expansion of g(t ):

g(t ) =
∞∑

n=1

κn
tn

n!
. (2.265)

If g(t ) is available in close analytical form, the cumulants can then be calculated according
to

κn = dng(t )
dtn

∣∣∣∣
t=0

(2.266)

As an example, consider the calculation of the cumulants of the binomial distribution
with moment-generating function (from Table 3.1)

M (t ) =
(
1 − p + pet)n

. (2.267)

The function g(t ) becomes

g(t ) = ln (M (t )) = n ln
(
1 − p + pet) . (2.268)

Derivatives of order n of g(t ) yield the cumulants

κ1 = d
dt

g(t )

∣∣∣∣
t=0

= np, (2.269)

κ2 = d2

dt2
g(t )

∣∣∣∣
t=0

= np(1 − p), (2.270)

κ3 = d3

dt3
g(t )

∣∣∣∣
t=0

= n(2p3 − 3p2 + p), (2.271)

etc.

The use of cumulants is convenient in the analysis of independent random variables
consisting of a sum of two or more independent variables. For instance, let us define a
random variable z = x + y, where x and y are two statistically independent variables with
cumulant-generating functions gx(t ) and gy(t ), respectively. Let us calculate the cumulant-
generating function gz(t ) and show that cumulants of z of all orders n are equal to the sum
of the n order cumulants of x and y (additivity property).

gz(t ) = ln
(
E

[
et(x+y)]) , (2.272)

= ln
(
E

[
etx] E

[
ety]) , (2.273)

= ln
(
E

[
etx]) + ln

(
E

[
ety]) , (2.274)

= gx(t ) + gy(t ), (2.275)
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where in the second line we have use the statistical independence of x and y to factors their
expectation values. Since the derivative (at any order) of a sum of two functions is equal to
the sum of the derivatives of the functions (also at all orders), one finds that the cumulants
of z equal the sum of the cumulants of x and y as follows:

κ (z)
n = dn

dtn
gz(t )

∣∣∣∣
t=0

, (2.276)

= dn

dtn
gx(t )

∣∣∣∣
t=0

+ dn

dtn
gy(t )

∣∣∣∣
t=0

, (2.277)

= κ (x)
n + κ (y)

n . (2.278)

Let c ∈ R, a constant. Cumulants are easily verified to have the following basic proper-
ties:

κ1(x + c) = κ1(x) + c shift − equivariance, (2.279)

κn(x + c) = κn(x) for n ≥ 2, shift invariance, (2.280)

κn(cx) = cnκn(x) homogeneity. (2.281)

Additionally, note that by definition (2.264) of the cumulant-generating function g(t ),
one can write

M (t ) = exp (g(t )) , (2.282)

1 +
∞∑

n=1

µn
′tn

n!
= exp

( ∞∑

k=1

κntn

n!

)

. (2.283)

Using this expression, one can derive the following recursion formula between the mo-
ments µn

′ and the cumulants κn,

κn = µn
′ −

n−1∑

m=1

(
n − 1
m − 1

)
κmµn−m

′ (2.284)

One finds that the first moment equals the first cumulant while the second and third central
moments equal the second and third central cumulants, respectively. The fourth cumulant
is related to the excess kurtosis, κ4 = µ4 − 3µ2

2. Higher cumulants are more complicated
polynomial functions of the moments.

2.13.2 Joint Cumulants

As for moments, one can also define joint cumulants. The joint cumulants of random vari-
ables x1, x2, . . . xn are defined as derivatives of the joint cumulant-generating function

g(t1, t2, . . . , tn) = ln
(

E
[
e
∑n

j=1 t jx j

])
. (2.285)

The first-order cumulant of n random variables may be written

κ[x1, x2, . . . , xn] =
∑

P

(|P| − 1)! (−1)|P|−1
∏

B∈P

E

[
∏

i∈B

xi

]

, (2.286)
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where P stands for partitions of {1, 2, . . . , n}, |P| is the number of parts in such partitions,
B runs through all the blocks of the partition, while i enumerates elements of any given
partition.10 With two variables x and y, one gets the covariance

κ[x, y] = E [xy] − E [x] E [y] , (2.287)

and with three variables x, y, and z, one obtains

κ[x, y, z] = E [xyz] − E [xy] E [z] − E [xz] E [y] − E [yz] E [x] + 2E [x] E [y] E [z] , (2.288)

which for two identical variables, x = y, reduces to

κ[x, x, z] = E
[
x2z

]
− E [xz] E [x] − E

[
x2] E [z] + 2E [x]2 E [z] . (2.289)

Given the expectation value of a product of statistically independent variables is the product
of their expectation values, one easily verifies that any cumulant involving two or more
independent variables is null by definition. And if all n random variables are identical, the
joint cumulant is simply the nth ordinary cumulant.

The formula (2.286) expressing cumulants in terms of moments can be inverted. One
finds

E [x1, x2, . . . , xn] =
∑

P

∏

B∈P

κ[xi; i ∈ B]. (2.290)

For instance, the moment of the product xyz is given by

E [xyz] = κ[x, y, z] + κ[x, y]κ[z] + κ[x, z]κ[y] + κ[y, z]κ[x] + κ[x]κ[y]κ[z]. (2.291)

Joint cumulants are quite important in the analysis of particle correlations in high-energy
physics, most particularly in the study of multiparticle correlation functions and collective
motion (flow) discussed in Chapters 10 and 11.

Exercises

2.1 Demonstrate the properties listed under Eq. (2.5).
2.2 Verify that the notion of conditional probability satisfies the three axioms defining

the notion of probability.
2.3 Verify the expression Eq. (2.18) known as the law of total probability.
2.4 Derive the expression for the variance given by Eq. (2.80).
2.5 Show that the skewness, γ1, can be equivalently defined as the ratio of the third

cumulant κ3 and the third power of the square root of the second cumulant κ
3/2
2 .

2.6 Show that the excess kurtosis of a sum of n independent random variables xi is equal
to the sum of the kurtosis of these n variables divided by n2 (Eq. 2.93).

10 Examples of applications of the notions of cumulant, partitions, and blocks are presented in Chapter 11.
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2.7 Derive the expression Eq. 2.60 for the density g(q) obtained for a function q(x) of
continuous random variable x distributed according to a PDF, f (x).

2.8 Calculate expressions for the density g(a) da given functions a(x) = x and a(x) = x4,
assuming the continuous variable x has a PDF, f (x).

2.9 Verify that the full width at half maximum (FWHM) of a normal distribution is
2.35σ .

2.10 Derive a method to estimate the values xi,o defined by Eq. (4.64) for PDFs f (x) ∝
exp(−x/λ) and f (x) ∝ (k + x)−β , where k and β are two unknown constants. Hint:
Use interpolation of the yields in bins i − 1 and i + 1 to estimate the constants λ and
β bin by bin.

2.11 Derive an expression similar to Eq. (2.118) for hx1,x2 (x1, x2|x3, . . . xm), where m > 2.
2.12 Show that the Pearson coefficients defined by Eq. (2.172) are bound in the range

−1 ≤ ρi j ≤ 1 by construction.
2.13 Calculate the first, second, third, and fourth moments of the uniform distribution

defined as follows:

pU (x;α,β ) =
{ 1

β−α
α ≤ x ≤ β

0 otherwise
(2.292)

2.14 Calculate the first, second, third, and fourth moments of the triangular distribution
defined as follows:

pT (x;α,β ) =

⎧
⎨

⎩

2(x−α)
(β−α)2 α ≤ x ≤ β

0 otherwise
(2.293)

2.15 Show that given a partition of a set S into n mutually disjoint subsets Ai, with i = 1, n,
the probability P(B), of a set B ⊂ S may be written as follows:

P(B) =
∑

i

P(B|Ai)P(Ai). (2.294)

Hint: Disjoints subsets have a null intersection, Ai ∩ Aj = 0 for i ̸= j.
2.16 Combine Bayes’ theorem with the law of total probability to obtain the following

expression:

P(A|B) = P(B|A)P(A)∑
i

P(B|Ai)P(Ai)
. (2.295)

2.17 A neural network is designed and trained to classify particles entering an electro-
magnetic calorimeter as photon (P), electron (E), or hadron (H) based on the longitu-
dinal and transverse patterns of energy deposition they produce in the calorimeter. A
Monte Carlo simulation is used to estimate the neural net performance summarized
in Table 2.1. The notations Pa, Ea, and Ha are used to indicate that the energy de-
position pattern is due to a photon, an electron, or a hadron. Data analyzed with the
neural network provide for fractions 0.05, 0.15, and 0.8 of photons, electrons, and
hadrons, respectively. Calculate the relative rates produced by the nuclear reaction
under study.
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Table 2.1 Particle Identification Probabilities Used in Problem 2.17
P(Pa|P) = 0.98 P(Pa|E ) = 0.06 P(Pa|H ) = 0.05
P(Ea|P) = 0.01 P(Ea|E ) = 0.90 P(Ea|H ) = 0.15
P(Ha|P) = 0.01 P(Pa|E ) = 0.04 P(Ha|H ) = 0.80

2.18 Derive the expression (3.62) giving the moments of a PDF in terms of derivatives of
its characteristic function.

2.19 Use Eq. (3.62) to calculate the moments of (a) the uniform distributions, (b) the
exponential distribution, (c) the t-distributions, and (d) the χ2-distribution.

2.20 Show that the difference between two independent Gaussian deviates !x = x1 − x2

has a mean µ!x = µ1 − µ2 and a variance σ 2
!x =

√
σ 2

1 + σ 2
2 .

2.21 Extend Eq. (2.229) and find an expression for the error of a sum of several indepen-
dent Gaussian deviates x1, x2,…, xn.

2.22 Extend Eq. (2.229) and find an expression for the error of a sum of several indepen-
dent Poisson deviates x1, x2,…, xn.

2.23 Show that the characteristic function of f (w) = 1√
2πw

e−w/2 is given by φw(t ) =
(1 − 2it )−1/2.

2.24 Derive the expression (2.223) for the covariance of functions yi(x⃗) and y j(x⃗).
2.25 Demonstrate the expression σ 2

y ≈ σ 2
1 + σ 2

2 + 2V12, given by Eq. (2.229), correspond-
ing to the error on the sum of random variables x1 and x2.

2.26 Demonstrate the expression σ 2
y ≈ σ 2

1 + σ 2
2 + 2V12, given by Eq. (2.229), correspond-

ing to the error on the difference of random variables x1 and x2.
2.27 Demonstrate Eq. (2.230) corresponding to the error on the product of correlated

random variables x1 and x2.
2.28 Calculate the error on a ratio y = x1/x2 obtained by dividing correlated random vari-

ables x1 and x2.

2.29 Show that λ± = 1
2

[
σ 2

1 + σ 2
2 ±

√
σ 2

1 + σ 2
2 − 4 (1 − ρ2) σ 2

1 σ 2
2

]
indeed satisfies

Eq. (5.66), and find the eigenvectors r+ and r−.
2.30 Show that if the intersection of two subsets A and B is null (i.e., for A ∩ B = 0), the

subsets cannot be independent, and determine the value of P(A ∩ B).
2.31 Given PDFs g(x) and h(y) for random variables x and y respectively, calculate the

PDF of variable z defined as! z2 = x2 + y2.! tan−1 (x/y).
2.32 Verify by direct substitution of the eigenvectors r⃗ into A defined by Eq. (2.231)

that A satisfies A−1 = AT (i.e., its inverse is equal to its transpose), and that it
is consequently an orthogonal transformation of the vector x that leaves its norm
invariant.

2.33 Consider a two-dimensional covariance matrix V defined as follows:

V =
(

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

)
. (2.296)
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87 Exercises

Solve the eigenvalue equation (V − λ) r⃗ = 0 and show the eigenvalues may be writ-
ten

λ± = 1
2

[
σ 2

1 + σ 2
2 ±

√
σ 2

1 + σ 2
2 − 4 (1 − ρ2) σ 2

1 σ 2
2

]
(2.297)

with eigenvectors given by

r+ =
(

cos θ

sin θ

)
r− =

(
− sin θ

cos θ

)
(2.298)

such that

θ = 1
2

tan−1
(

2ρσ1σ2

σ 2
1 − σ 2

2

)

and

A =
(

cos θ sin θ

− sin θ cos θ

)
.

2.34 Consider a system with two random (or fluctuating) observables x and y. Explore the
types of correlation that might arise between these two observables by using a linear
combination of two randomly generated numbers r1 and r2:

x = a + b1r1 + b2r2 (2.299)

y = c + d1r1 − d2r2

where a, b1, b2, c, d1, and d2 are arbitrary constants. Calculate the mean and variance
of the observable x and y as well as the covariance of x and y. Discuss conditions
under which x and y might yield (a) independent variables, (b) correlated variables
with a positive covariance, (c) correlated variables with a negative covariance, and
(d) correlated variables with a Pearson coefficient equal to unity. Assume the random
variables r1 and r2 have null expectation values, E[r1] = E[r2] = 0, and nonvanish-
ing variances σ 2

1 and σ 2
2 , respectively.

2.35 Verify that the first-order and second-order moments associated with a two-
dimensional random walk are given by Eqs. (2.249) and (2.251).

2.36 Derive Eq. (2.260) from Eq. (2.258) for the expression of the probability density
1
N

dN
SndSndθ

of the sum vector S⃗n.
2.37 Verify the expressions (2.262) and (2.263) by explicitly integrating Eq. (2.260).

Hints:

Io(z) = 1
π

∫ π

o
e±z cos(θ )dθ (2.300)

In(z) = 1
π

∫ π

o
e±z cos(nθ )dθ

2.38 Show that the expression U = AVAT is equivalent to Eq. (2.223).
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3 Probability Models

As we discussed in Chapter 2, Bayes’ theorem and the Bayesian approach to probability
constitute central components of the scientific method. Recall that Bayes’ theorem may
be used, in particular, to infer the posterior probability of a scientific hypothesis, Hi based
on measured data D according to p(Hi|D, I ) = p(D|Hi, I )p(Hi|I )/p(D|I ). Additional hy-
potheses, Hj, with j ̸= i, may also be tested in the same way. The posterior probabilities
p(Hi|D, I ) associated with these hypotheses may then be compared to establish which is
best supported by the measured data D. Calculations of posterior probabilities, however, re-
quire one has techniques to calculate both the likelihoods p(D|Hi, I ) and the priors p(Hi|I ).
The determination of prior probabilities is a topic all of its own that we address in Chap-
ter 7. In this chapter, we discuss, through several concrete examples, how prior knowledge
about a phenomenon or system, denoted I , may be formulated to obtain data probability
models, that is, probability distributions and probability densities that model phenomena
of interest and can thus be used to calculate, based on specific hypotheses, the likelihood
of data. We begin in §3.1, §3.2, and §3.3 with basic models including the binomial distri-
bution, the multinomial distribution, and the Poisson distribution. Several continuous dis-
tributions, including the uniform distribution, the exponential distribution, and the normal
distribution, are introduced in later sections.

Professional scientists make use of a vast array of functions and probability distributions
that cannot all be covered in a single text. The functions discussed in this chapter were
selected for their foundational value, their broad range of application, or because they
are needed in later chapters. Short examples of application are included in this chapter
whenever possible and more extensive or specialized uses are discussed in later chapters of
the book. Clearly, this chapter may be read both as an introduction to practical probability
distributions/densities as well as a reference manual for such distributions.

3.1 Bernoulli and Binomial Distributions

3.1.1 Definition of the Bernoulli Distribution

Named after Swiss mathematician Jacob Bernoulli1 (1654–1705), the Bernoulli distribu-
tion is a discrete probability distribution that takes exclusively two values: 1 with success

1 Contributed works in calculus, particularly the calculus of variations, and in the field of probability.

88
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89 3.1 Bernoulli and Binomial Distributions

probability ε, and 0 with “failure” probability 1 − ε:

pBer(n|ε) = 1 − ε probability of failure, n = 0,

ε probability of success, n = 1.
(3.1)

It may alternatively be written

pBer(n|ε) = (1 − ε)1−nεn, (3.2)

where n = 1 stands for success and n = 0 for failure.
Arguably the simplest example of the Bernoulli distribution is the single toss of a fair

coin, which has a probability ε = 0.5 to come up heads or tails. The particle detection
process may also be regarded as a “Bernoulli experiment.” In this case, ε represents the
probability of detecting a single particle with a given apparatus.

3.1.2 Definition of the Binomial Distribution

In the context of the Bayesian approach to probability (i.e., probability as logic), one can
formulate prior information about the system, denoted I , by stating that the single toss of
a coin (or an attempt to detect a particle) is an event, E, with two possible outcomes that
we denote S, “the event was a success,” and S, “the event was NOT a success.” The event
E may then be written

E = S + S, (3.3)

where the + operator corresponds to a logical OR. Since S and S are mutually exclusive
(i.e., S, S = false, or S ∩ S = 0), the probability of the event E may be written

p(E|I ) = p(S|I ) + p(S|I ) = ε + (1 − ε) = 1. (3.4)

A series of n tosses may then be regarded as a succession of Bernoulli events, each with two
possible outcomes, but a unit probability. This then leads us naturally to the introduction
of the binomial distribution.

The binomial distribution arises in the context of identical, independent measurements,
tosses, or samplings, repeated a finite number of times. As such, it is an extension of the
Bernoulli distribution for n > 1. Each measurement, observation, or sample is assumed to
be an independent trial with a probability of success denoted by ε. A set of N measurements
can also be regarded as a single measurement, or event, yielding n successful trials and
N − n “failures.” If one were to carry out the N trial measurements several times, the
resulting value of n would occur with a probability given by the binomial distribution,
pB(n|N, p):

pB(n|N, p) = N!
n!(N − n)!

εN (1 − ε)N−n. (3.5)

The binomial distribution may evidently be derived using the frequentist approach to prob-
ability. It is more interesting to discover, however, how it naturally arises also in the context
of the Bayesian approach, and in particular, how the calculus of predicates of probability
as logic provides a programmatic and robust recipe to derive this result.
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90 Probability Models

Prior information about the series of tosses, I , may be summarized in two statements:
each toss is a Bernoulli events with two mutually exclusive outcomes, and the n tosses are
mutually independent, i.e., the outcome of one does not affect the outcome of the others.

As stated earlier, a single toss (or draw) may be regarded as an event, E = S + S, with
unit probability. A series of n tosses may also be regarded as an event, which we shall
denote Bn. This event consists of n independent Bernoulli tosses we note Ei. Since the
occurrence of these n mutually independent events is known, the aggregate event Bn may
then be viewed as an AND between all these individual elementary events: the first event
happened and then the second, and then the third, and so forth. One may then write

Bn ≡ E1, E2, . . . , En (3.6)

Additionally, since each event Ei has two possible outcomes, Si and Si, one can also write

Bn = (S1 + S1), (S2 + S2), . . . , (Sn + Sn). (3.7)

Recall that the commas represent logical ANDs between the different events. The AND
may then be carried out as a multiplication of the n operands of the expression. For n = 2,
one gets

B2 = (S1 + S1), (S2 + S2) (3.8)

= S1, S2 + S1, S2 + S1, S2 + S1, S2 (3.9)

while for n = 3 one gets

B3 = S1, S2, S3 + S1, S2, S3 + S1, S2, S3 + S1, S2, S3 (3.10)

+ S1, S2, S3 + S1, S2, S3 + S1, S2, S3 + S1, S2, S3

and similarly for larger values of n. The probability of a particular sequence, for instance,
S1, S2, S3, is calculated with the product rule:

p(S1, S2, S3|I ) = p(S1|I )p(S2, S3|S1, I ) (3.11)

= p(S1|I )p(S2|S1, I )p(S3|S1, S2, I )

But recall that the prior information includes the notion that the outcomes of distinct
tosses or draws are independent of one another. This means that p(S2|S1, I ) = p(S2|I ) and
p(S3|S1, S2, I ) = p(S3|I ). The probability of the event S1, S2, S3 is thus simply

p(S1, S2, S3) = p(S1|I )p(S2|I )p(S3|I ). (3.12)

The prior information I also tells us that the probabilities of success and failure are constant
and independent of the draw. We can thus write

p(S1, S2, S3) = p(S|I )p(S|I )p(S|I ) = ε2(1 − ε). (3.13)

Similar conclusions are obtained for other combinations of S and S and for larger values
of N . Indeed, we find the probability of a specific outcome depends on the number of
successes and failures. For an experiment consisting of N trials, the calculation thus simply
becomes a matter of keeping track of the number of ways a given number of S and S can
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91 3.1 Bernoulli and Binomial Distributions

occur. This is of course given by the binomial coefficient.

NCn = N!
n!(N − n)!

≡
(

N
n

)
. (3.14)

The probability of a sequence containing n times a success S and N − n times a failure S
is thus indeed given by the binomial distribution

p(n|N, I ) = N!
n!(N − n)!

p(S|I )n p(S|I )(N−n) (3.15)

= N!
n!(N − n)!

εn (1 − ε)(N−n) . (3.16)

Although the foregoing derivation is notably lengthier than a proof based on the frequentist
approach, it has the important advantage of being transparent and programmatic: once the
prior information I is given, the probability of any given sequence is readily written and
calculated. There is no need for particular intuition or tricks.

3.1.3 Properties of the Binomial Distribution

It is relatively simple to verify that the sum of the probabilities of values of n from zero
to N equals unity. Summing these different probabilities amounts to summing the prob-
abilities of all terms of an event Bn. But an event Bn has, by construction, a probability
equal to the product of the events it contains. Since all the events Ei have unit probability,
the sequence event Bn thus itself also has unit probability. Alternatively, one can also use
Pascal’s binomial theorem, which may be written

(x + y)N =
N∑

n=0

(
N
n

)
xN−nyn. (3.17)

Setting x = ε and y = 1 − ε, one finds the left-hand side of Eq. (3.17) yields (x + y)N =
(ε + 1 − ε)N = 1, and the right-hand side becomes the sum of the probabilities sought
after.

Pascal’s binomial theorem may also be used to obtain the moments of the binomial distri-
bution. The mean, µ, of the binomial distribution is obtained by calculating the expectation
value E[n]. One gets

µ ≡ E[n] =
N∑

n=0

n
N!

n!(N − n)!
pN (1 − p)N−n = N p. (3.18)

Similarly, the variance, σ 2, of the binomial distribution is given by

σ 2 = Var[n] = E[n2] − (E[n])2 = N p(1 − p). (3.19)

These two results can be verified (see Problem 3.2) using a binomial decomposition of
(1 − p)N−n in series. It is, however, simpler to calculate these, and higher moments, using
the characteristic function (defined in §2.10) of the binomial distribution (see Problem 3.2).
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92 Probability Models

Table 3.1 Properties of the binomial distribution

Function pB(n|N, ε) = N!
n!(N−n)! ε

N (1 − ε)N−n

Characteristic Fct φ(t ) =
(
1 − ε + εeit

)N

Moment Gen Fct M (t ) = (1 − ε + εet )N

Moments
1st µ = µ′ = Nε

2nd µ′
2 = Nε(1 − ε + Nε)

3rd µ′
3 = N p(1 − 3ε + 3Nε + 2ε2 − 3Nε2 + N2ε2)

4th µ′
4 = Nε(1 − 7ε + 7Nε + 12ε2 − 18Nε2

+ 6N2ε2 − 6ε3 + 11Nε3 + N3ε3)
Centered moments
2nd σ 2 ≡ µ2 = Nε(1 − ε)
3rd µ3 = Nε(1 − ε)(1 − 2ε)
4th µ4 = Nε(1 − ε)

(
3ε2(2 − N ) + 3ε(N − 2) + 1

)

Skewness excess γ1 = 1−2ε√
Nε(1−ε)

Kurtosis excess γ2 = 6ε2−6ε+1
Nε(1−ε)

1st cumulant κ1 = Nε

Other cumulants κi+1 = ε(1 − ε) dκi
dε

Figure 3.1 displays examples of the binomial distribution obtained for various values of
ε. The characteristic function, skewness, kurtosis, and other properties of the binomial are
presented in Table 3.1.

It is interesting to consider the shape of the binomial distribution for arbitrarily large
values of N , as illustrated in Figure 3.2, where the distribution is plotted as a function of
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Fig. 3.1 Examples of the binomial distribution for N = 20 and selected values of p.

2��8:�  /7��791 ������	 �	
���
�������������.4�:20/�7�4��0�.!��5.9�/10���� 09:��!��90::

https://doi.org/10.1017/9781108241922.005


93 3.1 Bernoulli and Binomial Distributions

Fig. 3.2 Evolution of the binomial distribution with increasing N, plotted for ε = 0.75.

n/N . One finds that for increasing values of N , the distribution (plotted as a function of
n/N) becomes progressively narrower, and in the limit N → ∞ becomes a delta function
δ(ε), that is, the distribution peaks at n/N = ε.

The binomial distribution finds a wide variety of applications ranging from games of
chance (toss of a coin), opinion polls, and particle physics, where it plays a central role in
modeling detection efficiencies, as we discuss briefly in the example provided in the next
section and in greater detail in §12.2.2.

3.1.4 Example: Measurements of Particle Multiplicity Variance

Consider a measurement of particle multiplicity production in proton–proton or nucleus–
nucleus collisions at relativistic energy. Assume a large acceptance detector is used to
measure the particle production. For various technical reasons, it is usually impossible to
measure all particles emitted within the detector acceptance. One characterizes a detector’s
response by stating the detector efficiency, ε, defined as the probability of measuring any
given particle. Assuming the detection of a particle is not affected by the presence of other
particles, we will show, in Chapter 12, that the efficiency can be estimated as the ratio of
the average number of detected particles, ⟨n⟩, by the number of particles produced within
the acceptance of the detector, ⟨N⟩:

ε = ⟨n⟩
⟨N⟩

. (3.20)

The bracket notation ⟨⟩ is hereafter used to represent the average of the variables n and N
over all measured collisions.

To obtain this result, consider that in essence, each particle has a probability ε of be-
ing detected. This implies that for a given N , the number of measured particles n should
fluctuate. Given a particle is either detected or not detected (success or failure), the prob-
ability distribution function (PDF) of n is a binomial distribution with parameters N and
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94 Probability Models

probability ε:

pB(n|N, ε) = N!
n!(N − n)!

εN (1 − ε)N−n. (3.21)

Particle production in elementary collisions is intrinsically a stochastic phenomenon. We
assume the number of produced particles, N , can be described by some a priori unknown
PDF, pP(N ). Its two lowest moments and variance are in principle calculated as follows:

⟨N⟩ = E[N] =
∑

pP(N )N, (3.22)

⟨N2⟩ = E[N2] =
∑

pP(N )n2, (3.23)

Var[N] = E[N2] − E[N]2. (3.24)

But given that the PDF itself is not known a priori, these calculations are not readily pos-
sible, and one must actually measure these moments. The problem, of course, is that the
detection efficiency is smaller than unity, and fluctuations will take place in the detection
process as well as in the particle production process. For a given N , measured values n will
fluctuate according to the binomial distribution. But since N itself fluctuates, one must fold
the probability of production and detection. The probability of detecting n particles, pm(n),
may then be expressed as

pm(n) =
∑

N

pB(n|N, ε)pP(N ), (3.25)

where the sum is taken on all possible values of N . Figure 3.3 presents plots of the distribu-
tion pm(n) for the trivial case of pP(N ) = δ(N ) and illustrates how measured multiplicities
can widely fluctuate for small values of efficiency. Given our interest is to estimate the
moments of particle production, we proceed to calculate the moments of the measured
distribution. The average measured multiplicity n is given by

⟨n⟩ = E[n] =
∑

n

pm(n)n,

=
∑

n

∑

N

pB(n|N, ε)pP(N )n,

=
∑

N

pP(N )
∑

n

pB(n|N, ε)n, (3.26)

= ε
∑

N

pP(N )N,

= ε⟨N⟩,

where in the third line we commuted the sums, and in the fourth, we used the mean
(Eq. 3.18) of the binomial distribution. The average measured multiplicity, ⟨n⟩, is thus,
as expected, the product of the average produced multiplicity ⟨N⟩ by the efficiency ε. The
second moment can be calculated in a similar fashion (see Problem 3.8):

〈
n2〉 = ε (1 − ε) ⟨N⟩ + ε2 〈

N2〉 . (3.27)
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Fig. 3.3 Examples of multiplicity distributions obtained with efficiencies of 95%, 80%, 50%, and 10% for a produced
multiplicity consisting of a single value of 50 particles.

The variance of the measured multiplicity is thus

Var[n] =
〈
n2〉 − ⟨n⟩2 (3.28)

= ε2Var[N] + ε (1 − ε) ⟨N⟩ . (3.29)

While the average measured multiplicity is proportional to the produced multiplicity, the
relationship between the variances of the measured and produced multiplicities is not as
straightforward, given that it involves a term that is proportional to the multiplicity and
a nontrivial dependence on the efficiency, ε (1 − ε). As we will discuss in further detail
in Chapter 12, this implies that observables based on the variance of the multiplicity are
not robust and cannot be trivially corrected for efficiency effects by taking simple ratios.
However, as we shall see in that same chapter, factorial moments lend themselves naturally
to such corrections.

3.1.5 Negative Binomial Distribution

The negative binomial distribution, as its name suggests, is intimately related to the bi-
nomial distribution. Here again, one considers successive trials that may yield successes
S or failures S. However, instead of considering the number of successes given n trials,
one studies the number of trials completed before a prescribed number of success, k, is
encountered. In this context, the last trial performed is by definition a success, and prior to
this success, there must have been k − 1 successes in the previous n − 1 trials. The proba-
bility of k successes, with the last one being a success, thus yields the negative binomial
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distribution, which may be written

p(n|k, ε) =
(

n − 1
k − 1

)
εk (1 − ε)n−k, (3.30)

where ε denotes the probability of success S, as in the case of the regular binomial distri-
bution.

The negative binomial distribution is particularly useful toward the description of pro-
duced particle multiplicity distributions measured in proton–proton collisions at high beam
energy (see, e.g., [197] and references therein) or the number of photons produced by a
blackbody at finite temperature [110].

3.1.6 A Technical Note

Computation of the binomial, multinomial (§3.2), and Poisson (§3.3) distributions requires
the evaluation of the factorial of numbers that can be arbitrarily large. Although bino-
mial and multinomial coefficients are finite, their evaluation can run into severe numerical
instabilities, or floating point overflows, even with modern computers. Given that one is
typically interested in ratios of factorial multiplied by powers of “p,” it is often convenient
to calculate the logarithms of the coefficients rather than their actual values. This can easily
be accomplished using Stirling’s2 factorial formula:

n! ≈
√

2πn
(n

e

)n
. (3.31)

3.2 Multinomial Distribution

3.2.1 Definition

The multinomial distribution is an extension of the binomial distribution applicable when
a measurement (random selection, or trial) can lead to many different outcomes of definite
probability.

Consider, for instance, an “experiment” consisting of picking balls at random from a
vat containing 25 red balls, 50 green balls, 100 yellow balls, and 25 black balls. The to-
tal number of balls is 200. Balls are replaced in the vat after they have been picked. The
probability of picking one red ball in one trial equals the ratio of the number of red balls to
the total number of balls in the vat, pred = 0.125. Likewise, the probabilities to randomly
pick a green, yellow, or black ball are pgreen = 0.25, pyellow = 0.5, and pblack = 0.125, re-
spectively; and the sum of the four probabilities is unity. Next, consider the probability
of picking two red balls and one green ball in one trial (consisting of a random selection
of three balls). The probability of this outcome is obviously proportional to the product

2 James Stirling, Scottish mathematician, 1692–1770.
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97 3.2 Multinomial Distribution

p2
red pgreen, i.e., it is proportional to the product of probabilities of the different colors to a

power equal to the number of balls of the given color being picked out.
Let us next consider, more generally, that a measurement could yield m types of objects

or outcomes (e.g., four distinct colors, five types of particle species, etc.). Let us identify
these outcomes with an index i spanning values 1, 2, . . . , m, and denote their respective
probabilities pi. By definition, the sum of these m probabilities equals unity:

m∑

i=1

pi = 1. (3.32)

Next, consider the probability of getting n1, n2, . . . , nm instances of type i = 1, . . . , m
within a sample of N objects. The probability of a specific combination of n1, n2, . . . , nm

instances of each type is proportional to the product of their respective probabilities to the
power ni:

Probability ∝ pn1
1 × pn2

2 × · · · × pnm
m . (3.33)

There are many ways to generate a certain combination of n1, n2, . . . , nm objects of types
i = 1, . . . , m. One must thus sum the probabilities of all these different sequences, while
accounting for the fact that the order of the objects in a particular sequence is irrelevant.
There are N! possible sequences of N objects (outcomes) but since objects of a given type i
are all equivalent (indistinguishable), one must divide the total number of sequences by the
number of equivalent sequences of each type, n1! . . . nm!. One then obtains the multinomial
distribution

pM (n1, . . . , nm|N, p1, . . . , pm) = N!
n1!n2! · · · nm!

pn1
1 × pn2

2 × · · · × pnm
m , (3.34)

where by construction
∑m

i=1 ni = N . It is often convenient to write the multinominal dis-
tribution using multinomial coefficients defined as follows:

(
N

n1, n2, . . . , nm

)
≡ N!

n1!n2! · · · nm!
. (3.35)

And using the product notation
∏m

i=1 xi = x1 × · · · xm, one gets

pM (n1, . . . , nm|N, p1, . . . , pm) =
(

N
n1, . . . , nm

) m∏

i=1

pni
i . (3.36)

A derivation of the multinomial distribution may also be obtained with the Bayesian
technique used in §3.1 for the derivation of the binomial distribution. In this case, the prior
information I may be stated as follows: (1) there are m mutually exclusive and logically in-
dependent outcomes Oi, with i = 1, . . . , m; (2) the outcome of a given draw is independent
of the outcome of other draws. A draw, or event E, may thus be represented as a disjunction
(i.e., an OR) of the m different outcomes, which in this context is equivalent to their sum:

E = O1 + O2 + · · · + Om. (3.37)

A series of N draws, considered as an event MN , may then be written

MN = (O1 + O2 + · · · + Om)N (3.38)
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98 Probability Models

Table 3.2 Properties of the multinomial distribution

Function pM (n1, . . . , nm|N; p1, . . . , pm) = N!
n1!n2!···nm! pn1

1 × pn2
2 × · · · × pnm

m

Characteristic Fct φ(t1, t2, . . . , tm) =
(∑m

j=1 pjeit j

)N

Moment Gen Fct M (t1, t2, . . . , tm) =
(∑m

j=1 pjet j

)N

Moments
1st µi = µ′

i = N pi

2nd µ′
2,i = N pi(1 − pi + N pi)

Covariance Cov[ni, nj] = −N pi p j

Repeating the reasoning carried for the binomial distribution, we find that the probability of
a specific draw depends on the number of occurrences of each type. An event may then be
described as consisting of n1 items of type O1, n2 items of type O2, and so on, with

∑
i ni =

n. The number of ways such outcomes may occur is given by multinomial coefficients
(3.35). The probability of a specific outcome with (n1, n2, . . . , nm) is thus indeed given by
Eq. (3.36).

3.2.2 Properties of the Multinomial Distribution

Moments of the multinomial distribution are easily calculated based on its characteristic
function

φ(t1, t2, . . . , tm) =

⎛

⎝
m∑

j=1

p jeit j

⎞

⎠
N

. (3.39)

One readily verifies that the mean and variance of variables ni have expressions similar to
those found for the binomial distribution:

µi = E[ni] = N pi, (3.40)

σ 2
i = Var[ni] = N pi(1 − pi). (3.41)

One must, however, also consider the correlation between different variables. This can
be quantified by calculating the covariance, noted Cov[ni, n j], of two variables ni and n j

such that i ̸= j. The calculation of these covariances can also be carried out based on the
characteristic function of the multinomial distribution (see Problem 3.7). One gets

Cov[ni, n j] = −N pi p j. (3.42)

The covariance is negative because the total number of objects sampled is fixed. If one
value ni increases, the others must decrease on average, and they therefore have a negative
correlation.

The binomial and multinomial distributions are known as exchangeable distributions
because they satisfy

p(Oj|Oj−1, I ) = p(Oj|Oj+1, I ), (3.43)

2��8:�  /7��791 ������	 �	
���
�������������.4�:20/�7�4��0�.!��5.9�/10���� 09:��!��90::

https://doi.org/10.1017/9781108241922.005


99 3.3 Poisson Distribution

where Oj stands for the outcome of the jth draw. This equation may seem rather peculiar
since it indicates that the probability of an outcome Oj, given a previous outcome Oj−1,
is known to have occurred is equal to the probability of the same outcome given a subse-
quent outcome Oj+1 is known to occur. How can this be causally possible? The answer is
that it is not: the connection between these probabilities is purely logical, not causal. This
peculiar property of Bayesian probabilities is discussed at length in §4.5 of ref. [97] . The
exchangeable property is also shared by the hypergeometric distribution

p(r|N, M, n) =

(
M
r

)(
N − M
n − r

)

(
N
n

) , (3.44)

which expresses the probability of an event (a draw) involving r outcomes S in n tries from
a pool of objects containing N objects, M of which are of type S and the remainder N − M
are of type S [117].

3.3 Poisson Distribution

3.3.1 Definition

The Poisson distribution is a discrete probability distribution that expresses the probabil-
ity of a number of occurrences or events in a fixed interval of space or time. It is defined
by the following prior information I or model: the probability of an event to occur in a
given time interval [t, t + dt] (or alternatively spatial interval [x, x + dx]) is defined as
p dt, where p is a constant value independent of t (or x). Furthermore, the occurrence of
an event at time t has no influence on the occurrence of events taking place in any other
time intervals before or after the time t.

Let us define a predicate E as stating that no event occurred in the time interval
[0, t + dt] and let a function q(t ) represent the probability that no event occurred during
the interval [0, t]. We then write

p(E|I ) ≡ q(t + dt ). (3.45)

The statement E can be also formulated as the conjunction (i.e., an AND) between two
propositions E1 and E2 such that E1 states that no event occurred in the interval [0, t], and
E2 states that no event occurred in the interval [t, t + dt]:

E = E1, E2 (3.46)

We apply the product rule to express the probability of E in terms of the probabilities of
E1 and E2:

p(E|I ) = p(E1, E2|I ) = p(E1|I )p(E2|E1, I ). (3.47)
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100 Probability Models

Since the two time intervals are mutually exclusive, and by virtue of the model hypothesis
that the occurrence of an event at time t has no influence on the occurrence of events taking
place in any other time intervals, we get

p(E|I ) = p(E1|I )p(E2|I ). (3.48)

The probabilities p(E|I ) and p(E1|I ) are quite obviously equal to q(t + dt ) and q(t ), re-
spectively, while the probability p(E2|I ) is equal to 1 − pdt by virtue of our first model
hypothesis. The preceding expression thus becomes

q(t + dt ) = q(t ) (1 − pdt ) . (3.49)

Defining the difference dq = q(t + dt ) − q(t ), we obtain the differential equation

dq
dt

= −pq(t ), (3.50)

which holds solutions of the form

q(t ) = q(0) exp(−pt ), (3.51)

with q(0) = 1 as an obvious initial condition. This gives the exponential distribution (re-
visited in §3.5) expressing the probability that no events occurred in the time interval [0, t]
under the condition of the model (prior information I) defined previously.

Let us next consider a subsidiary proposition, noted Cn, that exactly n counts (or events)
occurred at ordered times t1 < t2 . . . < tn during the time interval [0, t], and each within
infinitesimal intervals dt1, dt2, . . . , dtn. The proposition may then be regarded as a con-
junction of 2n + 1 simpler propositions, that there were no events in the interval [0, t1],
one event during [t1, t1 + dt1], no events during [t1, t2], one event during [t2, t2 + dt2], and
so on. Applying once again the product rule and the model hypothesis that distinct time
intervals are independent, one can write

p(Cn|p, I ) = exp (−pt1) × pdt1 × exp (−p(t2 − t1) × pdt2 × . . . (3.52)

× exp (−p(tn − tn−1) × pdtn × exp (−p(t − tn)

= exp (−pt ) pndt1 . . . dtn.

In order to obtain the probability of observing exactly n events in the time interval [0, t],
irrespective of their exact times, we must sum the probabilities p(Cn|p, I ) by accounting
for the fact that each of the n events may happen at any time in the interval [0, t] while
respecting the order t1 < t2 . . . < tn, that is, such that t1 can occur anytime in [0, t2], t2 can
occur anytime in [0, t3], and so on.

p(n|p, t, I ) = exp (−pt ) pn
∫ t

0
dtn . . .

∫ t3

0
dt2

∫ t2

0
dt1. (3.53)

The time ordered integral yields tn/n! and we thus obtain the Poisson distribution

p(n|p, t, I ) = exp (−pt ) (pt )n

n!
. (3.54)
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101 3.3 Poisson Distribution

It is common practice to express the distribution in terms of the average number of counts
in the finite time interval [0, t], denoted λ = pt:

pP(n|λ) = exp (−λ) λn

n!
(3.55)

3.3.2 Properties of the Poisson Distribution

Let us first verify that the sum of the probabilities of all values of n yields unity:

∞∑

n=0

pP(n|λ) =
∞∑

n=0

λn

n!
e−λ, (3.56)

= e−λ

∞∑

n=0

λn

n!
. (3.57)

In the second line, the sum corresponds to a Taylor expansion of eλ. Substituting this ex-
pression for the sum, we get the anticipated result:

∞∑

n=0

pP(n|λ) = e−λeλ = 1. (3.58)

The distribution is thus properly normalized and qualifies for use as a PDF.
The moments of the Poisson distribution, µ′

k = E[nk], may be obtained by direct sum of
Eq. (3.55), but are more conveniently calculated as derivatives of the characteristic function
of the distribution which we proceed to evaluate:

φn(t ) = E
[
eitn] =

∞∑

n=0

eitn e−λλn

n!
, (3.59)

= e−λ

∞∑

n=0

(
λeit

)n

n!
. (3.60)

The sum corresponds to the Taylor expansion of eλeit
. We thus obtain

φn(t ) = eλ(eit−1) (3.61)

as the characteristic function of the Poisson distribution. The moments µ′
k of the Poisson

distribution are then obtained from kth order derivatives of this expression

µ′
k = i−k dk

dtk
φn(t )

∣∣∣∣
t=0

. (3.62)

The first and second moments are

µ′
1 = E[n] = i−1 d

dt
eλ(eit−1)

∣∣∣∣
t=0

= λ, (3.63)

µ′
2 = E[n2] = i−2 d2

dt2
eλ(eit−1)

∣∣∣∣
t=0

= λ2 + λ (3.64)
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102 Probability Models

Table 3.3 Properties of the Poisson distribution

Function pP(n|λ) = λn

n! e−λ

Characteristic Fct φ(t ) = eλ(eit −1)

Moment Gen Fct M (t ) = eλ(et −1)

Moments
1st µ = µ′

i = λ

2nd µ′
2 = λ (1 + λ)

3rd µ′
3 = λ

(
1 + 3λ + λ2

)

4th µ′
4 = λ

(
1 + 7λ + 6λ2 + λ3

)

Central moments
2nd µ2 = λ

3rd µ3 = λ

4th µ4 = λ (1 + 3λ)
Skewness excess γ1 = λ−1/2

Kurtosis excess γ2 = λ−1

from which we obtained the variance (2nd centered moment) of the Poisson distribution:

Var[n] = µ′
2 − (µ′

1)2 = λ. (3.65)

The fact that the variance and the mean are equal is the hallmark of the Poisson distribution.
It may be used as a rough diagnostic of measured distributions to establish whether they
exhibit a Poissonian behavior. Higher moments, shown in Table 3.3, are easily obtained
by calculating higher derivatives of Eq. (3.61).

The Poisson distribution is illustrated in Figure 3.4 for selected values of the parameter
λ. Examples of application of the distribution are discussed in §§3.3.3 and 3.3.4. A deriva-
tion of the Poisson distribution as a limiting case of the binomial distribution is presented
in §3.3.5 and its behavior in the large λ limit discussed in §3.3.6. The gamma distribu-
tion, presented in §3.6, may be regarded as an extension of the Poisson distribution for
continuous values of n (i.e., n ∈ R).

3.3.3 Example 1: Radioactive Decay Rates

The Poisson distribution is particularly useful in the context of processes (or systems) in
which the probability of a certain phenomenon is small. For instance, consider repeated
measurements of the number of decays of a radioactive source in a specific time interval
)t. The decay rate (activity) of the source is defined as the number of (nucleus) decays
per time interval. It is proportional to the number N of nuclei present in the source and
inversely proportional to the nucleus lifetime τ :

dN
dt

= N
τ

. (3.66)
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Fig. 3.4 Examples of the Poisson distribution with four different values of the parameterλ.

The expected (i.e., average) number of decays, ⟨n⟩, in a finite time interval )t is thus

⟨n⟩ = dN
dt

)t = N
τ

)t. (3.67)

This result is strictly valid if N does not significantly vary during the time interval )t and
is thus applicable for sufficiently large N and small )t. The decay of radioactive nuclei is,
however, a stochastic process. While one can determine the average number of decays in
a time interval of a specific duration, the number of decays in successive measurements of
the number of decays in )t will yield random numbers, n, that fluctuate about the mean
⟨n⟩. Given that decays are independent of one another, and for large sources (i.e., large N),
one can model the probability of n decays during the time interval )t with the Poisson
distribution:

pP(n; ⟨n⟩) = ⟨n⟩n

n!
e−⟨n⟩. (3.68)

This implies it is possible to use the average of the number of decays, ⟨n⟩, observed over
repeated measurements, to determine the lifetime τ of the nucleus even though it may be
quite large relative to the duration of the experiment, or even the typical human lifespan.
Uncorrelated fluctuations of the number n from measurement to measurement are com-
monly referred to as Poisson fluctuations or Poisson noise.

Although the Poisson distribution is defined for discrete values of the variable n, it can
nonetheless be treated as a continuous function of a variable x, provided it is integrated
over sufficiently large ranges )x ≫ 1. In fact, one finds that in the very large n limit, the
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104 Probability Models

Poisson distribution reduces to a Gaussian distribution (see §3.9 for a demonstration of this
result).

3.3.4 Example 2: Detector Occupancy

Imagine you are instructed to design a time-of-flight hodoscope for a large particle physics
experiment. You are told that one can expect an average of 100 particles in the acceptance
of the hodoscope. You are then required to design the detector in such way that detector
units of the hodoscope should have a hit occupancy, in other words, a rate of particle cross-
ing each units, that does not exceed 5%. How many units or segments should the hodoscope
then be made of?

Let us assume that, to first order, there exists no correlation between the particles en-
tering the acceptance of the detector. The average occupancy of a detector segment is thus
equal to the ratio, λ, of the average number of particles, ⟨n⟩, to the number of segments, N :

λ = ⟨n⟩
N

. (3.69)

One can use Poisson statistics to calculate the probability that a particular segment will be
traversed by n particles in a given event:

P(n) = λne−λ

n!
. (3.70)

We wish to limit the probability of multiple occupancy of a segment to less than 5%.

P(n ≥ 2) = 1 − P(0) − P(1) ≤ 0.05. (3.71)

Substituting the expression of the Poisson distribution, one obtains

P(multiple occupancy) = 1 − e−λ − λe−λ,

≈ 1 − 1 + λ − λ + λ2 + O(2), (3.72)

= λ2 ≤ 0.05.

We then conclude the hodoscope should comprise at least N = 447 segments to limit the
multiple hit occupancy to no more than 5%.

3.3.5 Poisson Distribution as a Limit of the Binomial Distribution

We derived the Poisson distribution as the probability of a given number of occurrences in
a fixed interval of time, but it may also be obtained as a limit of the binomial distribution
for ε → 0, N → ∞ with λ = εN . This may be readily demonstrated based on the limit-
ing behavior of the characteristic function of the binomial distribution. Recall from §2.10
that the characteristic function of a PDF can be considered as an alternative definition of
the distribution. A limit of the binomial distribution may then be used to define a “new”
probability distribution. We will quickly show this new distribution is in fact the Poisson
distribution.
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105 3.3 Poisson Distribution

One finds, by simple integration, that the characteristic function of the binomial distri-
bution, Eq. (3.5), is given by

φ(t ) =
[
ε
(
eit − 1

)
+ 1

]N
. (3.73)

Let z = λ
(
eit − 1

)
. Using the binomial theorem, Eq. (3.73) may then be written

φ(t ) =
(

1 + z
N

)N
=

N∑

k=0

N!
(N − k)!k!

zk

Nk
. (3.74)

In the limit N → ∞, this yields exp(z). One thus obtains

φ(t ) = exp
[
λ

(
eit − 1

)]
, (3.75)

which happens to be the characteristic function of the Poisson distribution. The Poisson
distribution thus constitutes a limiting case of the binomial distribution for ε → 0, N → ∞
with λ = εN .

lim
N→∞
ε→0

pB(n|N, p) = pP(n|λ) = λn

n!
e−λ. (3.76)

3.3.6 Largeλ Limit of the Poisson Distribution

In the previous section, we saw that the Poisson distribution is a limiting case of the bino-
mial distribution for ε → 0, N → ∞ and finite values of λ = εN . It is also interesting to
consider the behavior of the Poisson distribution pP(n|λ) in the limit λ → ∞. Although
the Poisson distribution is formally defined for discrete (integer) values of n, we can treat
n as a continuous variable x in the limit of large λ as long as we integrate the function over
an interval much larger than unity. Given the standard deviation of the Poisson is equal to
the square root of λ, it is convenient and meaningful to define

x = n − λ√
λ

, (3.77)

which has, by construction, a mean of zero and a variance equal to unity. The characteristic
function (3.75) of the PDF of x may then be written

φx(t ) = E
[
eitx] , (3.78)

= E
[
eitn/

√
λe−it

√
λ
]
, (3.79)

= e−it
√

λE
[
eitn/

√
λ
]
, (3.80)

= e−it
√

λ φn

(
t√
λ

)
, (3.81)

where by definition φn is the characteristic function of the Poisson distribution. We substi-
tute the expression of the characteristic function of the Poisson distribution in the preceding
and get

φx(t ) = exp
[
λ

(
eit/

√
λ − 1

)
− it

√
λ
]
. (3.82)
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Fig. 3.5 Illustration of the convergence of the Poisson distribution (solid circle) with the normal distribution (dashed line) in
the “large”λ limit. Normal distributions are plotted forµ = λ andσ =

√
λ.

Expansion of the innermost exponential yields 1 + it√
λ

+ 1
2 ( it√

λ
)2 + O(3) in the limit λ →

∞. Equation (3.82) thus reduces to

φx(t ) = exp
(
− 1

2 t2) , (3.83)

which is the expression of the characteristic function of the standard normal distribution
already introduced in §2.10.2 and further discussed in §3.9. One thus concludes that for
large values of λ, the variable n follows a Gaussian distribution. In other words, for large
values of λ, the Poisson distribution may be approximated by a Gaussian distribution with
mean and variance both equal to λ. Figure 3.5 illustrates how the Poisson distribution
quickly converges toward the Gaussian distribution with mean µ = λ and standard devia-
tion σ =

√
λ for increasing values of the parameter λ.

3.4 Uniform Distribution

3.4.1 Definition

The uniform distribution, as its name suggests, implies all values of a continuous variable,
x, are equally probable in a given range [α,β]. It is defined in the range [−∞,∞] as
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Fig. 3.6 (a) Example of the uniform distribution, pu(x|α,β)withα = −2.0,β = 8.0. (b) Standard uniform distribution.

follows:

pu(x|α,β ) =

⎧
⎨

⎩

1
β−α

α ≤ x ≤ β,

0 otherwise.
(3.84)

Figure 3.6 displays an example of the uniform distribution with values α = −2 and
β = 8. The probability density has a constant value of 0.1 in the range −2 ≤ x ≤ 8, and
is null otherwise. The area under the curve equals unity and corresponds to the probability
of observing x in the range −2 ≤ x ≤ 8: all values of x in that range are equally probable,
and those outside of the range are impossible.

The cumulative density function (CDF) of pu is given by

Pu(x) =
∫ x

−∞
pu(x′|α,β ) dx′, (3.85)

=

⎧
⎨

⎩

0 for x < α,

(x − α) / (β − α) for α ≤ x ≤ β,

1 for x > β.

(3.86)

Setting α = 0, and β = 1, one gets the Standard Uniform Distribution, pu(x|0, 1).

3.4.2 Properties of the Uniform Distribution

The mean, µ, of the uniform distribution is obtained by calculating the expectation value
of x for this PDF.

µ ≡ E[x] =
∫ ∞

−∞
pu(x|α,β )x dx, (3.87)

= 1
β − α

∫ β

α

x dx = (β + α)/2. (3.88)
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108 Probability Models

Table 3.4 Properties of the uniform distribution

Function pu(x|α,β ) =
{

1
β−α

α ≤ x ≤ β

0 otherwise
Characteristic Fct φ(t ) = E

[
eitx

]
=

(
eitβ − eitα

)
/(it (β − α))

Moment Gen Fct M (t ) = E
[
etx

]
= etβ−etα

t(β−α)

Mode Anywhere in the range α ≤ x ≤ β

Median (α + β ) /2

Moments
1st µ = µ′

i = β+α

2

2nd µ′
2 = α2+αβ+β2

3

kth µ′
k = 1

k+1

k∑
i=0

αiβk−i

Central moments

2nd σ 2 ≡ µ2 = (β−α)2

12

Skewness excess γ1 = 0
Kurtosis excess γ2 = 6/5

The variance, σ 2, is readily obtained by calculating E[x2] − E[x]2 as follows (see
Problem 3.13):

σ 2 ≡ Var[x] = 1
β − α

∫ ∞

−∞
(x − µ)2 pu(x|α,β ) dx, (3.89)

= (β − α)2

12
. (3.90)

From this expression, we conclude that a flat distribution of width L has a standard devia-
tion L/

√
12. The skewness, the kurtosis excess, and other higher moments may be obtained

similarly and are listed in Table 3.4.

3.4.3 Random Number Generation

The uniform and standard uniform distributions find use in a variety of applications, and
most particularly, random number generation.

Given a set of random numbers {ri}, with i = 1, . . . , n distributed according to the stan-
dard uniform distribution pu(x|0, 1), one can trivially obtain random numbers following a
uniform (but nonstandard) distribution pu(x|α,β ) using a simple linear transformation as
follows:

r′
i = α + (β − α) ri. (3.91)

In fact, pseudo-random number generators (defined in Chapter 11) provided with popular
mathematical software libraries (e.g., Mathematica®, MATLAB®, ROOT) typically feature
a “core” random number generator that produces a standard uniform distribution, which
may then be transformed, according to Eq. (3.91), to obtain arbitrary uniform distributions.
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109 3.4 Uniform Distribution

The standard uniform distribution can also be transformed to generate random numbers
according to a wide variety of less trivial PDFs. For instance, consider the function f (x)
and its cumulative distribution, y = F (x):

y = F (x) =
∫ x

−∞
f (x′) dx′. (3.92)

By construction, one has

dy
dx

= d
dx

∫ x

−∞
f (x′) dx′ = f (x). (3.93)

As we saw in §2.6, the probability of an event is invariant under a change of variable
x → y. Let g(y) represent the PDF of y, that is, the probability of observing y in the range
[y, y + dy]. One can then use Eq. (2.60) to express g(y) in terms of f (x). One gets

g(y) = f (x)

∣∣∣∣
dx
dy

∣∣∣∣ = f (x)

∣∣∣∣
dy
dx

∣∣∣∣
−1

= 1, (3.94)

and we conclude that g(y) is a uniform PDF. This implies that any PDF f (x) of a continuous
variable may in principle be expressed (and calculated) in terms of a uniform distribution.
This property is particularly important for the generation of random numbers discussed in
§13.3.3.

3.4.4 Example: Position Resolution of a Basic Particle Hit Detector

Magnetic spectrometers are used to measure the momentum of charged particles produced
by nuclear collisions. In the bending plane, charged particles follow circular trajectories.
The radius of these trajectories, or tracks, is proportional to the momentum of the particles
and inversely related to the magnetic field (B). A precise knowledge of the B field therefore
enables a measurement of the particle momenta. This requires a determination of the radius
of curvature of the tracks, which is often accomplished by measuring “hit” positions along
the track, in other words, positions where the particles traverse specific detector planes.
In the most basic spectrometers, these detector planes are equipped with a collection of
contiguous segments that can each detect the passage of a single particle. As a particle
passes through a given segment or unit, it deposits energy and generates a signal. Assuming
a particle can generate a signal or “hit” only in one segment, one finds that the hit position
resolution is intrinsically limited by the width of the unit. The hit position is typically
assumed to be the center of the segment. That means there is an uncertainty on the position
proportional to the width of the segment. Let us estimate this error on the position by
assuming that the particle has an a priori equal probability of crossing the unit anywhere
along its width:

P(x) = 1
)L

, (3.95)

where )L is the actual width of the unit. By construction, the average position, ⟨x⟩, shall
be the center of the unit. We can then use the standard deviation of the uniform distribution
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Fig. 3.7 Exponential distribution pexp(x|λ) for selected values ofλ.

as an estimate of the error, σx, on the position:

σx = Var[x] =
∫ )L

0
(x − ⟨x⟩)2 P(x) dx = )L√

12
. (3.96)

This simple estimate of the error can be used in a wide variety of contexts to estimate errors
on measurements where the probability density is (approximately) uniform.

3.5 Exponential Distribution

3.5.1 Definition

The exponential probability distribution is defined as follows:

pexp(x|λ) =
{

λ−1 exp(−x/λ) for x ≥ 0,

0 for x < 0.
(3.97)

It is determined by a single parameter, λ, which sets the falloff rate of the exponential, as
illustrated in Figure 3.7.

The factor λ−1 ensures the proper normalization of pexp(x|λ) as a PDF. Indeed, calculat-
ing the cumulative distribution function of pexp(x|λ), one finds

Pexp(x|λ) =
∫ x

−∞
pexp(x′|λ) dx′, (3.98)

=
{

1 − exp(−x/λ) for x ≥ 0,

0 for x < 0,
(3.99)

which converges to unity in the limit x → ∞.

3.5.2 Interesting Features of the Exponential Distribution
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111 3.5 Exponential Distribution

As we saw in §3.3, the exponential distribution naturally arises in the context of stochastic
phenomena where the probability of an event to occur in a given time interval [t, t + dt] has
a fixed value pdt where p is a constant value independent of t, and such that the occurrence
of an event at time t has no influence on the occurrence of events taking place in any other
time intervals before or after the time t. The event rate may then be described in terms
of a constant τ−1 that specifies the average rate of events per unit of time. The Poisson
distribution then corresponds to the probability of observing N events in a given time
interval )t:

p(N |)t ) = 1
N!

(t/τ )N e−t/τ , (3.100)

and the probability of having no events, that is, N = 0, during an interval )t is given by
the exponential distribution e−t/τ .

The exponential PDF is useful in a variety of contexts. It can, for instance, describe
the probability of observing the decay of a specific nuclear isotope as a function of time,
t. The quantity λ then corresponds to the lifetime of the isotope and is usually noted τ

instead. The exponential PDF may also be used to represent the probability of weakly
decaying particles (such as D mesons) to decay at a certain distance from their point of
production.

It is interesting to consider the time interval T between two events relative to the time
interval )t. Since no events occur between the two events for T > )t, we can write

p(T > )t ) = e−)t/τ . (3.101)

Additionally, given the expression of the CDF, Eq. (3.98), one can also conclude that the
probability of observing two events separated by a time T smaller than )t is given by

p(T ≤ )t ) = 1 − e−)t/τ , (3.102)

since the right-hand side of Eq. (3.102) is the complement of the probability p(T > )t ).
The exponential distribution is often said to have “no memory.” For instance, if no event

occurred until a time t1, the probability of having no event in a subsequent time t2 is inde-
pendent of t1. For a fixed value t1, this may be written

p(T > t1 + t2|T > t1) = e−(t1+t2 )/τ

e−t1/τ
= e−t2/τ = p(T > t2), (3.103)

which indeed implies that the probability of T > t1 + t2 does not depend on t1. Since the
probability of an event taking place in a certain time interval does not depend on what
happened during prior time intervals, the exponential can hence be said to have no memory.
This should come as no surprise, however, as per the derivation of the distribution presented
in §3.3.1 in terms of independent events.
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Table 3.5 Properties of the exponential distribution

Function pexp(x|λ) = λ−1 exp (−x/λ)
Characteristic Fct φ(t ) = (1 − i · λt )−1

Moment Gen Fct M (t ) = (1 − λt )−1

Mode 0
Median ln(2)λ

Moments
1st µ = µ′ = λ

2nd µ′
2 = 2λ2

nth µ′
n = λnn!

Central moments
2nd σ 2 ≡ µ2 = λ2

nth µn = -(n + 1, −1)λn/e
Skewness excess γ1 = 2
Kurtosis excess γ2 = 6

3.5.3 Moments of the Exponential Distribution

The expectation value of x is (see Problem 3.14)

µ = E[x] = 1
λ

∫ ∞

0
xe−x/λ dx = λ, (3.104)

and the variance is given by

Var[x] = 1
λ

∫ ∞

0
(x − λ)2e−x/λ dx = λ2. (3.105)

Other moments of the distribution are listed in Table 3.5. More generally, one can show
(see Problem 3.14) that the moments of the exponential distribution are given by

µ′
n = λnn! (3.106)

whereas the central moments are given by

µn = -(n + 1,−1)
eλn

, (3.107)

where -(a, b) is an incomplete gamma function.

3.5.4 Example: Radiocarbon Decay and Half-Life

A convenient and useful way to visualize the exponential PDF is by means of the concept
of half-life. Consider carbon-14 (14C), an unstable carbon isotope consisting of six protons
and eight neutrons. Commonly referred to as radiocarbon, 14C decays spontaneously into
a nucleus of nitrogen-14 (14N, which consists of seven protons and seven neutrons) by
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113 3.6 Gamma Distribution

emission of an electron and an anti-neutrino. This decay is governed by the weak nuclear
force. It involves the transmutation of one of the eight neutrons of the 14C nucleus into a
proton, the production of an electron (which conserves the total electric charge), and the
emission of a neutrino (which conserves energy and momentum):

14
6 C →14

7 N + e− + νe (3.108)

The isotope 14C is naturally present in all organic materials. It forms the basis of the radio-
carbon dating method used to determine the age of archaeological, geological, and hydro-
geological artifacts. The isotope 14C has a half-life (t1/2) of 5,730 years. This means that
given a sample of n 14C nuclei, it should take (on average) 5,730 years for half of these
nuclei (n/2) to be decayed. After an additional 5,730 years, one-half of the remaining half
would have decayed, thereby leaving us with one-fourth (n/4) of the original amount. After
three half-lives, one-eighth remains; after four half-lives, one-sixteenth is left, and so on.
This can be written

nundecayed(t ) ∼
(

1
2

)t/t1/2

, (3.109)

or equivalently

nundecayed(t ) ∼ exp
( −t

t1/2/ ln 2

)
. (3.110)

The quantity t1/2/ ln 2 is readily identified as the mean life, τ , of the isotope:

τ = t1/2/ ln 2 = t1/2/0.693147. (3.111)

The half-life of 14C, 5,730 years, makes it ideal for “dating” archeological samples that are
a few to several thousand of years old. In practice, the technique appears to be limited to
about 10 half-lives, corresponding to roughly 60,000 years.

3.6 Gamma Distribution

3.6.1 Definition

The gamma distribution (not to be confused with the gamma function, -(x), see later) is
encountered in a wide variety of situations and fields including econometrics, life sciences,
as well as physical sciences. As such, it is commonly represented in terms of (at least)
three distinct parameterizations in the scientific literature. In this book, we will use the
notation most popular in Bayesian statistics, which involves a shape parameter, α, and a
rate parameter β:

pγ (x|α,β ) = βαxα−1e−xβ

-(α)
for x ≥ 0 α,β > 0, (3.112)

where -(x) =
∫ ∞

0 zn−1 exp(−z)dz, is the gamma function for x > 0. One readily verifies
that the exponential distribution (§3.5) and the χ2-distribution (§3.9) are two special cases
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Fig. 3.8 Gamma distributions pγ (x|α,β) for selected values ofα andβ .

of the gamma distribution, while integer values for the shape parameter α yield Erlang
distributions, which corresponds to sums of α exponentially distributed random deviates,
each with a mean 1/β.

As illustrated in Figure 3.8, the gamma distribution spans a wide range of shapes and
forms determined by the parameters α and β. It is thus quite convenient for modeling the
PDF of random variables and is used in a wide variety of applications and systems.

Integration of pγ in the interval [0, x] yields the CDF denoted:

Pγ (x|α,β ) =
∫ x

0
pγ (z|α,β ) dz = γ (α,βx)

-(α)
(3.113)

where γ (α,βx) is known as incomplete gamma function. The CDF function Pγ (x|α,β )
is commonly called regularized gamma function. It can be expressed in closed form if
α is a positive integer. Indeed, since pγ vanishes, by construction, both at x = 0 and for
x → ∞, integration by part yields:

Pγ (x|α,β ) = 1 −
α−1∑

k=0

(βx)k

k!
exp(−βx) (3.114)

= exp(−βx)
∞∑

k=α

(βx)k

k!
, (3.115)

where in the second line, we substituted the complement of the partial Taylor series of
exp(βx) found in the first line.
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115 3.7 Beta Distribution

Table 3.6 Properties of the gamma distribution

Function pγ (x|α, β ) = βαxα−1e−xβ

-(α)

Characteristic Fct φ(t ) = (1 − it/β )−α

Moment Gen Fct M (t ) = (1 − t/β )−α t < β

Mode (α − 1)/β for α ≥ 1
1st Moment µ = µ′ = α/β

2nd Central moment σ 2 ≡ µ2 = α/β2

Skewness excess γ1 = 2/
√

α

Kurtosis excess γ2 = 6/α

3.6.2 Moments of the Gamma Distribution

Moments and other basic properties of the gamma distribution are listed in Table 3.6.

3.7 Beta Distribution

3.7.1 Definition

The beta distribution is defined as

pβ (x|α,β ) = -(α + β )
-(α)-(β )

xα−1 (1 − x)β−1 , (3.116)

over the domain [0, 1] for real exponent values α,β > 0 and as such may be regarded as
an extension of the binomial distribution.

3.7.2 Properties of the Beta Distribution

Figure 3.9 illustrates how judicious choices of the shape parameters α and β produce
functions that span a rather wide range of functional shapes in the domain 0 < x < 1. As
such, the beta distribution is extremely convenient and often used toward the expression of
prior probabilities in Bayesian statistics (§7.2.2).

Remarkably, one finds that if a likelihood function is a binomial distribution, multiply-
ing the prior by the likelihood yields another beta distribution. The beta distribution is then
said to be a conjugate prior of the binomial distribution. In general, in cases in which
the prior and posterior are members of the same family of distributions, with a given type
of likelihood function, ones considers the prior and the likelihood to be conjugate distri-
butions. Other cases of conjugate distributions include the normal distribution when used
both as prior and likelihood functions, as well as the gamma distribution when used a prior
for a Poisson likelihood. A more in-depth discussion of conjugate priors is presented in
§7.3.3.
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Fig. 3.9 Examples of the beta distribution pβ (x|α,β) for selected values ofα andβ .

Basic properties of the beta distribution are listed in Table 3.7. The moment-generating
function of the beta distribution is calculated in terms of the expectation value of etx

MX (α,β, t ) = E[etx] =
∫ 1

0
etx pβ (x|α,β ) dx. (3.117)

This expression corresponds to the confluent hypergeometric function

MX (α,β, t ) = 1F1(α,α + β, t ), (3.118)
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Table 3.7 Properties of the beta distribution

Function pβ (x) = -(α+β )
-(α)-(β ) x

α−1 (1 − x)β−1

Characteristic Fct 1F1(α,α + β, it )
Moment Gen Fct 1F1(α,α + β, t )
Mode (α − 1)/(α + β − 2) for α,β > 1
Median ≈ (α − 1/3)/(α + β − 2/3) for α, β > 1
1st Moment µ = α/(α + β )
2nd Central moment Var[x] = αβ/(α + β )2(α + β + 1)
Skewness γ1 = 2/(β − α)

√
α + β + 1/(α + β + 2)

√
αβ

Kurtosis excess γ2 = 6
[
(α − β )2(α + β + 1) − αβ(α + β + 2)

]
/

αβ(α + β + 2)(α + β + 3)

which may be written as an infinite series [5]

MX (α,β, t ) = 1 +
∞∑

k=1

⎛

⎝
k−1∏

j=0

α + j
α + β + j

⎞

⎠ tk

k!
. (3.119)

Similarly, the characteristic function of the beta distribution may be shown to be equal to

φX (α,β, t ) = 1F1(α,α + β, it ) (3.120)

= 1 +
∞∑

k=1

⎛

⎝
k−1∏

j=0

α + j
α + β + j

⎞

⎠ (it )k

k!
. (3.121)

3.8 Dirichlet Distributions

3.8.1 Definition

Much like the beta distribution may be regarded as an extension of the binomial distribu-
tion, the Dirichlet distribution may be viewed as an extension of the multinomial distri-
bution. It is defined as a function of k continuous variables xi and αi according to

pD(x⃗|α⃗) = -(α1 + α2 + · · · + αk )
-(α1)-(α2) · · · -(αk )

xα1−1
1 xα2−1

2 · · · xαk−1
k , (3.122)

with the following constraints:

x⃗ = (x1, x2, . . . , xk ) 0 < xi < 1;
k∑

i=1

xi = 1,

α⃗ = (α1,α2, . . . ,αk ) αi > 0;
k∑

i=1

αi ≡ α,
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Table 3.8 Properties of the Dirichlet distribution

Function f (x⃗|α⃗) = -(α1+α2+···+αk )
-(α1 )-(α2 )···-(αk ) xα1−1

1 xα2−1
2 · · · xαk−1

k

Mode xMode
i = (αi − 1)/(

∑k
j=1 α j − k) for αi > 1

Mean E[xi] = αi/
∑k

j=1 α j

Variance Var[xi] = αi (α − αi) /α2 (α + 1)
Covariance Cov[xi, x j] = −αiα j/α

2 (α + 1) for i ̸= j
Note: α =

∑k
i=1 αi

where -(z) is the regular gamma function. The Dirichlet distribution simplifies to a beta
distribution for k = 2. Also note that the constraint

∑k
i=1 xi = 1 implies the distribution is

effectively (k − 1) dimensional.
The Dirichlet distribution find applications, much like the beta distribution, in the con-

text of Bayesian inference with finite statistics (see, e.g., §12.3.8).
Marginalization of the Dirichlet distribution, that is, reduction to one variable xi, yields

the beta distribution with parameters r = αi and s = α − αi.

pβ (xi|r = αi, s = α − αi) =
xαi−1

i (1 − xi)
α−αi−1

β (αi,α − αi)
. (3.123)

3.8.2 Properties of the Dirichlet Distribution

The properties of the Dirichlet distribution are summarized in Table 3.8.

3.9 Gaussian Distribution

3.9.1 Definition

The Gaussian distribution is defined in terms of a continuous variable x in the domain
[−∞,∞]:

pG(x|µ, σ 2) = 1√
2πσ

exp

[

− (x − µ)2

2σ 2

]

. (3.124)

The distribution is given many names: statisticians and mathematicians use the term
normal distribution while social scientists commonly refer to it as the bell curve because
of its curved flaring shape. Physicists typically prefer the appellation Gaussian distribu-
tion in honor of Carl Friedrich Gauss3 (1777–1855). Indeed, although the distribution was
likely “discovered” by De Moivre as an approximation of the binomial distribution, and

3 German mathematician and scientist who made major contributions in number theory, statistics, analysis, differ-
ential geometry, geodesy, geophysics, and physics. Gauss is considered by many as the greatest mathematician
since antiquity.
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119 3.9 Gaussian Distribution

subsequently used by Laplace in 1783 to study measurement errors, its first extensive ap-
plication in a scientific context is commonly attributed to Gauss, who, in 1809, used the
distribution toward the analysis of astronomical data.

The name and qualifier normal is perhaps best suited for the distribution. Indeed, one
finds that many distributions tend to the normal distribution in the large N limit. One also
finds that the sum of a very large number of random variables has a normal distribution.
This fact is embodied in the central limit theorem, which we discussed in §2.10.4. The
normal distribution thus, indeed, describes that which is common or “normal.” But given
this text is targeted primarily toward physical scientists, we will hereafter mostly use the
Gaussian distribution appellation commonly in vogue in physics.

Note that statisticians often use the notation X ∼ N (µ, σ 2) to indicate that a variable X
is distributed according to a normal distribution of mean µ and variance σ 2. The distribu-
tion may also be defined in terms of a precision parameter ξ defined as the multiplicative
inverse of the variance

ξ = 1
σ 2

, (3.125)

and is then written

pG(x|µ, ξ ) =
√

ξ

2π
exp

[
−1

2
ξ (x − µ)2

]
. (3.126)

3.9.2 Moments of the Gaussian Distribution

We first note that while the function pG(x|µ, σ 2) does not have an analytical primitive (in-
definite integral), its definite integral over the domain [−∞,∞] nonetheless exists and can
be shown to equal unity. The function is thus properly defined and usable as a probabil-
ity density. This stems from the inclusion of the normalization factor

√
2πσ (see Problem

3.15):

∫ ∞

−∞
exp

[

− (x − µ)2

2σ 2

]

dx =
√

2πσ. (3.127)

One verifies, through integration by parts, that the two parameters µ and σ correspond to
the mean and the variance of the distribution, respectively:

E[x] = 1√
2πσ

∫ ∞

−∞
exp

[

− (x − µ)2

2σ 2

]

x dx = µ, (3.128)

and

Var[x] = 1√
2πσ

∫ ∞

−∞
exp

[

− (x − µ)2

2σ 2

]
(x − µ)2 dx = σ 2. (3.129)

It is immaterial whether one considers σ , σ 2, or ξ , as the parameter determining the
width of the distribution. However, given the Gaussian distribution is commonly used to
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Fig. 3.10 Gaussian distribution pG(x|µ, σ 2) for selected values ofµ andσ 2.

describe fluctuations in the outcome of measurements, the precision label given to ξ is
both practical and advantageous: indeed, as ξ increases, the width of the distribution de-
creases and thus reflects a measurement of greater precision. Evidently, σ 2 and σ are also
both useful given they respectively represent the variance and standard deviation of the
distribution.

Figure 3.10 displays examples of the Gaussian distribution for various combinations of
µ and σ . Higher moments of the distribution are best calculated using the characteristic
function (or moment-generating function) of the distribution listed in Table 3.9 (see Prob-
lem 3.16).

A special case of the Gaussian distribution, known as standard normal distribution, is
obtained by setting µ = 0 and σ = 1:

ϕ(x) ≡ pG(x|µ = 0, σ 2 = 1) = 1√
2π

exp
(

−x2

2

)
. (3.130)

The cumulative distribution of ϕ(x), noted 2(x), is

2(x) = 1√
2π

∫ x

−∞
exp

(
−x′2/2

)
dx′ = 1

2

[
1 + erf

(
x/

√
2
)]

, (3.131)

where erf(x) is the error function, defined as

erf(x) = 2√
π

∫ x

0
e−t2

dt. (3.132)

It is also useful to be familiar with the complementary error function erfc(x), defined as

erfc(x) = 1 − erf(x) = 2√
π

∫ ∞

x
e−t2

dt. (3.133)
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121 3.9 Gaussian Distribution

Table 3.9 Properties of the Gaussian (normal) distribution

Function pG(x; µ, σ 2) = (2π )−1/2σ−1 exp
(
− (x − µ)2 /2σ 2

)

Characteristic Fct φ(t ) = exp
(
iµt − σ 2t2/2

)

Moment Gen Fct M (t ) = exp
(
µt + σ 2t2/2

)

Mode µ

Median µ

Moments
1st (Mean) µ = µ′

2nd µ′
2 = µ2 + σ 2

3rd µ′
3 = µ3 + 3µσ 2

4th µ′
4 = µ4 + 6µ2σ 2 + 3σ 4

Centered moments
2nd (Variance) σ 2

3rd 0
4th σ 4

Skewness excess γ1 = 0
Kurtosis excess γ2 = 1

Additionally, note that the error function is odd in x:

erf(−x) = −erf(x) (3.134)

The error function, erf(x), and the complementary error function, erfc(x), cannot be cal-
culated analytically but are tabulated in many reference books. They are also provided in
most mathematical software packages (e.g., Mathematica®, MATLAB®, and ROOT).

An arbitrary Gaussian distribution, pG(y;µ, σ 2), function off a variable y with a mean
µ and variance σ 2 can be transformed into ϕ(x) through a simple change of variable x =
(y − µ)/σ . Accordingly, the cumulative integral,

PG(y|µ, σ 2) =
∫ y

−∞
pG(y′|µ, σ 2) dy′, (3.135)

= 1
2

[
1 + erf

(
x − µ√

2σ

)]
, (3.136)

is equal to 2(x).
Returning to the standard normal distributions, ϕ(x), it is useful to consider the prob-

ability pDS()) that the variable x will be found within the double-sided (DS) interval
−) ≤ x ≤ ). It is calculated according to

pDS()) ≡ 1√
2π

∫ )

−)

exp(−t2/2) dt, (3.137)

= 2()) − 2(−)), (3.138)

= erf()/
√

2), (3.139)
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Fig. 3.11 Probability that a random variable x distributed according to a standard normal distribution is found within (a)±)

of the origin and (b) in the interval x ≤ ).

shown in Figure 3.11a. The probability that x falls within one “sigma” (±σ ) of the mean
is 0.6827 and amounts to 0.9545, 0.9973, and 0.999937 for ) = 2σ , 3σ , and 4σ , respec-
tively. One-sided intervals are also of interest when a variable is found at or near a physical
limit and one wishes to know the probability of x ≤ ). One must then consider the one-
sided probability pOS()) defined by

pOS()) ≡ 2()) = 1√
2π

∫ )

−∞
exp(−t2/2) dt (3.140)

= 1
2

+ 1
2

erf
(
)/

√
2
)
, (3.141)

shown in Figure 3.11b.
The Gaussian distribution has applications in very many practical situations. This stems

largely from the central limit theorem (discussed in §2.10.4), which states that the sum of
n independent random numbers xi, i = 1, . . . , n of means µi and variances σ 2

i becomes a
Gaussian distribution with mean µ =

∑n
i=1 µi and variance σ 2 =

∑n
i=1 σ 2

i in the large n
limit. The theorem applies under general conditions regardless of the individuals PDFs of
the variables xi. We will discuss several applications of the central limit theorem and the
Gaussian distribution throughout this book.

3.10 Multidimensional Gaussian Distribution

The multidimensional Gaussian distribution finds applications in systems involving si-
multaneously several variables with Gaussian distributions. For instance, consider a system
involving m variables, x⃗ = (x1, . . . , xm) of mean value µ⃗ = (µ1, . . . , µi). The multidimen-
sional Gaussian distribution may be written in its most general form:

pMG(x⃗) = K exp
[
−1

2
(x⃗ − µ⃗)T Q (x⃗ − µ⃗)

]
, (3.142)
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123 3.10 Multidimensional Gaussian Distribution

where K is a normalization constant, which we evaluate in the following, and Q is an m × m
symmetric matrix. There exists a transformation

y⃗ = Ax⃗ (3.143)

such that Q can be diagonalized. The matrix A is orthogonal, satisfies A−1 = AT , and has
a determinant |A| = 1. It is then possible to reduce Eq. (3.142) to a simpler form involving
a diagonal matrix D = AQAT . Defining ν⃗ = Aµ⃗, Eq. (3.142) may then be written

pMG(x⃗) = K exp
[
−1

2
(y⃗ − ν⃗)T AQAT (y⃗ − ν⃗)

]
, (3.144)

= K exp

[

−1
2

(
m∑

i=1

Dii(yi − νi)2

)]

. (3.145)

The elements Dii can readily be identified as the multiplicative inverse of the variances,
σ−2

y,i , of the variables yi. The normalization constant K is thus equal to (2π )−m/2 ∏
σ−1

y,i =
(2π )−m/2|D|−1/2. By extension, one also concludes that the matrix Q corresponds to the
inverse, V−1, of the covariance matrix of variables xi. By construction, one can thus write

V = AT D−1A, (3.146)

and the multi-Gaussian distribution becomes

pMG(x⃗) = 1
(2π )m/2|V |1/2

exp
[
−1

2
(x⃗ − µ⃗)T V−1 (x⃗ − µ⃗)

]
, (3.147)

where we also expressed the constant K in terms of the determinant of the covariance
matrix V.

As an example of application of the multidimensional Gaussian distribution, consider
a Gaussian two-particle correlation function in pseudorapidity.4 Let η1 and η2 represent
the pseudorapidity of the two particles. Their relative and average rapidities are written
)η = η1 − η2 and η̄ = 0.5(η1 + η2), respectively. Let us model the correlation strength
between the two particles according to their relative and average rapidities using Gaussian
distributions:

C()η, η̄) ∝ exp

(

− )η2

2σ 2
)η

)

exp

(

− η̄2

2σ 2
η̄

)

, (3.148)

where σ)η and ση̄ are the widths of the correlations in )η and η̄, respectively. Let us define
a matrix D as follows:

D =
(

σ−2
)η 0

0 σ−2
η̄

)

. (3.149)

4 The notion of correlation function will be defined in Chapter 10. However, all that matters here is that the
function considered depends on two Gaussian random variables.
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124 Probability Models

Let us also define a matrix A to transform coordinates η1 and η2 into )η and η̄ according
to

(
)η

η̄

)
=

(
1 −1
1
2

1
2

) (
η1

η2

)
. (3.150)

The preceding correlation function may then be written in terms of η1 and η2 as follows:

C(η1, η2) = 1
2πσ)ηση̄

exp
(

−1
2
η⃗ T Qη⃗

)
, (3.151)

with

η⃗ =
(

η1

η2

)
, (3.152)

and

Q = AT DA =

⎛

⎝
σ−2

)η + 1
4σ−2

η̄ −σ−2
)η + 1

4σ−2
η̄

−σ−2
)η + 1

4σ−2
η̄ σ−2

)η + 1
4σ−2

η̄

⎞

⎠ , (3.153)

which is the inverse of the covariance matrix of η1 and η2.

3.11 Log-Normal Distribution

3.11.1 Definition

The log-normal distribution is defined as

pln(x|µ, σ ) = 1√
2πσ

1
x

exp

(

− (ln x − µ)2

2σ 2

)

x > 0, (3.154)

where µ and σ 2 are the mean and variance, respectively, of the distribution of the ran-
dom variable y = ln x which, by construction, has a normal distribution. The cumulative
distribution function is obtained by integration:

Pln(x|µ, σ ) = 1
2

erfc
(

− ln x − µ√
2σ

)
= 2

(
− ln x − µ

σ

)
, (3.155)

where erfc and 2 are the complementary error function, and the standard normal CDF,
respectively.

3.11.2 Properties of the Log-Normal Distribution

The variables µ and σ 2 are clearly not the mean and variance of the log-normal distribution.
Indeed, direct calculation shows (see Problem 3.23) the mean and variance of pln(x|µ, σ 2)
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Fig. 3.12 Log-normal distribution pln(x;µ, σ )with selected values ofµ andσ .

are as follows:

E[x] = exp
(

µ + 1
2
σ 2

)
, (3.156)

Var[x] =
[
exp(σ 2) − 1

]
exp

(
2µ + σ 2) . (3.157)

Other moments and properties of the log-normal distribution are presented in Table 3.10.
Examples of the log-normal distribution are shown in Figure 3.12.

3.11.3 Generalized Central Limit Theorem

The log-normal distribution is of particular interest with regards to random variables that
are the product of many random variables. For instance, consider n random variables z1,
z2, . . . . , zn and their product:

x ≡
n∏

i=1

zi. (3.158)

We introduce variables wi defined such that zi = ewi , and y ≡
∑n

i=1 wi. By construction,
one has x = ey, and the probability p(x) dx equals p(y) dy. This can also be written

p(x) ≡ p(y)

∣∣∣∣
dy
dx

∣∣∣∣ . (3.159)

For a reasonably large n, one can apply the central limit theorem and conclude y is Gaus-
sian distributed with mean ȳ ≡

∑n
i=1 w̄i and variance σ 2 ≡

∑n
i=1 σ 2

w,i. The variable x con-
sequently has a log-normal distribution. Indeed, given dy

dx = 1
x , one obtains:

p(x) ≡ 1√
2πσ

1
x

exp

(

− (ln x − µ)2

2σ 2

)

. (3.160)
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126 Probability Models

Table 3.10 Properties of the log-normal distribution

Function pln(x; µ, σ ) = (2π )−1/2(σx)−1 exp
(
− (ln x − µ)2 /2σ 2

)

Characteristic Fct φ(t ) = 1
2 + 1

2 erf((ln x − µ)/
√

2σ 2)

Mode exp (µ − σ 2)
Median exp (µ)
Mean µ = exp

(
µ + 1

2 σ 2
)

Variance σ 2 = (exp(σ 2) − 1) exp (2µ + σ 2)

Skewness excess γ1 =
(
exp(σ 2) + 2

)√
exp σ 2 − 1

Kurtosis excess γ2 = exp(4σ 2) + 2 exp(3σ 2) + 3 exp(2σ 2) − 6

The central limit theorem (§2.10.4) can then be “generalized” as follows:

1. The sum of a large number of random variables has a normal distribution.
2. The product of a large number of random variables has a log-normal distribution.

The generalized central limit theorem is applicable, in particular, to a succession of n
gain (or attenuation) devices with gains (attenuation factors) zi = eai , where the coefficients
ai, which determine the gains, are approximately normally distributed.

The characteristic function and lowest moments of the log-normal distribution are pre-
sented in Table 3.10.

3.12 Student’s t-Distribution

3.12.1 Definition

Student’s t-distribution, commonly known as the t-distribution, involves a family of con-
tinuous probability distributions that arise when estimating the average of populations
known to have a normal distribution.

Suppose a random variable, X , is known to be normally distributed but with unknown
mean and variance. One can then proceed to estimate the mean of the distribution based
on a sample consisting of n measurements. As we shall see in Chapter 4, the mean of this
sample provides an unbiased estimator of the mean of the distribution. However, the sample
mean is expected to deviate, sample by sample, from the actual mean of the distribution.
We will show in §6.4 that the probability distribution of the sample mean is given by the
t-distribution:

pt (t|ν) =
-

(
ν+1

2

)
√

νπ-
(

ν
2

)
(

1 + t2

ν

)− ν+1
2

, (3.161)

where ν = n − 1 is the number of degrees of freedom being sampled.
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127 3.12 Student’s t-Distribution

Table 3.11 Properties of Student’s t-distribution

Function pt (ν ) = -( ν+1
2 )

√
νπ-( ν

2 )

(
1 + t2

ν

)− ν+1
2

Characteristic Fct φ(t ) = Kν/2(√
ν|t|)(1+ν/2)

-(ν/2)2(ν/2−1) for ν > 0

Kν/2(x) is a Bessel function
Moment Gen Fct Undefined
Mode 0
Median 0
Mean µ = 0
Variance σ 2 = ν

ν−2 for ν > 2
Skewness excess γ1 = 0
Kurtosis excess γ2 = 6

ν−4 for ν > 4

The t-distribution is particularly useful in the context of Student’s t-test, which quantifies
the likelihood that a measured value lies within a given confidence interval of a predicted
value or the results of other measurements (discussed in §6.4). It is symmetric about the
origin, t = 0, and its moments, relatively simple to calculate, are listed in Table 3.11.

Figure 3.13 presents examples of the t-distribution for selected values of the number
of degrees of freedom, ν, compared to a standard normal distribution (thin solid line).
For small values of ν, the t-distribution has tails that slowly taper off to zero at infinity.
The distribution, however, eventually converges to the normal distribution for a large (in-
finite) number of degrees of freedom, that is, when the mean is evaluated from very large
samples.

3.12.2 Properties of Student’s t-Distribution

Properties of the Student’s t-distribution are presented in Table 3.11.

t
4− 2− 420

) n
(t 

| 
tf

0

0.2

0.4
 = 1n
 = 2n
 = 5n
 = 10n
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Fig. 3.13 Student’s t-distribution for selected values of the number of degrees of freedom, ν , compared to the standard normal
distribution (thin solid line).
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3.13 Chi-Square Distribution

3.13.1 Definition

The χ2 distribution arises in the context of data modeling with the maximum likelihood
and least-squares methods discussed in §5.2. We will see that given a dataset consisting of n
points (xi, yi), i = 1, . . . , n, and a model f (x|θ⃗ ), dependent on m unknown parameters θ⃗ =
{θ1, θ2, . . . , θm}, one can evaluate the goodness of a fit based on the χ2 function defined as

χ2 =
n∑

i=1

[
yi − f (xi|θ⃗ )

]2

σ 2
i

, (3.162)

where σ 2
i are the errors on the n measurements yi. For measurements governed by Gaus-

sian statistics, that is, when repeated measurements at a given value of x yield values of
y distributed according to a normal distribution, the PDF of the χ2 values is given by the
χ2-distribution defined as

pχ2 (z|n) ≡ 1
2n/2-(n/2)

zn/2−1e−z/2 for n = 1, 2, . . . . (3.163)

We will derive this distribution in detail in §3.13.3. In this section, let us focus on its
properties and interpretation. We first note that the χ2 distribution of the continuous vari-
able z evaluated in the domain 0 ≤ z < ∞ is a special case of the gamma distribution (§3.6)
with β = 1/2 and α = n/2. In this context, the variable n is an integer called number of
degrees of freedom. The evaluation of the gamma function, -(x), is thus restricted to x
taking integer and half-integer values only. For integers n ≥ 1, one has -(n) = (n − 1)!
whereas for odd values of n, the evaluation of -(n/2) is achieved with the recursive
formula

-(x + 1) = x-(x) with -(1/2) =
√

π . (3.164)

The number of degrees of freedom n is a measure of the number of independent variables
in a system or model. By definition, an unconstrained dataset containing n independent
random variables has n degrees of freedom. However, imagine fixing the mean of the n
values yi prior to their measurements. If the n − 1 first values are obtained randomly and
independently, the nth value becomes automatically constrained by the a priori fixed value
of the mean: it cannot be considered random. The dataset has consequently only n − 1
degrees of freedom. Now, imagine fixing the second moment of the distribution as well. It
is easy to verify that once the n − 2 first measured values have been obtained, the last two
are automatically determined by the first n − 2 values and the specified values of the first
and second moments of the distribution. Specifying additional moments (or other linearly
independent parameters of the model) thus reduces the number of degrees of freedom:
each additional model parameter reduces the number of degrees of freedom by one unit.
The number of degrees of freedom of a dataset consisting of n random values fitted to a
model involving m parameters is thus N − m.
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129 3.13 Chi-Square Distribution

Table 3.12 Properties of theχ 2 distribution

Function pχ2 (z; n) ≡ 1
2n/2-(n/2)

zn/2−1e−z/2

Characteristic function (1 − 2it )n/2

Mode max(n − 2, 0)
Median ≈ n(1 − 2/9n)3

Mean µ = n
Variance σ 2 = 2n
Skewness excess γ1 =

√
8/n

Kurtosis excess γ2 = 12/n

3.13.2 Properties of the Chi-square Distribution

The mean and variance of the χ2 distribution may be calculated by integration by parts
(see Problem 3.18). One gets

E[z] =
∫ ∞

0
z

1
2n/2-(n/2)

zn/2−1e−z/2 dz = n, (3.165)

and

Var[z] =
∫ ∞

0
(z − n)2 1

2n/2-(n/2)
zn/2−1e−z/2 dz = 2n. (3.166)

Other properties of the χ2 distribution are listed in Table 3.12.
The χ2 distribution is illustrated in Figure 3.14a for various values of the number

of degrees of freedom n. One observes that all distributions exhibit a peak near n. As
shown in Figure 3.14b, this translates in having a value of the χ2 per degrees of freedom,
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Fig. 3.14 (a)χ 2 probability distribution for selected numbers of degrees of freedom nDoF; (b) scaledχ 2 probability
distribution plotted as a function of theχ 2 per degrees of freedom,χ 2/nDoF, for selected values of nDoF.
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130 Probability Models

χ2/DoF = χ2/n, peaked near unity. Indeed, note that while the mean of the χ2/DoF dis-
tribution is unity for all values of n, the mode of the distribution differs from unity, with
the largest deviations for a small number of degrees of freedom, n.

It is useful to consider the addition of two independent, χ2-distributed, random variables
Z1 and Z2 with n1 and n2 degrees of freedom, respectively. We will show in §3.13.4 that the
sum Z = Z1 + Z2 is characterized by a χ2 distribution with n1 + n2 degrees of freedom.
This implies that a merged dataset consisting of two independent datasets behaves as one
would intuitively expect, that is, the variable Z shall have a χ2 distribution determined by
the total number of degrees of freedom of the two sets. However, this conclusion does not
apply if the two datasets are not mutually independent. This is the case, in particular, if a
subset of the first dataset is also included in the second dataset.

3.13.3 Derivation of theχ2 Distribution

In order to derive the expression of the PDF pχ2 (z|n) of a χ2 variable with n degrees of
freedom, we appeal to the addition theorem, Eqs. (2.191, 2.193), discussed in §3.13. We
define z as the sum of the n error weighted deviations of the measurements yi, with error
σi, from the expected values µi:

z =
n∑

i=1

(yi − µi)
2

σ 2
i

=
n∑

i=1

wi, (3.167)

with wi = (yi − µi)
2 /σ 2

i . By virtue of Eq. (2.191), we can write the characteristic function
of z as a product of the characteristic functions of the variables wi.

φz(t ) =
n∏

i=1

φw,i(t ). (3.168)

We thus need to determine the function φw,i(t ). To accomplish this, we first define variables
y′

i = (yi − µi) /σi and note that since we assumed the variables yi have normal distributions
with mean µi and width σi, then the variables y′

i follow the standard normal distribution

f (y′
i) = 1√

2π
e−y′

i
2

. (3.169)

The PDFs of variables wi may then be written

pw(wi) = 2 f (y′
i)

∣∣∣∣
dy′

i

dwi

∣∣∣∣ = 1√
2πwi

e−wi/2, (3.170)

where the factor of 2 accounts for the fact that two values of y′
i yield the same value wi.

One can show (see Problem 2.23) that the characteristic function of this expression is

φwi (t ) = (1 − 2it )−1/2 . (3.171)

According to Eq. (3.168), the characteristic function of z is then given by

φz(t ) = (1 − 2it )−n/2 . (3.172)
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131 3.14 F-Distribution

Finally, the inverse Fourier transform of this expression yields the χ2 distribution with n
degrees of freedom (see Problem 3.19)

pχ2 (z|n) = 1
2n/2-(n/2)

zn/2−1e−z/2. (3.173)

3.13.4 Combining theχ2 of Datasets

The χ2 distribution is used in a variety of analyses including the evaluation of the
goodness-of-fit (§5.3) and tests of compatibility of two independent data samples (§6.6.5).
Additionally, since it is natural to expect that a greater amount of data should lead to better
constraints on model parameters, it is important to consider how the combination of two
independent datasets characterized by χ2 distributed random variables Z1 and Z2 with n1

and n2 degrees of freedom, respectively, should behave.
Since Z1 and Z2 are assumed to originate from independent datasets, they can be con-

sidered independent variables and the characteristic function of their sum Z may then be
written

φZ (t ) = φZ1 (t ) × φZ1 (t )

= (1 − 2it )−n1/2 × (1 − 2it )−n2/2 (3.174)

= (1 − 2it )−(n1+n2 )/2 ,

where the last line corresponds to the characteristic function of a χ2 distributed variable
with n1 + n2 degrees of freedom. We thus conclude that the sum Z of two independent χ2

distributed random variables Z1 and Z2 is indeed also a χ2 distributed random variable with
n1 + n2 degrees of freedom.

3.14 F-Distribution

The F -distribution, also known as Snedecor’s F -distribution or the Fisher–Snedecor distri-
bution,5 arises in analyses in which one wishes to establish whether two (or more) datasets
have significantly different variances. Such situations commonly occur in manufacturing
and quality control: all manufacturing processes lead to finite variance of the quality (spec-
ifications) of products. If and when manufacturers change components of their manufac-
turing process, they may worry that the variance of some particular product specifications
(e.g., concentration of medicine in manufactured pills, strength of steel beams used in con-
struction, etc.) may have increased, thereby leading to more product recalls and loss of
profits. Similarly, particle detector components built and operated by different agencies or

5 So named after Ronald Fisher (1890–1962), English statistician, mathematician, and biologist, and George W.
Snedecor (1881–1974), American statistician and mathematician.
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132 Probability Models

technicians may also have different performance variance and consequently impact res-
olution and detection efficiency differently (e.g., energy resolution of electromagnetic or
hadronic calorimeters, §12.2). The F -test is specifically designed for this purpose.

The F -test is formulated on the basis of two independent, χ2 distributed, random vari-
ables Y1 and Y2 with n1 and n2 degrees of freedom, respectively. One defines the variable f
as the ratio of the χ2 per degree of freedom of two samples:

f = Y1/n1

Y2/n2
. (3.175)

It can be shown ([5] and references therein) that the random variable f is distributed ac-
cording to the PDF

p( f |n1, n2) =

⎧
⎨

⎩

-((n1+n2 )/2)
-(n1/2)-(n2/2)

(
n1
n2

) n1
2 f (n1−2)/2

[1+ f n1/n2](n1+n2 )/2 f > 0

0 elsewhere,
(3.176)

known as the F -distribution. One additionally finds that the expectation value of f is

⟨ f ⟩ = n2

n2 − 2
, (3.177)

for n2 > 2. Remarkably, this expression is independent of n1. The variance depends on
both n1 and n2, however, and one has [5]:

Var[ f ] = n2
2(2n2 + 2n1 − 4)

n1(n2 − 1)2(n2 − 4)
(3.178)

for n2 > 4.

3.15 Breit–Wigner (Cauchy) Distribution

3.15.1 Definition

The Breit–Wigner (BW) distribution is named after Gregory Breit6 (1899–1981) and Eu-
gene Paul Wigner7 (1902–1995), who contributed to its development and the elucidation
of its properties. It is a continuous distribution defined over the domain −∞ < x < ∞ as
follows:

pBW(x|x0,-) = 1
π-/2

[
-2/4

-2/4 + (x − x0)2

]
. (3.179)

The parameters x0 and - characterize the position (centroid) and width of the distribution,
respectively. A special case of the BW distribution, with x0 = 0 and - = 2, is the Cauchy

6 Russian-born American physicist famous for his work on particle resonant states carried out in collaboration
with Wigner, and research with Edward Condon on proton–proton dispersion.

7 Hungarian-America physicist and mathematician who shared the Nobel Prize in Physics in 1963 for his work
on the theory of the atomic nucleus and elementary particles.
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133 3.15 Breit–Wigner (Cauchy) Distribution
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Fig. 3.15 (Left) Breit–Wigner distribution, pBW (x|x0,-), for selected values of x0 and-. (Right) comparison of the
Breit–Wigner (solid line) and normal (dashed line) distributions for- = σ = 1.0.

distribution:

pC(x) = 1
π (1 + x2)

. (3.180)

The BW has a particular importance in the calculation of resonant nuclear scattering cross-
sections, in which the parameters x0 and - correspond to the mass and width of the res-
onance, respectively. As such, it finds many applications in experimental data analysis of
short-lived particles (e.g., see §8.5.1).

Figure 3.15 (left) illustrates the BW distribution for selected values of the parameters
xo and -. The BW distribution may at first sight appear similar in shape to the Gaussian
distribution, even though its mathematical expression is obviously quite different. It has,
however, rather different properties. Figure 3.15 (right) displays BW and Gaussian distri-
butions centered at the origin (x0 = µ = 0), and with equal widths (- = σ ). Indeed, one
finds that the two distributions are similar, as they both peak at the origin and taper off
asymptotically to zero at infinity. Note, however, that the BW distribution exhibits a much
narrower peak and tapers off more slowly than the Gaussian distribution.

In fact, the BW distribution decreases toward zero so slowly that the integrals∫ ∞
0 x f (x) dx and

∫ 0
−∞ x f (x) dx are individually divergent (see Problem 3.25). This implies

that the expectation value E[x] and all higher moments of the distributions are also diver-
gent. That said, by virtue of the symmetry of the distribution about x0, this value obviously
corresponds to the median and can be used to characterize the centroid of the distribution.
Likewise, while the parameter - cannot be identified as a moment of the distribution, it is
nonetheless useful to characterize its width.

3.15.2 Relativistic Breit–Wigner Distribution

In the context of high-energy collision studies where the energy and momenta of particles
can be rather large, one modifies the foregoing Breit–Wigner distribution into a Relativistic
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Breit–Wigner (RBW) distribution written

pRBW(E|M,-) = k

(E2 − M2)2 + M2-2
, (3.181)

where E, M , - are the center-of-mass energy that produces the resonance, the mass of the
resonance, and its decay width, respectively. The constant k is given by

k = 2
√

2M-γ

π
√

M2 + γ
, (3.182)

with

γ =
√

M2 (M2 + -2), (3.183)

written in natural units, h̄ = c = 1. In general, the width - may be a function of the energy
E when it constitutes a large fraction of the mass M of the resonance (e.g., ρ0 → π + π ).

3.16 Maxwell–Boltzmann Distribution

3.16.1 Definition

The Maxwell–Boltzmann distribution, often called the Maxwell speed distribution, is a
probability density describing the velocity distribution of molecules of an idealized gas in
thermodynamic equilibrium at a specific temperature T . It can also be used to describe the
velocity or energy distribution of an idealized hadron (or parton) gas produced in heavy
ion collisions, provided these can be considered equilibrated at a specific temperature. First
derived by Maxwell in the late nineteenth century, the distribution may be written

pMB(v) = 4π

√( m
2πkT

)3
v2 exp

(
−mv2

2kT

)
, (3.184)

where m stands for the mass of the molecules (particles), v their velocity, T the temperature
of the gas, and k the Boltzmann constant. The distribution is illustrated in Figure 3.16 for
several values of

√
kT/m.

3.16.2 Properties of the MB Distribution

The most probable velocity, vmp, corresponding to the mode of the distribution, is obtained
by setting the derivative of the distribution with respect to v equal to zero. One finds

vmp =
√

2kT
m

. (3.185)

The mean speed is given by the expectation value E[v] of the distribution:

⟨v⟩ ≡ E[v] =
∫ ∞

0
vpMB(v)dv =

√
8kT
πm

= 2
π

vmp (3.186)
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Fig. 3.16 Examples of the Maxwell–Boltzmann distribution for selected values of the parameter a =
√
kT/m.

Usually of greater interest, because it enables the evaluation of the average kinetic energy
of the particles, is the root mean square speed, vrms:

vrms ≡
√

⟨v2⟩ =
{∫ ∞

0
v2 pMB(v)dv

}1/2

=
√

3kT
m

=
√

3
2
vmp. (3.187)

3.16.3 Derivation of the MB Distribution

The Maxwell–Boltzmann distribution can be derived using the kinetic theory of gases. In
the nonrelativistic limit, the kinetic energy of molecules of type i is

Ei = p2
i

2mi
, (3.188)

where pi and mi represent the momentum and mass of the molecules (particles), respec-
tively. The number of particles in state i, noted Ni is given by

Ni

N
= 1

Z
gi exp

(
− Ei

kT

)
, (3.189)

where T is the equilibrium temperature of the gas, gi is a degeneracy factor corresponding
to the number of microstates that have the same energy levels (or mass), k is the Boltzmann
constant, and N is the total number of particles in the system. This can be calculated with
the partition function of the system,

Z =
∑

j

g j exp
(

−
Ej

kT

)
. (3.190)

The probability density function, pp, for finding a molecule (particle) at a specific momen-
tum p⃗ = (px, py, pz) can thus be written

pp(px, py, pz) =
(

1
2πmkT

)3/2

exp

(

−
p2

x + p2
y + p2

z

2mkT

)

, (3.191)
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Table 3.13 Properties of the Maxwell–Boltzmann distribution

PDF pMB(x) =
√

2
π

x2

a3 exp[−x2/2a2]

CDF erf
(

x√
2a

)
−

√
2
π

x exp(−x2/(2a2 ))
a

Mode
√

2a
Mean µ = 23/2π−1/2a
Variance σ 2 = a2(3π − 8)/π
Skewness γ1 = 23/2(16 − 5π )/(3π − 8)3/2

Kurtosis γ2 = 4(−96 + 40π − 3π 2)/(3π − 8)2

which implies that the momenta px, py, and pz are each normally distributed about the
origin and with a standard deviation

√
mkT .

The Maxwell–Boltzmann distribution can be expressed in terms of the energy of the
particles by a simple variable transformation:

pE(E ) dE = pp( p⃗) d3 p = pp( p⃗)4π p2d p. (3.192)

Given dE/d p = p/m, one gets

pE(E ) dE = 2

√
E
π

(
1

kT

)3/2

exp
(−E

kT

)
dE. (3.193)

The properties of the distribution are summarized in Table 3.13.

Exercises

3.1 A vat is filled with 5 yellow, 10 red, 15 green, and 20 blue balls. Calculate the proba-
bility of drawing 5 balls of the same color if (a) the balls are put back in the vat after
each draw, and (b) if the balls are kept out.

3.2 Calculate the mean, variance, excess skewness, and excess kurtosis of the binomial
distribution using a decomposition of (1 − p)N−n. Repeat these calculations using
the moment-generating function of the binomial distribution.

3.3 The designers of a system of interception of ballistic missiles have estimated that
their system has an efficiency of 99.8% to intercept any given missile directed at a
country. Determine the probability that the system would intercept all of 50 missiles
fired against it. How many missiles would an aggressor need to have a probability
greater than 0.5 of having one, two, and five missiles hit their target?

3.4 At their peak, typically during August 9–14, the Perseids meteor showers have a
rate of 60 meteors per hour, visible from the Northern Hemisphere. Calculate the
probability of observing fewer than 10 meteors in 30 minutes, and the probability of
observing more than 40 in 10 minutes.

3.5 Use the Stirling formula, Eq. (3.31), to derive the large n limit of the Poisson dis-
tribution. Hint: Define x = n−λ√

λ
and use the Stirling formula to express the Poisson

distribution in terms of a standard distribution.
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3.6 Measurements at the Intersecting Storage Rings (ISR) and at Fermi National Ac-
celerator Laboratory (FNAL) have shown that the multiplicity of charged particles
produced in proton–proton collisions can be described with relatively high precision
with a negative binomial distribution. Assuming that all produced particles are pions
and neglecting charge conservation effects, derive an expression for the conditional
probability of the number of positive pions given fixed numbers of negative and neu-
tral pions. Additionally find an expression for the joint probability of the multiplicity
of positive and negative charge particles. Hint: See ref. [197].

3.7 Calculate the mean, variance, and covariance of the multinomial distribution.
3.8 Verify the derivation of Eq. (3.26) and calculate the variance of the multiplicity dis-

tribution discussed in §3.1.4.
3.9 The STAR Time Projection Chamber (TPC) detector features 45 sensor rows, thereby

enabling reconstruction of charged particles consisting of up to 45 “hits.” There is
limited efficiency of finding a “hit” on each of the pad rows. Make a plot of the
distribution of the number of hits on measured tracks for hit finding efficiencies of
90%, 75%, and 50%. Assume for simplicity’s sake that all charged particles cross all
45 pad rows.

3.10 Numerically determine the mean, variance, skewness, and kurtosis of the distribu-
tions evaluated in the previous problem. Compare these estimates to those expected
from the relationships found in Table 3.1.

3.11 Discuss the trivial distribution of net charge that can be observed for total charged
particle multiplicities of 50, 100, 200, and 500 particles. Assume the mean of
these net-charge distributions is null. Calculate the variance of each of these distri-
butions.

3.12 Calculate the mean, variance, excess skewness, and excess kurtosis of the Poisson
distribution.

3.13 Calculate the mean, variance, excess skewness, and excess kurtosis of the Uniform
distribution.

3.14 Calculate the mean, variance, excess skewness, and excess kurtosis of the Exponen-
tial distribution. Derive a general expression for all moments and central moments
of the Exponential distribution.

3.15 Verify the normalization, Eq. (3.127), of the normal distribution.
3.16 Calculate the mean, variance, excess skewness, and excess kurtosis of the Gaussian

distribution. Derive a general expression for all moments and central moments of the
Gaussian distribution.

3.17 Calculate the first three cumulants, κn, n = 1, 2, 3 of the Poisson and Gaussian dis-
tributions.

3.18 Calculate the mean, and variance of the χ2 distribution.
3.19 Calculate the inverse Fourier transform of φz(t ) = (1 − 2it )−n/2 and derive the ex-

pression (3.173) of the χ2 distribution.
3.20 Calculate the probability that an unstable particle, for example, a lambda baryon,

decays within a distance x of its site of production. Assume the particle has a half-
life t1/2 and neglect relativistic effects.

3.21 Derive a relationship between the mean lifetime of a particle and its half-life.
3.22 Calculate the mean and variance of the χ2 distribution using integration by parts.
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3.23 Derive the expressions Eq. (3.156) for the mean and variance of the log-normal dis-
tribution.

3.24 Calculate the probability the χ2 of a fit (where the χ2-distribution applies) is larger
than the number of degrees of freedom, n, for values of n equal to 2, 4, 8, 16, and 32.

3.25 Show that the integral
∫ ∞

0 En fBW(E ) dE, where fBW(E; xo,-) is the Breit–Wigner
distribution, does not converge for n equal to or larger than 1.

3.26 Implement a computer program to carry out numerical calculations of the cumulative
integral of the Gaussian and Breit–Wigner distributions. Use this program to calcu-
late the probability that values lie beyond 1.5 σ , 2.5 σ , and 3.5 σ from the mode of
these distributions (Use - = σ for the Breit–Wigner distribution).

3.27 Derive the expression (3.191) for the Maxwell–Boltzmann distribution in terms of
the momenta px, py, and pz.

3.28 Use Eq. (3.191) to derive the expression of the Maxwell–Boltzmann given by Eq.
(3.184).

3.29 Show that in thermodynamic equilibrium, the energy per degree of freedom, ϵ, of the
molecules of a gas (of identical particles) is distributed as a chi-squared distribution
with one degree of freedom according to

fϵ (ϵ) dϵ =
√

1
ϵπkT

exp
[−ϵ

kT

]
dϵ.
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4 Classical Inference I: Estimators

Statistical inference is a mathematical activity, or process, intent on extracting meaning-
ful information from measurements in order to characterize systems, establish best model
parameters, or determine the plausibility (truthfulness) of hypotheses and models. Indeed,
once experimental data have been acquired, one wishes either to characterize the data by
some ad hoc functional form, or compare the measured data distribution to some model
predictions. In either case, the functional form may involve “free” parameters not con-
strained by theory and to be determined by the data. There are also cases where no specific
functional form is known a priori and as simple a characterization of the data as possible
is sufficient or required. It may be sufficient, for instance, to evaluate the mean, variance,
and selected higher moments of the data. Inference also includes the notion of statistical
test, that is, the use of statistical techniques to assess the adequacy of scientific models and
hypotheses.

Traditionally, statistical inference is a subfield of probability and statistics concerned
with the determination of the properties of the underlying distribution of datasets based on
statistical analysis techniques largely based on the frequentist interpretation of probability.
However, the field of inference has greatly expanded in recent decades, and inference may
now be approached from a plurality of paradigms,1 or schools of thought, corresponding to
different interpretations of the notion of probability and approaches to the inference pro-
cess. We will restrict our discussion to the frequentist and Bayesian paradigms, the former
still most commonly used in the physical sciences, and the latter receiving a fast growing
level of interest in physical and life sciences, engineering, as well as economics and finan-
cial fields. Other commonly less adopted paradigms, including the likelihood paradigm,
the total survey error paradigm, and the survey sampling paradigm, are discussed in the
statistics literature [15, 96, 167].

Similarities and distinctions between the goals and methods of the frequentist and
Bayesian inference paradigms are briefly outlined in §4.1. The remainder of this chap-
ter as well as Chapters 5 and 6 present detailed discussions of classical inference concepts
and techniques while Bayesian inference methods are explored in Chapter 7.

1 The term paradigm is here used in the sense defined by Kuhn [132]. Restricted to statistical inference, this
amounts to classifying statisticians and scientists according to the inference framework they use in the conduct
of their statistical analyses.

139
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140 Classical Inference I: Estimators

4.1 Goals of Frequentist Inference

Inference problems are traditionally classified according to the type of statements or con-
clusions they produce. These include:

1. Point estimates, which involve the determination of a particular observable, properties
of a distribution, or model parameters designed to characterize a particular population

2. Interval estimates, most commonly known as confidence intervals within which a par-
ticular observable, property of a distribution, or model parameter would be found with
a definite and specific probability if the experiment or sampling could be repeated in-
definitely

3. Rejection of a hypothesis based on a statistical test predicated on a probabilistic model
of the data

4. Clustering and classification of data points

By contrast, in the Bayesian paradigm the inference process essentially involves only
two categories of tasks known as model selection and parameter estimation from which
a plurality of subsidiary statements can be derived or summarized.

Data analyses in astronomy, particle physics, and nuclear physics rely increasingly on
the Bayesian paradigm but nonetheless still make extensive use of the traditional frequen-
tist methods. We thus endeavor to discuss a wide range of inference problems under both
paradigms, and present, in this and the following chapters, discussions of inference tech-
niques developed in both paradigms.

In traditional statistical inference, the characterization and modeling of datasets relies
on mathematical functions or procedures known as estimators, which we formally define
in §4.3. Essential properties of estimators are discussed in §4.4, while examples of imple-
mentation for basic notions of mean, variance, and covariance are presented in §4.5. Data
modeling (commonly called fitting) based on the method of Maximum Likelihood (ML)
and the relatively simpler method of Least Squares (LS) are introduced in §5.1 and §5.2,
as are a number of associated technical problems, including interpolation/extrapolation,
and weighted means of results of distinct experiments. A brief discussion of the notion of
goodness-of-fit follows in §5.3. However, for a more in-depth discussion of the notion of
statistical test applied to functional fits, see §6.6.5.

4.2 Population, Sample, and Sampling

Before proceeding with the introduction of the concepts of statistics and estimators, it is
important to discuss the underlying notions of sample and population. Definitions of these
concepts are presented in §4.2.1 while their characterization and representation are briefly
discussed in §§4.2.2 and 4.2.3, respectively.
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4.2.1 Population and Statistical Sample

In statistical analysis, a population is defined as a complete set of items or entities that
share one or several properties. For instance, the population of Americans living in the
continental United States shares a geographical location, a language, a political system, and
so on. The concept of population is not restricted to humans; one may of course consider
populations of animals, plants, or any other types of entities of interest. For instance, one
may wish to study and characterize the fleet (population) of cars used in America, and
contrast it to the fleets of cars used in Europe or Asia; or one might be interested in studying
the population of stars composing the Milky Way. The notion of population, applied in
statistics, is thus as broad and generic as human interests in studying the world around us.

By contrast, a statistical sample is a subset drawn from the population and used for the
purpose of a statistical analysis. If the sample is sufficiently large and obtained properly, it
is assumed that traits and characteristics of the entire population can be adequately inferred
from corresponding characteristics of the sample.

It is useful to introduce the notion of subpopulation consisting of a specific subset of a
population and defined based on one or more additional properties shared by the elements
or items of this subset. For instance, the United States car fleet may be subdivided into sev-
eral subpopulations according to the nationality (origin) of the manufacturers: Americans,
Europeans, Asians, and so on. Items of a sample are in general heterogeneous and may
not all share additional properties of interest. A sample must then be distinguished from a
subpopulation.

Analyses in terms of subpopulations are useful, for instance, in pharmacology because
different subpopulations (e.g., based on ethnic or hereditary history) may have different
responses to medicines or treatments. In nuclear physics, one may distinguish the proper-
ties (e.g., momentum spectrum) of distinct particle subpopulations (e.g., pions, kaons, or
protons) produced by a given type of elementary collision at a specific incident energy. In
some cases, a great difference (variance) may exist between subpopulations. Modeling and
understanding the population dynamics is then best accomplished by examining subpop-
ulations individually. Distinctions between populations and subpopulations are somewhat
arbitrary. A specific analysis may indeed focus on a particular subpopulation, which effec-
tively becomes the “population of interest.” The larger population, of which the given popu-
lation is a subset, may then be referred to as the parent population. It is also common to re-
fer the population from which a sample is drawn as the parent population of the sample.

4.2.2 Sample Characterization

It is typically not possible to acquire information about all elements of a population. The
population may be too large or it may not be possible, ab initio, to access or enumerate all
its elements. Population sampling is thus necessary. Sampling consists in selecting individ-
uals or acquiring information about finitely many individuals or items of the population.
The acquired subsets, called samples, may vary in size, but it is a general rule that the
larger they are, the better the inference about properties of the whole population will be.
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The sample space of a random variable X , defined in §2.2, corresponds to the entire
space spanned by X . A population and measured samples of a population thus typically
correspond to subsets of the sample space.

A complete sample is a set of items that includes all elements of a population.2 As stated
earlier, various practical or technical issues may limit the size of a sample. Statistical anal-
yses involving complete samples are thus rare, in general. Since finite samples are typically
the rule, statisticians must ensure that acquired samples are unbiased. Biases may occur,
for instance, if subpopulations of a population feature distinct traits or behaviors in regard
to an observable of interest. In this context, a sample consisting of elements drawn mostly
from one particular subpopulation cannot be representative of the other subpopulations and
thus the population as a whole.

An unbiased sample is a set of objects chosen from a complete sample using a drawing
or sampling process that is not influenced by the properties of the elements of the popula-
tion. Particular subpopulations are thus not favored or neglected and the ensuing statistical
analysis and inference is thus representative of the whole population.

Truth be told, sampling bias occurs in all sciences and is often unavoidable. For in-
stance, early studies of stars of the Milky Way greatly suffered from a brightness bias.
Stars appear dimmer to an observer the farther away they are. Studies of stellar properties
were thus initially biased, that is, influenced predominantly by classes of brighter stars.
Similarly, studies of human populations may be biased based on geographical location,
gender, religion, ethnicity, and so forth.

The problem arises, obviously, that it is generally not possible to draw complete samples,
and one must devise techniques to avoid biasing collected samples. At the outset, it might
appear that the collection of a random sample, also known as a probability sample, might
solve this problem. In practice, observational biases are often introduced by the techniques
or instruments used to acquire the data sample.

In astronomy, for instance, studies of galactic properties are somewhat biased by the
observational wavelength window of the telescope: distant galaxies that recede from us at
high velocity have large red shifts and may be difficult or impossible to measure with an
optical (visible light) telescope.

In particle and nuclear physics, measurements of unbiased samples of events and pro-
duced particles are de facto impossible. Indeed, the triggering methods and devices used in
the detection of collisions (events) and measurements of particle properties invariably fea-
ture technical limitations. Particles are measured within finite kinematic ranges, known as
detection acceptance, and events may be missed if they fail to activate the devices used as
trigger detectors. Collisional events acquired with detectors and procedures that minimally
influence or bias the properties of measured events and the particles they contain are said
to feature a minimal bias. By extension, triggering devices and procedures enabling the
collection of such data are said to be minimum bias triggers. Interestingly, the volume of
data produced in high-energy physics experiments is often so large that it is not possible to
detect, digitize, and record all collisions. Special triggering detectors and procedures are
then devised to bias and select collisions and particles of particular interest. It is then

2 However, a complete sample is not required to cover the entire sample space of a random variable.
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possible to selectively increase the relative abundance of specific types of particles or
events (e.g., events susceptible of containing a top quark or a Higgs boson).

More generally, it is important to acknowledge that measurements can be influenced by
various instrumental effects (discussed in Chapter 12) that cause loss or neglect of individ-
ual items of a population, or that smear the properties of these items. The loss or neglect of
items is typically characterized by sampling efficiency and/or detection efficiency (com-
monly just called efficiency). Efficiency losses, if not uniform across all values of a partic-
ular observable, may severely bias the measured values and the conclusions reached about
the population. In experimental physics, most particularly in nuclear and particle physics,
particle and collision (event) losses are unavoidable and typically depend on observables
of interest such as the momentum of particles, or the multiplicity produced in nuclear colli-
sions. Fortunately, techniques exist to assess detection efficiencies and their dependencies
on observables of interest, and it is then possible to correct sampled data for efficiency
losses. Similarly, smearing or measurement resolution can also introduce measurement bi-
ases, but techniques to evaluate such effects are also available and may be used to correct
the data. These topics are discussed at length in §12.3.

From the preceding discussion, it should be clear that a statistical analysis of a data
sample is but a part of the measurement process. Obviously, measurement methods and
the observables of interest vary greatly across scientific disciplines, but it remains that
the sampling of a population and the statistical analyses based on collected samples are
only a small part of the scientific process. Accordingly, techniques used to gather data and
the types of data collected thus vary considerably across disciplines. However, statistical
techniques to extract information about the parent population are essentially universal, that
is, more or less independent of the specificities of the data or their origin.

4.2.3 Sample Representation and Random Variables

Statistical samples may consist of discrete data, continuous data, or mixtures of the two.
They may be as simple as a collection of values {oi}, with i = 1, . . . , n, of a particular
observable O (e.g., the momentum of particles produced by a certain type of nuclear col-
lisions) representing a particular trait or characteristic of individuals of a population. They
may also be arbitrarily complex and gather jointly (simultaneously) multiple observables
representing traits or properties of individuals of a population. Computationally, such col-
lections of observables may be represented as vectors x⃗ or n-tuples. An n-tuple is an ordered
list of n elements that may be heterogeneous in nature or type. For instance, in nuclear col-
lision studies, one may represent the information reconstructed about measured particles
in terms of tuples (q, pT , η,φ, PID), where q is the charge of the particle, pT its transverse
momentum, η its pseudorapidity, φ the azimuthal angle of production, and PID a variable
identifying the species of the particle.

In statistical analyses, one may be interested in characterizing a population based on one
or more components of the n-tuples. More specifically, one may be interested in determin-
ing the moments, covariances (cumulants), and (probability) distributions of these com-
ponents, either jointly or individually. Computational techniques required to obtain such
quantities are the domain of statistical inference. We begin our discussion of statistical
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inference techniques with the introduction of basic notions of statistics and estimators in
§4.3. Properties of estimators are discussed in §4.4, and basic estimators presented in §4.5.
Histograms, which provide graphical representations of the distribution of numerical data,
are introduced and defined in §4.6. Classical inference techniques involving composite hy-
potheses and most particularly the optimization of model parameters toward the description
of measured data are addressed in §§5.1 and 5.2.

4.3 Statistics and Estimators

4.3.1 Problem Statement

Let us consider an experiment consisting of a series of n distinct measurements of some
phenomenon and yielding a dataset D. We will first assume that though distinct, the mea-
surements are carried in the same conditions and from an unchanging system.3 Let us
consider that the dataset D consists of n measurements yielding random continuous vec-
tors x⃗i of the same dimensionality. In the simplest case, each measurement would yield
a single value xi. In a slightly more sophisticated situation, the vectors could consists of
pairs of numbers (xi, yi) considered as independent and dependent variables, respectively.
More generally still, the vector x⃗ could represent an arbitrarily long list of values (i.e., an
n-tuple) obtained from each measurement (i.e., each individual item of the sample). The
sample space of each measurement would thus consist of all possible values of the multi-
dimensional variable, X⃗ , in other words, all values x⃗i a measurement of X⃗ can produce.

In a general scientific context, various states of prior knowledge may exist about the
phenomenon being measured. If the phenomenon is newly observed, it is possible that
very little prior information is available about it and one may then wish to characterize the
sample (and the populations it is meant to represent) by its moments or other similar quan-
tities. Alternatively, a great deal of information may already exist about the phenomenon,
and one may wish to characterize the sample according to a specific mathematical model,
or hypothesis, M , stated in terms of a function, f (X⃗ |θ⃗ , M ), which expresses some relation
between the elements of the vector X⃗ . In this context, θ⃗ could represent a finite set of pa-
rameters of the model M believed to properly describe the phenomenon, or being tested.
For instance, in an analysis of the speed of receding galaxies, the model M could state the
hypothesis that the relation between the recession speed of galaxies is strictly proportional
to their distance. The model would then involve a single parameter consisting of the slope
of the relation between the speed and the distance. It might then be the purpose of the anal-
ysis to infer which value or range of values of the slope, H0, known as the Hubble constant,
best fits the data. So, whether one wishes to characterize the population of interest accord-
ing to moments or some more sophisticated model of the phenomenon, one is faced with a
similar problem, which involves the determination of parameters that represent the whole

3 We will see later in this chapter how these conditions may be lifted.
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population based on a specific data sample D. This is known as a problem of parameter
estimation and alternatively referred to as a single point estimate.

Parameter estimation may be discussed in both the frequentist and Bayesian paradigms.
We first introduce the more traditional frequentist treatment in §4.3.2 and then show, in
§4.3.3, that the Bayesian approach yields a more general and comprehensive solution to
parameter estimation problems.

4.3.2 Parameter Estimation within the Frequentist Paradigm

For simplicity, let us first restrict our discussion by assuming that n successive measure-
ments of a random variable X yield values, xi, with i = 1, . . . , n. The dataset, D, may then
be represented as a vector x⃗ = (x1, x2, . . . , xn). Within the frequentist inference paradigm,
one assumes there exists a probability density, f (x), describing the likelihood (frequency)
of observing specific values xi, with i = 1, 2, . . . , n, of the random variable X in n dis-
tinct measurements. The sample space of the experiment thus consists of a space of n-
dimensions, with each dimension corresponding to the sample space of X . Successive
deployments of this experiment are expected to yield fluctuating values of the vector x⃗. In
order to evaluate the probability density function (PDF), fn(x⃗), of the vector x⃗, one must
first determine the probability density of a given set of n values measured in one experi-
ment. We will assume the measurements are carried out independently but with identical
conditions. Remember from Chapter 2 that the probability of a subset A of the sample
space S consisting of the union of disjoint subsets Ai (with Ai ∪ Aj for i ̸= j) is simply
the product of the probabilities of the subsets. The PDF of x⃗ thus consists of the product
of the probability densities of each of the values xi. Since the measurement conditions are
deemed identical, each measurement xi is governed by the same PDF f (x). One thus gets:

fn(x⃗) = f (x1) f (x2) · · · f (xn) =
n∏

i=1

f (xi). (4.1)

The problem, of course, is that the function f (x), or some of its parameters, are not known
a priori. It thus becomes our goal to infer what this function might be or, at the very least,
determine some of its properties (e.g., its moments) based on the measurements xi.

Let us assume that the PDF fn(x⃗) might depend on m a priori unknown parameters
θ⃗ ≡ {θ1, θ2, . . . , θm}. We wish to construct a function of the n measured values xi, denoted
x⃗ = (x1, x2, . . . , xn), to estimate the parameters θ⃗ . In the literature, a function of the mea-
surements x⃗ with no unknown parameters is called a statistic, while a statistic used to
estimate one or several properties of a PDF is known as an estimator.

An experiment yields random values x⃗. A function of these x⃗, that is, an estimator conse-
quently yields values θ⃗ , known as estimates, that are randomly distributed. Let us denote
these estimates θ̂ to distinguish them from the actual value θ⃗ (i.e., the true value of the
parameters). θ̂ is commonly called estimator of θ⃗ . The term estimator usually refers to
the mathematical function of the sample, whereas the term estimate is used for a particular
value of the estimator obtained within a specific experiment, that is, with a specific sample
{xi} , i = 1, . . . , n.
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By its very nature and construction, an estimator θ̂ is expected to yield estimates that
fluctuate dataset by dataset and randomly deviate from the true value θ⃗ when the experi-
ment is repeated. One hopes, however, that given sufficiently many values xn, the estimator
might converge to the actual value θ⃗ . In this context, it is interesting to consider the conver-
gence properties (vs. the size of a sample) and errors associated with particular estimator
definitions: how close an estimator θ̂ comes to the true value θ⃗ depends on the quality of
the measurements, the size of the sample, as well as the actual formulation or definition
of the estimator. We, however, delay a discussion of these considerations until §4.4 after a
discussion of Bayesian parameter estimation in the next section.

4.3.3 Parameter Estimation within the Bayesian Paradigm

Parameter estimation within the Bayesian paradigm has the same basic goal as in classical
inference: one wishes to find parameter values θ⃗ that best fit or characterize the observed
data, D. However, the Bayesian approach also accounts for prior information that might
be available about the system, the model, M , and the parameters themselves, θ⃗ , before the
data are measured. Prior information about the parameters of the models, in particular, is
encoded as a prior probability density p(θ⃗ |I ), where I represents relevant facts known
about the system prior to the measurement(s). The data D thus provides a complement of
information, which through Bayes’ theorem provides a posterior probability distribution
(density) of the parameters θ⃗ :

p(θ⃗ |D, I ) = p(θ⃗ |I )p(D|θ⃗, I )
p(D|I )

(4.2)

The probability p(D|I ), known as global likelihood of the data, can be calculated using the
law of total probability:

p(D|I ) =
∫

p(θ⃗ |I )p(D|θ⃗, I )
∏

i

dθi (4.3)

In effect, the probability density function p(θ⃗ |D, I ), known as posterior PDF, plays the
same role as the PDF fn(x⃗) in the frequentist paradigm and provides the probability of
measuring specific values of the model parameters θ⃗ based on the measured data D. The
posterior p(θ⃗ |D, I ) is then said to be conditioned by the data D.

For a model with a single continuous parameter, θ , this corresponds to the density of
probability of finding the parameter in the range [θ , θ + dθ ], while for a model with mul-
tiple parameters, it amounts to the joint density of probability for finding the parameters θi

simultaneously in the ranges [θi, θi + dθi]. An estimator of the model parameters, denoted
θ̂ , may then be determined on the basis of the mode of the distribution, that is, the value of
θ⃗ yielding the maximum value of the PDF p(θ⃗ |D, I ). While it might be tempting to use the
expectation value of the parameters θ⃗

⟨θ⃗⟩ ≡
∫

θ⃗ p(θ⃗ |D, I )
∏

dθi. (4.4)
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in lieu of the mode, one should note that, in general, the distribution p(θ⃗ |D, I ) may not be
symmetric about its mode. Indeed, if p(θ⃗ |D, I ) is asymmetric, skewed, and features long
tails, the expectation value ⟨θ⃗⟩ shall not have the highest probability and thus would not
yield the most probable value of θ⃗ . It is thus essential to identify the true maximum po-
sition of p(θ⃗ |D, I ). In effect, whether using a frequentist or Bayesian approach, finding
the parameters of a model that best match the data becomes a problem of optimization.
Optimization of fn(x⃗) and p(θ⃗ |D, I ) in the presence of a single free model parameter may
be relatively simple, particularly for linear models, but it can be quite arduous for models
involving several (free) parameters. Fortunately, many techniques exist to tackle this opti-
mization task. Several of these techniques, relevant for linear and nonlinear data models,
are discussed in Chapters 5 and 7.

We shall consider examples of estimators evaluated in the frequentist and Bayesian
paradigms in §§4.5 and 7.4, respectively. But first, let us examine the properties of esti-
mators as mathematical functions.

4.4 Properties of Estimators

Given estimators are arbitrary functions of the measured data values xi, one should expect
they provide estimates of observables of interest that may depend on their actual mathe-
matical formulation, the size of the data sample used to compute them, as well as, perhaps,
the probability distributions that govern the production and measurement of the observable
X . It is thus sensible to wonder how precise or accurate estimates of an observable may
be given a specific dataset, its size, and the actual mathematical formulation of the statis-
tics used to estimate the observable. This implies statistics and estimators are not all born
equal. It is thus of interest to briefly consider, in the following paragraphs, their properties
or behavior under changes in the sample size or the probability distribution that governs an
observable X of interest. The discussion presented here is at a similar level to that found in
Cowan [67], but a more in-depth treatment of these concepts may be found in James [116].

4.4.1 Estimator Consistency

An estimator θ̂ is said to be consistent when estimates converge toward the true value of the
parameter(s) as the number of observations xi increases. A number of convergence criteria
can be applied but it is common to require consistency in probability defined based on
the convergence of the probability p

(
|θ̂n − θ | > ε

)
, where θ̂n is an estimator of θ based on

n observations. An estimator is then said to be consistent if a value N exists such that

p(|θ̂n − θ | > ε) < η (4.5)

for all n > N and arbitrarily small (positive definite) numbers ε and η. This expression
indicates θ̂n converges toward θ for increasing values of n, as schematically illustrated in
Figure 4.1.
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Fig. 4.1 An estimator θ̂ is said to be consistent if its probability density narrows and progressively converges to the true value
(of an observable) as the number of observations ni increases.

Consistency implies asymptotic convergence but does not guarantee that the precision
of an estimator improves monotonically with the number of observations n. It is thus a
necessary but insufficient requirement for an estimator to be useful. In other words, adding
observations does not necessarily guarantee an increase in precision and smaller errors.
Additional criteria are thus warranted.

4.4.2 Expectation Value of an Estimator

Statistics and estimators are multivariate functions of random variables. We can then apply
the rules and techniques introduced in §§2.8–2.8.6 for such functions to determine their
probability density functions and associated properties.

Let ξ̂ ≡ ξ̂ (x⃗) represent an estimator of interest calculated based on a sample of n
measured values xi that we shall represent, for convenience, in vector notation as x⃗ =
(x1, . . . , xn). Let us denote the PDF of the estimator ξ̂ as g(ξ̂ |ξ ), where it is assumed that
the estimator has some “true” value ξ . Calculation of this function, commonly known as
sampling distribution of ξ , requires one makes assumptions concerning the probability
distributions of each of the measured data xi. In general, one requires a PDF p(xi|θ⃗, Hi, I )
based on a probability model or hypothesis Hi and prior information I for each of the
observables xi obtained in the data sample, where θ⃗ represents one or several parameters
of the models Hi which may be unknown a priori. In practice, if the xi are independently
sampled from the same population, it is reasonable to assume they may be described by the
same model H and PDF p(x|θ⃗ , H, I ), that is, with the same model parameter(s) θ⃗ .

As we saw in §2.8.6, the probability distribution of a particular set of such values
x⃗ = (x1, . . . , xn), called the likelihood (of the data D) for parameter θ⃗ , and denoted
L(D|θ⃗, H, I ), is readily determined by multiplying the probability densities of each of the
xi. We thus write

L(D|θ⃗ , H, I ) ≡ L(x⃗|θ⃗, H, I ) =
n∏

i=1

p(xi|θ⃗, H, I ). (4.6)
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Indeed, the likelihood function L(x⃗|θ⃗ , H, I ) represents the probability of the data x⃗ given
a hypothesis or model H with parameters θ⃗ . Consequently, regarding the estimator ξ̂ as
a function of the continuous random variable X⃗ , its expectation value may be calculated
according to Eq. (2.144), and one gets

E[ξ̂ (x⃗)] =
∫

ξ̂g(ξ̂ |ξ ) d ξ̂ , (4.7)

=
∫

· · ·
∫

ξ̂ (x⃗)L(x⃗|θ⃗, H, I ) dx1 · · · dxn, (4.8)

=
∫

· · ·
∫

ξ̂ (x⃗)p(x1|θ⃗, H, I ) · · · p(xn|θ⃗ , H, I ) dx1 · · · dxn. (4.9)

Within the frequentist paradigm, this expectation value represents the mean value of ξ̂

produced by an infinitely large (or very large) number of similar experiments yielding
samples {xi} , i = 1, . . . , n, while in the Bayesian paradigm, it is simply the expectation
value of ξ̂ implied by the likelihood function L, the model H , and the parameter value θ⃗

without regard as to whether the measurement can be repeated.
A case of particular interest arises when ξ̂ ≡ θ̂i is an estimator of one of the model pa-

rameters θi, that is, a function of the variables xi chosen to yield an estimate of a particular
model parameter θi of the distribution p(x|θ⃗ , H, I ). Two situations are typically encoun-
tered in this context. In one, the estimator consists of a simple statistic, that is, a formula
involving no free parameters and whose calculation yields an estimate of the model pa-
rameter directly. In others, the statistics formula depends on the value of the parameter
itself which is then considered unknown. An optimization procedure is then required to
determine which parameter value is best compatible with the measured data.

Whether an estimator ξ is designed to determine some generic property of a distribution
(e.g., one of its moments or cumulants), or a particular parameter θi of the model H that
defines the distribution, it is legitimate to wonder how precise and accurate an estimate
obtained from a finite dataset may be. This requires a discussion of the notions of estimator
bias and estimator precision.

4.4.3 Estimator Bias

The bias, bn, of an estimator is defined as the difference between its expectation value
E[ξ̂ (x⃗)] and the true value ξ for an “experiment” consisting of n observations. For an ele-
mentary (scalar) estimator, this is written

bn[ξ̂ ] ≡ E[ξ̂ ] − ξ = E[ξ̂ − ξ ]. (4.10)

The bias bn is an intrinsic property of the estimator ξ̂ , which depends on its formulation
(i.e., its functional form), the sample size n, and the properties of the PDF being evaluated,
but not on the sampled values. An estimator is said to be unbiased for all values of n and
ξ if

bn[ξ̂ ] = 0, (4.11)
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or

E[ξ̂ ] = ξ . (4.12)

If the bias is finite for finite values of n but vanishes in the limit n → ∞, then the esti-
mator is considered to be asymptotically unbiased. We present examples of unbiased and
asymptotically unbiased estimators in §4.5.

It is worth noticing that the notion of bias could also be based on the median or the
mode of the distribution g(ξ̂ |ξ ). The choice of E[ξ̂ ] is indeed somewhat arbitrary, but its
linear property as an operator greatly simplifies calculations of bias and thus makes for
a convenient and practical choice. However, this choice implies that an estimator ξ̂ is not
necessarily the median or the mode of the PDF g(ξ̂ |ξ⃗ ). It might indeed be more or less
probable to obtain estimates with values below (or above) the expectation value E[ξ̂ ]. It is
also important to realize that an estimator may be biased even if it is consistent or unbiased
even if inconsistent. For a more in depth discussion of this notion, see, for instance refs.
[67, 116].

The linear nature of the expectation value operator also implies that while an estimator ξ̂

might be unbiased, functions of this estimator are not necessarily unbiased. For instance, if
η is an unbiased estimator of ξ , the square η2 or the inverse 1/η are not unbiased because
linear operators are not invariant under nonlinear variable transformations. A condition
based on the median would guarantee such invariance but is often considered far less prac-
tical. Be that as it may, if η2 is a consistent estimator of ξ 2, one can show that it will tend
to be asymptotically unbiased. Consistency is thus usually considered, by statisticians, a
more important property than the lack of bias. In practice, however, physicists typically do
not have to worry too much about such subtleties.

4.4.4 Estimator Mean Square Error

The bias of an estimator determines its accuracy, that is, whether it tends toward the correct
value (i.e., the true value) on average. One must also consider the estimator’s precision and
characterize the dispersion of values that might be obtained with successive measurements
and the estimates computed from them. This is accomplished via a calculation of the mean
square error (MSE), defined as

MSE = E[(θ̂ − θ )2]. (4.13)

It is convenient to rewrite this expression by inserting −E[θ̂ ] + E[θ̂ ] in the argument of
the expectation value. One gets

MSE = E[(θ̂ − E[θ̂ ] + E[θ̂ ] − θ )2], (4.14)

= E[(θ̂ − E[θ̂ ])2] + (E[θ̂ − θ ])2. (4.15)

The first term of the second line corresponds to the variance Var[θ̂] of the estimator,
whereas the second term is the square of its bias b. One thus finds that the MSE of an
estimator equals the sum of its variance and the square of its bias:

MSE = Var[θ̂] + b2. (4.16)
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Fig. 4.2 Illustration of the concepts ofbias andMean Square Error (MSE).

The notions of bias and estimator mean square error were here introduced in terms of
simple estimators or functions of the measured values, ξ (x⃗). These concepts are, how-
ever, readily extended to cases where model parameters (alternatively viewed as continuous
model hypotheses) are obtained by maximization of a likelihood function or minimization
of a χ2 function. They in fact also apply to any type of measurement that extracts estimates
of model parameters, whether based on a simple or composite hypotheses [116].

4.4.5 Epilog: Accuracy and Precision of Estimators

There is no unique method to construct estimators. Indeed, we will show later in this chap-
ter that there exist several distinct criteria to define and build estimators, for a given model
parameter θ , which produce distinct functional forms and associated PDF g(θ̂ |θ ). But,
given a particular estimator, one can usually establish whether it has the desired proper-
ties, that is, whether it is consistent, whether it features a bias, has a small MSE, and so
on. The notions of bias, estimator variance, and MSE are illustrated in Figure 4.2, which
displays the PDFs of three hypothetical estimators θ̂ , plotted as functions of the deviation
θ̂ − θ .

An estimator and, more generally, a measurement method, are said to be unbiased if
repeated measurements yield estimates that cluster around the actual value of the model
parameter (null deviation on average). However, an estimator is said to be biased if the
estimates it produces tend to systematically deviate from the actual value of the parameter.
An experimental procedure and an estimator are said to be accurate if they yield results
(e.g., estimates of model parameters or physical quantities) with no bias.

The variance of an estimator determines its precision. Obviously, smaller values of vari-
ance imply a more precise estimator and experimental technique. An estimator may, how-
ever, be very precise but biased and consequently not accurate. An experimental method
and the estimator used to obtain parameter estimates should thus ideally be designed to
have both high precision and accuracy. An estimator is deemed optimal if it has zero bias
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and minimum variance. Likewise, a measurement procedure is considered valid if it is both
accurate and precise.

It is in the very nature of stochastic phenomena that by construction, all estimators have
a limited precision, that is, a finite MSE. We show in §4.7.6 that the minimal variance
of an estimator θ̂ , called the minimal variance bound (MVB), is given by the following
expression:

MVB(θ̂ ) =
〈(

d
dθ

ln L
)2

〉−1

, (4.17)

where L is the likelihood function defined in Eq. (4.6). We will make use of this bound on
several occasions later in this book.

We consider the formulation of basic estimators and examine some of their properties
in the next section. Maximum likelihood and least square estimators are introduced in §5.1
and §5.2, respectively.

4.5 Basic Estimators

Consider a random sample D = {xi} consisting of n values xi distributed according to a
common but unknown PDF p(x). Although it may not be possible to fully determine p(x)
based on the sample {xi}, it is possible and may suffice, in many practical applications, to
determine its lowest moments.

4.5.1 First Moment: Sample Mean

We first seek to obtain a function of the n values xi that provides an estimator µ̂ of the
expectation value µ = E[x]. An obvious candidate for such an estimator is the arithmetic
mean, x̄, defined as

µ̂ ≡ x̄ ≡ 1
n

n∑

i=1

xi. (4.18)

It is commonly also called sample mean or just mean, and is often also noted ⟨x⟩.
By construction as a sum of the random variables xi, x̄ is a statistic and we can thus apply

the techniques introduced in the previous paragraphs to calculate its value and properties.
One expects x̄ to deviate randomly from the expectation value µ = E[x] of the PDF p(x).
Indeed, one expects that repeated measurements of n values {xi} drawn from the same
population, characterized by the PDF p(x), should yield values of x̄ that fluctuate, but
nonetheless cluster about µ. For finite samples, deviations from µ are by construction
finite and the variance of x̄ is consequently also finite. One can show that the weak law of
large numbers guarantees that x̄ is a consistent estimator of the population mean µ [116].
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153 4.5 Basic Estimators

It is also relatively straightforward to show that the estimator x̄ converges to µ with zero
bias in the limit n → ∞.

The proof of unbiasedness is indeed relatively simple and also instructional. It proceeds
on the basis of a calculation of the expectation value of x̄ as follows:

E[x̄] = E

[
1
n

n∑

i=1

xi

]

. (4.19)

The evaluation of the expectation values requires an integral. However, the order of evalu-
ation of this integral and the sum is inconsequential. One can thus write

E[x̄] = 1
n

n∑

i=1

E[xi]. (4.20)

The expectation value E[xi] is by definition equal to

E [xi] =
∫

· · ·
∫

xi p(x1)p(x2) · · · p(xn) dx1dx2 · · · dxn, (4.21)

=
(∫

p(x1) dx1
)
× · · · ×

(∫
xi p(xi) dxi

)
× · · · ×

(∫
p(xn) dxn

)
, (4.22)

=
∫

xi p(xi) dxi = µ, (4.23)

in which we used the normalization of the PDF,
∫

p(xi) dxi = 1, and the definition of the
first moment µ. Inserting this result in Eq. (4.20), we find

µ̂ = E[x̄] = 1
n

n∑

i=1

µ = µ. (4.24)

We then conclude that the sample mean, x̄, is indeed an unbiased estimator of the mean µ

of the PDF p(x).

4.5.2 Mean Square Error of the Sample Mean

It is useful to consider the variance Var[x̄], or Mean Square Error (MSE), as an indicator
of typical deviations of the sample mean, x̄, from the actual value µ. Var[x̄] gauges the
variation of x̄ for repeated experiments, that is, different sets {xi}. As such, it can be used
to estimate the error, or uncertainty, of x̄ relative to the true value µ.

We evaluate the variance Var[x̄] by inserting the expression of the sample mean into the
definition of the variance:

Var[x̄] = E[x̄2] − (E[x̄])2, (4.25)

= E

⎡

⎣
(

1
n

n∑

i=1

xi

)2
⎤

⎦ − E

[
1
n

n∑

i=1

xi

]2

. (4.26)
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154 Classical Inference I: Estimators

The calculation proceeds similarly as for the expectation value E[x̄] (see Problem 4.5). One
gets

Var[x̄] = 1
n2

n∑

i, j=1

E[xix j] − 1
n2

(
n∑

i,=1

E[xi]

)2

, (4.27)

= 1
n2

(
nµ′

2 + n(n − 1)µ2) − µ2, (4.28)

= 1
n

(
µ′

2 − µ2) , (4.29)

= σ 2

n
, (4.30)

where µ′
2 is the second moment of the PDF p(x), and σ its (unknown) variance. We find

that the variance of the sample mean x̄ equals the variance of the PDF p(x) representing
the fluctuations of the random variable X divided by the number of measurements n. In
other words, the standard error on the sample mean x̄ is equal to the standard deviation of
the PDF divided by the square root of the number of measurements carried out, that is, the
size of the sample {xi}:

σx̄ = (MSE [x̄])1/2 = σ√
n
. (4.31)

The error on the sample mean thus depends on the PDF itself through σ , as well as the
size of the sample used to estimate the mean. It can be arbitrarily reduced by increasing the
sample size n. However, improvements are slow: to reduce the error by a factor of 2, one
needs to quadruple the size of the data sample.

4.5.3 Estimator of the Variance

We next seek an estimator σ̂ 2 of the variance σ 2 of the unknown distribution p(x). Based
on the expression of the sample mean, Eq. (4.18), it would seem reasonable to write

S2 = 1
n

n∑

i=1

(xi − x̄)2 . (4.32)

However, it turns out that this expression does not provide an unbiased estimator of σ 2.
Indeed, let us evaluate its expectation value:

E
[
S2] = E

[
1
n

n∑

i=1

(xi − x̄)2

]

, (4.33)

= 1
n

n∑

i=1

E

⎡

⎢⎣

⎛

⎝xi − 1
n

n∑

j=1

x j

⎞

⎠
2
⎤

⎥⎦. (4.34)
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We expand the square within the expectation value to get

1
n

n∑

i=1

E
[
xi

2] − 2
n2

n∑

i=1

E

⎡

⎣xi

n∑

j=1

x j

⎤

⎦ + 1
n3

n∑

i=1

E

⎡

⎣
n∑

j=1

x j

n∑

k=1

xk

⎤

⎦. (4.35)

Since sum and expectation value operations commute, one can write

1
n

n∑

i=1

E
[
xi

2] − 2
n2

n∑

i, j=1

E
[
xix j

]
+ 1

n3

n∑

i=1

n∑

j,k=1

E
[
x jxk

]
. (4.36)

One gets E
[
xix j

]
= E

[
xi

2
]

= µ2
′ for i = j and E

[
xix j

]
= E [xi] E

[
x j

]
= µ2 for i ̸= j

since the measurements are assumed to be uncorrelated. Equation (4.36) becomes

1
n

n∑
i=1

µ2
′ − 2

n2

n∑
i=1

µ2
′ − 2

n2

n∑
i̸= j=1

µ2 + 1
n3

n∑
i=1

n∑
j=1

µ2
′+ 1

n3

n∑
i=1

n∑
i̸= j=1

µ2. (4.37)

The sums with i ̸= j involve n(n − 1) identical terms. Equation (4.37) thus simplifies to

E[S2] = E

[
1
n

n∑

i=1

(xi − x̄)2

]

= n − 1
n

σ 2, (4.38)

from which we conclude that S2 is indeed a biased estimator of the variance σ 2. Obviously,
given that lim

n→∞
(n − 1)/n = 1, we conclude S2 is asymptotically unbiased. Note, however,

that if the mean µ is known, then the estimator 1
n

∑n
i=1 (xi − µ)2 is unbiased (see Prob-

lem 4.6). In general, since the mean µ is a priori unknown, it remains desirable to find a
nonbiased estimator of the variance. It is then possible to show (see Problem 4.7) that the
estimator s2, defined as

s2 = 1
n − 1

n∑

i=1

(xi − x̄)2, (4.39)

is in fact unbiased.

4.5.4 Mean Square Error of the Variance Estimator s2

Following the procedure used in §4.5.2 to calculate the MSE of the sample mean, it is
relatively simple, although somewhat tedious (see Problem 4.14), to show that the MSE of
the estimator s2 is given by

MSE[s2] = Var[s2] = 1
n

(
µ̂4 − n − 3

n − 1
µ̂2

)
, (4.40)

where the µ̂k are estimates of central moments (see Problem 4.9) of order k given by

µ̂k = 1
n − 1

n∑

i=1

(xi − x̄)k . (4.41)

Equation (4.40) reduces to the following expression for a Gaussian PDF:

MSE[s2] = 2σ 4

n2
(n − 1) ≈ 2σ 4

n − 1
Gaussian PDF. (4.42)
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156 Classical Inference I: Estimators

One thus concludes that the uncertainty on the estimate of the standard deviation, σs, is
proportional to the actual variance of the PDF and scales inversely with the square root of
the sample size n. This implies that for broadly distributed PDFs, a rather “large” sample
must be acquired in order to obtain a reasonably precise estimate of the standard deviation.

4.5.5 Covariance and Pearson Coefficients

The result obtained in the previous section for the variance also applies to the covariance
of joint measurements of two variables X and Y . Let us indeed consider a sample of n pairs
of measurements {xi, yi}. One can show (see Problem 4.8) that the expression

V̂xy = 1
n − 1

n∑

i=1

(xi − x̄) (yi − ȳ) (4.43)

provides an unbiased estimator of the covariance Vxy of the two variables X and Y .
It is also useful to consider the ratio, rxy, of the covariance V̂xy by the square root of the

product of the variances of X and Y :

r̂xy =
V̂xy√
s2

xs2
y

= xy − x̄ȳ
√(

x2 − x̄2
) (

y2 − ȳ2
) . (4.44)

This ratio is known as Pearson correlation coefficient.4 It measures the strength of the
correlation between the variables X and Y relative to their respective variances. When
calculated for an entire population, the coefficient is typically designated by the Greek
letter ρ (see §2.9.5) whereas the Latin letter r is used for a calculation based on a sample.
It can be shown that r̂xy is biased but converges to the Pearson coefficient ρxy in the large
n limit (see Problem 4.15). One can also show (see Problem 4.16) that the coefficient lies
in the range [−1, 1]. A value of 1 indicates that the variables Y and X are maximally
correlated, and that a strict linear relation exists between the two variables:

y = |a|x. (4.45)

Similarly, a value of −1 indicates that all data points lie on a single line y = −|a|x. A null
value suggests there is no correlation between the variables.

4.5.6 Robust Moments

We saw in previous sections that the estimators of the moments of a distribution based on
a sample of n values boil down to expressions of the form

µ̂′
k ≡ ⟨xk⟩n ≡ 1

n

n∑

i=1

xk
i (4.46)

4 First introduced by Francis Galton in the 1880s, and named after English mathematician Karl Pearson (1857–
1936) generally credited with establishing the discipline of mathematical statistics.
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for regular moments and

µ̂k ≡ ⟨(x − µ̂1)k⟩n ≡ 1
n

n∑

i=1

(xi − ⟨x⟩)k . (4.47)

for centered moments. While straightforward to implement in a computer program, these
expressions feature important drawbacks. First, given the sums may proceed over a very
large number of values, numerical errors are likely to occur, particularly for higher mo-
ments, due to rounding errors imposed by the finite number of bits used in floating point
operations. Second, in the case of centered moments, the preceding formula requires one
runs the analysis twice: once to obtain the mean ⟨x⟩, and once again to obtain the centered
moments. Additionally, the two preceding formulas also present the disadvantage that the
calculation must be run over all items xi of the data sample before one obtains an esti-
mate of the moments. Fortunately, these technical difficulties are easily circumvented by a
simple reformulation of the preceding expressions.

Let us first consider the mean of a sample of n values and write

⟨x⟩n = 1
n

n∑

i=1

xi,

= 1
n

(

xn +
n−1∑

i=1

xi

)

, (4.48)

= 1
n

xn + (n − 1)
n

⟨x⟩n−1, (4.49)

where in the third line, we have inserted ⟨x⟩n−1 corresponding to the mean of the first n − 1
values of the sample. Rearranging, we get

⟨x⟩n = ⟨x⟩n−1 + xn − ⟨x⟩n−1

n
, (4.50)

which says that the mean ⟨x⟩n obtained after n values is equal to the mean ⟨x⟩n−1 obtained
with n − 1 values plus a correction )n given by

)n = xn − ⟨x⟩n−1

n
. (4.51)

The same derivation technique can be applied to centered moments of order k ≥ 2 (see
Problem 4.17), and one obtains

µk = ⟨(x − ⟨x⟩)k⟩

= n−1
n

{[
1 − (1 − n)k−1

]
)k

n +
∑k

l=2

(
l
k

)
⟨(x − ⟨x⟩n)l⟩n)

k−l
n

}
, (4.52)

which for k = 2, 3 may be written

⟨(x − ⟨x⟩)2⟩n = n − 1
n

{
n)2

n + ⟨(x − ⟨x⟩)2⟩n−1
}

(4.53)

⟨(x − ⟨x⟩)3⟩n = n − 1
n

{
(2n − n2))3

n + 3 ⟨(x − ⟨x⟩)2⟩n)n + ⟨(x − ⟨x⟩n)3⟩n
}
. (4.54)
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The preceding expressions for centered moments are said to be robust because they involve
numerically stable operations. Calculations proceed iteratively and do not involve addition
or subtraction of huge numbers. Indeed, the correction )n vanishes asymptotically for
growing values of n, the calculated moments thus naturally tend to their “true” value as
n iteratively increases. Values involved in the calculation all remain finite and rounding
errors are thus minimized. The preceding expressions also involve the practical advantage
that it is not necessary to proceed to an analysis of the full dataset in order to obtain the
moments. The calculation of moments of all orders may be carried out iteratively and in
parallel: one gets an estimate of all the required moments at each step n of the calculation.
This enables “on the fly” analyses in which estimates of the moments may be obtained
during the data acquisition process. It may then be possible to monitor the data collection,
in real time, for shifts and varying trends that could indicate changes in the performance
of detector components.

4.5.7 Other Estimators Commonly Used

Geometric Mean
Whenever the magnitude of a random variable is proportional to a product of n elementary
random variables, xi, it is convenient to replace the concept of arithmetic mean, which
involves a sum of variables, with the geometric mean, defined as follows:

x̄geom = n
√

x1x2 . . . xn. (4.55)

The geometric mean finds applications in physics and engineering. A specific example
involves the notion of average attenuation. Suppose a beam of light is directed through a
series of n attenuators, each contributing a random attenuation, qi, with i = 1, . . . , n. The
overall attenuation, Q, of the “signal” is thus equal to the product of all n attenuation fac-
tors, Q = q1 × q2 × . . . × qn. The average attenuation, in other words, the attenuation per
element, is thus q̄ = n

√
q1 × q2 × . . . × qn, which is the geometric mean of the attenuations

qi. This means one could replace all n attenuators, qi, by n identical attenuators, each yield-
ing an attenuation of q̄, and get the exact same result. A similar reasoning can be done with
gain devices, such as amplifiers or photomultipliers.

Harmonic Mean
Another distribution characterization seldom encountered is the harmonic mean, x̄harm, of
n values xi defined as

x̄harm = n
1/x1 + 1/x2 + . . . + 1/xn

. (4.56)

Although less frequently used, this type of mean also has various applications. For in-
stance, notes produced by the different strings of a guitar or violin sound pleasing (or
harmonic) to the human ear5 if their effective lengths are in the ratio 1: 1

2 : 1
3 :…The

5 A fact originally noted by the ancient Greek Pythagoras.
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harmonic mean of two notes is thus conveniently defined as twice the inverse of the sum
of the reciprocal of their lengths. This stems from the fact that the human ear is sensitive
to the frequency of the sound (the pitch), while the wavelength is determined by the length
of the strings. The arithmetic mean of several frequencies is consequently equivalent to the
harmonic mean of several string lengths.

4.6 Histograms

4.6.1 Basic Concept and Definition

Experimentally, various constraints limit the number of times a measurement of a particu-
lar observable X might be carried out. It is nonetheless desirable and of interest to generate
simple visual representations of the acquired data. Indeed, whether one has acquired a sam-
ple of 10, 1,000, 1,000,000, or several billions data points, it is clearly useful to visualize
these data in a graph. Different scenarios arise. It could be that the observable X of interest
has a definite value, that is, is expected to take a single value. Measurement uncertainties
may however lead to deviations from the actual (i.e., true) value of the observable. One may
then be interested in visualizing how finitely many measured values {xi}, i = 1, . . . , n, are
distributed. Alternatively, values of a continuous observable X could instead be expected
to follow some model or probability distribution. It is then of interest to compare the den-
sity of measured values vs. x with the model or theoretical distribution. Either way, it is
clear that plotting a graph of the number of instances or “events” as a function of the value
of x is of interest. Indeed, one would like to compare the measured density distribution
to the model. The problem, of course, is that we are dealing with a continuous variable
and only dispose of a finite sample. One must then invoke a statistic, or estimator, that
enables a sensible representation of the distribution of the continuous variable X . This is
readily achieved by representing a set of measured values {xi}, i = 1, . . . , n, according to
a construction consisting of the numbers of observed values, nj, with j = 1, . . . , m, in m
finite width elements, called bins, of a partition of the range of allowed values of X . This
construction is called a histogram.

In order to better understand the need for histograms, consider that many measurements
can be essentially reduced to an experimental determination of the PDF of specific pro-
cesses. In particle and nuclear physics, for instance, it is common to measure the mo-
mentum spectrum and angular distributions of particles produced in elementary interac-
tions such as proton–proton, proton–nucleus, or nucleus–nucleus collisions at high energy.
While one can model, at least in principle, the overall momentum and angular distribu-
tions, it is not possible to predict on a collision-by-collision, and particle-by-particle basis,
what momenta and angle the particles will have. The momenta and angles are consequently
random variables. However, a very large (infinite) number of measurements of momenta
or production angles is expected to yield distributions of these variables that are repre-
sentative of the nuclear interactions under consideration, that is, their respective PDFs. In
practice, it is obviously impossible to carry out an infinite number of measurements. In
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fact, in many cases, the number of occurrences of a specific measurement outcome may
be severely limited by small cross section, finite beam intensity (luminosity), experimen-
tal acceptance, or detection efficiency (see Chapter 12 for definitions of these concepts).
Additionally, even if many occurrences are measured for a continuous variable X , it is in
fact impossible to measure the probability of a specific value. It is, however, conceptually
and practically meaningful to determine the number of occurrences in a finite interval of
width )x. In principle, one would prefer to carry out measurements with as small a value
of )x as possible. In practice, the measurement is meaningful only if a finite number of
occurrences is observed in a given interval. One can therefore study histograms, in other
words, the number of occurrences in segments of finite width )x.

Histograms may be defined in one, two, or any number of dimensions and are used for the
study of a single random variable as well as the simultaneous (joint) study of two or more
variables. We begin our discussion of histograms with the definition of one-dimensional
histograms in §4.6.2 and extend to two- and multidimensional histograms in §4.6.3.

4.6.2 One-Dimensional Histograms

A one-dimensional (1D) histogram of a single continuous variable X is defined over a
finite range xmin ≤ x < xmax. This range is divided or binned in a specific (but arbitrary)
number, m, of contiguous segments, called bins. The bins are numbered from j = 1 to m.
They may all be of equal width, )x = (xmax − xmin) /m, or defined to cover subranges of
unequal widths with lower and upper bin boundaries noted xmin, j and xmax, j, respectively.
In the latter case, bin boundaries are usually defined to leave no gaps between contiguous
bins, that is, such that xmax, j = xmin, j+1 for j = 1, . . . , m − 1.

The analysis of a dataset {xi} and the filling of the histogram proceed as follows. The
bin contents, Hj, j = 1, . . . , m are initially set to zero. The values {xi}, i = 1, . . . , n, are
then sequentially considered. Values xi satisfying xmin ≤ xi < xmax are set to generate an
entry in the bin j such that xmin, j ≤ xi < xmax, j. Depending on the specific circumstances
of an analysis, the entry may involve incrementing the bin content Hj by one unit (i.e.,
+1) or by some weight wi determined by the value xi. Once all entries have been carried
out, the shape of the histogram is expected to be representative of the PDF of variable X .
The histogram may finally be divided by a suitable normalization constant consisting, for
instance, of the number of events analyzed, the total number of entries in the histogram,
or the total weight of the entries. For unit increments (+1) per entry, division by the total
number of entries yields normalized bin contents

hi = Hi/n, (4.57)

corresponding to the relative frequency of each bin. In the limit of an infinite number of
measurements, n → ∞, hi is then expected to represent the probability, pi, of occurrences
of the random variable X in the range xmin,i ≤ x < xmax,i,

lim
n→∞

hi = pi ≡
xmax,i∫

xmin,i

f (x) dx, (4.58)
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with the normalization6

m∑

i=1

pi =
xmax∫

xmin

f (x) dx = 1. (4.59)

The normalized bin content hi is thus an e
¯
stimator of the probability of obtaining a value

of X in the range xmin,i ≤ x < xmax,i. If resolution smearing and efficiency effects can be
ignored (or at the very least neglected), the definition of hi in terms of an arithmetic mean
of the number of entries in the bin constitutes an unbiased estimator of the probability pi

of observing entries in that bin. Altogether, the bin contents hi, i = 1, . . . , n, thus provide
an estimator of the probability distribution of the observable X .

When weights wi are used to increment a histogram, Hi corresponds to the sum of all
weights used to increment bin i. If the weights are themselves random variables, hi = Hi/n
no longer represents a number of occurrences in bin i but is instead the mean weight in that
bin:

lim
n→∞

hi = 1
n

⟨*wi⟩ =
xmax,i∫

xmin,i

w f (x) dx. (4.60)

The mean weight in bin i, denoted ⟨wi⟩, is given by the ratio of ⟨*wi⟩, and the number of
entries in that same bin:

⟨wi⟩ =
⟨*wi⟩
⟨*1i⟩

=

xmax,i∫

xmin,i

w f (x) dx

xmax,i∫

xmin,i

f (x) dx
. (4.61)

With weights equal to unity, and in the limit n → ∞, we find that a histogram provides
the probabilities pi that the variable X occurs in the range xmin,i ≤ x < xmax,i. Evidently,
it is not possible to carry out an experiment with an infinite number of measurements.
The values hi one obtains experimentally thus provide estimates of the probabilities pi, as
defined in the foregoing. Globally, a normalized histogram hi, i = 1, . . . , m thus provides
an estimator of the relative probabilities pi, i = 1, . . . , m. Uncertainties associated with the
estimates hi are discussed later in this section.

Various plotting techniques are available to represent histograms graphically. Histograms
are often represented as bar graphs such as those displayed in Figure 4.3. These histograms
were created with a Monte Carlo (random) number generator (§13.3) according to a Gaus-
sian distribution (§3.9) of mean 0.5, and standard deviation equal to 0.75. The histograms
shown in panels (a), (b), (c), and (d) were obtained with sample sizes of 100, 1,000, 10,000,
and 1,000,000 entries, respectively. While it is difficult to discern the exact shape of the
distribution based on histogram (a), the shape becomes progressively more obvious with
increased statistics, and with one million entries in panel (d), one can identify a Gaussian
distribution. Panels (e) and (f) present histograms obtained with 100 distinct entries. The

6 Obviously, this normalization applies only if there are no gaps between bins.
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Fig. 4.3 Histograms obtained with a Monte Carlo generator designed to produce a standard normal distribution (µ = 0,
σ = 1). The size of the generated sample is shown in each panel. Histograms (a), (e), and (f) present distinct samples
of size equal n = 100which exemplify that distributions measured with fewer statistics (i.e., small sample) may
considerably deviate from the actual PDF.

entries are mutually exclusive and different from those shown in panel (a). Comparing the
three distributions (a), (e), and (f), one observes much variance in the shape, width, and
height of the distributions. Obviously, with little statistics, it is difficult to precisely char-
acterize the parent PDF, that is, the PDF that determines the measured distribution. But
as the number of samples increases, one progressively becomes able to better discern and
identify the shape of the distribution. This is typical of all measurements relying of finitely
many samples or events.

While of evident interest, the quantities pi defined earlier do not exactly correspond to
the PDF, f (x), one seeks to determine, but instead correspond to integrals of the PDF in
bins i = 1, n. A theorem of elementary calculus, however, enables the determination of
an estimate of the PDF. The theorem (used here without demonstration) stipulates that for
each bin i, there exists a value xi,0 such that

xmax,i∫

xmin,i

f (x) dx = f (xi,0) (xmax,i − xmin,i) = f (xi,0))xi, (4.62)
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163 4.6 Histograms

where )xi = xmax,i − xmin,i. It is important to realize that in general, the values xi,0 do not
correspond to the center of bins i. In the limit n → ∞, given the value pi, the value f (xi,0)
of the PDF at xi,0 is then

f (xi,0) = pi

)xi
. (4.63)

For finite n, the value pi is replaced by hi, and one gets estimates f̂i of the PDF value in
each bin:

f̂i ≡ festimate(xi,0) = hi

)xi
. (4.64)

In histogram plots, the estimate f̂i is usually represented as a continuous horizontal line
across the bin width, as shown in Figure 4.3. If instead one wishes to plot f (x) as an actual
function, one must determine the abscissa xi corresponding to the ordinate f̂i in order to
plot the data as a set of points (xi, f̂i). This is further discussed in Problem 2.10.

Given the finite size of the sample used in a measurement, one expects the measured
estimates f̂i might randomly deviate from the actual value of the function f (xi). It is thus
also important to estimate the errors on each of these values in order to evaluate the preci-
sion of the measurement, and enable meaningful comparisons with other measurements or
with models (see §6.4). If there are no bin-to-bin correlations, for experiments where the
successive values of x measured are uncorrelated, the number of entries Hi in each bin is a
random number determined by a Poisson distribution (§3.3) of mean µi given by

µi = n

xmax,i∫

xmin,i

f (x) dx = npi, (4.65)

and variance Var[Hi] = µi ≈ Hi. One therefore concludes that the values Hi shall converge
to npi in the large n limit. It also implies one can estimate the error (standard deviation) on
the bin content as

√
Hi. The standard deviation of hi is thus of the order of

δhi ≈ Var[hi]1/2 =
√

Hi/n, (4.66)

and since Hi equals nhi, this amounts to the commonly known result δhi =
√

hi/n. The
relative error of the estimate f̂i = hi/)xi is then

δ f̂i

f̂i
=

√
hi/n
hi

= 1√
n

1√
hi

→ 1√
n

1
√

pi
. (4.67)

One concludes, as expected, that the relative error, δ f̂i/ f̂i, on an estimate of the PDF im-
proves as the square root of the number of measurements n carried to determine the PDF.
This is costly. Indeed, to get a reduction of the errors by a factor of 2, one must quadruple
the statistics, whereas to achieve an improvement by a factor of 10, one must increase the
dataset by a factor of 100, and so on. Consequently, one finds that significantly improving
known results requires considerable increase of the size of existing data samples. In nuclear
and particle physics experiments, this translates into demands for substantial increases in
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the beam luminosity (intensity), the duration of data acquisition periods, as well as detector
acceptance and efficiency.

4.6.3 Multidimensional Histograms

Two-dimensional (2D) and multidimensional histograms are used to represent data with
dependencies on two or more variables. They are defined and filled in much the same way
as 1D histograms. The following discussion is limited to 2D histograms but can be readily
extended to multidimensional histograms.

To construct a 2D histogram, one must first define the ranges xmin ≤ x < xmax, ymin ≤
y < ymax and number of bins mx and my used to plot the two random variables (here labeled
x and y) of interest. Modern plotting software packages typically enable the creation of 2D
histograms with different types of partitions: one can use bins of fixed or variable width on
both axes, or mix fixed and variable widths on the two axes. It is customary to identify the
bins using a pair of indices (i, j) where i and j range from 1 to mx and my, respectively.
A histogram is filled using a data sample consisting of n pairs (x, y)k , with k = 1, . . . , n.
Given the variables are random observables, one expects the content of the bins, Hi j, to also
be random variables. The content of each histogram is readily converted into an estimate
of the joint probability, hi j, of observing pairs (x, y) in bin (i, j) by dividing Hi j by the size,
n, of the event sample. Given a joint PDF, f (x, y), and in the large n limit, the probability,
pi j, of observing counts in bin (i, j) is given by

pi j ≡ lim
n→∞

hi j =
xmax,i∫

xmin,i

ymax, j∫

ymin, j

f (x, y) dxdy. (4.68)

As for 1D histograms, one notes that although the values pi j enable a representation of
f (x, y), they are not equal to the PDF f (x, y) but rather constitute, as per Equation (4.68),
integrals of the probability density. However, values (xo,i, yo, j ) exist for each bin such
that

pi j = f (xo,i, yo, j ))xi)y j (4.69)

where )xi = xmax,i − xmin,i and )yi = ymax,i − ymin,i. Note that (xo,i, yo, j ) does not usually
coincide with the middle of the bin. Given a measured sample, hi j, one can therefore obtain
an approximation f̂ of the joint PDF using

f̂ (xo,i, yo, j ) =
hi j

)xi)y j
. (4.70)

As for 1D distributions, the relative errors δ f̂i j/ f̂i j are given by

δ f̂i j

f̂i j
=

√
hi j/N

hi j
= 1√

n
1

√
hi j

→ 1√
n

1
√pi j

. (4.71)

There are several techniques to graphically represent 2D histograms. Figure 4.4 illustrates
various popular representations: (a) a scatterplot where the density of points is propor-
tional to the bin content, (b) z-color where a range of colors (or shades of gray) is used
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Fig. 4.4 Illustration of the notion of 2D histograms based on a 2D standard normal distribution (µx = µy = 0,
σx = σy = 1): (a–c) scatterplots with 1,000, 10,000, and 1,000,000 entries. Panels (d, f) present alternative plotting
methods (contour, lego, hybrid) for a histograms with 1,000,000 entries.

to represent the amplitude of the signal, (c) contour plot where lines show values of equal
amplitude, as well as (d) lego plot, (e) surface plot, and (f) mixed z-color + surface where
the amplitude is shown explicitly in a three-dimensional plot. Various other graphing tech-
niques are available in plotting packages such as ROOT, MATLAB®, or MathematicaTM. In
principle, projections of the estimate of joint probability, hi j, onto the x- and y-axes yield
estimates of the marginal probabilities f̂x(x) and f̂y(y), respectively. Note, however, that
since 2D histograms are typically filled using specific boundaries (both along the x- and
y-axes), the projections are likely to be incomplete and not yield the full integrals given
by Eqs. (2.106, 2.107) unless the probabilities pi j are negligible outside the boundaries of
the histogram. This means that the projections are estimates of the conditional probability
densities hx(x|ymin ≤ y < ymax) and hy(y|xmin ≤ x < xmax). They provide PDFs of x and y
given y and x, respectively, are in the ranges ymin ≤ y < ymax and xmin ≤ x < xmax defined
by the boundaries of the histogram.

Slices of the histogram hi j in y and x projected onto the x- and y-axis, respectively, may be
used to obtain estimates of the conditional probabilities hx(x|y) and hy(y|x). Note, however,
that the finite bin width used to create and fill histograms implies these estimates are valid
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for ranges of y and x, respectively, corresponding to the widths of the bins along these
two axes. Slices consisting of several rows or columns can of course be added together to
improve the statistical significance of the data. But this brings about a loss in the resolution
of the conditions on y and x used to define the slices.

4.6.4 Profile Histograms

In the study of multivariate systems, one often encounter situations in which a variable Y
exhibits significant event-to-event fluctuations as well as an explicit dependence on some
independent (control) variable X . A two-dimensional histogram can evidently be used to
study the joint probability of the two variables, but in many cases one is interested primarily
in the dependence of the average E[Y ] on the variable X . Creating a 2D histogram Y vs.
X to study the dependence of Y on X may then be fastidious and somewhat of an overkill.
Fortunately, profile histograms provide an easy and convenient alternative.

Profile histograms are based on the same notion of partition of the domain of one of sev-
eral control variables X , and can be drawn in one, two, or multiple dimensions. However,
rather than storing multiple content bins for the dependent variable (Y ), for each bin of
the variable X , one reduces the information to three quantities for each X bin: the number
of entries in the bin i, hereafter noted ni; an estimate of the mean of Y , ⟨yi⟩; and the vari-
ance, ⟨)y2

i ⟩, of the signal Y in the bin. A profile histogram is “filled” similarly as a regular
histogram by calling a “fill” function

profileHisto.fill(x, y) (4.72)

for a pair of values (x, y), where x is an instance value of the independent variable X and
y a jointly measured value of the dependent variable Y . However, rather than incrementing
a bin content, a profile histogram implements Eqs. (4.50, 4.53) to obtain robust estimates
of the mean, ⟨yi⟩, and the variance, ⟨)y2

i ⟩, of the signal Y in each bin i based on succes-
sive entries y. The mean and variance of Y in a given bin i (of X ) are thus calculated for
successive entries in that bin according to

)i = y − ⟨yi⟩
ni + 1

, (4.73)

⟨yi⟩′ = ⟨yi⟩ + )i, (4.74)

⟨)y2
i ⟩′ = ni

ni + 1

[
(ni + 1))2

i +
〈
)y2

i

〉]
, (4.75)

n′
i = ni + 1, (4.76)

where primed quantities stand for updated values obtained after the inclusion of the (ni +
1)th entry. The profile histogram may then be examined at any stage of an analysis to obtain
estimates of the mean, ⟨yi⟩, and centered moment, ⟨)y2

i ⟩, in each bin i. Additionally, for
sufficiently large number of entries, ni, the variance ⟨)y2

i ⟩ may be used to estimate the
error on the mean in each bin according to

δ⟨yi⟩ =

√
⟨)y2

i ⟩
ni

. (4.77)
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Fig. 4.5 Illustration of the concept of profile histogram. (a) 2D histogram showing the joint distribution of variables X andY .
(b) Profile histogram displaying the dependence of the average ofY on X . Error bars displayed indicate uncertainties
on the mean of the signalY .

This provides the additional advantage that it is readily possible to produce plots of the
average ⟨Y ⟩(x) with errors bars corresponding to the error on the mean, or alternatively,
the standard deviation of the signal.

Figure 4.5a presents an example of a joint distribution (2D histogram) of two variables
X and Y , where the dependent variable Y exhibits large fluctuations at any given value of
X . The dependence of Y on X , difficult to discern based on this 2D histogram, is readily
identified in the profile histogram shown in panel (b) of the same figure.

4.7 Fisher Information

Given a probability model p(x|θ⃗ , H, I ) for an observable X and model H , it is legitimate
to ask how measurements of X may constrain the values of the model parameters θ⃗ , that is,
how much information is contained in the data and the functional form of p(x|θ⃗ , H, I ) that
can constrain the value of the parameters θ⃗ . Two distinct quantities, the entropy S and the
Fisher information I(θ ), are commonly used to characterize this information. The Fisher
information and examples of calculation for specific PDFs are presented in this section,
whereas the notion of entropy S and its connection to the Fisher information are discussed
in §7.3.1. A technique to obtain a minimal bound on the variance of model parameters
based on the Fisher information is presented in §4.7.6.

This section may be skipped in a first reading of this chapter.

4.7.1 A Basic Derivation of the Fisher Information

The function p(x|θ⃗ , H, I ) amounts to the probability (density) of observing values of x
given model parameters θ⃗ . Changing the values of the model parameters modifies the prob-
ability and the likelihood of x being observed in any given range: the parameters determine
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the distribution of observable values x. One can thus say that the PDF p(x|θ⃗ , H, I ) contains
some kind of “information” that dictates what values x may be observed given specific pa-
rameters θ⃗ . Conversely, given a measured value of x, the functional form of a PDF should
also provide information about the (unknown) model parameters θ⃗ . Let us then examine
how one can quantify this information.

For simplicity’s sake, let us first restrict the discussion to a single parameter PDF
p(x|θ , H, I ). Changing θ by an increment )θ produces a change in probability )p ap-
proximately equal to

)p ≈ ∂ p(x|θ , H, I )
∂θ

)θ . (4.78)

The derivative ∂ p/∂θ determines how a change in θ affects the probability distribution.
It also influences how a change in the measured distribution (i.e., values of x being more
or less probable) impacts the most likely values of the parameter θ . The slope function
∂ p/∂θ thus contains much of the information one needs to establish a connection between
the data and the model parameter. The magnitude of the probability (density) also matters,
however. A given increment )p should be far more significant if it effects a comparatively
large change on the probability density. It is thus more relevant to consider relative changes
of the density, that is, how the ratio )p/p is affected by a change )θ of the parameter θ .
To this end, one introduces the notion of score, hereafter noted ξ , and defined as

ξ (x|θ ) = ∂

∂θ
ln p(x|θ , H, I )

∣∣∣∣
θ

(4.79)

= 1
p

∂ p
∂θ

∣∣∣∣
θ

. (4.80)

A high score means a given increment )θ has a large impact on the probability density
whereas a small score produces only a modest change. Evidently, given the density is a
function of x, the score is itself also a function of x. One should thus consider the aver-
age score of the distribution; that is, one should calculate its expectation value E[ξ ]. It is
straightforward to verify, however, that this expectation value vanishes for all values of θ .
Indeed, for “well-behaved” distributions, one has

E [ξ ] =
∫

1
p(x|θ )

∂ p(x|θ )
∂θ

p(x|θ ) dx, (4.81)

=
∫

∂ p(x|θ )
∂θ

dx = ∂

∂θ

∫
p(x|θ ) dx, (4.82)

= ∂

∂θ
1 = 0, (4.83)

where in the second line, we assumed the density p(x|θ ) is a regular function such that
the order of the integral vs. x and the derivative with respect to θ may be interchanged,
while in the third line, we used the normalization of the function. Clearly, the foregoing
null expectation value is of little interest because it does not provide any means to use the
score to extract information about the probability density p(x|θ ). The second moment of
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the score, called Fisher information I(θ ), does, however.

I(θ ) =
∫ [

1
p(x|θ )

∂ p(x|θ )
∂θ

]2

p(x|θ ) dx, (4.84)

Since the integrant is by construction nonnegative, the Fisher information I(θ ) is positive
definite for all values of θ , and its magnitude constitutes an indicator of the amount of
information contained in the PDF. Probability densities with high scores in regions of high
probability yield large integral values whereas densities with small scores yield small val-
ues of I(θ ). The Fisher information I(θ ) indeed constitutes an indicator of the information
contained in a PDF p(x|θ ).

It is interesting to note that given the expectation value of the score is null, the Fisher
information amounts to the variance of the score. Densities with large Fisher information
have a large score variance and provide better capabilities to determine and constrain model
parameters.

The Fisher information may also be calculated in terms of the expectation value of the
second derivative of the score. To demonstrate this statement, first compute the second
derivative of the score relative to θ

∂2

∂θ2
ln p(x|θ ) = ∂

∂θ

(
1
p

∂ p
∂θ

)
, (4.85)

= 1
p

∂2 p
∂θ2

− 1
p2

(
∂ p
∂θ

)2

, (4.86)

and calculate its expectation value across the domain of x. Since

E
[

1
p

∂ p
∂θ

]
=

∫
∂ p
∂θ

dx = ∂

∂θ

∫
p dx = 0, (4.87)

E
[

1
p

∂2 p
∂θ2

]
=

∫
∂2 p
∂θ2

dx = ∂2

∂θ2

∫
p dx = 0, (4.88)

it follows, using Eq. (4.84), that

I(θ ) = −E
[

∂2

∂θ2
ln p(x|θ )

]
, (4.89)

where the expectation value is evaluated at a fixed value of θ .

4.7.2 Fisher Information Matrix

For a probability model involving m parameters θ⃗ = (θ1, θ2, . . . , θm), the Fisher informa-
tion becomes a covariance matrix with elements

Ii j(θ⃗ ) = Cov
[

∂

∂θi
ln p(x|θ⃗ ),

∂

∂θ j
ln p(x|θ⃗ )

]
, (4.90)

which for regular functions may be written as (Problem 4.19)

Ii j(θ⃗ ) = −E
[

∂2

∂θi∂θ j
ln p(x|θ⃗ ),

]
. (4.91)
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170 Classical Inference I: Estimators

4.7.3 Fisher Information Properties

The Fisher information features several important properties.

Additivity
Given two observables X and Y , the information obtained from independent measurements
of these observables may be written

Ix,y(θ ) = Ix(θ ) + Iy(θ ), (4.92)

where Ix(θ ) and Iy(θ ) are the information obtained from measurements of X and Y , respec-
tively. The additivity results from the fact that the variance of a sum of two independent
variables is equal to the the sum of their respective variances.

Scaling
The property of additivity is readily extended to an “experiment” consisting of n elemen-
tary measurements of an observable X sampled from the same distribution p(x|θ ). The
Fisher information of the likelihood p(x⃗|θ ) of the measured data x⃗ = (x1, x2, . . . , xn) is
equal to n times the Fisher information of an individual measurement.

Ix⃗(θ ) = nIx(θ ). (4.93)

In this context, the Fisher information obtained from a single measurement of an observ-
able X is commonly called unit Fisher information to distinguish it from that obtained
from a sample of n measurements.

Transformation
The Fisher information of a probability model parameter θ depends on the derivative of the
distribution relative to this parameter. But the parameterization of a model can be changed
without changing its meaning. For instance, with a Gaussian PDF, specification of the width
of the distribution may be done in terms of the standard deviation σ , the variance σ 2, or
the precision ξ = σ−2. These three parameters have different meanings, physical units, and
numerical values, but the Gaussian PDF they define remains the same. In some fashion, the
information associated to these different parameters cannot be too different. Indeed, their
information must be related to one another. More generally, it is interesting to consider
how the Fisher information I(θ⃗ ) transforms under a reparametrization θ⃗ → λ⃗(θ⃗ ).

Let us first consider a probability model involving a single parameter θ and calculate the
information in terms of λ based on θ ≡ θ (λ)

Iλ(λ) =
∫ [

1
p(x|θ (λ))

∂ p(x|θ (λ))
∂λ

]2

p(x|θ (λ)) dx, (4.94)

where we included the dependency of the parameter θ on λ explicitly to emphasize that the
information is considered a function of λ rather than θ . Using a chain rule for the partial
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171 4.7 Fisher Information

derivative, we get

Iλ(λ) =
∫ [

1
p(x|θ )

∂ p(x|θ )
∂θ

∂θ

∂λ

]2

p(x|θ ) dx, (4.95)

=
(

∂θ

∂λ

)2 ∫ [
1

p(x|θ )
∂ p(x|θ )

∂θ

]2

p(x|θ ) dx, (4.96)

where the probability is now considered a function of θ rather than λ and the square of the
derivative ∂θ/∂λ was factored out of the integral because it is independent of the observ-
able x. We thus conclude that under a reparameterization θ ≡ θ (λ), the Fisher information
transforms according to

Iλ(λ) = Iθ (θ (λ))
(

∂θ

∂λ

)2

. (4.97)

For a multiparametric model involving m parameters, θ⃗ = (θ1, θ2, . . . , θm), we saw in
§4.7.2 that the information takes the form of a matrix. We may then consider how the
information changes under a transformation θ⃗ → λ⃗ defined by the m × m Jacobian matrix

Ji j ≡ ∂θi

∂λ j
, (4.98)

where the indices i and j span the m model parameters. Repeating the chain rule derivation,
Eq. (4.95), for each pair of parameters i, i′ → j, j′, one finds

Iλ j,λ j′ (⃗λ) = Iθi,θi′ (θ⃗ )
(

∂θi

∂λ j

) (
∂θi

′

∂λ j
′

)
. (4.99)

The transformation may also be written in a convenient matrix form

I⃗λ(λ) = JT Iθ⃗ (θ⃗ (⃗λ))J. (4.100)

We will use the transformation property of the Fisher information when discussing the
notion of information invariance forming the basis of Jeffreys’ priors introduced in §7.3.2.

4.7.4 Example 1: Fisher Information of a Binomial PDF

Consider a nuclear physics experiment involving a measurement of the rate of production
of a certain particle species in a specific nuclear collision at a specific beam energy. The
measurement is carried out with a given detector and within a specific kinematic range.
Nominally, produced particles by the collisions are detected and counted within the ap-
paratus. However, particle losses associated with various instrumental causes invariably
occur. The number of particles detected, n, thus represents only a fraction of the number
produced N and one defines the particle detection efficiency as the ratio of the number of
observed particles by the number of produced particles:

ε ≡ n
N

. (4.101)

The efficiency is largely determined by the design of the apparatus but may be influenced
by a host of factors internal and external to the apparatus. In practice, it is typically difficult
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Fig. 4.6 (a) Plot of the likelihood function of an efficiency parameter ε given the successful detection of n = 80 particles and
the prior knowledge that N = 100 particles actually passed through the detection apparatus. (b) Fisher information
I(ε) contained in the binomial distribution plotted as a function of the efficiency (success rate) parameter ε.

to carry out, ab initio, a precise calculation of the efficiency of a specific device and one is
often required to carry out a controlled measurement where both n and N are explicitly de-
termined to calculate the efficiency. The difficulty arises that a measurement is intrinsically
a stochastic process, akin to the toss of a coin. For a given particle passing through the de-
tector, there is a probability ε that the particle will be detected and a probability 1 − ε that
it will not. Assuming, as in §3.1.1, that the detection of any given particle is independent
to that of others, the detection process can be modeled with a Bernoulli probability model

p(x|ε) = εx(1 − ε)1−x, (4.102)

where a value x = 1 represents a success, that is, a particle being detected, and a value
x = 0 corresponds to a “failure,” that is, a particle remaining undetected. Clearly, just a
single toss of a coin is insufficient to determine whether a coin is fair, one needs to attempt
the detection of a large number of particles to obtain an estimate of the efficiency. Let us
thus consider a succession of N independent particles passing through the detector. As for
coin tosses, the total number of success n (i.e., particle detected) relative to the number of
trials N shall be given a binomial distribution

p(n|N, ε) = N!
n!(N − n)!

εn (1 − ε)N−n . (4.103)

The function p(n|N, ε) determines the likelihood of n particles being observed given N
are produced when the detection efficiency is ε. But ε is unknown, and it is the purpose
of the experiment to determine its value. One can then invoke the principle of maximum
likelihood, discussed in §5.1, and obtain the ML estimate of ε as n/N , in which n is the
number of actually detected particles, and N is the number of particles known to pass
through the detector.

The likelihood function p(n|N, ε) is plotted as a function of ε in Figure 4.6a for N = 100
and n = 80. One finds that the function has a maximum at ε = 0.8 corresponding indeed to
the ML estimator value 80/100. We evaluate the (unit) Fisher information of the binomial
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PDF using Eq. (4.84):

I(ε) = −E
[

∂2

∂ε2
ln p(x|ε)

]
(4.104)

= −E
[

∂2

∂ε2
ln

(
N!

n!(N − n)!
εn (1 − ε)N−n

)]
(4.105)

= E
[

n
ε2

+ N − n
(1 − ε)2

]
, (4.106)

where ε is considered a constant for the purpose of the evaluation of the expectation value.
Given the expectation value of n is equal to Nε, we find the Fisher information for a bino-
mial distribution is

I(θ ) = 1
ε2

E[n] + N − E[n]
(1 − ε)2

, (4.107)

= Nε

ε2
+ N − Nε

(1 − ε)2
, (4.108)

= N
ε(1 − ε)

. (4.109)

Equation (4.109) is plotted in Figure 4.6b. One observes that for values ε = 1 and ε = 0,
the information diverges thereby reflecting the fact that the outcome of N trials is absolutely
certain, that is, all or none of the particles are detected. The information reaches a minimum
at ε = 0.5 corresponding to the value of ε for which outcomes are least certain. Indeed, for
ε = 0.5, the odds of getting a success (particle detected) or failure (not detected) are equal
and the outcome of a trial (measurement) is thus maximally uncertain.

4.7.5 Example 2: Fisher Information of a Gaussian Distribution

Let us calculate the Fisher information matrix of a Gaussian PDF:

p(x|µ, σ 2) = 1√
2πσ

exp

[

− (x − µ)2

2σ 2

]

, (4.110)

with unknown mean µ and variance σ 2. As per the definition, Eq. (4.91),

I(µ, σ 2) = −E

⎡

⎣

⎛

⎝
∂2

∂µ2 ln p(x|µ, σ 2) ∂2

∂µ∂σ 2 ln p(x|µ, σ 2)

∂2

∂σ 2∂µ
ln p(x|µ, σ 2) ∂2

∂σ 2∂σ 2 ln p(x|µ, σ 2)

⎞

⎠

⎤

⎦ , (4.111)

this requires calculation of derivatives of the log of the PDF with respect to µ and σ 2. First
taking the log of p(x|µ, σ 2), we get

ln p = −1
2

ln 2π − 1
2

ln σ 2 − (x − µ)2

2σ 2
. (4.112)
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Second derivatives of ln p yield

∂2

∂µ2
ln p = − 1

σ 2
, (4.113)

∂2

∂σ 2∂µ
ln p = −x − µ

σ 4
, (4.114)

∂2

∂σ 2∂σ 2
ln p = 1

2σ 4
− (x − µ)

σ 6
. (4.115)

Inserting the preceding expressions in Eq. (4.111), and remembering that the expectation
value of x is the mean µ, and that of (x − µ)2 is σ 2, the Fisher information matrix of a
Gaussian PDF may then be written

I(µ, σ 2) =
( 1

σ 2 0
0 1

2σ 4

)
. (4.116)

We find that the information one may gain on the mean by measurements of x is inversely
proportional to the variance σ 2. For a small or vanishing variance, the information diverges
and the precision achievable in the determination of µ is thus very large. Conversely, for
a large variance, the information is small, and the achievable precision rather limited. As
for the variance, one finds that the information contained in p(x|µ, σ 2) is inversely pro-
portional to the square of its value. Again in this case, one concludes that if the variance
is small, it shall be relatively straightforward to obtain precise estimates of its value but
estimates shall remain rather imprecise if σ 2 is large. It is important to note that the inverse
square dependence implies that the variance may be more difficult to determine precisely
than the mean. Additionally note that the diagonal terms are strictly null, implying that the
information on µ and σ 2 are not correlated (although, technically speaking, the informa-
tion on µ is entirely determined by σ 2).

In general, the off-diagonal elements of the Fisher information matrix of a PDF are
nonvanishing. However, whenever Ii j(θ⃗ ) = 0 for i ̸= j, the parameters θi and θ j are said
to be orthogonal. In the case of the Gaussian, we found the off-diagonal elements are null,
thereby implying that µ and σ are orthogonal; that is, the determination of µ does not influ-
ence the determination of σ 2, and conversely. This largely stems from the symmetric nature
of the Gaussian PDF. By contrast, PDFs that are not symmetric about their mean shall tend
to have nonvanishing nondiagonal elements, and the determination of the corresponding
parameters will be mutually correlated.

As we discuss next, the Fisher information of a given parameter determines a minimal
variance bound achievable in an experimental measurement of its value. This means that
the very shape and definition of a PDF determine the precision achievable in the experi-
mental determination of its parameters.

4.7.6 Minimal Variance Bound

By definition, an unbiased estimator satisfies:

⟨θ̂⟩ = E[θ̂ ] =
∫

θ̂L dX = θ , (4.117)
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175 4.7 Fisher Information

where L is the likelihood of the measured data x⃗ = (x1, x2, . . . , xn) and dX stands for
dx1dx2 · · · dxn. We differentiate this expression with respect to θ . Since the estimator de-
pends on the xi alone, and assuming the limits of integration are independent of θ , one
gets

∫
θ̂

dL
dθ

dX = 1. (4.118)

Next, consider the normalization integral of L:
∫

L dX = 1. (4.119)

Differentiating with respect to θ produces
∫

dL
dθ

dX = 0. (4.120)

We then rewrite Eqs. (4.118, 4.120) as follows:
∫

θ̂
d ln L

dθ
L dX ≡

〈
θ̂

d ln L
dθ

〉
= 1, (4.121)

∫
d ln L

dθ
L dX ≡

〈
d ln L

dθ

〉
= 0. (4.122)

Next, multiply the second line by θ and subtract from the first line to get
∫ (

θ̂ − θ
) d ln L

dθ
L dX =

〈(
θ̂ − θ

) d ln L
dθ

〉
= 1. (4.123)

We can now use the Schwarz inequality
∫

u2 dX
∫

v2 dX ≥
(∫

uv dX
)2

(4.124)

with u = (θ̂ − θ )
√

L and v = d ln L
dθ

√
L to obtain

(∫
(θ̂ − θ )2 L dX

) (∫ (
d ln L

dθ

)2

L dX

)

≥ 1. (4.125)

The first integral corresponds to the variance ⟨(θ̂ − θ )2⟩ of the estimator while the second
integral is the average of the derivative of the logarithm of L with respect to θ . One then
arrives at the lower bound:

V
[
θ̂
]

≥ 1
〈
(d ln L/dθ )2〉 . (4.126)

The quantity
〈
(d ln L/dθ )2〉 is the Fisher information, I(θ ), contained in the likelihood

function L. Based on Eq. (4.89), we find that it may also be expressed (see also Problem 4.2)

I (θ ) =
〈
d2 ln L/dθ2〉 . (4.127)
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Alternatively, one can also insert the expression for L in the preceding equation, and obtain
(for a single parameter):

I (θ ) = −n
∫

d2 ln p(x|θ )
dθ2

p(x|θ ) dx. (4.128)

This expression and Eq. (4.126) can be used to obtain the minimum sample size n required
to achieve a given measurement precision of the parameter θ .

Exercises

4.1 Derive the expression given by Eq. (4.16) for the Mean Square Error (MSE).
4.2 Derive the expression Eq. (4.127) for I (θ ).
4.3 Derive the expression Eq. (4.128) for I (θ ).
4.4 Show that for a biased estimator, one must replace the numerator of Eq. (4.17) with

1 + db/dθ .
4.5 Verify that the standard error on the sample mean estimator is given by σ/

√
n as in

Eq. (4.30).
4.6 Show that S2, defined by Eq. (4.32), is an unbiased estimator of the variance σ 2 when

the population mean, µ, is known.
4.7 Show that s2, defined by Eq. (4.39), is an unbiased estimator of the variance σ 2 when

the population mean, µ, is not known.
4.8 Show that V̂xy, defined by Eq. (4.43), is an unbiased estimator of the covariance Vxy.
4.9 Show that the expression m̂k = 1

n−1

∑n
i=1 (xi − x̄)k provides an unbiased estimator of

the kth central moment, µk .
4.10 Find unbiased estimators for the moments µ′

k and central moments µk .
4.11 Show that the variance of estimators µ̂′

k of the moments µ′
k is given by

V [µ̂′
k] = 1

n

(
µ′

2k −
(
µ′

k

)2
)

.

4.12 Show that the covariance of estimators of the moments µ′
r and µ′

q is given by

Cov[µ̂′
r, µ̂

′
q] = 1

n

(
µ′

r+q − µ′
rµ

′
q

)
.

4.13 Show that the variance of the estimator of the standard deviation σ̂ is given by the
following expression in the large n limit:

V [σ̂ ] = µ4 − (µ2)2

4nσ 2
.

Additionally, show that for a Gaussian PDF, this expression reduces to

V [σ̂ ] = σ 2

2(N − 1)
.
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177 Exercises

4.14 Show that the standard error of the estimator s2 = 1
n−1

∑n
i=1 (xi − x̄)2 is given by

V [s2] = 1
n

(
µ4 − n − 3

n − 1
µ2

)
,

where µ̂k are central moments of order k given by

µ̂k = 1
n − 1

n∑

i=1

(xi − x̄)k .

4.15 Show that the expectation value and variance of the Pearson coefficient estimator r̂xy,
defined by Eq. (4.44), are given by the following expressions:

E[r̂xy] = ρ − ρ(1 − ρ2)
2n

+ O(n−2)

V [r̂xy] = 1
n

(1 − ρ2)2 + O(n−2).

4.16 Prove the assertion that the estimator r̂xy defined by Eq. (4.44) is bound in the range
[−1, 1].

4.17 Derive the expression Eq. (4.17) for robust centered moments of order k, and verify
the expressions given by Eq. (4.53) and Eq. (4.54) for centered moments of second
and third order, respectively.

4.18 Show the following expression yields a biased but asymptotically unbiased estimator
λ̂ of the decay constant λ = 1/τ :

λ̂ = 1
τ̂

= n

(
n∑

i=1

ti

)−1

. (4.129)

4.19 Show that the Fisher information matrix defined by Eq. (4.90) may be written as

Ii j(θ⃗ ) = −E
[

∂2

∂θi∂θ j
ln p(x|θ⃗ ),

]
.
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5 Classical Inference II: Optimization

In Chapter 4, we introduced the notions of statistics and estimators, discussed their basic
properties, and examined specific basic estimators, most particularly those of moments
and centered moments, used in classical inference. Although of obvious interest, moments
are often insufficient to fully characterize the probability distribution governing a particular
phenomenon or dataset. It is often the case that the general functional form of a distribution
is known, but not fully specified. Indeed, while the functional dependence on a random
variable X may be known, the function might have dependencies on finitely many model
parameters θ⃗ = (θ1, θ2, . . . , θm), which are a priori unknown or unspecified. For instance,
it might be known that a particular dataset behaves according to a log-normal distribution,
but the parameters µ and σ that determine the specific shape of the distribution could
be unknown. Alternatively, one might be interested in determining the values of model
parameters governing the dependence between dependent and independent variables. One
is thus in need of methods to determine the parameters θ⃗ of a distribution that best describe
or match a set of measured data. Several such “fitting” methods exist, including the method
of maximum likelihood, the extended method of maximum likelihood, various variants of
least-squares methods, and Kalman filter methods. These are presented in §5.1, §5.1.7,
§5.2, and §5.6, respectively. An excellent discussion of the relatively less used method of
moments is presented in ref. [67].

The maximum likelihood and the least-squares methods are optimization problems: both
involve the optimization of a goal function, often called objective function or merit func-
tion. The former involves maximization of a likelihood function while the latter requires
minimization of a χ2 function. Both techniques involve a search in (model) parameter
space for an optimum value, that is, an extremum of an objective function. While such
searches are relatively simple when the model involves only a few parameters, they may
become particularly challenging when models involve a very large number of parameters.
Several techniques exist to handle searches in multiparameter space and it is clearly not
possible to cover them all in this introductory text. We thus focus our discussion on the
general principles of the maximum likelihood and the least-squares methods in following
sections of this chapter, and present a selection of optimization techniques pertaining to
both methods in §7.6 after the introduction of Bayesian inference methods in §§7.2–7.4.

Once an optimum is achieved, one wishes to establish how good the fit really is. One
thus requires a measure of the goodness-of-fit. Such a measure is discussed in §5.3 on the
basis of the likelihood and chi-square functions. One is then particularly interested in eval-
uating errors on the parameters obtained in the optimization. This and related matters are
discussed in §5.3. With parameter values and error estimates in hand, it becomes possi-
ble to extend or extrapolate the results predicted by the model. Techniques to evaluate the
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179 5.1 The Method of Maximum Likelihood

errors on such extrapolations are presented in §5.4, whereas §5.5 presents a technique to
average the results (i.e., parameter values) obtained by two or more experimental studies.

5.1 The Method of Maximum Likelihood

Let p(x|θ⃗ ) dx determine the probability a random variable X be found in the interval [x, x +
dx] given m parameters θ⃗ . Let us assume that the functional form of p(x|θ⃗ ) is known but
not the values of the parameters θ⃗ . Our goal is thus to obtain estimators of these parameters
θ⃗ based on the likelihood of a set {xi}, i = 1, . . . , n, of measured data.

5.1.1 Basic Principle of theMLMethod

Let us assume the measurement of an observable X is repeated n times, thereby yielding a
set of values {xi}, i = 1, . . . , n. If the parameters θ⃗ were known, the data probability model
embodied in the probability density function (PDF) p(x|θ⃗ ) would give us the probability
to obtain the value x1 in the interval [x1, x1 + dx], the value x2 in the interval [x2, x2 + dx],
and so on. Assuming all n measurements are independent and yield uncorrelated results,
the probability of measuring specifically the values x⃗ = (x1, x2, . . . , xn) is then simply the
product of their respective probabilities:

p(x1|θ⃗ ) dx1 × p(x2|θ⃗ ) dx2 × · · · × p(xn|θ⃗ ) dxn =
n∏

i=1

p(xi|θ⃗ ) dxi. (5.1)

If the PDF p(x|θ⃗ ) is a good model of the data, one would expect the foregoing probability
to be relatively large. Conversely, a poor model of the data should yield a low probability.
Obviously, since p(x|θ⃗ ) is a function of θ⃗ = (θ1, θ2, . . . , θm), the value of the above prob-
ability must explicitly depend on the values of these m parameters. Well-chosen values of
θ⃗ should lead to a high probability, whereas a poor choice should result in a low probabil-
ity. Since the intervals dxi feature no dependency on the parameters θ⃗ , it is then sensible
to seek an extremum of the product

∏n
i=1 p(xi|θ⃗ ) which corresponds to the likelihood

function L(x⃗|n, θ⃗ ) already introduced in Eq. (4.6):

L(x⃗|θ⃗ ) ≡
n∏

i=1

f (xi|θ⃗ ). (5.2)

Nominally, L(x⃗|θ⃗ ) corresponds to the joint PDF of the measured xi given the parameters θ⃗ ,
but in this context, the data points are considered fixed (i.e., constant) and one seeks the
values θ⃗ that maximize the likelihood given the data points; in other words, one seeks the
parameter values θ⃗ such that the measured data points are the most probable.

The ML method specifically consists in seeking an extremum (a maximum actually) of
L(x⃗|θ⃗ ) relative to a variation of the m parameters θ⃗ :

∂L(θ⃗ )
∂θi

= 0 for i = 1, . . . , m, (5.3)
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Simultaneous solution of these equations yields the ML estimators θ̂i of the parameters θi.
A valid solution exists provided the function L is differentiable with respect to the parame-
ters θi, and the extremum is not on a boundary of the parameters’ range. The ML estimator
θ̂ thus corresponds to the most likely value of θ⃗ based on the n data points xi.

Conceivably, depending on the dataset, the form of the functional, and the number of
parameters, several solutions may exist that correspond to local maxima. Great care must
then be taken to fully explore the parameter space in order to find the parameters θ⃗ with
the largest likelihood L.

We emphasize that given that the solution of ∂L(θ⃗ )/∂θi = 0 is obtained for a specific
set of data points, the parameter values θi corresponding to the extremum thus constitute
estimators of the actual values. As such, it is convenient to write the solution(s) with a hat,
θ̂i, which indicate they are estimators to be distinguished from the true values θ⃗i.

Proof that the ML method produces consistent and unbiased estimators may be found,
for instance, in ref. [116].

The ML method is relatively easy to use and does not require data to be binned or
histogrammed. We consider a few examples of application of the method in the following
sections.

5.1.2 Example 1:ML Estimator of the Rate Parameter
of the Poisson Distribution

Very massive stars end their existence in spectacular explosions known as supernovae.
Supernovae are a relatively rare phenomenon taking place randomly in this and other galax-
ies. Imagine disposing of a large aperture telescope (several meters) equipped with a high-
efficiency and high-resolution camera. You might then be interested in characterizing the
rate of supernovae explosions according to the type of galaxy where they take place. Being
a rare phenomenon, the number of observations n per time period (e.g., per night) may be
modeled according to a Poisson distribution

p(n|µ) = e−µµn

n!
, (5.4)

where µ represents the average rate of explosions (per night). Several nights of observation
will be required to carry out the measurement. For the sake of simplicity, let us assume it
is possible to observe the same region of the sky and for the same exact duration during
N = 100 nights, with equal observational conditions. The number of observations made
nightly are labeled ni, i = 1, . . . , N .

Our goal is to determine the rate µ using an ML estimator. We thus need an expres-
sion for the likelihood of the data {ni}, i = 1, . . . , N , given a specific value of µ. Equa-
tion (5.4) provides the probability of observing n explosions in one night given a mean
µ. The likelihood of the data amounts to the probability of a sequence n1, n2, . . . , nN and
is thus simply the product of the probabilities p(ni|µ) of observing ni explosions during
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nights i = 1, . . . , N :

L(µ) =
N∏

i=1

e−µµni

ni!
, (5.5)

=
(

N∏

i=1

ni!

)−1

exp (−Nµ) µ(
∑N

i=1 ni ). (5.6)

Given the exponential factors, it seems simpler to maximize the log of the likelihood, ln L,
rather than L. Indeed, since ln L is a monotonically increasing function of its argument
L, an extremum of this argument shall also correspond to an extremum of the log, and
conversely. The technique is then referred to as log-maximum-likelihood, or simply LML
method. We proceed to seek an extremum of

ln L(µ) = −Nµ +
(

N∑

i=1

ni

)

ln µ −
N∑

i=1

ln ni, (5.7)

by taking a derivative relative to µ

0 = ∂ ln L
∂µ

= −N +
∑N

i=1 ni

µ
, (5.8)

which yields

µ̂ = 1
N

N∑

i=1

ni. (5.9)

We conclude that the LML estimator for the rate parameter µ of the Poisson distribution
is equal to the arithmetic mean of the observations {ni}, i = 1, . . . , N .

As a concrete example of the method, we consider a simulation of a measurement of
the number of supernova over a span of 100 nights. The number ni of explosions observed
nightly are generated with a Poisson random number generator, with a rate parameter µ =
2.5, and shown in Figure 5.1 as a histogram. The rate parameter is assumed unknown in
the remainder of the analysis. We then proceed to calculate the likelihood of the simulated
data, L(µ), as function of the nightly rate µ in the range [0, 4] according to Eq. (5.5). The
likelihood L(µ) is vanishingly small for most values of µ but clearly peaks near µ = 2.5.
The estimate obtained with the ML method thus corresponds to an extremum (mode) of the
likelihood function L(µ), which is indeed very close to the actual value of the parameter
used in the simulation. We will see, later in this chapter, that the width of the likelihood
function may be used to assess an error on the estimate.

5.1.3 Example 2:LML Estimator of the Decay Constant of the Exponential PDF

Consider a radiological experiment reporting n values t1, t2, . . . , tn corresponding to decay
times of some radioactive isotope X . If the production of this isotope involves no feed
down from heavier isotopes, it is then legitimate to assume the data may be represented by
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Fig. 5.1 (a) Distribution of the number of supernovae explosion per night in a simulated measurement spanning 100 nights for
a rate parameter ofµ = 2.5. (b) Likelihood of the simulated data plotted as a function ofµ (assumed unknown).

an exponential PDF:

p(t|τ ) = 1
τ

e−t/τ . (5.10)

Our goal is to determine the mean lifetime of the isotope, that is, find the parameter value
τ that best represents the collected data and can then be used to characterize the isotope X .

The likelihood function is here the product of n exponential factors

L(τ ) =
n∏

i=1

p(ti|τ ) =
n∏

i=1

1
τ

e−ti/τ , (5.11)

which readily transforms into the exponential of a sum

L(τ ) = τ−n exp

(

−
n∑

i=1

ti/τ

)

. (5.12)

Here again, it is simpler to seek an extremum of ln L rather than L. We find

0 = d ln L
dτ

=
[

−nτ−1 + τ−2
n∑

i=1

ti

]

τ−n exp

(

−
n∑

i=1

ti/τ

)

. (5.13)

The lifetime τ and exponential are nonzero. The factor in square brackets must conse-
quently be null. Solving for τ thus yields the LML estimator τ̂

τ̂ = 1
n

n∑

i=1

ti, (5.14)

as the arithmetic mean of the measured decay times. It is easily verified that τ̂ is an unbiased
estimator of the mean lifetime τ (see Problem 5.1).

As a specific example of application of the estimator (5.14), imagine an experiment
involving the measurement of decays of the unstable isotope 11C, with a mean lifetime
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Fig. 5.2 (a) Histograms of decay times of 11C measured in five different simulated experiments (samples). (b) Histogram of
measured estimates τ̂ obtained from 100 samples based on measurements of 100 (solid line) and 5000 (dashed line)
decay times.

of 20.334 s. We simulated such an experiment using the exponential random generator
introduced in §13.3.3 and produced a set of hundred sequences of 100 decay time values.
Five of these sequences were used to fill the histograms plotted in Figure 5.2a. We used
Eq. (5.14) to calculate hundred estimates of the 11C lifetime on the basis of these sequences.
The values were used to fill a histogram of the estimators, shown in Figure 5.2b. We find
that the estimates are broadly distributed about the value of 20.334 s used to generate the
random numbers. We then repeated the simulations, but this time with datasets consisting
of 5,000 points each. Estimates are once again computed on the basis of Eq. (5.14) and
plotted in Figure 5.2b as the dotted histogram. As expected, we find these estimates are
more narrowly concentrated about the mean. The estimates obtained with a sample size
of 100 average to 20.19 s, whereas the estimates obtained with the sample size of 5,000
average to 20.35 s, which is closer to the value of 20.334 s used in their generation.

5.1.4 Example 3:ML Estimators of the Mean and Variance of a Gaussian PDF

As a third example of application of the ML method, we determine estimators of the mean
and variance of a Gaussian PDF. Let us assume that n measured values xi are distributed
according to a Gaussian PDF with unknown mean µ and standard deviation σ . Given the
exponential nature of the Gaussian PDF, it is once again convenient to use the logarithm of
the likelihood function L:

ln L(µ, σ 2) = ln

(
n∏

i=1

p(xi;µ, σ 2)

)

, (5.15)

= ln

(
n∏

i=1

1√
2πσ

exp

(

− (xi − µ)2

2σ 2

))

. (5.16)
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Transforming the log of the product as a sum of logs, and rearranging the terms, one gets

ln L(µ, σ 2) =
n∑

i=1

(

− ln
√

2π − 1
2

ln σ 2 − (xi − µ)2

2σ 2

)

, (5.17)

= −n ln
√

2π − n
2

ln σ 2 −
n∑

i=1

(xi − µ)2

2σ 2
. (5.18)

The extremum of ln(L) is found in the usual way by equating its derivatives with respect to
µ and σ to zero. Let us first consider an estimator of the mean:

0 = ∂ ln L(µ, σ 2)
∂µ

= −
n∑

i=1

∂

∂µ

(
(xi − µ)2

2σ 2

)

. (5.19)

Solving for µ yields the ML estimator µ̂:

µ̂ = 1
n

n∑

i=1

xi, (5.20)

which, again in this case, is the arithmetic mean of the sampled values. We already showed,
in §4.5.1, that the arithmetic mean of a sample is in general an unbiased estimator of true
mean µ. It is thus simple to verify that this conclusion applies specifically to the Gaussian
distribution also (see Problem 5.7).

We next proceed to find an estimator for the variance σ 2 of the distribution:

0 = ∂ ln L(µ, σ 2)
∂σ 2

= −n
2

1
σ 2

+ 1
2σ 4

n∑

i=1

(xi − µ)2. (5.21)

Solution for σ 2 yields the estimator

σ̂ 2 = 1
n

n∑

i=1

(xi − µ̂)2, (5.22)

which based on our generic discussion of the variance of estimators, in §4.5.3, is known
to be an asymptotically unbiased estimator of the variance (also see Problem 5.2) with the
expectation value

E[σ̂ 2] = (n − 1)σ 2/n. (5.23)

Also recall, from §4.5.3, that the estimator s2 given by Eq. (4.39) is an unbiased estimator of
the variance of distributions. We then expect that it also constitutes an unbiased estimator
of the variance of a Gaussian PDF (see Problem 5.9). However, s2 is not the ML estimator
of σ 2 for a Gaussian PDF.

5.1.5 Errors

There are limited instances of ML estimators whose variance can be calculated analytically.
For instance, the variance of the estimator (5.14) of the mean of an exponential decay,
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185 5.1 The Method of Maximum Likelihood

τ̂ = 1
n

∑n
i=1, can be computed by direct substitution in the expression of the variance. One

gets

Var[τ̂ ] = E[τ̂ 2] − E[τ̂ ]2 = τ 2

n
, (5.24)

which is identical in form to the expression (4.27) of the variance of the sample mean. The
variance of τ̂ is a function of τ , the true mean of the PDF considered. This might seem
rather problematic, since τ is a priori unknown: how indeed does one report the standard
error based on an unknown quantity? However, we have found that τ̂ is an unbiased es-
timator of τ obtained by finding an extremum of the likelihood function L. One can thus
write

∂L
∂τ

= ∂L
∂τ̂

∂τ̂

∂τ
= 0. (5.25)

Since ∂τ̂/∂τ ̸= 0, one concludes that an extremum for τ yields an extremum for τ̂ , and
conversely. It is thus legitimate to use τ̂ in lieu of τ to get an estimate of the variance. One
can then report a measurement of τ as τ̂ ± τ̂/

√
n. This implies that if an experiment was

repeated several times, with the same number of measurements n, one would expect the
standard deviations of the results (i.e., estimates) to be τ/

√
n. Note, however, that in cases

where the distribution of estimates significantly deviates from a Gaussian distribution, it is
more meaningful (and common) to report an error corresponding to the 68.3% confidence
interval (see §6.1.2).

Analytical computation of the variance Var[θ̂ ] of estimators of “complicated” observ-
ables may be tedious, difficult, or even impossible. Fortunately, a number of alternative
computation techniques exist, few of which we briefly examine in the following. See also
ref. [67] for an in-depth discussion of this technical topic.

The most basic technique, commonly applied, to estimate the variance of an estimator
consists in carrying out several experiments yielding the quantity of interest. One repeats
the experimental procedure several times and obtains several sets of measurements, {xi}k ,
where k is an index used to identify the different datasets. Estimators θ̂k are computed for
each dataset k. One can then calculate the expectation values and variance of these esti-
mators. Obviously, it may not always be possible to repeat a given experiment because of
cost, lack of time, or because the observed phenomena might be unique by its very nature
(e.g., observation of neutrinos from a particular supernova explosion). It may, however, be
possible to split the dataset into several subsamples, each of which can be used to obtain
distinct ML estimates. The variance of these estimates relative to the ML estimate of the
full sample can thus be used to evaluate the variance of the estimator.

Whenever repetition or splitting of the data sample produced by an experiment is not
an option, one may resort to a detailed simulation of the experiment to artificially create
repeated evaluations of the estimator of interest. The idea is to replicate the conditions
and procedure of a measurement in a Monte Carlo simulation. While such simulations of
experiments will be discussed in detail in Chapter 14, the technique can be summarized
as follows. Suppose one wishes to measure a variable X distributed according to a certain
PDF f (x|θ ). Once an estimate θ̂ of the parameter θ is obtained experimentally, one carries
out repeated simulations of the experiment by generating instances of x based on f (x|θ̂ ),
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186 Classical Inference II: Optimization

making sure experimental effects and correction procedures are properly taken into ac-
count. The simulated experiments yield estimates θ̂i of the parameter θ . Given a sufficient
number of replications of the experiment, it is then possible to compute the variance of the
values θ̂i and consequently obtain an estimate of the true variance of the estimator.

Yet another technique commonly applied to determine the variance of ML estimators
is to use the minimal variance bound based on the Rao–Cramer–Frechet (RCF) inequality
given by Eq. (4.17), which for several parameters θ⃗ = (θ1, . . . , θm), may be written

(V −1)i j = −
〈
∂2 ln L
∂θi∂θ j

〉
= − ∂2 ln L

∂θi∂θ j

∣∣∣∣
θ⃗=θ̂

. (5.26)

As an example, consider the calculation of the variance of estimators µ̂ and σ̂ 2 of the mean
and variance of the Gaussian PDF. Using the log of the likelihood function (5.17), it is easy
to calculate (see Problem 5.10) the second-order derivatives with respect to µ and σ 2:

〈
∂2 ln L
∂µ2

〉
= − n

σ 2
, (5.27)

〈
∂2 ln L
∂σ 2

〉
= − 2n

σ 2
, (5.28)

〈
∂2 ln L
∂µ∂σ

〉
= 0. (5.29)

The matrix V −1 is diagonal and is trivially inverted to yield the variances

Var[µ] =
〈
∂2 ln L
∂µ2

〉−1

= σ 2

n
, (5.30)

Var[σ ] =
〈
∂2 ln L
∂σ 2

〉−1

= σ 2

2n
. (5.31)

One finds that the variances Var[µ] and Var[σ ] are proportional to the variance σ 2 of the
Gaussian PDF and inversely proportional to the size n of the data sample used to carry out
the estimate. This is a rather general property that holds in the large n limit for most esti-
mators. It expresses the well-known result that statistical errors are inversely proportional
to the square root of n, the sample size.

The variance of ML estimators may also be determined using a graphical technique. The
technique is based on the RCF bound discussed earlier and the fact that, near an extremum
of the likelihood function L, one can expand the function in a Taylor series about the ML
estimate θ̂ :

ln L(θ ) = ln L(θ̂ ) + 1
2

[
∂2 ln L
∂θ2

]

θ=θ̂

(θ − θ̂ )2 + O(3), (5.32)

where we omitted the first-order term in ∂ ln L/∂θ , which by construction, vanishes at the
extremum. Based on Eq. (5.26), this can be written

ln L(θ ) ≈ ln Lmax − (θ − θ̂ )2

2σ̂ 2
θ

, (5.33)
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187 5.1 The Method of Maximum Likelihood

Fig. 5.3 Determination of a parameter error with the log-likelihood graphical method: The solid curve is the log of the
likelihood function of the simulated data presented in Figure 5.1. An arbitrary constant K was added to ln L for
convenience of presentation. The log-likelihood function is approximately parabolic in the vicinity of the extremum
located at µ̂ = 2.4 and the value log L − 1/2 is found at 2.56. The standard error'µ thus approximately
amounts to 2.56 − 2.4 = 0.16.

which means the error can be estimated graphically on the basis of

ln L(θ̂ ± σθ ) = ln Lmax − 1
2
. (5.34)

The principle of the graphical method is illustrated in Figure 5.3, which presents a
graph of the logarithm of the likelihood function of the rate parameter µ corresponding
to simulated measurements, discussed in §5.1.2, of the number of supernovae observa-
tions detected nightly over a span of 100 days. The standard error on the parameter µ is
here obtained by graphically finding the values µ̂ − 'µ and µ̂ + 'µ corresponding to
log[Lmax] − 1/2, where Lmax is the maximum likelihood observed.

5.1.6 Maximum Likelihood Fit of Binned Data

The LML method enables a relatively straightforward estimation of parameters for PDFs
such as exponential or Gaussian distributions. However, it becomes impractical when the
number of observations of random variable x becomes excessively large. This could be the
case, for instance, if there is insufficient memory to store all the measured values. There
are also issues of numerical accuracy for very large data samples. It is then often desirable,
or more convenient, to carry out a fit based on a histogram of the data (§4.6). The range
of interest [xmin, xmax] is partitioned into m bins, chosen to permit identification of the
relevant PDF features while accounting for the finite resolution of the measurements, the
size of the sample, and the memory available. The bins are not required to be of equal
size; one can use arbitrary bin boundaries [xmin,i, xmax,i] for bins i = 1, . . . , m. Consider a
sample consisting of N measured values histogrammed into m bins. Each bin will contain
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a number of entries ni (with i = 1, . . . , m) representative of the PDF that characterizes the
measured data. The number of entries in the whole histogram may then be expressed as a
vector n⃗ = (n1, n2, . . . , nm). Obviously, each value ni is subject to statistical fluctuations.
However, the expectation value of the number of entries in bin i, noted νi, can be expressed
as a function of the unknown parameters θ⃗ of the PDF, given by the following expression:

νi(θ⃗ ) = N

xmax,i∫

xmin,i

p(x|θ⃗ ) dx. (5.35)

It is convenient to denote the expectation values νi in a vector form ν⃗ = (ν1, ν2, . . . , νm)
also. It is the purpose of the fit to determine the parameter(s) θ⃗ most consistent with the
measured values, in other words, the values that yield an extremum of the likelihood func-
tion L(θ⃗ ).

The vector (histogram) n⃗ may be viewed as a single measurement of the m-dimensional
vector x⃗. If all measurements of x are independent of one another, the values are uncorre-
lated. It implies that the number of entries in the m bins are uncorrelated (although they are
obviously determined by the PDF). In this context, the measurement of the vector n⃗ with a
total number of entries N amounts to a random partition of N draws into m bins, each with
expectation νi(θ⃗ ). This corresponds to a multinomial PDF. The joint probability to measure
the vector n⃗, given a total number of entries N and expectations ν⃗, is then given by

pjoint(n⃗|ν⃗) = N!
n1!n2! · · · nm!

(ν1

N

)n1
(ν2

N

)n2

· · ·
(νm

N

)nm

, (5.36)

where the ratio νi/N expresses the probability of getting entries in bin i. The logarithm of
this expression yields the log-likelihood function

ln L(θ ) = ln
(

N!
n1!n2! · · · nm!

)
+

m∑

i=1

ni ln
( νi

N

)
. (5.37)

Clearly, the first term of the right-hand side involves variables that are independent of the
PDF parameter(s) θ⃗ . Since we are seeking an extremum of L, it is unnecessary to keep
track of these constants and the search for values θ⃗ that maximize L can thus proceed on
the basis of the second term alone by whatever optimization method is available or practical
(see §7.6 for examples of such methods). When the number of bins is very large, m ≫ N ,
then the binned method becomes equivalent to the standard ML method. This method is
thus insensitive to the presence of null bins in the histograms, in stark contrast to the least-
squares method discussed in §5.2.

5.1.7 Extended Maximum Likelihood Method

We saw in previous sections that the ML method is useful to determine unknown pa-
rameters θ⃗ = (θ1, θ2, . . . , θn) of a PDF p(x⃗|θ⃗ ) given a set of n measured values x⃗ =
(x1, x2, . . . , xn). But what if the number of observations n is itself a random variable de-
termined by the process or system under observation. This is the case, for instance, in
measurements of scattering cross section where the number of produced particles is itself
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189 5.1 The Method of Maximum Likelihood

a random variable, or in observations and counting of radioactive decays of an unknown
substance over a fixed period of time.

Let us consider processes in which the fluctuations of n are determined by a Poisson
distribution with mean λ. The likelihood of observing n values x⃗ may then be described by
an extended likelihood function as follows:

L(λ; θ⃗ ) = λne−λ

n!

n∏

i=1

p(xi|θ⃗ ). (5.38)

In general, λ may be regarded as a function of θ⃗ , λ ≡ λ(θ⃗ ), or conversely θ⃗ ≡ θ⃗ (λ). The
log of the likelihood function may then be written

ln L = n ln λ(θ⃗ ) − λ(θ⃗ ) − ln(n!) +
n∑

i=1

ln p(xi|θ⃗ ), (5.39)

= −λ(θ⃗ ) +
n∑

i=1

ln(λ(θ )p(xi|θ⃗ )), (5.40)

where in the second line, we have dropped unnecessary constants and use the fact that the
log of a product of distinct factors equals the sum of their logs. Maximization of ln L is
thus, in general, dependent on both the observed value of n as well as the measured values
x⃗. The observed value n thus constrain the model parameters θ⃗ and conversely, the observed
values xi constrain λ.

The maximization of ln L greatly simplifies, of course, if λ and θ⃗ are independent.
Derivatives of ln L relative to these variables yield independent conditions:

∂ ln L
∂λ

= ∂

∂λ
(n ln λ − λ) = 0, (5.41)

∂ ln L
∂θ

= ∂

∂θ

n∑

i=1

ln p(xi|θ⃗ ) = 0. (5.42)

The first line yields λ̂ = n whereas the second line amounts to the regular likelihood
method, which is independent of λ. Use of the extended maximum likelihood thus appears
to provide little gain over the regular method in this case.

The extended method remains of interest, nonetheless, for cases where the function
p(xi|θ⃗ ) may be expressed as a linear combination of several (linearly independent) ele-
mentary functions

p(x|θ⃗ ) =
m∑

k=1

θk pk (x), (5.43)

with
∫

pk (x) dx = 1. (5.44)

Such a situation arises when an observable can be expressed as a combination of finitely
many signals, each with their distinct PDF pk (x), and unknown relative probability describ-
able with parameters θk . A specific example of this situation involves the energy deposition
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190 Classical Inference II: Optimization

of charged particles in a detector volume. One finds that the energy loss is a stochastic
process that depends on particle types. The energy loss profile of particles at a given mo-
mentum (observed in a specific scattering experiment) thus depends on the relative proba-
bilities of the different species (e.g., electron, pion, kaon, and so forth). The functions pk (x)
could thus represent the energy loss profiles of different particle types while the parameters
θk would represent their relative probabilities constrained by

m∑

k=1

θk = 1. (5.45)

Evidently, one could treat this case as a regular application of the maximum likelihood
method with m − 1 independent parameters (i.e., with θm = 1 −

∑m−1
k=1 θk) but it is ad-

vantageous to carry out the search for an extremum of the likelihood function using all
parameters θk and λ simultaneously.

Substituting the linear combination (5.43) for p(xi|θ⃗ ) in Eq. (5.40) yields

ln L = −λ +
n∑

i=1

ln

(
m∑

k=1

λθk pk (xi)

)

. (5.46)

Let µk = λθk represent the mean value of the number of instances of type k. Using
Eq. (5.45), ln L may then be written

ln L(µ⃗) = −
m∑

k=1

µk +
n∑

i=1

ln

(
m∑

k=1

µk pk (xi)

)

, (5.47)

where the parameters µk are not subjected to any constraints. The total number of events n
may then be treated as a sum of independent Poisson variables µi and optimization of ln L
thus yields estimates µ̂k of the mean of each of the types k. While mathematically equiva-
lent to the independent optimization of λ and θk , this approach involves the advantage that
all parameters are treated equally and one obtains the contributions of each type k directly.

5.2 TheMethod of Least-Squares

The ML and LML methods enable the determination of parameters that best characterize
a data set given a specific PDF assumption. Although these methods are powerful, they
may become fastidious, inconvenient, or impractical in many cases. However, an alterna-
tive, called the Least-Squares (LS) method, is available and applicable in a wide range of
situations.

We show in §5.2.1 how the LS method can be formally derived from the ML method
in cases where the measured values can be considered Gaussian random variables. The LS
method is, however, commonly applicable to problems of parameter estimation in which
the Gaussian variable hypothesis is not strictly valid.1

1 The LS method typically yields reasonable results whether or not fluctuations of the dependent variable y are
Gaussian. However, one must be careful with the interpretation of error estimates obtained with non-Gaussian
deviates.
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191 5.2 The Method of Least-Squares

The formal derivation and definition of the LS method presented in §5.2.1 may be
skipped in a first reading. Section 5.2.2 discusses the simple case of straight line fit and lin-
ear regression, which may be skipped by readers already familiar with these basic notions.
Polynomial fits and progressively more complex minimization problems are presented in
§§5.2.3–5.2.7.

5.2.1 Derivation of theLSMethod

Consider a set of observations where a variable y is measured as a function of a variable x.
Let us assume there exists, at least in principle, some relation between the two quantities. A
basic measurement shall consist of n pairs (xi, yi) where the values xi are assumed to be the
control variable (whether explicitly controlled or not) and the values yi are assumed to be
functions of xi. In this context, the variables y and x are also commonly called dependent
and independent variables, respectively. For simplicity’s sake, we will here assume the xi

are known without error. The LS method can, however, be generalized for cases where
both x and y carry measurement errors. We will further assume the yi are Gaussian random
variables, that is, variables with a Gaussian PDF, pG(yi|µi, σi), defined by Eq. (3.124).
This is meant to imply that if it were possible to repeat the measurement several times at
the same value xi, the measured values yi would be distributed according to a Gaussian
PDF of definite mean, µi and width σi. The values µi are assumed to depend on xi in some
manner we model with a function f (x|θ⃗ ) that depends on one or more parameters, θ⃗ = (θ1,
θ2, . . . θm), of a priori unknown value:

µi ≡ f (xi|θ⃗ ). (5.48)

This type of measurement is rather general. Consider as a simple example, a measurement
of the position, x, vs. time, t, of a car subjected to some unknown but constant acceler-
ation (see example in §5.2.2). An LS fit of the data might then yield the value of this
acceleration. Alternatively, one could measure the temperature (dependent variable) along
a bar of metal (position) when the extremities of the bar are submitted to finite temperature
differences, and a model of heat conduction could be used to describe the temperature pro-
file along the bar. The possibilities are endless. One can envision measuring any physical
quantity as a function of some other variable, be it time, space, currents, or electric and
magnetic fields, and seek to model the relation between them. All one needs is a function,
y = f (x|θ⃗ ), modeling the relationship between y and x based on some “free” parameters,
that is, model parameters θ⃗ of unknown or unspecified value. We will introduce the LS
method for problems involving a single independent variable, x, and one dependent vari-
able, y, but it can be readily extended to an arbitrary number of independent and dependent
variables.2

The goal of the LS method is to find the value(s) θ⃗ that maximize the probability of
getting the measured values yi. But since the n variables yi are by assumption distributed
according to Gaussian PDFs pG(yi|µi, σi) of mean µi and width σi, we will apply the
LML method to determine the value(s) of the parameters θ⃗ that maximize the probability

2 In this context, the phrase independent variable implies that x is a control variable, i.e., its values can be selected,
or controlled, while the variable y adopts values possibly determined by x and is, as such, dependent on x.
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192 Classical Inference II: Optimization

of measuring the values yi at the given xi. We use the vector notations x⃗ and y⃗ to denote all
values xi and yi, respectively. The likelihood L of the measured values y⃗ depends on the joint
probability, gjoint(y⃗, x⃗|θ⃗ ). Assuming the n points (xi, yi) are measured independently and are
thus uncorrelated, gjoint reduces to the product of the probabilities of all pairs (xi, yi):

gjoint(y⃗|µ⃗, σ⃗ ) =
N∏

i=1

pG(yi|xi;µi, σi), (5.49)

=
N∏

i=1

1
√

2πσ 2
i

exp

(

− (yi − µi(xi))
2

2σ 2
i

)

, (5.50)

where the values µi(xi) are determined by the model function, f (x|θ⃗ ), which is dependent
on the unknown or unspecified parameter(s) θ⃗3. We will assume there exists an estimate
for the widths σi, that is, that values σi can be inferred either from the data directly, or on
the basis of some theoretical considerations. The likelihood function of the values yi may
then be written:

L(y⃗|x⃗, σ⃗ , θ⃗ ) =
N∏

i=1

1
√

2πσ 2
i

exp

(

− (yi − f (xi|θ⃗ ))2

2σ 2
i

)

. (5.51)

Note that this expression of the likelihood function assumes the data points are uncorre-
lated. Extension to a case in which the data points are correlated is relatively simple and
will be discussed in §5.2.4.

Given its formulation as a product of exponentials, it is convenient to consider the log-
arithm of the likelihood function. Since the logarithm, ln(x), grows monotonically with x,
a search for an extremum of the log of the likelihood function shall yield parameter values
that maximize the likelihood function itself:

ln L = −1
2

N∑

i=1

ln
(
2πσ 2

i

)
− 1

2

N∑

i=1

(yi − f (xi|θ⃗ ))
2

σ 2
i

. (5.52)

The first term is not a function of the parameter(s) θ⃗ and can be ignored in the search for
an extremum of the log of the likelihood function. Consequently, maximization of ln(L)
only involves the second term of Eq. (5.52) and it is thus convenient to define a chi-square
function as follows:

χ2(θ⃗ ) =
N∑

i=1

[yi − f (xi|θ⃗ )]
2

σ 2
i

. (5.53)

Given the negative sign in front of the sum in Eq. (5.52), maximization of ln L then amounts
to a minimization of the χ2 function. This forms the basis of the LS method.

Proof that the method of least-squares produces consistent and unbiased estimators may
be found for instance in ref. [116].

3 The values xi are taken as given, i.e., selected a priori. One consequently does not consider the probability of
having such values. Only the yi are considered random variables and assigned a probability.
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193 5.2 The Method of Least-Squares

The fact that the minimization of the χ2(θ⃗ ) function is equivalent to the maximization
of the log-likelihood is based on the assumption that the random variables yi are Gaussian
distributed. Although this is not always true in practice, we note that by virtue of the central
limit theorem, the multitude of random phenomena that produce the random character
of the yi, implies their distributions are nearly Gaussian in general. The LS method thus
usually constitutes a reasonable approximation of the ML method. There are nonetheless
cases where this approximation is not valid, and one must use the ML method, rather than
the LS method, to carry out a search for optimal parameter(s) θ⃗ .

The parameters that minimize the χ2 function are called LS estimators and are noted
θ̂1, θ̂2, . . . , θ̂m or simply θ̂ with the understanding that there are m such parameters. Addi-
tionally, the function is commonly called “chi-square” even in cases where the individual
measurements yi do not have Gaussian PDFs.

The χ2 function, Eq. (5.53), was obtained based on the additional assumption that the N
variables yi are uncorrelated. When this assumption is not valid, and there are significant
correlations among the variables yi, one must transform Eq. (5.53) in terms of variables
that are independent. In §5.2.4, we will introduce a technique to accomplish this in the
context of the LS method. However, we first consider two cases of χ2 minimization that do
not involve such correlations: straight-line fits are presented in §5.2.2 while more general
polynomial fits of order n are discussed in §5.2.3.

5.2.2 Straight-Line Fit and Linear Regression

Arguably the simplest and most common case of application of the LS method is for the
determination of the parameters of a straight line, applicable when a variable y is known,
or believed, to depend linearly on an independent variable x:

y = f (x|a0, a1) = a0 + a1x. (5.54)

Given a set of n measured points (xi, yi), with i = 1, . . . , n, our goal is to find the values
of the slope a1 and the ordinate at the origin a0 that minimize the chi-square function, χ2,
defined by Eq. (5.53). By virtue of our choice of model, the χ2 is now a function of the
parameters a0 and a1, which can be written

χ2 =
N∑

i=1

[yi − f (xi|a0, a1)]2

σ 2
i

. (5.55)

We substitute the expression (5.54) for f (x|a0, a1) in Eq. (5.55) to obtain a χ2 function
that explicitly depends on a0 and a1:

χ2(a0, a1) =
N∑

i=1

(yi − a0 − a1xi)
2

σ 2
i

. (5.56)

We seek an extremum of this function (a minimum, actually) relative to variations of a0 and
a1. This is accomplished by finding values of these two parameters for which derivatives

1::79�  .�2��80 ������� 
�	���	���
����������291/.����2�/�� ���4�82.0/���2�/892: �8/99

https://doi.org/10.1017/9781108241922.007


194 Classical Inference II: Optimization

with respect to a0 and a1 are null simultaneously:

∂χ2(a0, a1)
∂a0

= 0, (5.57)

∂χ2(a0, a1)
∂a1

= 0. (5.58)

Computation of these two derivatives yields

0 = ∂χ2(a0, a1)
∂a0

= −2
N∑

i=1

(yi − a0 − a1xi)
σ 2

i

, (5.59)

0 = ∂χ2(a0, a1)
∂a1

= −2
N∑

i=1

(yi − a0 − a1xi) xi

σ 2
i

. (5.60)

Dropping the common multiplicative factors and rearranging, we get

a0

N∑

i=1

1
σ 2

i

+ a1

N∑

i=1

xi

σ 2
i

=
N∑

i=1

yi

σ 2
i

, (5.61)

a0

N∑

i=1

xi

σ 2
i

+ a1

N∑

i=1

x2
i

σ 2
i

=
N∑

i=1

xiyi

σ 2
i

. (5.62)

It is convenient to define the following quantities:

S ≡
N∑

i=1

1
σ 2

i

Sx ≡
N∑

i=1

xi

σ 2
i

Sxx ≡
N∑

i=1

x2
i

σ 2
i

Sy ≡
N∑

i=1

yi

σ 2
i

(5.63)

Sxy ≡
N∑

i=1

xiyi

σ 2
i

' ≡ SxxS − S2
x

Eq. (5.61) may then be rewritten

a0S + a1Sx = Sy, (5.64)

a0Sx + a1Sxx = Sxy, (5.65)

or equivalently in matrix form:

αa⃗ = b⃗, (5.66)

where we introduced the matrix α as well as the vectors a⃗ and b⃗ defined as follows:

α =
(

S Sx

Sx Sxx

)
a⃗ =

(
a0

a1

)
b⃗ =

(
Sy

Sxy

)
. (5.67)

To solve for a⃗, we multiply both sides of Eq. (5.66) by the inverse α−1:

a⃗ = α−1b⃗. (5.68)
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The inverse of α is

α−1 = 1
'

(
Sxx −Sx

−Sx S

)
. (5.69)

The estimators â0 and â1, which minimize the χ2 function, may thus be written

â0 = 1
'

(
SySxx − SxSxy

)
, (5.70)

â1 = 1
'

(
SSxy − SxSy

)
. (5.71)

The calculation of the coefficients S, Sx, Sxx, and so on relies exclusively on the points
(xi, yi). Equations (5.70 and 5.71) then yield estimators â0 and â1 of the straight-line pa-
rameters that best fit the measured data points. Note that if the values yi are computed
without estimates of their standard deviations, σi, it suffices to set all values σi equal to
unity in the foregoing calculations to obtain estimates of â0 and â1. However, the interpre-
tation of the χ2 of the fit in terms of a χ2-distribution is not strictly possible in this case,
nor are meaningful estimates of the errors on â0 and â1.

The same mathematical procedure applies whether one considers a straight-line fit or
a linear regression. The term fit is, however, usually reserved for problems (or systems)
where a model is used to infer a linear relationship between the dependent and indepen-
dent variables. For instance, Hubble’s law (V = Hz, with z = 'λ/λ) states there is a linear
relation between the receding velocity, V , and the redshift, z, of galaxies. A linear fit carried
out on a set of measured points, (zi,Vi), consequently yields an estimate of the Hubble con-
stant H . By contrast, the term linear regression is typically used for cases where no model
is known a priori, or whenever large variances characterize both variables. The foregoing
procedure thus yields an estimate of the trend between the variables, akin to an estimate of
correlation. A linear regression can, for instance, be used to characterize the relationship
between the height and weight of humans in a given population (see Figure 5.4).

The fact that the measurements yi each carry an error σi implies the model parameters
a0 and a1 are known with limited precision only. We can estimate their respective errors
using the error propagation technique introduced in §2.11, Eqs. (2.222, 2.223). Given that
only the coefficients Sy and Sxy are functions of yi, we can write

∂a0

∂y j
= 1

'

(
Sxx

∂Sy

∂y j
− Sx

∂Sxy

∂y j

)
, (5.72)

∂a1

∂y j
= 1

'

(
S
∂Sxy

∂y j
− Sx

∂Sy

∂y j

)
. (5.73)

The derivatives of Sy and Sxy with respect to y j yield 1/σ 2
j and x j/σ

2
j , respectively. Inserting

these values in the preceding expressions, we get

∂a0

∂y j
= 1

'

(

Sxx
1
σ 2

j

− Sx
x j

σ 2
j

)

, (5.74)

∂a1

∂y j
= 1

'

(

S
x j

σ 2
j

− Sx
1
σ 2

j

)

. (5.75)
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Fig. 5.4 (a) Straight-line fit on simulated data. (b) Example of a linear regression between the weight and height of children in
an arbitrary population sample.

Assuming the yi are independent, the variances σ 2
a0

and σ 2
a1

may now be estimated using
Eq. (2.222), which we rewrite here in terms of a0, a1 as function of yi:

σ 2
a0

=
N∑

j=1

[
∂a0

∂y j

]2

σ 2
j , (5.76)

σ 2
a1

=
N∑

j=1

[
∂a1

∂y j

]2

σ 2
j . (5.77)

Substituting the derivatives (5.74) in the preceding expressions, we get after simplification
(see Problem 5.11):

σ 2
a0

= Sxx

'
, (5.78)

σ 2
a1

= S
'

. (5.79)

The variances σ 2
a0

and σ 2
a1

correspond respectively to the elements (α−1)11 and (α−1)22 of
the inverse of matrix α. This is no mere accident and in fact derives from a general result
we will discuss in §5.2.5.

5.2.3 LS Fit of a Polynomial

The LS method introduced in the previous section for linear fits is readily extended to
polynomial fits of any order. For instance, let us assume the data may be represented by a
polynomial of order m:

f (x) = ao + a1x + . . . + amxm =
m∑

j=0

a jx j. (5.80)
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For notational convenience, we represent the m + 1 parameters ai as a vector a⃗ =
(a0, a1, . . . , an). Once again, we assume the measurements yi are independent. The χ2

function may then be written

χ2(a⃗) =
N∑

i=1

(
yi −

m∑
k=0

akxk
i

)2

σ 2
i

. (5.81)

We seek the values of the parameters aj, j = 0, . . . , m, that yield a minimum χ2. This is
accomplished by setting all derivatives of χ2 with respect to the parameters a j equal to
zero simultaneously:

∂χ2

∂a j
= −2

N∑

i=1

(
yi −

m∑
k=0

akxk
i

)

σ 2
i

∂

∂a j

(
m∑

k=0

akxk
i

)

= 0. (5.82)

The derivative of
∑m

k=0 akxk
i with respect to a j yields x j. Equation (5.82) thus simplifies to

∂χ2

∂a j
= −2

N∑

i=1

(
yi −

m∑
k=0

akxk
i

)
x j

i

σ 2
i

= 0. (5.83)

We rearrange and separate the terms to get

N∑

i=1

yix
j
i

σ 2
i

=
N∑

i=1

m∑

k=0

akxk
i x j

i

σ 2
i

=
m∑

k=0

ak

N∑

i=1

xk
i x j

i

σ 2
i

. (5.84)

The index j takes values from 0 to m, and the index i runs from 1 to N . Equation (5.84)
hence corresponds to m + 1 equations that must be solved simultaneously. It is convenient
to define a matrix α and a column vector b⃗ with the elements

αk j =
N∑

i=1

xk
i x j

i

σ 2
i

, (5.85)

b j =
N∑

i=1

yix
j
i

σ 2
i

. (5.86)

Equation (5.84) may then be written as a linear equation:

α a⃗ = b⃗, (5.87)

which yields the solution

â = α−1b⃗, (5.88)

in which we use the notation â to emphasize that the preceding expression yields estimators
of the model parameters ai, i = 1, . . . , m.

A polynomial fit may thus be accomplished with the following three steps: (1) calcula-
tion of the matrix α, (2) calculation of the column vector b⃗, and (3) inversion of the matrix
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t (s)
0 5 10 15

y 
(m

)

0

500

1000

1500 Fit

/DoF = 29.1/272c
2 0.18 m/s±a = 15.1 

 0.42 m/s± = –0.32 0v

 0.23 m± = 0.05 0x

Fig. 5.5 Quadratic fit of simulated data (ti, yi)where the yi are measured altitudes vs. times ti of a rocket subjected to a
constant acceleration a.

α and multiplication by b⃗ according to Eq. (5.88). Techniques and programs to invert ma-
trices and solve linear equations are described in various textbooks and are available in
various software packages.

Figure 5.5 displays a quadratic fit of simulated data describing the altitude y of a rocket
as a function of time. The data were generated with the constant acceleration model y(t ) =
0.5at2 + vot + yo, with values a = 15 m/s2, vo = 0, and yo = 0. Measurement errors were
simulated with Gaussian deviates with widths σi = 5.00 + 0.03 ∗ y. The fit was carried
out using the same quadratic model and assumed knowledge of the measurement errors.
Trajectory parameters obtained from the fit are within statistical errors of the values used
for the generation of the simulated trajectory.

We will show in §5.2.5 that the variances of the estimators â are given by the diagonal
elements of the inverse matrix α. However, for polynomials of high-order m, the matrix α is
prone to become ill conditioned, and its inversion may become numerically unstable. It is
possible to partly remedy this problem by using orthogonal polynomials. Indeed, orthogo-
nal polynomials, or any other complete basis of orthogonal functions, enable a straightfor-
ward and unique decomposition of arbitrary (continuous) functions. As such, they typically
produce fit coefficients, for each element of the basis, that are nearly independent of one
another.

5.2.4 LS Fit for Correlated Variables yi

In §5.2.1, we showed that minimization of the χ2 function, defined by Eq. (5.53), is equiv-
alent to the maximum of the likelihood function L of measuring the values yi. The deriva-
tion assumed the values yi are mutually independent. There are, however, several classes
of measurements that yield correlated variables yi, that is, with nonvanishing covariances,
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Cov[yi, y j] ̸= 0 for i ̸= j. Given the existence of such correlations, one expects the mini-
mization of Eq. (5.53) to yield incorrect results because the values will be given inappro-
priate weights. Proper weights may be restored if one can transform the variables yi, with
nonzero covariances Cov[yi, y j], into a set of variables zi with Cov[zi, z j] = 0 for i ̸= j.
This can be readily accomplished by using the inverse of the covariance matrix of the
variables yi. Given Vi j = Cov[yi, y j] = E[yiy j] − E[yi]E[y j], the χ2 function may then be
written

χ2(θ⃗ ) =
N∑

i, j=1

(yi − f (xi|θ⃗ ))(V −1)i j(y j − f (x j|θ⃗ )), (5.89)

in which expectation values µi(xi|θ⃗ ) were replaced by model functions f (xi|θ⃗ ). Note that if
the variables yi are uncorrelated, then the covariance matrix Vi j is diagonal, its inverse is a

diagonal matrix with coefficients
(
2σ 2

i

)−1
, and Eq. (5.53) is thus recovered. The parameters

that minimize the function χ2 are called LS estimators and are noted θ̂1, θ̂2, . . . , θ̂m or
simply θ̂ . As in all other cases, minimization of χ2 proceeds by equating the derivatives of
Eq. (5.89) with respect to θi to zero. We discuss general implementations of the method for
linear and nonlinear models in §§5.2.5 and 5.2.7 respectively, and an implementation for
binned data in §5.2.6.

5.2.5 Generalized Linear Least-Squares Fit

The LS fit method is applicable for fits of any function f (x|θ⃗ ) but is particularly well suited
and considerably simplifies when f is a linear function of its parameters aj, j = 1, . . . , m

f (xi|a⃗) =
m∑

j=1

a j f j(xi), (5.90)

where the coefficients f j(xi) may be arbitrary functions of x, not just powers of x, as in
the case of simple polynomial fits discussed in §5.2.3. However, the functions f j(xi) must
be linearly independent and may not depend on the model parameters aj. Orthogonal
functions, in particular, present the advantage that the coefficients aj are not correlated.
Commonly used functions, beside powers of x, include Fourier decompositions, orthogonal
polynomials, and Legendre polynomials.

We repeat the steps carried out for fits with polynomials to obtain the estimates â j.
However, we include the possibility, discussed in the previous section, that the data yi

might be correlated. For notational convenience, we introduce coefficients Fi j defined as
follows:

Fi j = f j(xi). (5.91)

The χ2 function becomes

χ2 =
N∑

i,k=1

⎛

⎝yi −
m∑

j=1

Fi ja j

⎞

⎠ (V −1)ik

⎛

⎝yk −
m∑

j′=1

Fk j′a j′

⎞

⎠, (5.92)
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200 Classical Inference II: Optimization

which may also be formulated in a convenient matrix form

χ2 = (y⃗ − Fa⃗)TV −1 (y⃗ − Fa⃗) , (5.93)

in which y⃗ − Fa⃗ is considered an N × 1 column vector, y⃗ being a column vector represent-
ing all N entries yi. F is an N × m matrix with elements equal to the coefficients Fi j, and a⃗
is an m × 1 column vector containing the parameters aj. The notation OT is used to denote
the transpose of matrix O.

We find the minimum of χ2 by differentiating with respect to ap, with p = 0, . . . , m:

0 = ∂χ2

∂ap
, (5.94)

= −
N∑

i,k=1

⎛

⎝
m∑

j=1

Fi jδ jp

⎞

⎠ (V −1)ik

⎛

⎝yk −
m∑

j′=1

Fk j′a j′

⎞

⎠

−
N∑

i,k=1

⎛

⎝yk −
m∑

j=1

Fk ja j

⎞

⎠ (V −1)ik

⎛

⎝
m∑

j′=1

Fi j′δ j′ p

⎞

⎠, (5.95)

= −2
N∑

i,k=1

Fip(V −1)ik

⎛

⎝yk −
m∑

j′=1

Fk j′a j′

⎞

⎠. (5.96)

On the second line, we used ∂aj/∂ap = δ jp, in which δ jp is the Kroenecker symbol:

δi j = 1 for i = j,
0 for i ̸= j.

We next took the sum
∑m

j=1 Fi jδ jp = Fip and made use of the fact that the inverse of matrix
V is symmetric. The preceding expression is succinctly expressed in matrix form:

0 = FTV −1 (y⃗ − Fa⃗) , (5.97)

which we rewrite as

FTV −1Fa⃗ = FTV −1y⃗. (5.98)

As in prior sections, it is convenient to introduce the matrix α and column vector b⃗, defined
as

α = FTV −1F, (5.99)

b⃗ = FTV −1y⃗. (5.100)

Equation (5.98) becomes

αa⃗ = b⃗. (5.101)

Solving for a⃗, we get

â = α−1b⃗. (5.102)
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201 5.2 The Method of Least-Squares

This expression provides estimates â = (â0, . . . , âm) that are linear functions of the mea-
surements y⃗. It can thus be computed analytically. The inversion of large matrices, however,
becomes rather tedious for large values of N or m and is thus best carried out numerically
on a computer. In practice, it is often most efficient or simply convenient to use numerical
algorithms, such as the one described in §5.2.7. It can be shown that the foregoing estimates
â j have zero bias and minimum variance.

Errors (variances) on the parameters may be obtained using the error propagation tech-
nique introduced in Eqs. (2.222, 2.223) and used in §5.2.2. The covariance matrix Ui j of
the fit estimators âi and â jmay be written

Ui j =
N∑

k,k′=1

∂ai

∂yk
Vkk′

∂a j

∂yk′
. (5.103)

In order to compute the derivatives ∂ai/∂yk , we note that Eqs. (5.100) and (5.102) may be
combined to obtain

a⃗ =
(
FTV −1F

)−1
FTV −1y⃗. (5.104)

We thus get

∂ a⃗
∂ y⃗

=
(
FTV −1F

)−1
FTV −1. (5.105)

The covariance matrix U of the estimators âi may then be written

U =
(
FTV −1F

)−1
FTV −1V

[ (
FTV −1F

)−1
FTV −1]T

. (5.106)

The matrix
(
FTV −1F

)
and its inverse are by construction symmetric. Equation (5.106) thus

simplifies to

U =
(
FTV −1F

)−1
. (5.107)

By construction, U is an m × m symmetric matrix. Its diagonal elements Uj j correspond
to the variances, Var[â j], of the estimators a j and as such should provide estimates of the
errors on each of the fit parameters. However, the nondiagonal elements Ui j, corresponding
to covariances Cov[âi, â j] of the estimators ai and ai are in general non-null, even if the
matrix V is itself diagonal. The errors on the parameters aj are correlated and thus cannot
be specified independently, that is, for each parameter individually.

It is instructive to consider the covariance matrix U in terms of second-order derivatives
of the χ2 function. Toward this end, we will calculate the second-order derivatives of the
χ2 function based on Eq. (5.96).

∂2χ2

∂ar∂as

∣∣∣∣
a⃗=â

= −2
∂

∂ar

N∑

i,i′=1

Fis
(
V −1)

ii′

⎛

⎝yi′ −
m∑

j′=0

Fi′ ja j

⎞

⎠, (5.108)

= 2
N∑

i,i′=1

Fis
(
V −1)

ii′Fi′r, (5.109)

= 2
(
FTV −1F

)
sr . (5.110)
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202 Classical Inference II: Optimization

The order of the derivatives is inconsequential and the matrix FTV −1F is symmetric, that
is, equal to its transpose:

(
FTV −1F

)T = FT (
V −1)T

F = F TV −1F, (5.111)

since V and V −1 are symmetric matrices. But as per Eq. (5.107), we found that the co-
variance matrix U is equal to

(
F TV −1F

)−1
. We thus obtain the interesting and useful

result:

∂2χ2

∂ar∂as

∣∣∣∣
a⃗=â

= 2
(
U −1)

sr (5.112)

In the vicinity of the solution â (i.e., near the minimum of the χ2-function), it is legitimate
to write

χ2(a⃗) = χ2(â) + 1
2

m∑

i, j=0

∂2χ2

∂ai∂a j

∣∣∣∣
a⃗=â

(ai − âi)
(
a j − â j

)
+ O(3) (5.113)

Note that the absence of first derivatives stems from the fact that the series expansion is
carried out at the minimum in which first-order derivatives vanish implicitly. Substituting
the expression (5.112) for the second-order derivative, we obtain

χ2(a⃗) = χ2(â) +
m∑

i, j=0

(
U −1)

i jδaiδa j, (5.114)

in which δai = ai − âi. In order to interpret this expression, consider for illustrative pur-
poses a case in which U is a diagonal with elements σ 2

i . The inverse U−1 thus has diagonal
elements 1/σ 2

i and Eq. (5.114) therefore implies that the χ2 shall increase by one unit when
deviations δai = σi from â are considered. This is a rather generic result. It tells us that the
χ2 increases by one unit when a fit parameter is varied away from its optimal value by one
standard deviation (while all other coefficients are kept constant and equal to their value at
the χ2 minimum).

Equation (5.114) provides numerical and graphical techniques to estimate and visual-
ize the errors on the estimators âi as illustrated in Figure 5.6 for cases involving one- and
two-parameter fits. Panel (a) displays 15 simulated measurements of a constant but noisy
signal of amplitude y = 10 fitted with a constant polynomial y(x) = a0. The fit yields a
value a0 = 9.67 ± 0.81 with a minimum χ2 = 19.6 for 14 degrees of freedom. Panel (c)
shows the dependence of the fit χ2 on a0 and displays how the errors on a0 may be obtained
by increasing the χ2 by one unit. Panel (b) displays a noisy linear signal fitted with a first
order polynomial, y(x) = a0 + a1x. Panel (d) displays iso-contours of the fit χ2 plotted as a
function of a0 and a1 for values χ2 = χ2

min + 1 and χ2 = χ2
min + 2. The symmetric and cir-

cular aspects of the contour indicate the parameters a0 and a1 are essentially uncorrelated.
Their errors are thus independent and shown as one standard deviation errors in panel (b)
based on the χ2 = χ2

min + 1 contour.
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Fig. 5.6 Graphical interpretation of fitχ 2 for one- and two-parameter fits. (a) Noisy constant signal; (b) linear signal
dependence; (c)χ 2 of the constant signal fit vs. the fit parameter a0; (d)χ 2 iso-contours atχ 2

min + 1 and
χ 2
min + 2 as a function of the fit parameters a0 and a1.

5.2.6 LS Fit with Binned Data

The LS method discussed in prior sections enables fits with arbitrary functions (models) for
datasets containing an arbitrary number N of data points (xi, yi). However, it is not always
possible or practical to handle all data points (xi, yi) individually. Often, one wishes to fit a
model to data that have been binned into a histogram. We saw in §5.1.6 that the ML method
readily enables model parameter estimation with histograms. But the ML method can be
cumbersome and one consequently wishes to extend the LS method for fits of binned data
also.

Consider a measurement in which data have been binned into a histogram consisting of
n bins. Let Hi represent the number of entries in bin i, with i = 1, . . . , n. We wish to fit the
data with some function f (x|θ⃗ ) determined by m ≥ 1 parameter(s) θ⃗ , which have yet to be
estimated. Let N be the total number of entries in the histogram. The function f (x|θ⃗ ) is
used as a model of the data. One thus expects the number of entries in bin i to be given by

µi(θ⃗ ) = N pi(θ⃗ ) = N

xi,max∫

xi,min

f (x|θ⃗ ) dx, (5.115)
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204 Classical Inference II: Optimization

in which we have defined the probability pi(θ⃗ ) that there will be entries in bin i. The
parameters θ⃗ are determined by minimization of the χ2 function:

χ2(θ⃗ ) =
N∑

i=1

(
Hi − µi(θ⃗ )

)2

σ 2
i

, (5.116)

in which the variance σ 2
i of the number of entries Hi must be estimated either from the data

or from the model. There are thus few options as to how to proceed with the minimization
of χ2.

The LS fit can be somewhat simplified if the number of bins n is very large and such
that there are just a few entries in each bin. In this case, the content of each bin may
be reasonably well described by Poisson distributions and the variance of the number of
entries in bin i is equal to the mean number of entries “predicted” by the model, µi(θ⃗ ). The
χ2 function may then be written as

χ2(θ⃗ ) =
N∑

i=1

(
Hi − µi(θ⃗ )

)2

µi(θ⃗ )
=

N∑

i=1

(
Hi − N pi(θ⃗ )

)2

N pi(θ⃗ )
. (5.117)

The functions pi(θ⃗ ) are integrals of f (x|θ⃗ ) dependent on the unknown parameters θ⃗ and
the boundaries of each bins. Minimization of the χ2 by analytical methods, described in
prior sections, thus become intractable and one must then use numerical techniques such
as those presented in §5.2.7.

An alternative approach consists in approximating the variances σ 2
i by the number of

entries Hi in each bin. Such a substitution is reliable if the bin contents Hi are uncorrelated
and sufficiently large to provide a reliable estimate of the fluctuations. This leads to the
Modified Least-Squares (MLS) fit method based on the minimization of the χ2 function
defined as

χ2(θ⃗ ) =
n∑

i=1

(
Hi − N pi(θ⃗ )

)2

Hi
. (5.118)

Again in this case, the minimization of the χ2 involves integrals pi(θ⃗ ) and as such is best
handled by numerical methods. However, note that since the denominator includes the bin
content Hi, the method will fail whenever the number of entries in one or more bin is null.
It may be possible to remedy this problem by rebinning, that is, grouping bins together, or
by using variable size bins.

Recall that in the case of the ML method, a multinomial function is used to estimate the
expectation value of the number of entries per bin µi rather than a Poisson PDF. One can
show that the variance of the ML estimate converges faster to the minimum variance bound
than the LS or MLS estimates. This implies that for fits of binned data, it is preferable to
use ML estimators whenever feasible.
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205 5.3 Determination of the Goodness-of-Fit

5.2.7 NumericalLSMethods

We have so far focused on applications of the LS method for fits of linear models of
the form given by Eq. (5.90). However, scientific analyses and data parameterization
commonly involve nonlinear models that cannot be readily linearized. Examples of non-
linear functions commonly used include the Gaussian and Breit–Wigner distributions. It is
also often desirable to add or mix elementary functions. For instance, one might wish to
represent a signal and its background as a sum of a Gaussian distribution and a polynomial
of order m as follows:

f (x|ai, N, µ, σ ) =
m∑

i=0

aixm + N exp
(

− (x − µ)2

2σ 2

)
. (5.119)

Clearly, this function’s dependence on µ and σ is nonlinear, and given the addition of the
“background” terms

∑
aixm cannot be linearized by taking a logarithm of the function.

Nonlinear models abound in physics, and in science in general. It is thus particularly im-
portant to consider model parameter estimation in the context of such models.

Numerical χ2 minimization methods are a particular case of the more general case of
optimization (or extremum finding) encountered both in classical and Bayesian inference
problems. Rather than discussing numerical approaches piecemeal in this and following
chapters, we present a systematic and comprehensive discussion of numerical techniques
and algorithms in §7.6.

5.3 Determination of the Goodness-of-Fit

As we saw in §5.2.1, the LS method is derived from and therefore strictly equivalent to
the ML method whenever the measurements yi are Gaussian random variables. When this
condition is met, the LS estimators θ⃗ obtained by χ2 minimization consequently coincide
with those obtained by the ML method. Once estimators are known, and for a given set of
data points, one can then seek the probability of getting a certain χ2 value.

It is convenient to introduce normalized deviates, denoted zi(θ⃗ ), and defined as

zi(θ⃗ ) =
(
yi − µi(θ̂ )

)
/σi, (5.120)

in which θ̂ are the estimator values obtained in the fit. By construction, a normalized devi-
ate zi(θ⃗ ) measures the deviation between an observed value yi and the value µi(θ̂ ) predicted
by the model for xi, according to parameters θ̂ , and relative to the standard deviation σi.
As such, the normalized deviates provide a measure of the level of agreement or com-
patibility between the data and the model (obtained from the fit), relative to the errors σi.
The deviates zi should be distributed according to the standard normal distribution if the
yi are Gaussian distributed. Additionally, with known variances σ 2

i , a function µi(θ̂ ) linear
in the parameters θ⃗ , and with proper functional form (i.e., an appropriate representation
of the data), one expects the minimum χ2 =

∑
i z2

i obtained by the LS method should be
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206 Classical Inference II: Optimization

distributed according to the χ2 PDF with N − m degrees of freedom, as shown in §3.13.3.
It is consequently appropriate to use the χ2 value obtained in a fit of data with Gaussian
deviates to evaluate the goodness of the fit.

Recall from §3.13 that the expectation value of a random variable with a χ2 PDF is
equal to the number of degrees of freedom, NDoF. It is thus convenient (and customary)
to quote the χ2 divided by the number of degrees of freedom, NDoF, as a measure of the
goodness of a fit. The number of degrees of freedom NDoF is equal to N − m, N being the
number of data points or bins, and m the number of fit parameters. If the value χ2/NDoF is
much smaller than one, or near zero, then the fit is much better than expected, on average,
given the size of the data set and the number of fit parameters. Very small χ2/NDoF values
are not impossible but have rather low probability of occurring. Fits yielding “very” small
χ2/NDoF values might then signal that the errors (standard deviations), σi, used in the fit
are overestimated or correlated. Large values of χ2/NDoF, on the other hand, indicate that
the fit is very poor. This is an indication that the model f (x|θ⃗ ) used to fit the data has a very
small likelihood of yielding the measured data. The hypothesis that this particular model
constitutes an accurate representation of the data (and the phenomenon considered) is thus
regarded as having a low probability. Alternatively, it is possible that the errors σi are much
underestimated and consequently yield a rather large χ2.

It is customary to report the goodness of a fit in terms of its significance level or p-value.
The significance level corresponds to the probability that the model hypothesis4 would lead
to a χ2 value worse (i.e., larger) than that actually achieved:

p =
∞∫

χ2

pχ (z|NDoF) dz, (5.121)

where pχ2 (z|NDoF) is the χ2-distribution for NDoF degrees of freedom. Integrals of
pχ2 (z|NDoF) are best calculated with numerical routines available in software packages
such as Mathematica®, MATLAB®, or ROOT®.

It is important to realize that the choice of minimum p-value used toward the rejection
of model hypotheses is rather subjective and may very well depend on the purpose of a
particular measurement. See §6.6.5 for a more extensive discussion of this issue. Addition-
ally, it is also important to acknowledge that the errors σi may be under- or overestimated,
thereby resulting in too large or too small a value of χ2, respectively. The use of a χ2 test
as a measure of the goodness of a fit may thus be completely unwarranted if the errors have
not been properly calibrated.

5.4 Extrapolation

Having obtained estimates of model parameters with the ML, LML, LS, or related meth-
ods, it is often necessary to use the estimates to determine values predicted by the model in

4 The notions of hypothesis and hypothesis testing are discussed at great length in Chapter 6.
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207 5.5 Weighted Averages

regions where no measurements exist. Doing this is fairly easy: one needs only to plug in
the parameter estimates, θ̂ , obtained from the fit into the model formula, and calculate the
function values y = f (x|θ ) at the relevant values of x. Somewhat less easy, however, is the
calculation of error estimates δy on values y = f (x|θ ) predicted by or extrapolated from
the model. The model parameters are in general not independent. One must then use the
covariance matrix U of the model parameters to determine the error δy on an extrapolated
value according to

δy2 =
(

∂y

∂θ⃗

)T

U
(

∂y

∂θ⃗

)
. (5.122)

As a practical example, let us consider the implementation of the foregoing formula
for a polynomial of order m with coefficients ai, i = 0, . . . , m. We must first calculate the
derivatives ∂y/∂aj:

∂y
∂ a⃗ j

=
m∑

k=0

∂ak

∂a j
xk = x j. (5.123)

The expression (5.122) may then be written:

δy2 =
(

1 x · · · xm
)

⎛

⎜⎜⎜⎝

U00 U01 · · · U0m

U10 U11 · · · U1m
...

...
. . .

...
Um0 Um1 · · · Umm

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

1
x
...

xm

⎞

⎟⎟⎟⎠
. (5.124)

For a straight-line fit, y = a0 + a1x, this expression reduces to

δy2 = U00 + 2U01x + U11x2, (5.125)

in which U00 = Sxx/' and U11 = S/' are the variances of a0 and a1, respectively, while
U01 = Sx/' is the covariance of a0 and a1.

It is important to stress that neglect of the off-diagonal terms, which may be quite large
relative to the diagonal terms, can lead to gross misrepresentations of the errors δy on
extrapolated values (see Problem 5.12).

5.5 Weighted Averages

It is the hallmark of science that measurements should be reproducible and that advances
in technology typically lead to improved measurements of physical quantities. It is often
the case that different groups of scientists conduct distinct measurements of a given ob-
servable, for instance, the mass of a particle, the value of a fundamental constant such as
the speed of light, and so on. Distinct experiments generally have different degrees of re-
liability, accuracy, precision, and yield different measurement results with distinct errors.
Given historical trends, one might expect that more modern experiments yield more ac-
curate and precise results. One might thus be tempted to rely only on the latest or most
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precise results. But why give up the valuable information provided by other experiments?
Why not combine the information gathered to obtain a world average that accounts for all
data available? This can be accomplished with the weighted average (WA) method, which
is introduced here as a special case of the LS method. Weighted averages may additionally
be obtained with the ML method and within the Bayesian inference paradigm discussed in
Chapter 7.

Suppose the quantity of interest, with a true value θ , has been measured N times, yield-
ing N independent values (estimates) θ̂i and errors σi, with i = 1, 2, . . . N . Since a single
phenomenon is being considered, it is reasonable to expect all measurements should yield
the same value θ . It is thus acceptable to combine them to get a better estimate of θ . This
can be readily accomplished with the LS method by minimization of the χ2 objective func-
tion for a model f (x|θ ) = θ :

χ2(θ ) =
N∑

i=1

(
θ̂i − θ

)2

σ 2
i

. (5.126)

We set the derivative of Eq. (5.126) with respect to θ equal to zero to seek an extremum
that yields the value θ most compatible with the existing measurements θ̂i:

d
dθ

χ2(θ ) = −2
N∑

i=1

(θi − θ )
σ 2

i

= 0. (5.127)

Solving for θ yields

θ̂WA =
N∑

i=1

θi

σ 2
i

/
N∑

i=1

1
σ 2

i

. (5.128)

We use the subscript “WA” to indicate that the preceding estimate is equal to the sum of
the estimates θi weighted by their respective variances and as such corresponds to a special
case of a weighted average procedure defined as

θ̂WA =
N∑

i=1

ωiθi

/
N∑

i=1

ωi, (5.129)

with weights wi = 1/σ 2
i .

The weights ωi determine the importance given to estimates θi in the average. Measure-
ments with a smaller variance σ 2

i have a larger weight and thus contribute more to the
weighted average θ̂WA. Note that the factor

∑
i wi is needed for proper normalization of the

weights, unless they are already normalized, in other words, if
∑

i wi = 1.
The second-order derivative of the χ2-function with respect to θ yields the variance of

the estimate

Var
[
θ̂WA

]
=

(
N∑

i=1

σ−2
i

)−1

, (5.130)

which amounts to the inverse of the sums of all the weights. The variance Var[θ̂WA] is, by
construction, smaller than the individual variances σ 2

i . Consequently, there is an obvious
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209 5.6 Kalman Filtering

advantage in combining the results of several measurements. Three special cases are of in-
terest: first, if all measurements have equal errors, σi = σ , then the variance of the estimate
simplifies to

Var
[
θ̂WA

]
=

(
N∑

i=1

σ−2

)−1

= σ 2

N
, (5.131)

and the error σWA on the estimate θ̂WA equals the measurement error divided by the square
root of the number N of measurements:

σWA = σ√
N

(equal errors). (5.132)

Second, if one measurement has a much smaller error than the others, it will dominate both
the mean and its variance. Third, if a measurement has a much larger error than the others,
it will play a negligible role in the evaluation of the mean and its variance.

The foregoing weighted procedure can be generalized to situations in which the mea-
surements θi are not independent. This would be the case, for instance, if some or all of the
estimates are based in part on the same data. One must then first determine the covariance
Vi j of the measurements. One can then verify (see Problem 5.13) that the WA is given by
Eq. (5.129) with weights replaced by

w j =

N∑
i=1

(V −1)i j

N∑
k,m=1

(V −1)km

. (5.133)

Clearly, Eq. (5.133) reduces to Eq. (5.129) if the covariance matrix is diagonal, that is, if
the measurements θ̂i are uncorrelated.

Averaging of experimental results may also be achieved with products of likelihood
functions (as well as sums of log of likelihood functions) of combined datasets [67] and
Bayesian inference techniques discussed in Chapter 7.

5.6 Kalman Filtering

Kalman filtering (KF) is a technique that was initially designed and used for radar sig-
nal processing. It is quite general, however, and is used nowadays in many applications,
including signal processing, signal fitting, pattern recognition, as well as navigation and
control.

By design, a Kalman filter operates recursively on one or multiple streams of noisy input
data to produce statistically optimal estimates of the underlying state of a physical system.
The technique is named after Rudolf E. Kalman5 (b. 1930), one of the early and primary
developers of the theory [122]. It was introduced in high-energy physics by Billoir as a

5 Hungarian-born American electrical engineer, mathematician, and inventor.
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progressive method of track-fitting [41]. The equivalence between progressive methods
and Kalman filters was established by Fruhwirth [88].

In nuclear and high-energy physics, Kalman filtering is commonly applied toward track
reconstruction in complex detectors, where it usually involves a linear, recursive method
of track-fitting shown to be equivalent to a global least-squares minimization procedure
(see §5.6.6). It is therefore an optimal linear estimator of track parameters. Provided the
track model is truly linear and measurement errors are Gaussian, the Kalman filter is also
efficient. It was formally shown that no nonlinear estimator can do better. Extensions and
generalizations of the method to nonlinear systems, known as extended Kalman filters
(EKF), have also been developed.

Kalman filters have the following attractive features that make them preferable over
global least-squares methods under appropriate circumstances:

1. A Kalman filter is recursive and is thus well suited for progressive signal processing,
particularly track finding and fitting in large and complex detection systems.

2. A Kalman filter can be extended into a smoother and thereby provides for optimal
estimates of signals throughout the evolution of a system.

3. A Kalman filter readily enables efficient resolution and removal of outlier points.
4. In contrast to least-squares methods, a Kalman filter does not involve the manipulation

or inversion of large matrices.

We motivate and introduce the notion of recursive fitting (filtering) in §5.6.1. The linear
Kalman filter algorithm is outlined in §5.6.2. A detailed derivation of the expression of the
Kalman gain matrix is presented in §5.6.5, whereas a proof of the equivalence between the
Kalman filter method and the least-squares method is sketched in §5.6.6. An example of
application for charged particle track reconstruction in complex detectors is presented in
§9.2.2. The Kalman filtering techniques presented in this section constitute a small subset
of the field of optimal estimation and control theory covered in more specialized works
(e.g., see [70, 93, 168, 199]).

5.6.1 Recursive Least-Squares Fitting and Filtering

The least-squares method discussed in §5.2 is ideal for the estimation of model param-
eters when all data have been acquired and can be fitted all at once. However, there are
applications in which a progressive and recursive knowledge of a system’s or model’s pa-
rameters are required. In other words, rather than waiting for the whole dataset to become
available, one wishes to obtain an estimate on the basis of existing data and progressively
improve the estimate as additional data are collected. Such a task is the domain of recursive
least-squares filtering methods.

We saw in §4.5 that the arithmetic mean constitutes an unbiased estimator of the mean
of a set of data. One can alternatively obtain the arithmetic mean as the least-squares
estimator of a data model involving a zeroth-order polynomial. Indeed, for a dataset
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211 5.6 Kalman Filtering

x⃗ = (x1, x2, . . . , xk ) with measurement errors σ⃗ = (σ1, σ2, . . . , σk ), the χ2 of a zeroth-
order polynomial is

χ2 =
k∑

i=1

(xi − a)2

σ 2
i

. (5.134)

Setting the derivative of χ2 with respect to a equal to zero yields the least-squares estimate:

â =
∑k

i=1 xi/σ
2
i∑k

i=1 1/σ 2
i

. (5.135)

For the sake of simplicity, let us consider a case where all errors σi are equal. One writes

âk = 1
k

k∑

i=1

xi, (5.136)

where âk denotes the estimate of a obtained with k values xi. It corresponds to the arith-
metic mean of a sample of k values xi. Adding one value to the sample, one can obviously
write

âk+1 = 1
k + 1

k+1∑

i=1

xi. (5.137)

It is convenient to formulate the estimate âk+1 in terms of the estimate âk , as follows:

âk+1 = 1
k + 1

(

k
1
k

k∑

i=1

xi + xk+1

)

1
k + 1

(kâk + xk+1) (5.138)

where in the second line, we have used the expression (5.136) of the estimator âk . Defining
â0 = 0 and â1 = x1, we shift the indices of Eq. (5.138) by one unit and obtain

âk = 1
k

((k − 1)âk−1 + xk ) (5.139)

= âk−1 + 1
k

(xk − âk−1)

We find that the new estimate âk is equal to the prior estimate âk−1, plus a “correction”
proportional to the difference between the new measurement xk and the prior estimate,
known as the kth residue. The weight given to the correction is determined by the factor
1/k, which we call the gain of the filter and denote K (1)

k . We thus can write

âk = âk−1 + K (1)
k (xk − âk−1) , (5.140)

with the filter gain

K (1)
k = 1

k
. (5.141)

Equation (5.140) provides us with a recursive formula to estimate the arithmetic mean of
a growing sample of values, xi. Setting a0 = 0, for k = 1, one has K (1)

1 = 1, and the first
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Fig. 5.7 Evolution of the error'ak of the estimate âk of five constant signals with Gaussian noise of standard deviationσ .
Solid lines show the 68% confidence interval (1/

√
k) of the sample mean for a data sample of size k.

measured value is given maximal weight

â1 = K (1)
1 x1 = x1, (5.142)

whereas for increasing values of k, one finds the gain K (1)
k decreases monotonically and

vanishes for k → ∞: additional values are progressively given a smaller weight in the
calculation of the estimate â.

Equation (5.140) epitomizes the concept of recursive filtering and fitting. One starts with
no information and the first measurement is given maximal weight in the determination of
the first estimate â1. This and subsequent estimates serve as priors toward the recursive
determination of posterior estimates, which are expected to progressively converge toward
the true value of the observable. The gain K determines the importance given to new in-
formation provided by measurements xk . It is initially large but tends to decrease as the
number of sampled values progressively increases.

Figure 5.7 illustrates how estimates âk of a constant value a progressively converge to-
ward the true value while the gain tends to zero.

We saw in §4.5 that the estimator of the mean is given by Eq. (5.136). This can be verified
also for the estimators âk as follows:

E [âk] = 1
k

k∑

i=1

E [xi] = 1
k

k∑

i=1

a = a. (5.143)

In order to examine the variance of estimators âk , it is convenient to express the measure-
ments xk in terms of their expectation value a and a signal noise vk :

xk = a + vk, (5.144)
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where the term vk represents random numbers with null expectation value, E [vk] = 0, and
variance E

[
v2

k

]
= σ 2. One can then calculate the residue

a − âk = a − âk−1 − 1
k

(a + vk − âk−1) (5.145)

= (a − âk−1)
(

1 − 1
k

)
− 1

k
vk (5.146)

Squaring and taking the expectation value, we obtain the variance of the estimator âk :

Var [âk] = E
[
(a − âk )2] =

(
1 − 1

k

)2

Var [âk−1]

− 2
1
k

(
1 − 1

k

)
E [(a − âk−1) vk] + 1

k2
E

[
v2

k

]
(5.147)

The expectation value E
[
v2

k

]
is the variance σ 2 of the noise vk while the expectation value

E [(a − âk−1) vk] vanishes because the noise vk is assumed to be uncorrelated to that of
prior measurements. The preceding expression thus provides the variance E

[
(a − âk )2]

in terms of the variance at step k − 1 and a second term depending on the signal noise.
Defining the “covariance matrix,” Sk = E

[
(a − âk )2], we can then rewrite the preceding as

Sk = (1 − Kk )2 Sk−1 + K2
k σ 2, (5.148)

which gives us an equation for the evolution of the covariance Sk of the estimate âk in
terms of prior values Sk−1 and the variance σ 2 of the measurement noise. Note that for
small values of k, the gain is near unity, K ≈ 1, and the evolution of Sk is dominated by the
signal noise, whereas for large k the gain nearly vanishes and the covariance Sk becomes
approximately constant. One can verify by simple substitution that the expectation value
of the covariances Sk scales as

Sk = σ 2

k2
. (5.149)

The foregoing recursive formalism is readily applicable to polynomial or linear function of
all orders. We consider a general extension to all linearizable models in §5.6.2.

5.6.2 The Kalman Filter Algorithm

In the framework of the Kalman filter, a physical system (e.g., a radio signal, a charged
particle track traversing a magnetic spectrometer) is represented by a set of ns param-
eters, called the Kalman state vector, s⃗ = (s1, s2, . . . , sns ), which is allowed to vary as
a function of some independent variable, t. For live-feed signal processing applications,
time is obviously a convenient choice of independent variable. However, other choices
are also possible or appropriate depending on the specificities of physical systems un-
der study. For instance, in the case of charged particle reconstruction inside a magnetic
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spectrometer, the independent variable may be taken as the track length or the position
across the spectrometer.

The state of the system is usually regarded as dynamically evolving as a function of
the independent parameter t. While primarily deterministic, the dynamic process may also
involve a stochastic component, usually called process noise. Process noise may arise be-
cause of background processes or through the dynamical evolution of the system. For in-
stance, a track propagating through a detector is likely to interact with materials composing
the detector. Interactions may lead to energy loss and scattering. The instantaneous prop-
erties of the track (e.g., momentum and direction) are thus likely to change stochastically
due to such interactions.

Kalman filtering typically involves recursive measurements of nm dependent parame-
ters, m⃗k = (m1, m2, . . . , mnm )k , determined by the state of the system and the properties of
the measurement device. Measurements typically involve fluctuations associated with the
granularity and geometry of the devices as well as, ultimately, the intrinsically stochastic
nature of the measurement process. Uncertainties associated with the measuring process
are commonly known as measurement noise (see §12.1 for a more in-depth discussion of
process and measurement noises).

Measurements of the dependent parameters are achieved recursively by sampling the
system’s signal(s). Depending on the applications and systems considered, such sampling
might be carried out repeatedly at an arbitrarily large frequency or through finitely many
steps. Either way, it is usually the case that both the measurements and the state of the sys-
tem are expressed as functions of the independent variable t. The frequency of the sampling
process being finite by its very nature, it is convenient to discretize all variables of inter-
ests in terms of t steps measured with an arbitrary index k. Thus, s⃗k and m⃗k represent the
state of the system and measured values at “step” tk . Some applications involve recursively
unlimited measurement of samples and thus have unbound values of step tk . Spectrometers
used in particle physics for measurements of charged particle momenta, however, involve
finitely many detection planes and thus feature data processing with finitely many values
of (time) steps tk .

Basic Kalman filters assume that knowledge of the state at step k, noted ŝk|k−1 and known
as prior, can be predicted based on knowledge of the state at tk−1 according to a linear
model:

s⃗k|k−1 = Fk s⃗k−1 + w⃗k, (5.150)

where F is a linear function (an ns × ns matrix) describing the evolution of the state vec-
tor between the two times tk−1 and tk . In practical situations, the evolution of the system
between two steps may be nonlinear, and one should instead write

s⃗k|k−1 = φk (s⃗k−1) + w⃗k, (5.151)

where φk (s⃗k−1) is a nonlinear function of the state vector at step k. The principle of the
method remains the same, however, and leads to extended Kalman filters (EKFs) (see
§5.6.4).

The vector w⃗k corresponds to process noise and amounts to stochastic variations of
the signal (state) associated with background processes accumulated during the interval
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tk–tk−1. One assumes the process noise to be unbiased, that is, such that

E [w⃗k] = 0, (5.152)

and characterized by a predictable ns × ns covariance matrix Wk with elements

(Wk )i j = Cov
[
(wk )i, (wk ) j

]
, (5.153)

where (wk )i and (wk ) j are noise values of state parameters (sk )i and (sk ) j, i, j = 1, . . . , ns

at step k.
Uncertainties of the components of the state vector s⃗k are likewise described by an ns ×

ns covariance matrix denoted Sk
6:

(Sk )i j = Cov
[
(sk )i, (sk ) j

]
. (5.154)

One represents measurements performed at step k (layer k) with a vector noted m⃗k . The
dimensionality nm of m⃗k is smaller or equal to that of the state vector (nm ≤ ns) and is
generally limited to just a few parameters, that is, nm ≪ ns. For instance, in a magnetic
spectrometer, straw tube chambers would provide a single measurement of position, u or
v, yielding nm = 1, while pad chambers or continuous devices such as Time Projection
Chambers would yield measurements of two coordinates, y and z, and be represented by a
two-element vector, z⃗ = (y, z). One further assumes that it is possible, given an estimate of
the Kalman state, s⃗k , to project (predict) a measurement by means of a linear function, Hk ,
according to

m⃗k = Hk s⃗k + v⃗k . (5.155)

The function Hk represents an nm × ns matrix that projects the vector s⃗k onto the measure-
ment coordinates m⃗k . It is often possible and convenient to choose some parameters of the
state model s⃗k to be values of the measurements m⃗k . The matrix Hk thus simplifies trivially.
For instance, for nm = 2 and ns = 6, one could write

Hk =
[

1 0 0 0 0 0
0 1 0 0 0 0

]
. (5.156)

However, such a simplification is not always possible or desirable. There are also cases
where a linear function is not available.

The vector v⃗ represents the measurement noise associated with the determination of the
measurement vector m⃗. The measurement noise is assumed to be unbiased, in other words,
with null expectation value such that

E [⃗vk] = 0. (5.157)

It is characterized by a known error covariance matrix, Vk defined according to:

(Vk )i j = Cov
[
(vk )i, (vk ) j

]
. (5.158)

6 In this and following sections, we use lowercase letters for the physical quantities and corresponding capital
letters for their respective covariance matrix: s → S; w → W ; v → V
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It is generally further assumed that the process and measurement noises are strictly inde-
pendent, and that successive measurement noises are also uncorrelated.

Cov
[
(sk )i, (vk ) j

]
= 0 (5.159)

Cov
[
(vk )i, (vk′ ) j

]
= 0 for k ̸= k′ (5.160)

The Kalman filter algorithm requires an initial estimate of the system state s⃗0 at t0. This
and subsequent estimates of the state vector at tk−1, noted s⃗k−1|k−1 with k > 1, are used to
predict the state of the system at the next measurement step tk .

s⃗k|k−1 = Fk s⃗k−1|k−1. (5.161)

One also predicts (projects) the covariance matrix of the state vector as

Sk|k−1 = FkSk−1|k−1 (Fk )T + Wk . (5.162)

The measurement m⃗k is then used to update and improve the knowledge of the Kalman
state with

s⃗k ≡ s⃗k|k = s⃗k|k−1 + Kk
(
m⃗k − Hk s⃗k|k−1

)
(5.163)

where the quantity Kk is called the Kalman gain matrix. It can be calculated as follows
(for a derivation of this result, see §5.6.5):

Kk = Sk|k−1 (Hk )T (
Vk + HkSk|k−1 (Hk )T )−1

. (5.164)

The matrix inversion involved in Eq. (5.164) is typically rather simple because the mea-
surement error covariance matrix has a small dimensionality. In some cases, when Hk is
diagonal, the inversion may even become trivial.

To operate the Kalman filter, one first initializes the covariance matrix S0|0 with large
diagonal values and null off-diagonal elements. As the filter progresses from step to step,
more information about the system is acquired by added measurements m⃗k . The diagonal
elements reduce to values representative of the uncertainty on the system parameters. Ini-
tially, Sk|k−1 dominates the factor

(
Vk + HkSk|k−1 (Hk )T )−1

so the gain Kk is near unity.
As the number of sampled measurements increases, this factor becomes increasingly dom-
inated by the covariant matrix Vk , and the Kalman Kk gain becomes progressively smaller.
With a large Kalman gain, the addition of a new measurement has a significant impact on
the updated system parameters. As the gain reduces, the addition of new measurements has
a progressively smaller impact on the updated state of the system.

The filtered (updated) covariance is given by

Sk|k = (I − KkHk ) Sk|k−1, (5.165)

where I denotes an ns × ns identity matrix. Again, one finds that initially, the Kalman gain
being large, the covariance matrix rapidly decreases in magnitude. As more information is
added, the gain diminishes and added measurements have diminishing impact on the state
covariance.

The recursive operation of the filter is schematically illustrated in Figure 5.9. An ex-
ample of an application for charged particle track reconstruction in a complex detector is
schematically illustrated in Figure 5.8 and discussed in detail in §9.2.3.
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Fig. 5.8 A particle detector may be represented as a succession of material volumes or layers. Measurements m⃗k are carried out
in active layers whereas passive volumes contribute no information to the knowledge of the track and may in fact
produce degradation of information through stochastic processes such as differential energy loss and multiple
Coulomb scattering. The state vector is therefore defined at finitely many layers only. Starting at some base layer i, one
proceeds iteratively to predict and measure the state at successive layers. Given the knowledge of a track state s⃗k−1 at
layer k − 1, one predicts its state s⃗k at layer k using a linear function. The measurement m⃗k is then used to update and
improve the knowledge of the state of the track. The process is repeated iteratively until all (relevant) layers have been
traversed.

Fig. 5.9 Schematic illustration of the components of the Kalman filter algorithm.
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5.6.3 Kalman “Smoother”

In cases where it might be useful to have optimal information on the system at all steps
tk , one can carry out a “smoothing” pass on the data. The smoothing pass begins with
the first step k = n and proceeds recursively backward from the last measurement k = n.
The smoothed state vector at tk is based on all n measurements steps and is calculated as
follows:

s⃗k|n = s⃗k|k + Ak
(
s⃗k+1|n − s⃗k|n

)
, (5.166)

with the smoother gain matrix

Ak = Sk|k (Fk )T +
(
Sk+1|k

)−1
. (5.167)

The covariance matrix of the smoothed state vector is

Sk|n = Sk|k + Ak
(
Sk+1|n − Sk+1|k

)
(Ak )T . (5.168)

Multiple extensions and variants of the foregoing algorithm are documented in the scien-
tific and engineering literature.

5.6.4 The Extended Kalman Filter

The propagation of the state vector s⃗ with Eq. (5.150) assumes the evolution of the system
may be described with a linear function of the state parameters. This is a rather limiting
assumption and, in practice, one often deals with nonlinear state evolution equations such
as

s⃗k = f⃗k (s⃗k−1, w⃗k−1) , (5.169)

as well as nonlinear state-to-measurement “projection” equations such as

m⃗k = h⃗k (s⃗k, v⃗k ). (5.170)

It may be possible, however, to linearize Eqs. (5.169) and (5.170) and obtain an extended
Kalman filter (EKF).

Let us define matrices Ak and Bk as derivatives of the functions ( f⃗k (s⃗k−1, w⃗k−1))i, i =
1, . . . , ns, with respect to j components ( j = 1, . . . , ns) of the state vector s⃗k and process
noise w⃗k , respectively:

(Ak )i j = ∂ ( f⃗k )i

∂ (s⃗k ) j
(s⃗k−1, 0) , (5.171)

(Bk )i j = ∂ ( f⃗k )i

∂ (w⃗k ) j
(s⃗k−1, 0) . (5.172)

Let us additionally define matrices Pk and Qk as derivatives of the functions
(⃗hk (s⃗k−1, v⃗k−1))i, i = 1, . . . , nm, with respect to j components of the state vector s⃗k and
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Fig. 5.10 Schematic illustration of the extended Kalman filter algorithm. The algorithm is essentially identical to the discrete
algorithm, but the matrices are here replaced by nonlinear functions for the evolution of the state s⃗k and derivatives of
these functions for the evolution of the covariance matrix Sk .

measurement noise v⃗k , respectively:

(Pk )i j = ∂ (⃗hk )i

∂ (s⃗k ) j
(s⃗k−1, 0) , (5.173)

(Qk )i j = ∂ (⃗hk )i

∂ (⃗vk ) j
(s⃗k−1, 0) . (5.174)

The state and state covariance evolution equations may then be written

s⃗k|k−1 = f⃗ (s⃗k−1, 0) , (5.175)

Sk|k−1 = AkSk−1AT
k + BkWk−1BT

k , (5.176)

while the measurement update equations are

Kk = Sk|k−1PT
k

(
PkSk|k−1PT

k + QkVkQT
k

)−1
, (5.177)

s⃗k = s⃗k|k−1 + Kk

(
m⃗ − h⃗(sk|k−1, 0)

)
, (5.178)

Sk = (I − KkPk) Sk|k−1. (5.179)

As illustrated in Figure 5.10, the extended Kalman filter is quite similar to the regular dis-
crete Kalman filter and proceeds recursively through steps of state update and measurement
update based on Eqs. (5.175) and (5.177), respectively.

However, it is important to note, in closing this section, that the linearization of the
evolution equations implies that the random variables are no longer Gaussian distributed
after undergoing their respective nonlinear transformations.

1::79�  .�2��80 ������� 
�	���	���
����������291/.����2�/�� ���4�82.0/���2�/892: �8/99

https://doi.org/10.1017/9781108241922.007


220 Classical Inference II: Optimization

5.6.5 Derivation of the Kalman Gain Matrix

In this section, we derive the expression (5.164) of the Kalman gain Kk . It may be skipped
in a first reading of the material.

Let us assume the state of a system can be represented by an n-elements state vector ŝk

and that its evolution can be described by the linear equation

ŝk = Fk ŝk−1 + Kk (m⃗k − HkFk ŝk−1) , (5.180)

where the matrix Fk determines the evolution of the system in the absence of noise, ŝk−1

is the prior information on the state of the system, Kk the Kalman gain matrix we wish to
determine, Hk a matrix that projects the state ŝk onto a prediction of a measurement, and m⃗k

represents an actual measurement. A measurement m⃗k of the system may be represented
as m⃗k = Hk s⃗k + v⃗k , where s⃗k is the actual value of the system’s state at step k and v⃗k a
random vector representing the process noise incurred in the evolution of the state from
step k − 1 to step k. We will assume that the state, process noise, and measurement noise
are uncorrelated:

Cov
[
's⃗k−1, w⃗

T
k

]
= 0, (5.181)

Cov
[
's⃗k−1, v⃗

T
k

]
= 0, (5.182)

Cov
[
w⃗k, v⃗

T
k

]
= 0. (5.183)

Our goal is to calculate the covariance matrix Sk of the system state s⃗k and determine
the gain matrix K that simultaneously minimizes all elements of this covariance matrix. In
order to obtain the covariance matrix, let us first calculate the residue 's⃗k at each step k of
filtering as follows:

's⃗k = s⃗k − ŝk

= s⃗k − Fk ŝk−1 − Kk (m⃗k − HkFk ŝk−1) . (5.184)

We next replace the value of the measurement m⃗k by the sum of the projection of the state
s⃗k and measurement noise v⃗k :

's⃗k = s⃗k − Fk ŝk−1 − Kk (Hk s⃗k + v⃗k − HkFk ŝk−1) . (5.185)

We next also replace s⃗k on the righthand side by its value in terms of the previous state and
process noise:

's⃗k = Fk s⃗k−1 + w⃗k − Fk ŝk−1 (5.186)

− Kk (Hk (Fk s⃗k−1 + w⃗k ) + v⃗k − HkFk ŝk−1) .

Noting that the difference s⃗k−1 − ŝk−1 corresponds to the residue at step k − 1, we obtain
after a simple reorganization of Eq. (5.186)

's⃗k = (1 − KkHk ) Fk's⃗k−1 + (1 − KkHk ) w⃗k − Kk v⃗k, (5.187)
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221 5.6 Kalman Filtering

which expresses the residue 's⃗k in terms of the residue 's⃗k−1, plus two terms that account
for the process and measurement noises.

We define the state vector covariance matrix Sk as

Sk = E
[
's⃗k's⃗T

k

]
, (5.188)

where 's⃗k is represented as a column vector while 's⃗T
k corresponds to its transpose, a row

vector. The covariance of the process noise and measurement noise are noted Wk and Vk ,
respectively:

Wk = E
[
'w⃗k'w⃗T

k

]
, (5.189)

Vk = E
[
'v⃗k'v⃗T

k

]
. (5.190)

Substituting the expression (5.187) in the definition (5.188) of the covariance Sk , we obtain
after some algebraic manipulations

Sk = ((1 − KkHk ) Fk) E
[
'sk−1'sT

k−1

]
((1 − KkHk ) Fk)T

+ (1 − KkHk ) E
[
wkw

T
k

]
(1 − KkHk )T

+ KkE
[
v⃗k v⃗

T
k

]
KT

k + cross terms

where the “cross terms” are proportional to expectation values E['⃗sk−1w⃗k], E['⃗sk−1v⃗k],
and E[w⃗k v⃗

T
k ] and thus null by hypothesis, while the factors E['sk−1'sT

k−1], E[wkw
T
k ], and

E[⃗vk v⃗
T
k ] correspond to Sk−1, Wk , and Vk , respectively. We thus obtain

Sk = (1 − KkHk ) FkSk−1 ((1 − KkHk ) Fk)T (5.191)

+ (1 − KkHk ) Wk (1 − KkHk )T + KkVkKT
k .

Noting that the transpose of a product of matrices (AB)T equals the product of their trans-
poses in reverse order, BT AT , we define the matrix Sk|k−1 as

Sk|k−1 = FkSk−1FT
k + Wk . (5.192)

The foregoing expression for the covariance matrix Sk may thus be written

Sk = (1 − KkHk ) Sk|k−1 (1 − KkHk )T + KkVkKT
k , (5.193)

which provides us with a rather complicated formula for the evolution of the state covari-
ance matrix. We will see in the following that this expression greatly simplifies. But first,
let us find the value of the Kalman gains Kk that minimize the covariance Sk . This is readily
accomplished by setting derivatives of Sk with respect to Kk equal to zero and solving for
Kk . Noting that Sk , Sk|k−1, and Vk are symmetric matrices by construction, the derivatives
of Sk readily simplify to

0 = ∂Sk

∂Kk
= −2 (1 − KkHk ) Sk|k−1HT

k + 2KkVk (5.194)

which further simplifies to
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0 = −Sk|k−1HT
k + Kk

(
HkSk|k−1HT

k + Vk
)

(5.195)

The optimal Kalman gain matrix is thus

Kk = Sk|k−1HT
k

(
HkSk|k−1HT

k + Vk
)−1

. (5.196)

Inserting the foregoing expression in Eq. (5.193), we find after some simple manipulations

Sk = (1 − KkHk ) Sk|k−1, (5.197)

or substituting the definition (5.192) of Sk|k−1, we obtain

Sk = (1 − KkHk )
(
FkSk−1FT

k + Wk
)
. (5.198)

The covariance Sk is determined by the linear projection of the prior Sk−1 and the process
noise determined by the Kalman gain Kk . The gain is initially large and gives more weight
to measurements m⃗k . It progressively decreases, however, with the addition of data and
eventually vanishes for large values of k. The covariance matrix thus tends toward

Sk = FkSk−1FT
k + Wk (5.199)

in the limit where the gain vanishes.

5.6.6 Kalman Filter as a Least-Squares Fitter

We demonstrate, in this section, that the Kalman filter technique is equivalent to the least-
squares method.

The χ2 function is defined on the basis of the measurements m⃗i, the measurement co-
variance matrix Vi, and a model h(t; s⃗) with state parameters s⃗ to be determined by the
fitting procedure:

χ2 =
k∑

i=1

(
m⃗i − h⃗(ti, s⃗i)

)
V−1

i

(
m⃗i − h⃗(ti, s⃗i)

)T
(5.200)

Rather than trying to evaluate Eq. (5.200) for all values of i, let us consider the contribution
of the “last” measurement k and those of the k − 1 prior measurements. Let χ2

k represent
the contribution of the last measured point:

χ2
k =

(
m⃗k − h⃗(tk, s⃗k )

)
V−1

k

(
m⃗k − h⃗(tk, s⃗k )

)T
, (5.201)

where m⃗k and Vk stand for the kth measurement and its covariance matrix, while h⃗(tk, s⃗k )
represents the expected measurement value for step tk and model parameters s⃗k . The
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223 5.6 Kalman Filtering

contribution of all k − 1 prior measurements is encapsulated in the covariance matrix Sk−1

of the state. One can thus write

χ2
k−1 = (s⃗k−1 − ŝk−1)T S′−1

k−1 (s⃗k−1 − ŝk−1) . (5.202)

The total χ2 is then simply the sum χ2
k−1 + χ2

k , which one seeks to minimize in order to
determine the optimal state (model) parameters s⃗. We thus take the derivative of χ2 relative
to s⃗:

dχ2

ds⃗
= 2S′−1

k (s⃗k−1 − ŝk−1) − ∇s⃗hV−1
k

(
m⃗k − h⃗(tk, s⃗k )

)
. (5.203)

Equation (5.203) has a dependency on the unknown parameters s⃗k . We thus replace s⃗k by
ŝk + 's⃗k with 's⃗k defined as the residue:

's⃗k = s⃗k − ŝk (5.204)

For small residues, one can expand h⃗(tk, s⃗k ) as a Taylor series

h⃗(tk, x̂k + 's⃗k ) = h⃗(tk, ŝk ) + 's⃗k∇s⃗h(tk, ŝk ), (5.205)

and obtain

dχ2

ds⃗
= 2S′−1

k 's⃗k−1

− ∇s⃗h(ŝ)V−1
k

(
m⃗k − h⃗(ŝk ) − 's⃗k∇s⃗h(ŝ)

)
, (5.206)

where for brevity we have omitted the dependence on tk . The first ∇s⃗h in Eq. (5.206) is a
function of the true value s⃗k but it should be legitimate to use a gradient evaluated at ŝk

instead. Defining Hk = ∇s⃗h, we thus obtain

dχ2

ds⃗
= 2S′−1

k 's⃗k−1 (5.207)

+ HT
k V−1

k Hk's⃗k − 2HT
k V−1

k

[
m⃗k − h⃗(ŝk )

]
. (5.208)

Setting this derivative to zero and solving for 's⃗k , one gets

's⃗k =
[
S′−1

k + HT
k V−1

k Hk

]−1
HT

k V−1
k

[
mk − h⃗(ŝ)

]
(5.209)

which one readily rewrites

s⃗k = ŝk +
[
S′−1

k + HT
k V−1

k H
]−1

HT
k V−1

k

[
mk − h⃗(ŝ)

]
(5.210)

to obtain an expression of the form of Eq. (5.180) but with a seemingly different gain
matrix

Kk =
[
S′−1

k + HT
k V−1

k H
]−1

HT
k V−1

k . (5.211)
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In order to demonstrate this expression is equivalent to Eq. (5.164), we must first show that
the inverse of the updated covariance matrix Sk may be written as

S−1
k = S′−1

k + HkV−1
k HT

k . (5.212)

To verify this statement, it suffices to demonstrate that SkS−1
k = I using Eq. (5.197) for Sk

and the preceding expressions for S−1
k and K.

SkS−1
k = (1 − KkHk ) S′

k

(
S′−1

k + HkV−1
k HT

k

)

= 1 + S′
kV−1

k HT
k − S′

kHT
k

(
HkS′

kHT
k + Vk

)−1
HkS′

kS′−1
k

− S′
kHT

k

(
HkS′

kHT
k + Vk

)−1
HkS′

kHkV−1
k HT

k ,

which can be shown to indeed simplify to unity after a modest amount of matrix algebra
(see Problem 9.1). We can then use Eq. (5.212) for Sk to obtain an alternative expression
of the gain matrix. Starting from Eq. (5.211), we write

Kk = S′
kHT

k

(
HkS′

kHT
k + Vk

)−1
(5.213)

and insert SkS−1
k and V−1

k Vk judiciously in Eq. (5.213):

Kk = SkS−1
k S′

kHT
k V−1

k Vk
(
HkS′

kHT
k + Vk

)−1

= SkS−1
k S′

kHT
k V−1

k

(
HkS′

kHT
k V−1

k + I
)−1

.

Inserting the expression (5.212) for S−1
k , one gets

Kk = Sk

(
S′−1

k + HkV−1
k H T

)
S′

kHT
k V−1

k Vk
(
HkS′

kHT
k + Vk

)−1

= Sk
(
I + HT

k V−1
k HS′

k
)

HT
k V−1

k

(
HkS′

kHT
k V−1

k + I
)−1

= SkHT
k V−1

k

(
I + HkS′

kHT
k V−1

k

) (
HkS′

kHT
k V−1

k + I
)−1

= SkHT
k V−1

k .

Finally, substituting the expression (5.212) for Sk , we get

Kk =
[
S′−1

k + HkV−1
k H T

]−1
HT

k V−1
k , (5.214)

which is the expression (5.211) we sought to demonstrate is equivalent to Eq. (5.164) for
the Kalman gain. We have thus established that the Kalman filter is formally equivalent to
the least-squares method.

Note that while the foregoing expression for the Kalman gain is equivalent to
Eq. (5.164), its calculation involves two matrix inversions and is thus more computationally
intensive. Use of Eq. (5.164) is thus preferred in general.
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Exercises

5.1 Show by direct calculation that the estimator τ̂ given by Eq. (5.14) is an unbiased es-
timator of the lifetime τ of the exponential PDF, Eq. (5.10). Next, determine whether
the estimator τ̂ is biased, unabised, or asymptotically unbiased.

5.2 Show that the expectation value of σ̂ 2 defined by Eq. (5.22) is E[σ̂ 2] = (n − 1)σ 2/n
for a Gaussian distribution, and that σ̂ 2 is consequently a biased estimator of the
variance of this distribution.

5.3 Imagine a researcher is studying the behavior of system and finds it can be rep-
resented by a variable x with some PDF f (x|θ⃗ ) in which θ⃗ represents a single or
multiple unknown parameters. It is often the case that an “experiment” returns a ran-
dom number, n, of values {xi}, with i = 1, . . . , n. Assuming the number n obeys a
Poisson distribution of mean ν, show that one can extend the ML method to obtain
an extended likelihood function, L(ν, θ⃗ ), defined as

L(ν, θ⃗ ) = νn

n!
e−ν

n∏

i=1

f (xi|θ⃗ ) = e−ν

n!

n∏

i=1

ν f (xi|θ⃗ ). (5.215)

5.4 Maximize the function L(ν, θ⃗ ) derived in Problem 5.3 to first show that the estimator
ν̂ has an expected value of n. Next, consider the application of this extended likeli-
hood function for the determination of the estimator, θ̂ , in experiments where n is a
random variable.

5.5 Devise an exponential generator and test the convergence of the estimator τ̂ for var-
ious combinations of sample sizes and number of samples. Repeat the exercise for a
Gaussian PDF.

5.6 Show that the following expression yields an asymptotically unbiased estimator λ̂ of
the decay constant λ = 1/τ :

λ̂ = 1
τ̂

= n

(
n∑

i=1

ti

)−1

. (5.216)

5.7 Show that the estimator µ̂ obtained in Eq. (5.20) is an unbiased estimator of the mean
µ of a Gaussian PDF.

5.8 Show that the estimator σ̂ 2, given by Eq. (5.22), is an asymptotically unbiased esti-
mator of the variance σ 2 of a Gaussian PDF.

5.9 Verify by direct calculation that s2, given by Eq. (5.22), is an unbiased estimator of
the variance σ 2 of a Gaussian PDF.

5.10 Verify that Eqs. (5.27) and (5.30) yield the variances of estimators of the mean and
standard deviation of a Gaussian distribution, respectively.

5.11 Derive Eq. (5.78), providing the variance of the coefficients a0 and a1 of linear fits
obtained with the LS method.

5.12 Imagine a linear fit y = a0 + a1y of 103 measured points {xi, yi} has produced co-
efficients a0 = 0.55 and a1 = 10.04 with an error matrix U00 = 0.04, U11 = 0.11,
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226 Classical Inference II: Optimization

and U01 = −0.03. Extrapolate the value y predicted by the model at x = 5 and com-
pare the errors δy on this extrapolation obtained while excluding and including the
off-diagonal elements of the error matrix.

5.13 Show that if correlations exist between measurements θ̂i and their covariance matrix
Vi j is known, then the weighted average of these measurements involves the weights
given by Eq. (5.133).

5.14 Show that the sum of the weights given by Eq. (5.133) equals unity.
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6 Classical Inference III: Confidence Intervals
and Statistical Tests

In previous chapters, we presented several methods for the estimation of values of un-
known model parameters θ⃗ based on measured data. We also discussed how experimental
errors on directly measured quantities impact the errors of estimated model parameter val-
ues. However, we did not discuss in detail the interpretation or significance of these error
estimates. We shall remedy this situation with comprehensive discussions, in this and the
next chapter, of the notions of confidence intervals, confidence levels, and how these con-
cepts can be used toward the formulation of scientific hypotheses and hypothesis testing.
The discussions presented in this chapter are primarily frequentist in nature, while those of
Chapter 7 rely on the Bayesian interpretation of probability.

We begin with a detailed discussion of the notion of error intervals in §6.1 and present
practical considerations and examples in §§6.2 and 6.3. We next introduce, in §6.4, the
notions of hypothesis, hypothesis testing, and significance level. Key properties of test
power, consistency, and test bias are introduced in §6.5. We complete the chapter with a
presentation, in §6.6, of statistical tests commonly used in nuclear and particle physics,
as well as a discussion, in §6.7, on test optimization and most particularly the Neyman–
Pearson test.

6.1 Error Interval Estimation

6.1.1 Basic Goals and Strategy

The physical and measurement processes involved in the observation of physical observ-
ables are intrinsically stochastic in nature. Whether a single or several measurements of
an observable X are carried out, fluctuations inherent to the measurement process yield
observed values that randomly deviate from the actual or true value of an observable. Ei-
ther explicitly or implicitly, it is generally assumed that these fluctuations may be described
by a specific (but possibly partly unknown) probability model p(x|xtrue). In the frequentist
paradigm, this model describes the probability (density) of observing values x in the range
[x, x + dx], expected from an arbitrarily large number of observations, and it is the pur-
pose of statistical estimators, introduced in Chapters 4 and 5, to provide estimates of the
true value xtrue based on measured values. Estimates evidently deviate from the true value
by some unknown amount1 but one wishes to use the probability model p(x|xtrue) to make a

1 If the actual deviation was known, it could obviously be corrected for and the true value would be revealed. . .

227
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228 Classical Inference III: Confidence Intervals and Statistical Tests

statement about the possible size of such deviations. Clearly, if p(x|xtrue) is very broad, the
dispersion of measured values will be quite large and any particular measured value x may
deviate substantially from the actual value xtrue. On the other hand, if p(x|xtrue) is narrowly
distributed, observed values should be rather close to the true value. One may then use the
model p(x|xtrue) to characterize the error or uncertainty of a measurement. However, the
problem arises, typically, that the model p(x|xtrue) is not perfectly known and that it may
feature finite probability density, albeit very small, for arbitrarily large deviates |x − xtrue|.
It is common practice, for instance, to approximate the probability model p(x|xtrue) by a
Gaussian distribution

p(x|xtrue) ≈ 1√
2πσ

exp
[
− (x − xtrue)2

2σ 2

]
, (6.1)

which, evidently, features low and high side tails that extended to infinity. For this and
similarly behaved models, it is consequently not possible to obtain error bounds that com-
pletely enclose the distribution p(x|xtrue). One must then characterize the uncertainty of an
estimate based on a finite interval [a, b] with a specific probability β of containing the true
value, given a particular estimate.

To this end, and for simplicity’s sake, let us first consider an experiment yielding a single
parameter estimate θ̂ . We wish to determine the probability, β ≡ P(θ̂ |θ , θa, θb), of finding
this estimate within the range θa ≤ θ̂ ≤ θb. In essence, we wish to establish a quantitative
method to characterize the errors on the estimate θ̂ based on the probability content β of
the interval. Intuitively, it is clear that the larger this probability is, the wider will the range
be. Conversely, the wider this range is, the larger should the probability of finding the value
θ̂ within it. Evidently, if the probability model of p(θ̂ |θ ) is fully known, there should exist a
one-to-one relation between the probability content β and the width of the interval [θa, θb].
Unfortunately, there is no unique way of choosing or defining what constitutes a desirable
probability value β. Indeed, the choice of a particular value of β is in fact rather arbitrary.

Two approaches are commonly used in the scientific community. For the first, one ar-
bitrarily chooses β to be a convenient and easy-to-remember “round” value, such as 90%
or 99%. For the second, one relies on the central limit theorem and assume data tend to
follow a Gaussian distribution, with standard deviation σ , and one then typically quotes
error intervals in terms of integer multiples of σ .

Recall from §3.9 that for a Gaussian distribution, the probability of obtaining values in
the range µ ± nσ amounts to 68.3%, 95.5%, and 99% for n = 1, 2, and 3, respectively.
One can then specify error ranges in terms of ±1, ±2, or ±3 standard deviations, with
probabilities β = 68.3%, 95.5%, and 99%, respectively. However, these probabilities are
valid exclusively for Gaussian distributions: random variables obeying a different probabil-
ity model should in general bear a rather different relation between the width of the range
expressed in some multiple of their standard deviation σ and the probability content of the
range.

It is worth reiterating that the discussion of errors presented in this chapter is based
on the frequentist interpretation of probability. In this context, the use of Bayes’ theorem
is not strictly possible and one must find a roundabout way to make a statement about
θ based on an observed estimate θ̂ . We will see in Chapter 7 that posterior probabilities
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229 6.1 Error Interval Estimation

based on Bayes’ theorem enable a far more direct reasoning and a much simpler technique
to deduce confidence intervals but it is nonetheless convenient and useful to begin with a
detailed presentation of frequentist techniques in this and following sections.

6.1.2 Confidence Interval and Confidence Level of Continuous Variables

Let us examine the notion of error quantitatively by considering a set of observations of
a continuous observable X determined by a PDF p(x|θ ). By definition, p(x|θ ) dx is the
probability of measuring x in a given interval [x, x + dx] given a parameter θ , and, as such,
encapsulates the uncertainty of the measurement. The variable θ may correspond to the
actual value of X or some other physical parameter that determines its value. At times
fundamentally unknown, p(x|θ ) is often assumed to be Gaussian. In some cases, it can
be determined from performance analysis and simulations of the measurement procedure
and apparatus. Alternatively, it can also be estimated from a large number of repeated
measurements of the same observable X .

Let us assume the function p(x|θ ) represents the density of probability of measurement
outcomes of a physical observable X . The probability β of observing (measuring) a value
x in the range [a, b] is thus in principle given by

β ≡ P(a ≤ x ≤ b|θ ) =
∫ b

a
p(x|θ ) dx. (6.2)

If both the functional form of p(x|θ ) and the parameter θ are known, the integral in Eq.
(6.2) completely specified and the probability β easy to compute numerically, if not an-
alytically. In practice, however, the value of θ may not be known a priori and it might in
fact be the very purpose of the measurement to determine its value. Without a value for θ ,
calculation of Eq. (6.2) seems impossible, as well as an assessment of the range [a, b] with
probability content β. How, then, can one obtain any meaningful estimate of the error on
the parameter θ and the observable X ?

It turns out that knowledge of the variable θ is not absolutely required so long as the
functional form of p(x|θ ) is known, and, provided it is possible to formulate a function
z(x, θ ) of the observation of x and the unknown parameter θ whose PDF is independent
of θ . Indeed, as we shall describe in the following, if such a function exists, it may become
possible to reformulate Eq. (6.2) as a problem of interval estimation.

In this context, and given a value β, the problem then consists in finding an (optimal)
range [θa, θb] such that

P(θa ≤ θ̂ ≤ θb) = β, (6.3)

where θ̂ is an estimate of the true value of the parameter θ . The interval [θa, θb] is then
known as a confidence interval of θ̂ with a probability β. In other words, the probability
of obtaining an estimate within that interval amounts to β. The interval is then said to be a
100 × β% confidence interval. For instance, an interval whose content has a probability
of β = 0.9 is said to be a 90% confidence interval.

Formally, a method which produces an interval [θa, θb] satisfying Eq. (6.3) is said to have
the property of coverage, and, as it happens, an interval that does not possess this property
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230 Classical Inference III: Confidence Intervals and Statistical Tests

cannot be considered a confidence interval [115]. This notion will become important and
much clearer, later in this chapter, when we consider confidence intervals near a physical
boundary.

The process of finding a function z(x, θ ) that enables the determination of a confidence
interval is best illustrated with examples. We begin our discussion with the determination
of the mean of Gaussian deviates.

6.1.3 Confidence Interval for the Mean of Gaussian Deviates

Let the function p(x|θ ), considered in Eq. (6.2), be a Gaussian PDF pG(x|µ, σ ), where the
mean, µ, has been substituted for θ and is now the parameter of primary interest. If the
mean µ and standard deviation σ are known, the probability β may be evaluated for any
arbitrary interval [a, b]:

β ≡ P(a ≤ x ≤ b|µ, σ ) = 1√
2πσ

∫ b

a
exp

[
− (x′ − µ)2

2σ 2

]
dx′, (6.4)

= %

(
b − µ

σ

)
− %

(
a − µ

σ

)
, (6.5)

where %(z) is the Cumulative Distribution Function of the normal PDF, given by
Eq. (3.131).

The preceding calculation is well defined if µ and σ are known. But what if µ is in fact
unknown and the measured value of x intended to obtain an estimate of µ? One would
then be interested in calculating the probability β that the value x lies within some interval
[µ + &1, µ + &2]. This may be written

β = P(µ + &1 ≤ x < µ + &2|σ ) (6.6)

= 1√
2πσ

∫ µ+&2

µ+&1

exp
[
− (x′ − µ)2

2σ 2

]
dx′. (6.7)

On first inspection, this integral seems impossible because the mean µ is unknown. How-
ever, consider a change of variable z = (x′ − µ)/σ . The preceding integral then becomes

β = 1√
2π

∫ &2/σ

&1/σ

exp
(

−1
2

z2
)

dz = %

(
&2

σ

)
− %

(
&1

σ

)
, (6.8)

which is clearly independent of µ and calculable for specific bounds &1 and &2 provided
σ is known.

By construction, the integral (6.8) corresponds to the probability of finding x in the inter-
val µ + &1 ≤ x ≤ µ + &2. One may, however, rearrange the terms of the two inequalities
and get

β = P(x − &2 ≤ µ ≤ x − &1|σ ). (6.9)

The value β thus corresponds to the probability of finding the unknown value µ in the range
x − &2 ≤ µ ≤ x − &1 given the measured value x, and for a known value of σ . Although,
strictly speaking, the integral (6.8) is really a statement about the probability of x given
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a= z1d b+a= z2d

Fig. 6.1 1D confidence interval [x − δ2σ, x − δ1σ ] for the meanµ of a Gaussian distribution with δ1 = zα and
δ2 = zα+β . The probabilities of the three regions delimited by vertical lines areα,β , and 1 − α − β , respectively.

µ, the capacity to reformulate its integrant in terms of z = (x′ − µ)/σ enables us to use x
to find some bounds on µ with probability β. The interval x − &2 ≤ µ ≤ x − &1 is thus
indeed a confidence interval for µ with probability β given by Eq. (6.8).

If neither σ nor µ are known, one may instead calculate P(δ1 ≤ z ≤ δ2) according to

β ≡ P(δ1 ≤ z ≤ δ2) = 1√
2π

∫ δ2

δ1

exp
(

−1
2

z2
)

dz, (6.10)

= %(δ2) − %(δ1). (6.11)

Converting the inequalities δ1 ≤ z ≤ δ2 in terms of µ, one gets

P(x − δ2σ ≤ µ ≤ x − δ1σ ) = %(δ2) − %(δ1), (6.12)

which provides a generic confidence interval [x − δ2σ, x − δ1σ ] of probability β =
%(δ2) − %(δ1) expressed in terms of some multiples (not necessarily integers) δ1 and δ2 of
the standard deviation of the PDF of x.

There is much latitude in the choice of δ1 and δ2 for a given value of β. For in-
stance, choosing δ1 = −1 and δ2 = 1, one obtains a symmetric plus/minus one sigma con-
fidence level with P(x − σ ≤ µ ≤ x + σ ) = 68.3%. But arbitrarily many other interval
choices also have the same probability. Indeed, recalling the definition of the α–point from
Eq. (2.63), one notes that the difference %(δ2) − %(δ1) in the preceding integral may be
written %(zα+β ) − %(zα ) = β, where zα and zα+β are the α–point and the (α + β )−point
of the distribution, respectively. The confidence level of probability β can consequently
be expressed in any interval [zα, zα+β ], as schematically illustrated in Figure 6.1. There are
obviously infinitely many such intervals. It is customary, however, to use symmetrical inter-
vals, known as central intervals, consisting of integer multiples of the standard deviation
or some convenient values of β, as shown in Table 6.1.
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232 Classical Inference III: Confidence Intervals and Statistical Tests

Table 6.1 Central confidence intervals commonly
used with a standard normal distribution

β = 1 − 2α zα zα+β

0.6827 −1.00 1.00
0.9000 −1.65 1.65
0.9500 −1.96 1.96
0.9545 −2.00 2.00
0.9900 −2.58 2.58
0.9973 −3.00 3.00

6.1.4 Central vs. Minimal Error Intervals

For a strongly peaked, symmetric, but not necessarily Gaussian PDF, the notion of central
interval is easy to visualize: it suffices to find a symmetric range θ̂ ± & with a specific
probability content β. If the distribution is not symmetric about its peak, however, one must
define the interval based on the probability content outside of the interval and require the
probability of observing values below and above the central range to be equal. A central
interval may then be defined by

1−β
2 = P(θ̂ < θa|θ ) =

∫ θa

−∞ p(x|θ ) dx,

1−β
2 = P(θ̂ > θb|θ ) =

∫ ∞
θb

p(x|θ ) dx,
(6.13)

which, in general, shall yield bounds θa and θb with unequal probability density, that is,
such that p(θa) ̸= p(θb). We show below that such an interval does not correspond to the
shortest interval with probability content β. So, rather than a central interval, one may
alternatively seek the shortest interval consistent with probability content β.

In order to identify the shortest interval with probability content β, consider the inter-
vals [θa, θb] and [θ ′

a, θ
′
b] displayed in Figure 6.2, and defined such that they both have a

probability content β, that is, such that they satisfy
∫ θb

θa
p(θ̂ |θ ) dθ̂ = β

∫ θ ′
b

θ ′
a

p(θ̂ |θ ) dθ̂ = β,

(6.14)

where the bounds θa and θb were chosen in order to satisfy the condition

p(θa|θ ) = p(θb|θ ), (6.15)

illustrated by the horizontal dashed line in Figure 6.2. We proceed to show that these bounds
define the most compact (i.e., shortest) interval compatible with Eq. (6.14). To this end, we
calculate the integral of the PDF p(θ̂ |θ ) in the range [θa, θ

′
b]. By construction, we may write

∫ θ ′
b

θa

p(θ̂ |θ ) dθ̂ =
∫ θb

θa

p(θ̂ |θ ) dθ̂ +
∫ θ ′

b

θb

p(θ̂ |θ ) dθ̂ = β +
∫ θ ′

b

θb

p(θ̂ |θ ) dθ̂ , (6.16)
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233 6.1 Error Interval Estimation

Fig. 6.2 Given a specific probability contentβ and an asymmetric PDF p(θ̂ |θ ), a minimal interval [θa, θb] is obtained for
values θa and θb that simultaneously satisfy Eqs. (6.14, 6.15).

or alternatively,
∫ θ ′

b

θa

p(θ̂ |θ ) dθ̂ =
∫ θ ′

a

θa

p(θ̂ |θ ) dθ̂ +
∫ θ ′

b

θ ′
a

p(θ̂ |θ ) dθ̂ =
∫ θ ′

a

θa

p(θ̂ |θ ) dθ̂ + β. (6.17)

We thus find that
∫ θ ′

a

θa

p(θ̂ |θ ) dθ̂ =
∫ θ ′

b

θb

p(θ̂ |θ ) dθ̂ . (6.18)

Invoking the mean value theorem, the preceding equality may be written

p(θ̂a,0|θ )&θa = p(θ̂b,0|θ )&θb, (6.19)

where we defined &θa = θ ′
a − θa and &θb = θ ′

b − θb, while θ̂a,0 and θ̂b,0 are values found
in the intervals [θa, θ

′
a] and [θb, θ

′
b], respectively. Based on the PDF construction shown in

Figure 6.2, one knows that the ratio of the densities at θa,0 and θb,0 satisfies

p(θa,0)
p(θb,0)

> 1. (6.20)

In order to maintain the equality Eq. (6.19), one must then have &θb > &θa which implies
that

θ ′
b − θ ′

a > θb − θa. (6.21)

We thus conclude that the interval [θa, θb] is indeed the most compact interval with a prob-
ability content β, and as such provides a unique and consequently meaningful choice of
central interval. For PDFs symmetric about their mean µ, such as Gaussian distributions,
Eq. (6.15) defines a symmetric interval of width 2& such that

p(µ − &) = p(µ + &), (6.22)

which, evidently, amounts to a central and most compact interval.
It is important to acknowledge that the notion of shortest interval is not strictly well

defined for continuous variables because it is not invariant under a reparameterization
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Fig. 6.3 Given a specific probability contentβ and an asymmetric PDF p(θ̂1, θ̂2|θ1, θ2), a minimal confidence region Amin is
obtained for values θ̂1 and θ̂2 bound within an iso-contour C of probability density p(θ̂1, θ̂2|θ1, θ2) = k shown as a
solid line. The dashed line illustrates a nonisometric contour C′ (i.e., a contour with nonuniform probability density),
which, by construction, features an area A > Amin.

θ → ξ (θ ). Central intervals, defined by Eq. (6.13), are invariant under such transforma-
tion, however, and are thus properly defined.

6.1.5 Multiparametric Confidence Intervals: Confidence Regions

The concepts and techniques presented in the previous two subsections are readily ex-
tended to multiparametric systems, that is, optimization problems involving n ≥ 2 un-
known parameters. For instance, let us consider an experiment producing n estimators,
θ̂ = (θ̂1, θ̂2, . . . , θ̂n) of model parameters θ⃗ = (θ1, θ2, . . . , θn). Assuming the probability
model of the data is known, one can write

β ≡ P(θ̂ ∈ V ) =
∫

V
p(θ̂ |θ⃗ )

∏
θ̂i, (6.23)

where V is an n dimensions hyper-volume bounded by an n − 1 dimensions hypersurface
C defining a confidence region for the parameters θ̂ given the true values θ⃗ . For n =
2, V reduces to a two-dimensional bounded surface, and C amounts to a closed contour
surrounding V , as illustrated in Figure 6.3. For n = 3, C is a closed surface, while for
m > 3, it amounts to a closed hypersurface.

In two or more dimensions, n ≥ 2, just as for a single dimension, there is much latitude
in selecting boundaries with a specific probability content β. It is legitimate, however, to
seek a bounding hypersurface (contour in 2D, surface in 3D, etc.) that circumscribes the
smallest “volume” with probability content β. The task of selecting such an enclosing
surface is schematically illustrated in Figure 6.3, which for the sake of simplicity is limited
to n = 2 parameters. The solid curve here represents an iso-contour line corresponding
to a locus of constant probability density, that is, where all points (θ̂1, θ̂2) have the same
probability density p(θ̂1, θ̂2|θ⃗ ) = k, with k chosen such that the bounded area (i.e., the
confidence region) has a probability β.
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235 6.1 Error Interval Estimation

Without repeating in detail the reasoning carried out for a single parameter, it is clear
that any contour (with probability content β) deviating from the iso-contour would have a
larger area than that of the iso-contour. The condition p(θ̂1, θ̂2|θ⃗ ) = k thus defines, for a
given β, the bounded region with the least area. The density p(θ̂1, θ̂2|θ⃗ ) being continuous,
the contour is well defined and unique, it thus constitutes a legitimate and sensible choice
of bounding region. The reasoning is readily extended in n ≥ 3 dimensions: bounding sur-
faces or hypersurfaces may be chosen as iso-surfaces, that is, hypersurfaces corresponding
to loci of equal probability density, p(θ̂ |θ⃗ ) = k, where the constant k is determined by the
required value of β.

6.1.6 Confidence Region for a Multiparametric Gaussian Distribution

Let us consider a system determined by n parameters θ⃗ = (θ1, θ2, . . . , θn) for which one
has obtained n estimates θ̂ = (θ̂1, θ̂2, . . . , θ̂n). For illustrative purposes, let us assume the
PDF of the estimators may be formulated as a multidimensional Gaussian distribution

p(θ̂ |θ⃗ ) = 1
(2π )n/2|V|1/2

exp
[
−1

2
(θ̂ − θ⃗ )T V−1(θ̂ − θ⃗ )

]
, (6.24)

with covariance matrix V. We are interested in using the estimates θ̂ to establish bounds on
the model parameters θ⃗ . In general, the covariance matrix V shall be nondiagonal, thereby
revealing correlations between the measured estimates θ̂i. The bounds on each of the model
parameters θi, i = 1, . . . , n will then also be correlated. Errors and confidence intervals
thus cannot be defined independently for each parameter. Rather than calculating disjoint
confidence intervals for all parameters, one must then define and calculate confidence
regions. Recall from §3.10 that a multiparametric Gaussian distribution can always be
transformed in terms of orthogonal coordinates corresponding to the principal axes of the
covariance matrix V. The distribution is thus symmetric relative to these principal axes, and
based on the discussion on central regions presented in the previous section, one would like
to define central confidence regions in terms of iso-contours with probability content β.

Iso-contours with probability content β are readily defined by recalling, from §2.10.4,
that the quadratic form

Q(θ̂ |θ⃗ ) = (θ̂ − θ⃗ )T V−1(θ̂ − θ⃗ ) (6.25)

has a χ2 distribution with n degrees of freedom. This implies Q is in fact independent of
θ⃗ . We can then determine the probability β that Q will be found within a domain κ2

β based
on

P
(
Q(θ̂ |θ⃗ ) ≤ κ2

β

)
= β, (6.26)

where the bound κ2
β corresponds to the β-point of a χ2 distribution with n degrees of

freedom. By construction, κ2
β delimits a hyper-ellipsoidal region in the n-dimensional space

of the estimators θ̂ and model parameters θ⃗ with probability β:

Q(θ̂ |θ⃗ ) ≤ κ2
β . (6.27)
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Fig. 6.4 Confidence region of probabilityβ in (a) the space of estimators θ̂ and (b) the model parameter space θ⃗ for a
two-dimensional Gaussian PDF.

If the model parameter values θ⃗ are known a priori, the foregoing condition delimits a
hyper-ellipsoidal region in the n-dimensional space of the estimators θ̂ , illustrated schemat-
ically in Figure 6.4a for a case involving n = 2 model parameters. The probability of mea-
suring θ̂ within the ellipsoidal boundary is β, by construction. In the context of an exper-
iment, θ̂ is measured, and then one seeks to invert the above bound to define a bounding
region for the model parameters θ⃗ . By virtue of the symmetry of Q in terms of variables
θ̂ and θ⃗ , this leads to an ellipsoidal domain surrounding the measured values θ̂ , as shown
schematically in Figure 6.4b.

We proceed to illustrate the quantitative determination of a confidence region in two
dimensions, but the technique is readily extended to problems involving more than two
parameters. We express the covariance matrix V as

V =
(

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

)

, (6.28)

where σ 2
1 and σ 2

2 are the variances of θ̂1 and θ̂2, respectively, while ρ expresses the Pearson
correlation coefficient between θ̂1 and θ̂2. Calculation of the inverse of V yields

V−1 = 1
σ 2

1 σ 2
2 (1 − ρ2)

(
σ 2

2 −ρσ1σ2

−ρσ1σ2 σ 2
1

)

. (6.29)

Defining &θi = θ̂i − θi, the quadratic form (6.25) may then be expressed as

σ 2
2 &θ2

1 − 2ρσ1σ2&θ1&θ2 + σ 2
1 &θ2

2 = κ2
βσ 2

1 σ 2
2 (1 − ρ2), (6.30)

which is indeed the equation of an ellipse, as illustrated in Figure 6.5.
Figure 6.5 actually displays three distinct regions. The ellipse is defined by the quadratic

form (6.25) and has a probability content of β1, which means that the probability of mea-
suring a pair of values (θ̂1, θ̂2) within the ellipse is β1. The rectangular region is defined by
the condition

P(|θ̂1 − θ1| < κβσ1 and |θ̂2 − θ2| < κβσ2) = β2, (6.31)
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θ2 − θ2
∧

θ1 − θ1

β3

β2

β1

κβσ2

κβσ1

κβ ρσ2

κβρσ1

κβσ2 √1−ρ2

∧

κβσ1 √1− ρ2

Fig. 6.5 Examples of confidence regions for specific values ofσ1,σ2, andρ plotted for arbitrary choices of probability content
β1,β2, andβ3. See text for definitions of these probabilities.

and has a probability content β2 > β1. The third region is delimited by the long horizontal
lines and has probability content

P(|θ̂2 − θ2| < κβσ2) = β3, (6.32)

which is by construction larger than β2. One must consequently be careful when quoting
error intervals of observables obtained in joint measurements. If the error ellipse can be
explicitly reported, it is then possible to quote the region it delimits as a 100 × β1 % con-
fidence region. If instead the errors on θ1 and θ2 are reported as independent confidence
intervals defined by the bounds κβσ1 and κβσ2 independently, the confidence region then
has probability content β2 and should thus be quoted as such. Finally, if the value of θ̂1

is ignored and the error on θ̂2 is reported based on κβσ2, than it constitutes a 100 × β3 %
confidence region.

A practical example of application of these concepts is discussed in Problem 6.1.

6.1.7 Confidence Interval for Discrete Distributions

The technique described in the previous sections applies for the determination of con-
fidence intervals of Gaussian continuous deviates and can be readily extended to any
continuous variable distributions using, for instance, the Neyman construction presented
in §6.1.8. It must, however, be slightly modified for distributions of discrete random
variables.

Let us consider a measurement whose outcome is an integer value no determined by a
discrete probability distribution p(n|θ ) expressing the probability of measuring a positive
definite integer value n given some model parameter θ . One wishes to use the measured
value no to establish a confidence interval θα ≤ θ ≤ θβ with a specific confidence level CL.

1::79�  .�2��80 ������� 
�	���	���
�����	����291/.����2�/�� ���4�82.0/���2�/892: �8/99

https://doi.org/10.1017/9781108241922.008


238 Classical Inference III: Confidence Intervals and Statistical Tests

Fig. 6.6 Determination of confidence intervals for discrete PDFs: one seeks parameters θα and θβ such that the probability of
observing nwith values equal and larger (smaller) to no is equal toα andβ , respectively.

As for continuous intervals, much flexibility exists in defining such an interval. However, in
contrast to continuous variables, one must define the interval on the basis of probabilities of
observing values of n smaller and larger than no, as illustrated in Figure 6.6. Specifically,
one must define an upper bound θβ by calculating the probability β that n be equal or
smaller than the observed value no and a lower bound θα by calculating the probability
α that n be equal or greater than the observed value no and such that CL = 1 − α − β

according to

α = P(n ≥ no|θα ), (6.33)

β = P(n ≤ no|θβ ). (6.34)

Assuming n is positive definite, the probability α may be calculated according to

α =
∞∑

n=no

p(n|θα ) = 1 −
no−1∑

n=0

p(n|θα ), (6.35)

while β is given by

β =
no∑

n=0

p(n|θβ ). (6.36)

We present an application of these rules for Poisson distribution in the next section.
Intervals for binomial distributions are discussed in §6.1.7.
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Confidence Interval for a Poisson Distribution
As a first example of confidence interval for a discrete distribution, let us consider the
estimation of confidence intervals for the mean of a Poisson distribution:

pP(n|λ) = λn

n!
e−λ. (6.37)

We saw in §3.3 that the Poisson distribution has equal mean and variance, that is, E[n] =
Var[n] = λ. It is also possible to verify that for a given single measurement of n noted
no, the ML estimator of λ is equal to no. Indeed, an extremum of pP(n|λ) given n = no is
obtained for

0 = ∂ pP(n|λ)
∂λ

∣∣∣∣
n=no

= e−λ

n!

(
nλn−1 − λn)

∣∣∣∣
n=no

, (6.38)

which yields the stated result λ̂o = no. Although the actual value of λ may be any real num-
ber (λ ∈ R), the ML estimate λ̂o obtained from a single measurement is by construction an
integer. One is thus in a situation in which one is trying to establish a confidence interval
λα ≤ λ ≤ λβ for a continuous variable based exclusively on an integer value no. We thus
apply Eqs. (6.35, 6.36) and write

α = 1 −
no−1∑

n=0

λn
α

n!
e−λα , (6.39)

β =
no∑

n=0

λn
β

n!
e−λβ , (6.40)

which, given values α and β, can be solved for both λα and λβ . As noted in ref. [67] §9.4,
this can be accomplished using the identity

n∑

k=0

λk

k!
e−λ =

∫ ∞

2λ

pχ2 (z|nd ) dz = 1 − Pχ2(2λ|nd ), (6.41)

where pχ2 (z|nd ) represents the χ2 PDF, given by Eq. (3.163), for nd = 2(n + 1) degrees of
freedom and Pχ2 (2λ|nd ) is its cumulative integral evaluated at z = 2λ. The values λα and
λβ sought for may then be calculated according

λα = 1
2 P−1

χ2 (α|nd ), (6.42)

λβ = 1
2 P−1

χ2 (1 − β|nd ), (6.43)

with nd = 2(no + 1). Given an observed value λ̂o = no, the probabilities of observing spe-
cific ranges of λ can then be characterized according to

P(λ ≥ λα ) ≥ 1 − α, (6.44)

P(λ ≤ λβ ) ≥ 1 − β, (6.45)

P(λα ≤ λ ≤ λβ ) ≥ 1 − α − β. (6.46)

Obviously, a lower limit λα cannot be meaningfully defined if no = 0, and one can only
establish an upper limit λβ . One can then seek the largest λβ consistent with the observed
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Fig. 6.7 Examples of lowerλα and upperλβ Poisson limits for valuesα,β = 0.01, 0.05, 0.01, 0.001 as a function of the
observed number of counts.

null value for a specific probability β and write

β = P(no = 0|λβ ) =
0∑

k=0

λk
β

k!
e−λβ = e−λβ , (6.47)

which yields λβ = − ln β. For example, requiring the probability of no = 0 to be 1% one
obtains a 99% confidence interval with an upper limit of λβ = − ln(0.01) ≈ 4.605, thereby
setting an upper limit of approximately λβ = 4.6 given the observed null value. Choosing
instead a 99.9% confidence level, one would get an upper limit of λβ = 6.9. This means
that the value of λ could be as large as 6.9 and there would be a probability of 0.001
of observing n = 0 counts (of whatever entity is being sought for). Limits λα and λβ are
shown in Figure 6.7 for α,β = 0.01, 0.05, 0.01, 0.001 as a function of the observed num-
ber of counts in the range 0 ≤ no ≤ 10. Note that significant difficulties may arise in the
determination of an upper limit if the measurement of a signal no involves subtraction of a
background. Since the background may fluctuate, no may be negative, and one then deals
with an empty confidence interval. Evidently, as for continuous variables in the presence
of a physical boundary, one also runs the risk of flip-flopping and incomplete coverage:
use of the Neyman construction, discussed in §6.1.8, should thus be considered whenever
practical.

Confidence Interval for a Binomial Distribution
For large sample sizes N , the determination of error intervals for the fraction ϵ of the
binomial distribution, Eq. (3.1), may be obtained with a normal approximation. Recall that
the mean and variance of the binomial distribution are respectively Nϵ and Nϵ(1 − ϵ) for a
sample size N determined by a binomial fraction ϵ. One can then use an observed number
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of successes n, given N trials, to determine an estimate ϵ̂ = n/N of the binomial fraction.
And for a reasonably large sample size N , an 100 × α% confidence interval can then be
approximated by

ϵ̂ ± z1−α/2

√
ϵ̂(1 − ϵ̂)/N, (6.48)

where z1−α/2 is the 1 − α/2 quantile of a standard normal distribution. For instance, for a
95% confidence level, one has α = 0.05 and 1 − α/2 = 0.975, which yields z = 1.96.

The normal approximation relies on the central limit theorem, valid for large values of
sample size N , and thus yields poor results for small N . The approximation also fails if the
estimate ϵ̂ is identically zero or unity since it then yields a null interval. Brown et al. [58]
discussed a simple rule of thumb which states that the normal approximation is reasonable
when ϵN > 5 and N (1 − ϵ) > 5. Several other approximations are discussed in the litera-
ture for such situations: they include the Wilson score interval [196], the Wilson score in-
terval with continuity correction [148], the Jeffreys interval based on the Bayesian credible
interval obtained when using a noninformative Jeffreys’ prior (see §7.3.2), the Clopper–
Pearson interval [65], and various other approximations. Arguably, binomial intervals are
best obtained with the unified approach discussed in §§6.1.8 and 6.2.2.

6.1.8 Confidence Interval: The General Case

The Neyman Construction
In previous sections, we described basic techniques for the determination of confidence
intervals and confidence regions when measured variables are Gaussian distributed with
expectation values equal to the model parameters. While the central limit theorem im-
plies that a vast majority of practical applications involve physics parameters that fluctuate
with Gaussian distributions, cases are nonetheless encountered in which parameters fluc-
tuate according to other types of distributions that cannot be approximated by Gaussian
PDFs. It is thus desirable to have a general technique, applicable to any PDFs, to deter-
mine confidence intervals and confidence regions of model parameters. Such a technique
was first developed by Jersey Neyman [149] and is now commonly known as the Neyman
construction.

In order to introduce the Neyman construction, let us consider a single parameter esti-
mator defined as a function θ̂ ≡ θ̂ (x⃗) of measured data x⃗ with a PDF p(θ̂ |θ ), which may be
non-Gaussian. For a known value of θ , one may calculate the probability β that a specific
estimate θ̂ be found in some interval [θ̂1, θ̂2] according to

β = P(θ̂1 ≤ θ̂ ≤ θ̂2|θ ) = P(θ̂1(θ ) ≤ θ̂ ≤ θ̂2(θ )) (6.49)

=
∫ θ̂2

θ̂1

p(θ̂ |θ ) dθ̂ . (6.50)

Obviously, as for the Gaussian case discussed in §6.1.3, there are arbitrarily many values
θ̂1(θ ) and θ̂2(θ ) that satisfy this condition. However, it is convenient and most common to
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Fig. 6.8 (a) A confidence belt is constructed horizontally by finding the values θ<(θ ) and θ>(θ ) that satisfy Eq. 6.49. (b) The
confidence level is obtained vertically as the range [θ<(θ̂0), θ>(θ̂0)] corresponding to a measured value θ̂0.

define a central interval according to

1 − β

2
=

∫ θ̂1

−∞
p(θ̂ |θ ) dθ̂ , (6.51)

1 − β

2
=

∫ ∞

θ̂2

p(θ̂ |θ ) dθ̂ , (6.52)

but one might also use upper limits, lower limits, or the so-called unified approach dis-
cussed in §6.1.8.

Let us assume we have values θ̂<(θ ) and θ̂>(θ ) that satisfy Eq. (6.49). By construction,
these are functions of the model parameter value θ and can be plotted as such, as illustrated
in Figure 6.8a. The region (shaded area) between the functions θ̂<(θ ) and θ̂>(θ ) is called a
confidence belt. It is defined such that for any specific value θ (vertical axis), the interval
[θ̂<(θ ), θ̂>(θ )] has a probability content β defined by

P(θ̂<(θ0) ≤ θ̂ ≤ θ>(θ0)) = β. (6.53)

The width of the belt along the θ̂ axis is a function of the value θ , which depends on the
behavior of the function p(θ̂ |θ ). Our goal is to identify an interval [θ<, θ>] for θ that has
the same probability content β given a measured value of θ̂ , as illustrated in Figure 6.8b.
If the true but unknown value of the model parameter θ were θ0, one would expect that a
large ensemble of measurements should yield values in the range θ̂<(θ0) ≤ θ̂ ≤ θ>(θ0) with
probability β. Assuming that θ̂<(θ ) and θ̂>(θ ) are both monotonically increasing functions
of the parameter θ , as they should if θ̂ is a good estimator, one can then consider their
inverse functions and write

θ< ≡ θ<(θ̂0) = θ̂−1
> (θ̂0) (6.54)

θ> ≡ θ>(θ̂0) = θ̂−1
< (θ̂0) (6.55)

We can then invert the inequalities in Eq. (6.53):

P(θ<(θ̂0) ≤ θ0 ≤ θ>(θ̂0)) = β, (6.56)
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243 6.1 Error Interval Estimation

and conclude that, given a measured value θ̂0, the interval [θ<(θ̂0), θ>(θ̂0)] is guaranteed, on
average, to cover (i.e., include or contain) the true value θ0 and thus constitutes a confidence
interval of the parameter θ0 with probability β.

It is important to first note that given the estimate θ̂0 is a random value, the bounds
θ<(θ̂0) and θ>(θ̂0) are by construction also random values. The bound inversion, Eq. (6.54),
indeed yields an estimate of the confidence interval that varies measurement by measure-
ment: just as θ̂0 fluctuate measurement by measurement, so do the bounds defining the
confidence interval. However, the Neyman construction and Eq. (6.56) guarantee that the
interval [θ<(θ̂0), θ>(θ̂0)] has a probability content β. This implies that if the measurement
is repeated a large number of times N , the N confidence intervals obtained from these mea-
surements should cover the actual value of the parameter with probability β (on average or
in the large N limit).

One should also note that if the functions θ<(θ̂0) and θ>(θ̂0) are not monotonically in-
creasing with θ̂0, the construction is still usable but one may end up with confidence inter-
vals that are not simply connected, that is, which consist of several disconnected ranges.

One-Sided Confidence Intervals
One-sided confidence intervals are of interest when a measured physical quantity lies near
a boundary it cannot exceed and lead to lower and upper limit confidence intervals. For
instance, the mass of a particle cannot be negative but could be vanishingly small or even
null. Defining a central interval in this context might become problematic because part of
the confidence interval might extend across the physically forbidden region. Indeed, if the
mass is small, or possibly null, it would be preferable to define a confidence level ranging
from zero up to some upper limit mmax. Upper limits are also of interest when searching for
rare phenomena, including, for instance, rare decays of known particles and upper limits on
the production cross section of predicted particles whose existence is yet to be established.

Figure 6.9 illustrates the difference between the confidence belt associated with a central
interval and a one-sided interval, in this case an upper limit. The intervals are based on
a Gaussian distribution with unit standard deviation. The solid lines represent the lower
and upper boundaries of the Neyman construction for a 90% confidence belt assuming the
model parameter θ cannot be smaller than zero. The dashed line shows the 90% lower limit
on the measured value θ̂ given any value of θ . This line translates into a 90% upper limit
confidence interval on θ . For instance, for a measured value θ̂ = 1, one would conclude
that θ has a 90% probability of being smaller than ∼2.2, whereas the central limit would
imply that there is a finite probability for the mean to lie in the negative nonphysical region.
Clearly, the use of an upper limit is more appropriate in this case. However, if the measured
value is θ̂ = 4, the upper limit could only tell us that the mean has an upper bound of
∼5.2 with probability of 90% and no statement about a minimal value. It thus appears
appropriate to switch methods for the definition of the confidence interval based on the
observed value. It is in fact common practice to use an upper-limit interval if the measured
value is within 3σ of the origin (or nonphysical region) and a central (symmetric) interval,
otherwise. Unfortunately, this switching of methods, sometimes called flip-flopping, leads
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Fig. 6.9 (a) The solid lines θ̂C< and θ̂C>represent the boundaries of a 90% central interval and the dashed lines θ̂ L
< the lower

limit of a 90% one-sided interval, for a standard normal distribution of the parameter θ . (b) The shaded gray region
represents the effective confidence belt obtained when flip-flopping between a central limit and an upper limit
after a measurement θ̂ has been taken. The effective belt lacks coverage for model values in the range
1.35 ≤ µ ≤ 4.65, as illustrated with the light gray segments. The vertical long dashed line represents a
measurement θ̂ = −2.2with no allowed physical value and resulting in an empty confidence interval.

to loss of coverage and inconsistent confidence interval definitions, which we describe in
the next section.

Flip-flopping, Unphysical Values, and Empty Intervals
The loss of coverage occurring with flip-flopping of confidence belts is illustrated in Fig-
ure 6.9(b). The gray area represents the confidence belt obtained when using an upper-
limit method for a measurement θ̂ within 3σ of the origin or nonphysical region, and
switching to a central interval method for values larger than 3σ . The flip-flop belt has
full coverage for values of θ ≤ 1.35 and θ > 4.65 but lacks coverage in the intermediate
range. The horizontal gray segments provide examples where the parameter θ lacks cov-
erage. For θ = 2.6, the intervals AC and B∞ each contain 90% of the probability but the
interval BC contains only 85% of the probability. There is consequently a lack of coverage
for this and other values of θ in the range [1.35, 4.65]. Confidence intervals thus cannot be
quoted consistently with the flip-flop method.

Figure 6.9b illustrates an additional problematic issue encountered with confidence belts
near the boundary of a physical region. While the model parameter θ is assumed to be non-
negative, a measurement θ̂ of θ may nonetheless yield a negative value. For θ = 0, the 90%
central confidence interval amounts to −1.65 ≤ θ̂ ≤ 1.65 . If the measurement is repeated
a large number of times, one expects that 5% of the measured values will fall below −1.65.
Although such values have a smaller probability, they are nonetheless possible, even if
the model parameter θ cannot be negative. The problem arises that a vertical line drawn
anywhere in this range, say at θ̂ = −2, would not intersect the chosen confidence belt in the
physical region of θ . Extrapolation into a nonphysical confidence interval for θ obviously
does not make sense. One is then dealing with an empty confidence interval for that value,
that is, an interval that contains no physically allowed values of θ . So, although the 90%
upper limit method has exact coverage, it should nonetheless be avoided since it cannot be
used to produce a meaningful confidence interval for θ whenever measurements of θ̂ fall
below the 90% confidence interval.
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245 6.2 Confidence Intervals with the Unified Approach

Fortunately, issues of lack of coverage encountered with flip-flopping and empty in-
tervals obtained with one-sided limits may both be remedied with the unified approach
discussed in the next section.

Unified Approach for the Definition of Confidence Intervals
The Neyman construction requires that the integral Eq. (6.49) yield the probability β but
it does not stipulate which elements should be part of the interval. It is in fact possible to
choose which elements of probability should be accepted in the interval. This leads to the
notion of an ordering principle.

The purpose of this ordering principle is to produce an optimal confidence belt, with
full coverage, no issue associated with flip-flopping, and no empty intervals. Feldman and
Cousins found an ordering principle that satisfies these requirements and has now become
the basis for the unified approach mentioned earlier [80]. Known as the likelihood ratio
ordering principle, the ordering is based on the Neyman–Pearson test (discussed in §6.7)
and sorts elements of the measurable parameter space on the basis of a likelihood ratio. The
construction of intervals for each value of the model parameter θ proceeds by including
the elements of probability P(θ̂ |θ ) that maximize the likelihood ratio

R(θ̂ ) = P(θ̂ |θ0)

P(θ̂ |θBest )
, (6.57)

where θBest corresponds to the value of θ with maximum likelihood P(θ̂ |θ ) for the mea-
sured θ̂ , while θ0 is the values one wishes to test for. For a Gaussian distribution, the
Feldman and Cousins method yields a confidence belt as illustrated schematically by the
dark solid lines in Figure 6.10 (see §6.2.3 for a formal derivation of this result). This uni-
fied approach belt is identical to the 90% central interval belt for values of θ > 1.65 but
significantly deviates from it below that value. For small values of θ , the most likely θBest is
at zero. The different ordering then produces a belt that extends toward negative values of
θ̂ . This long negative tail prevents the occurrence of empty intervals that would otherwise
occur for θ̂ < −1.65. Consistent 90% coverage entails that the high side of the belt must
shift to the left relative to the central interval. This leads to the small deviation seen in Fig-
ure 6.10 on the high side of the belt. The method then not only eliminates empty intervals
but also avoids flip-flopping and provides proper and consistent coverage.

We present calculations of the Felman and Cousins ordering principle applied to Poisson,
binomial, and Gaussian processes in §6.2.

6.2 Confidence Intervals with the Unified Approach

6.2.1 Poisson Intervals

Measurements of rare or predicted but as of yet unobserved decay processes constitute
a perfect exemplar for the calculation of Poisson intervals: a measurement is designed
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246 Classical Inference III: Confidence Intervals and Statistical Tests

Fig. 6.10 Schematic representation of the 90% confidence belt (light gray) obtained with the Feldman–Cousins unified
approach for a Gaussian distribution of unit standard deviation compared to a 90% central interval confidence belt
(dashed lines). Dark gray vertical segments represent confidence intervals corresponding to measured values
θ̂ = −2.6,−0.5, 1.5, and 4.1.

to observe and count the number of decays of a certain particle. Given instrumental and
physical process ambiguities, it is possible that the observed decays might originate from
other improperly measured physical processes, or decays, as well as random combination
of particles mistakenly interpreted as decays. Observed counts of decays thus amount to a
combination of a true signal (of unknown strength) and one or several background signals.
We here proceed to determine the confidence belt for such Poisson processes with known
background using the Neyman construction and the ordering principle of Feldman and
Cousins [80].

For a Poisson process with a known background, one can write the probability of ob-
serving n events (or counts) as

P(n|µ, b) = (µ + b)n exp (−(µ + b))
n!

, (6.58)

where b is the expected (known) background and µ is the unknown mean yield of the
Poisson process under consideration. We will assume, for illustrative purposes, that the
mean of the background is known to have a specific value.

We build confidence intervals for each value of µ by ordering probabilities of different
values of n based on the ratio of likelihoods

R(n, µ) = P(n|µ, b)
P(n|µbest, b)

, (6.59)

where P(n|µ, b) is the probability of observing n counts given an actual mean µ and back-
ground b, whereas P(n|µbest, b) corresponds to the probability of n for the value of µ + b
that yields the largest probability of observing n counts. The construction proceeds as fol-
lows. First, one selects ranges of interest for n and µ for a given value of b. Both ranges
are divided in finitely many bins with a unit bin width for n (since it is an integer variable)
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Fig. 6.11 Determination of confidence intervals for Poisson processes with known finite background b. (a) Probability
P(n|µ, b = 4). (b) Ordering likelihood ratio R(n, µ|b = 4). (c) Confidence intervals calculated with b = 4 for CL
70%, 90%, 95%, and 99%. (d) The same confidence intervals calculated with b = 8. The 90% confidence intervals for
n = 15 amount to [µ1, µ2] = [5.6, 18.0]with b = 4 and [2.2, 14.1] for b = 8.

and a bin width of order 0.005 for µ. One calculates and stores the probability P(n|µ, b) in
each bin (using the low side of the bin for µ) into an array, or a two-dimensional histogram
as illustrated in Figure 6.11a. For each value of n, one scans probabilities vs. µ to find
the maximum P(n|µbest, b) which can then be used to compute the ratio R(n, µ) in each
bin n, µ. This yields a two-dimensional array, shown as a histogram in Figure 6.11b, which
can be used to carry out the ordering of probabilities and the construction of the confidence
interval for each value of µ. This is achieved by sorting values of the ratio R in descending
order, for each bin in µ. Starting with the most probable bin in n for a given value of µ,
one sums probabilities until the desired level of confidence is met or exceeded. The bins in
n that were added to reach the desired confidence level constitute the confidence interval
for the given value of µ. The sorting procedure is repeated iteratively for each value of
µ. The boundaries of the confidence belt can be easily identified by searching the lowest
and largest values of µ bins that have been assigned to confidence intervals. Confidence
belts for selected confidence levels are shown in Figure 6.11c,d for values b = 4 and b = 8,
respectively.

With an expected background b = 4, and no actual signal, observation of n = 4 counts
would lead to an upper limit of µ = 5.1 at the 90% confidence level (µ = 8.4 at CL 99%).
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Observation of fewer counts, consistent with downward fluctuations of the background,
would yield reduced upper limits as shown in Figure 6.11c. Upper limits are further reduced
for b = 8 as shown in panel (d) of the figure.

It should be noted that the confidence intervals obtained with the procedure outlined in
the preceding produces slight overcoverage, that is, the probability of values n included in
confidence intervals slightly exceeds, typically, the required confidence level. Overcover-
age is not a consequence of the method, however, but merely the result of the integer nature
of the variable n and thus cannot be avoided.

6.2.2 Binomial Intervals: Detection Efficiency

The unified approach can also be applied to binomial distributions, and most particularly,
to calculations of error intervals on detection efficiency. Let us consider, as an example,
the determination of the track reconstruction efficiency of a large detector. This can be ac-
complished, for instance, with a technique known as embedding (§12.4.6). The embedding
technique involves the insertion of hits of simulated tracks into actual detector events. One
then reconstructs the embedded events as if they were normal events. The ratio of found
embedded tracks to the number actually embedded constitutes a measure of the detection
efficiency of such tracks. This determination can be carried out as a function of transverse
momentum, rapidity, and so on. Other approaches are also available to determine detection
efficiencies that depend on the specificities of the measurement of interest. The following
discussion also applies to a host of situations in which binomial probabilities determine the
outcome of an observation, including the determination of the mortality associated with a
disease, the efficacy of a medical treatment or test, or even the success of a marksman in
hitting a target.

The efficiency is defined as the ratio of the number of reconstructed tracks, n, by the
number of true tracks N :

ε = n
N

. (6.60)

Since the n reconstructed tracks are a subset of the N embedded tracks, it would be incor-
rect to use the “usual” error propagation technique. Instead, one can assume N as given and
based the evaluation of the error and confidence interval solely on n. One must, however,
be cognizant of the fact that the efficiency cannot be larger than unity. So, for instance, if
1000 tracks are embedded and 980 tracks are reconstructed, one might be tempted to assess
the error based on

√
980 ≈ 30. But this would suggest the efficiency might be larger than

unity and is thus nonsensical. One might then resort to using a lower limit on the efficiency
only for large values of n and a two-sided interval for smaller values. This is technically
known as flip-flopping and should be avoided, as per our discussion in §6.1.8. The unified
approach provides, thankfully, a better approach to the estimation of the error of the ef-
ficiency. As for the calculation of the mean µ in the previous section, one calculates the
probability P(n|N, ε) for a range of multiplicity n, given N and efficiency ε of interest.

P(n|N, ε) = N!
(N − n)!n!

εn(1 − ε)N−n. (6.61)
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Fig. 6.12 Confidence intervals for the detection efficiency based on n detected objects (e.g., particles) based on N = 100
produced objects. Shown is the 90%confidence interval [ε1 = 0.73, ε2 = 0.86] for n = 80 reconstructed objects.

Given a specific value N , one can then proceed to calculate the ratio R defined as

R(n, ε|N ) = P(n|N, ε)
P(n|N, εmax)

, (6.62)

where εmax corresponds to the most likely efficiency for the given n and N . R values are then
used to rank, for given values of ε, the probabilities of n, and establish confidence intervals
at the desired confidence level, as per the procedure described in the previous section.
Figure 6.11 provides an example of 70%, 90%, 95%, and 99% confidence intervals for a
relatively modest number of tracks N = 100, plotted as a function of n and the detection
efficiency ε.

6.2.3 Gaussian Intervals

As we discussed in §6.1.3, the determination of confidence intervals for Gaussian dis-
tributed variables is rather straightforward, given the intrinsic symmetry µ ! x of the ar-
gument of the exponential defining the Gaussian distribution. The symmetry breaks down,
however, in the presence of physical boundaries. For instance, the mass of a particle cannot
be negative, but measurements of mass can and often do yield negative values, when the
mass being measured is either very small or null. We saw in §6.1.8 that the decision to
report a double-sided interval or a one-sided interval (e.g., an upper limit) leads to flip-
flopping, inconsistent coverage, or worse empty intervals. The unified approach avoids
such problems and is of rather simple application for Gaussian distributions.

Let us consider a measurement involving a physical boundary at µ = 0, that is, such
that only positive values are allowed for the physical variable, while measurements can
produce both positive and negative values. Let us also assume the standard deviation of
the measurement σ is known, so one can rescale measurements by σ to obtain measured
values of x with unit standard deviation.
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250 Classical Inference III: Confidence Intervals and Statistical Tests

The unified approach requires that one finds, for a given measured value x, the value
of the mean µbest which is most probable. Assume x is given. If x ≥ 0, the most probable
value of the mean, that is, the value of µ that has the largest probability is obviously µ = x,
while for x < 0, the most probable value of µ is zero, since it cannot be negative. One thus
writes

P(x|µbest ) =

⎧
⎨

⎩

1√
2π

for x " 0,

1√
2π

exp
(
− x2

2

)
for x < 0.

(6.63)

The ratio of likelihoods required for ordering probabilities is thus simply

R(x) = P(x|µ)
P(x|µbest )

=
{

exp
(
− 1

2 (x − µ)2) for x " 0,

exp
(
xµ − 1

2µ2
)

for x < 0.
(6.64)

The ratio R determines the order in which values of x are added to the acceptance region
of a given value µ. Starting with the most probable value of x, one adds values to the left
and to the right until

α =
∫ x2

x1

P(x|µ) dx = 1
2

(
erf(x2/

√
2) − erf(x1/

√
2)

)
, (6.65)

where α is the desired confidence level. By construction, x1 and x2 are given equal ordering
priority, so that one has

R(x1) = R(x2). (6.66)

One must thus simultaneously solve Eqs. (6.65) and (6.66). Two cases need to be consid-
ered. First, if both x1, x2 ≥ 0, the equality R(x1) = R(x2) implies

x1 = 2µ − x2, (6.67)

whereas if x1 < 0, x2 ≥ 0, one has

x1 = x2 (2µ − x2)
2µ

. (6.68)

Since neither x2 nor x1 are known, a priori, one can write x2 = µ + &x and seek a nu-
merical solution for &x iteratively. Starting with a small value &x, one determines x2 and
x1 according to (6.67). If x1 is negative, one recalculates it with (6.68) before calculating
the integral (6.65). One iteratively increases &x until a value is reached that matches the
required confidence level α. One plots the values x1 and x2 as a function of µ that define
the required confidence intervals. This is illustrated in Figure 6.13 for confidence levels of
70%, 90%, 95%, and 95%. Given a measured value x, one finds the desired confidence in-
terval [µ1, µ2] by drawing a vertical line through the relevant confidence belt. For instance,
for x = 2 one concludes the observable has a value µ = 2 with a 90% confidence interval
[0.58, 3.65], while for a measured value x = −2, one would conclude µ = 0 with an upper
limit of 0.4 at the 90% confidence level. Note how for smaller values of x still, upper limits
are defined for all confidence levels.

1::79�  .�2��80 ������� 
�	���	���
�����	����291/.����2�/�� ���4�82.0/���2�/892: �8/99

https://doi.org/10.1017/9781108241922.008


251 6.3 Confidence Intervals fromML andLS Fits

Fig. 6.13 Selected Gaussian confidence belts near a physical boundary,µ ≥ 0. Note how for x ≥ 0, confidence levels
are two-sided, whereas for x < 0, confidence intervals become one-sided and yield upper limits. Shown is the
90% confidence interval [µ1 = 0.58, µ2 = 3.65] for x = 2, as well as the upper limitµ2 = 0.42
for x = −2.

6.3 Confidence Intervals fromML andLS Fits

In §§6.1 and 6.2, we discussed the notions of confidence intervals and confidence region
with the implicit assumption that the joint probability density, or likelihood, of measured
estimators, p(θ̂ |θ⃗ ), is known ab initio, and could thus be used, for instance, to generate a
Neyman construction, thereby enabling the determination of confidence belts from which
confidence intervals can be calculated on a case-by-case basis for estimates θ̂ . However,
the density p(θ̂ |θ⃗ ) may often be a rather complicated multiparameter function of measured
data x⃗ and as such too difficult to model in detail. This is particularly the case in problems
of ML and LS optimization involving several parameters. In such situations, obtaining an
explicit model for p(θ̂ |θ⃗ ) might indeed be technically difficult, tedious, or too fastidious.
Fortunately, as we saw in our discussions of the ML and LS methods, in §§5.1 and 5.2, the
function p(θ̂ |θ⃗ ) may be approximated by a multiparametric Gaussian distribution,

p(θ̂ |θ⃗ ) ≈ 1

(2π )m/2 |V|1/2
exp

[
−(θ̂ − θ⃗ )T V−1(θ̂ − θ⃗ )

]
(6.69)

where m is the number of model (fit) parameters. One can show that, by virtue of the central
limit theorem, this approximation becomes exact in the large sample limit.
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For illustrative purposes, let us consider a fit involving a single parameter θ . The likeli-
hood function L(θ ) may then be written

L(θ ) ≡ p(θ̂ |θ ) = Lmax exp

[

− (θ̂ − θ )2

2σ 2
θ̂

]

, (6.70)

where θ̂ is the value of the estimator with maximum likelihood Lmax, and σθ̂ corresponds
to the standard deviation of the parameter θ̂ . One may readily obtain nσ central confidence
intervals by computing the values of θnσ = θ̂ ± nσσ̂ satisfying

ln L(θnσ ) = ln(Lmax) − n2

2
, (6.71)

or equivalently, when using the LS method with Gaussian errors,

χ2(θnσ ) = χ2
min + n2. (6.72)

For finite datasets, the likelihood function L(θ ) may appreciably deviate from a Gaussian
distribution; central confidence intervals [θ<, θ>] = [θ̂ − δL, θ̂ + δH ] may nonetheless be
approximated according to

ln L
(
θ̂−δH
+δL

)
= ln(Lmax) − n2

2
, (6.73)

where n = %−1(1 − α/2) is the quantile of standard normal distribution and the desired
confidence level is CL = 1 − α. Clearly, for LS fits with Gaussian errors, this translates
into

χ2
(
θ̂−δH
+δL

)
= χ2

min + n2. (6.74)

The foregoing confidence interval determination method is readily extended to fits in-
volving a multiparametric model. Iso-contours or iso-surfaces are defined according to the
discussion presented in §6.1.6. For a multiparameteric Gaussian model, one requires the
quadratic function Q(θ̂ |θ ), given by Eq. (6.25), to satisfy

P
(

Q(θ̂ , θ⃗ ) ≤ k2
β

)
=

∫ κ2
β

0
pχ2 (z|n) dz = β, (6.75)

where β is the required confidence level, and k2
β is the quantile of order β of the χ2 distri-

bution

k2
β = P−1

χ2 (β|n). (6.76)

Operationally, for a likelihood multiparametric Gaussian function, the m-dimension con-
fidence region may thus be constructed by finding the locus of parameter values θ⃗ that
satisfy

ln L(θ⃗ ) = ln Lmax − κ2
β, (6.77)

where Lmax is the likelihood corresponding to the ML solution θ̂ .
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The determination of multiparametric confidence regions may become technically chal-
lenging when there are several parameters or if the ML or LS solution θ̂ is found near a
physical boundary of one or several of the model parameters. A variety of methods and
approximation techniques have been developed to deal with such issues. A detailed discus-
sion of these techniques is beyond the scope of this textbook but may be found in the book
by F. James [116].

6.4 Hypothesis Testing, Errors, Significance Level, and Power

Progress in the physical sciences, and for that matter in all sciences, is based on a cycle
of measurements and hypotheses. A specific model provides a prediction of a certain ob-
servable. An experiment is built and carried out to determine the value of the observable.
Given the outcome of one or several observations, scientists must then determine whether
the predicted and measured values are mutually compatible. If the values are compatible,
the model is considered provisionally acceptable and might be used as the lead model until
another measurement invalidates its predictions. On the other hand, if the values are not
compatible, the model may be abandoned or require substantial revisions before it is con-
sidered acceptable. This raises the question of how one can assess whether two values, a
measurement and a prediction, or even two distinct measurements, can be considered com-
patible. Because most observables of interest are continuous variables, one cannot sensibly
expect a measured value to exactly equal the predicted value. All experiments are also
obviously limited in statistical accuracy and might additionally entail sizable systematic
errors. At best, one can hope that the difference between measured and predicted values
is small. But how small should the difference be given the measurement errors? Indeed,
one needs to quantify how large the difference can be, considering uncertainties in the
measurement as well as, possibly, in the formulation of the prediction. At the end of the
day, one is interested in assessing whether the model has a large likelihood of being valid
given the measured value(s) and their estimated errors. In essence, one wishes to make a
decision: Should the model be accepted (provisionally) or rejected? What is required is
a statistical test to determine whether the measured and predicted values are compatible.
Methods for the formulation of such tests and their properties are within the realm of a
branch of statistics called hypothesis testing.

Hypothesis testing and decision making are of interest in a wide range of scientific and
generic human activities. In car manufacturing, for instance, a manufacturer obviously
wishes to reduce the likelihood of car defects and recalls. Parts included in the assembly
of cars must then be tested (measured) to determine whether they fall within acceptable
limits, or tolerance limits, before inclusion in a vehicle. In medicine, a doctor might use
a low-cost test to determine the cholesterol level of her patient and decide to prescribe a
medication if the measured level is outside a specific range. In particle physics, analyses
often require a test to determine the species or type of a specific particle observed in a
collision. Is the particle a charged pion, a kaon, or perhaps a proton? The possibilities are
as varied as the activities undertaken by humans. It is thus useful to define the notion of
hypothesis testing in a broad context based on the methods of statistics.
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254 Classical Inference III: Confidence Intervals and Statistical Tests

The notions of hypothesis, hypothesis testing, and test errors are introduced in §6.4.1
while properties of significance, power, consistency, and bias are discussed in §6.5. Meth-
ods for the construction of tests, and most particularly the Neyman–Pearson test, are pre-
sented in §6.7. Selected examples of applications of statistical tests are presented in the
subsections that follow.

6.4.1 Hypothesis Testing

The formulation of a (scientific) test begins with a statement about the expected outcome
of a measurement based on a specific model. This statement constitutes the hypothesis to
be tested and is commonly called the null hypothesis. It is usually represented as H0.

The notion of null hypothesis is often perceived as counterintuitive by nonscientists, and
its interpretation thus requires some elaboration. The point is that it is not possible to scien-
tifically prove that a theory is correct; one can only demonstrate that it is incorrect. This is a
principle of falsifiability. One can demonstrate that a model is wrong or incomplete under
some or all circumstances, but one cannot prove that it is correct because it is not possible
to examine all circumstances in which the model might be applied. It is also impossible to
test the model with infinite precision. A null hypothesis typically adopts the point of view
that an existing model (or theory) is correct but that measurements can be used to falsify
the model, that is, to demonstrate the model is in fact incorrect. Consequently, to prove that
a new model is required to explain measured data, one must first demonstrate that the data
is incompatible with the null hypothesis.

As an example, consider a search for a new short-lived particle using the invariant mass
technique (§8.5.1). Energy-momentum conservation dictates that the invariant mass of a
pair of particles produced by the decay of the purported particle should equal its mass. An
invariant mass spectrum obtained from measured particle pairs is thus expected to exhibit
a peak at the mass of the decaying particle, as well as some broad-range background. But
to prove the existence of the new particle, one must first show that the measured invari-
ant mass spectrum is incompatible with the null hypothesis, which states that there is no
new particle, or in other words, that the data can be satisfactorily explained without re-
quiring the existence of a new particle. Discovery of a new particle is achieved when a
peak is observed that cannot be explained by a statistical fluctuation. Nuclear and particle
physicists typically require the probability a peak might be explainable by statistical fluc-
tuations with a probability smaller than 3 × 10−7, corresponding to a 5σ deviation from
the “background” or null hypothesis.2

The null hypothesis H0 may specify the expected value of an observable or the proba-
bility density f (x) of measured values according to the model. It may also represent the
status quo (e.g., no need for new physics). If the function f (x) has no free parameters and
is unique, the hypothesis H0 is said to be a simple hypothesis. If the functional form of
f (x) is known or given but includes parameters to be determined by the measurement, the
hypothesis is considered a composite hypothesis. We will here focus on the definition and
properties of simple hypotheses.

2 See §6.6.2 for a more in-depth discussion of this notion.
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It is often of interest to consider one of several alternative hypotheses H1, H2, . . . , Hm.
The purpose of the test shall then be to determine whether the null hypothesis H0 can be
rejected in favor of one of these alternative Hi, i = 1, . . . , m.

Testing the null and alternative hypotheses requires making specific predictions about the
outcome of one of several measurements of a specific observable x. These predictions are
usually formulated in terms of probability densities f (x|Hi), i = 0, . . . , m, the observable x
should follow if the hypotheses Hi, i = 0, . . . , m, are considered valid (i.e., true). The PDFs
f (x|Hi) would ideally have small or no overlap for a given measurement in order to unam-
biguously discriminate against the various hypotheses. In practice, these PDFs may have
considerable overlap, and one must consequently use boundaries or cuts to establish ranges
that might be used to accept or reject particular hypotheses.

A measurement may involve n repeated observations of the same random variable or
a single observation of an n-dimensional variable. Testing the agreement between the hy-
pothesis H0 (and its alternatives, if any) and the measurements x⃗ = {xi}, i = 1, 2, . . . , n
may be investigated using a function of the measured variables called a test statistic,
denoted t(x). The test statistic is meant to encapsulate all (or selected) measured val-
ues and enable a straightforward comparison with model predictions. Given the PDFs
f (x|Hi), i = 0, . . . , m, and a specific test statistic t(x⃗), the m hypotheses determine PDFs,
denoted p(t|Hi), which predict the distribution of values of t. Obviously, the test statis-
tic t(x⃗) could specify a vector of values θ̂ = {θ1, θ2, . . . , θk}, and even the vector x⃗
itself, or one of its subsets. Test statistics with k < n or with a single value (k = 1) are
usually preferred, however, because they enable a reduction of the data without, hope-
fully, a loss of discriminating power, that is, the capacity to keep and reject competing
hypotheses.

For the purpose of our discussion, let us assume t(x⃗) is a scalar function (i.e., that it
yields a single number). Let us also limit our considerations, without loss of generality, to
a null hypothesis H0 and one alternative hypothesis H1 only. In this context, one expects
the probability of t to be given by the PDF p(t|H0) if H0 is true, and the PDF p(t|H1) if
H1 is true. The basis for our statistical test is illustrated in Figure 6.14. Let us assume the
statistic t spans a domain D. Since the densities p(t|H0) and p(t|H1) cover different ranges
of t, one selects a value tcut that defines a zone of acceptance Da for H0 and a critical region
Dc = D − Da. Observations that yield a value t in Dc are considered an indication that the
null hypothesis is false, even though there might be a finite probability of observing values
of t in that range when H0 is true. The formulation of a test for H0 consequently amounts to
a choice of a test statistic t(x) and a critical region Dc. In the example presented in Figure
6.14, the region Dc consists of a single range of t, but one can in principle choose zones
involving multiple disconnected regions or subsets of D.

The size of the region Dc and the shape of p(t|H0) determine the probability of finding
t in that region if H0 is true. As such, it determines the level of significance α of the
test:

P(t ∈ Dc|H0) = α. (6.78)

The value of α corresponds to the probability of rejecting H0 based on the measurements
x⃗, even if it is in fact true. Obviously, a test can be considered useful insofar as it can
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256 Classical Inference III: Confidence Intervals and Statistical Tests

Fig. 6.14 Illustrative examples of test statistics p(t|H0) and p(t|H1) determined by PDFs f (x|H0) and f (x|H1), respectively. The
variable θcut delineates the zone of acceptance Da for H0 and the critical region Dc = D − Da under which H0 is
rejected with a significance levelα. The probability 1 − β determines the power of the test and the probability that
the alternative hypothesis H1 might be accepted.

discriminate against one or several alternative hypotheses, Hi, i = 1, 2, . . .. The usefulness
of the test is commonly expressed in terms of its power, defined as the probability 1 − β

of t falling in the critical region Dc if H1 is true. One thus has

P(t ∈ Da|H1) = β. (6.79)

Given a null hypothesis H0, alternative hypothesis H1, and specific choices for the regions
Da and Dc, four distinct situations may be encountered:

1. t falls within Da and H0 is true. The hypothesis H0 is correctly accepted with probability
1 − α.

2. t falls within Dc and H0 is true. The hypothesis H0 is wrongly rejected with a probability
α. This is commonly known as an error of the 1st kind, although when a test is used
for classification purposes it may be more useful to consider this situation as a loss of
efficiency.

3. t falls within Da and H0 is false. The hypothesis H0 is wrongly accepted with a proba-
bility β. This is commonly known as an error of the 2nd kind.

4. t falls within Dc and H0 is false. The hypothesis H0 is correctly rejected with a proba-
bility 1 − β, known as the power of the test.

These four situations and their respective probabilities are summarized in Table 6.2.
Statistical tests may be used in a variety of contexts and various purposes. We consider

specific examples of applications in §6.6. But first, let us examine the key properties of
statistical tests.
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257 6.5 Test Properties

Table 6.2 Definition of errors of the 1st and 2nd kind. Shown are
probabilities of a test statistic t to be found in the critical region Dc and used
to correctly or falsely reject the null hypothesis H0 when either H0 or the

alternative hypothesis H1 is actually correct.

6.5 Test Properties

The capacity of a test to discriminate between a null hypothesis H0 and an alternative
hypothesis H1 depends on a variety of factors including the measurement protocol and
instrumentation performance, the number of measurements n, the choice of test statistic
t(x), and the choice of critical region Dc. The extent to which the PDFs p(t|H0) and p(t|H1)
overlap is key in discriminating between the two hypotheses. The shape and overlap of
these two functions are largely determined by the measurement performance embodied in
the PDFs f (x|H0) and f (x|H1), but also depend on the number of measurements and the
specific choice of test statistic t(x) which altogether determine the functions p(t|H0) and
p(t|H1). The discriminating power of the test and the likelihood of encountering errors of
the 1st and 2nd kind obviously also depend on the specific choices of cut(s) used to select
the critical region Dc and its complement Da. All facets of a measurement and the statistical
test used to test a hypothesis thus play a role in one’s capacity to validate or reject a null
hypothesis.

Overall, it is typically the measurement method and protocol that have the most influ-
ence on the discriminating power of a test. If the measurement resolution and efficiency are
excellent, one surely can expect the measurement to provide a better test of a theory than
a measurement with poor resolution and efficiency. Given a particular measurement tech-
nique, however, the choice of statistic t(x) and the critical region Dc shall also influence
the discriminating capacity of the test. It is thus of interest to examine the properties of a
statistical test from a formal point of view and consider how or whether these properties
may be optimized.

The most important property of a statistical test is its power 1 − β, but one should also
be concerned about the test consistency and the possibility of a test bias. These three
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properties are briefly discussed in §§6.5.1–6.5.3. A more extensive discussion of these
properties is presented by James [116].

6.5.1 Test Power

Definition
Let us consider the determination of a parameter θ based on some measurements x⃗ =
(x1, x2, . . . , xn) and a statistic t(x⃗). Let us assume that the null hypothesis stipulates that
the parameter’s expectation value is θ = θ0, whereas the alternative hypothesis implies the
value should be θ = θ1. We wish to optimize the choice of the statistic t(x⃗) in order to
maximize the power of the test, and minimize the chance of incurring an error of the first
kind.

H0 : θ = θ0 Null hypothesis

H1 : θ = θ1 Alternative hypothesis

The test statistic t shall have PDFs

p(t|H0(θ0)) if H0 is true,

p(t|H1(θ1)) if H1 is true.
(6.80)

The power of a statistical test is formally defined as the probability the test statistic t might
fall in the critical region Dc defined by a cut value tcut, known as a decision boundary, as
illustrated in Figure 6.14.

p = 1 − β =
∫ ∞

tcut

p(t|H1(θ1)) dt. (6.81)

The cut value tcut may in principle be selected to achieve a specific significance level α

according to

α =
∫ ∞

tcut

p(t|H0(θ0)) dt. (6.82)

But for a test to be useful, it should also have as large a power p = 1 − β as possible in
order to minimize errors of second kind (i.e., the probability of wrongly accepting H0) and
to maximize the probability of identifying H1 as the correct hypothesis. The choice of tcut

is thus often predicated by the discriminating power one wishes to achieve and the losses
one can tolerate as determined by the significance level.

A Simple Example with Gaussian Deviates
The notion of power is illustrated with a concrete example in Figure 6.15a, where one
considers a measurement of an observable X based on a procedure involving Gaussians
fluctuations characterized by a standard deviation σ . One assumes there exist two hy-
potheses or models predicting the value of X : the null hypothesis H0 stipulating it has
a value µ0 = 0 and an alternative hypothesis stating it has a value µ1 = µ0 + &, with
& = 2σ . One assumes that it is legitimate to accept or reject the null hypothesis with a 1%
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Fig. 6.15 Illustration of the notion of power based on a test involving two hypotheses x = µ0 and x = µ1 for a measurement
with Gaussian deviates of standard deviationσ . In (a), the test is performed based on a single measurement of x
while in (b) it is carried out based on the arithmetic mean of N sampled values. (c) Power of the test as a function of
the sample size for three values of relative separation&/σ between the two hypotheses.

significance level based on a single measurement of X . The critical region is defined by a
cut xcut selected to yield the desired significance level, that is, such that

α = 0.01 =
∫ ∞

xcut

1√
2πσ

exp

[

− (x − µ0)2

2σ 2

]

dx = 1 − %(xcut ). (6.83)
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Fig. 6.16 Illustration of the concepts of power function, most powerful test, uniformly most powerful test, and test bias.

Inverting the CDF %, one gets xcut = %−1(0.99) = 2.326 shown as a vertical dash line
in Figure 6.15a. The power 1 − β of the test is calculated on the basis of the probability
distribution of X assuming x = µ1 is the correct hypothesis. One finds

1 − β =
∫ ∞

xcut

1√
2πσ

exp

[

− (x − µ1)2

2σ 2

]

dx = 0.37. (6.84)

A power of 0.37 is relatively weak and implies that there is a large probability, 63%, that H0

might be accepted even it is wrong (error of the second kind). Evidently, the power would
be larger if the separation & = µ1 − µ0 was larger or if the standard deviation σ of the
measurements was smaller, or both.

Power as a Function of the Alternative Hypothesis
The power achievable, for a given significance level α, depends on the value of θ1 predicted
by the alternative hypothesis H1:

p(θ1) = 1 − β(θ1) =
∫ ∞

tcut

p(t ′|H1(θ1)) dt ′. (6.85)

It is thus useful to regard the power as function of θ :

p(θ ) = 1 − β(θ ) =
∫ ∞

θcut

p(t ′|θ ) dt ′. (6.86)

By construction, the power function should yield α for θ = θ0:

p(θ0) = 1 − β(θ0) = α. (6.87)

One can thus characterize a test in terms of its power function, which consists of a plot of
the test’s power as a function of θ . Examples of power functions are displayed in Figure 6.16
for several hypothetical tests. In general, the power of a test increases monotonically
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(tests A, C, U) when the separation between the null hypothesis, θ0, and the alternative
θ1 increases, but there can be pathological cases (e.g., test B) where the power decreases in
some range of θ (see the discussion of test bias in the next section).

The power function provides a useful tool to compare different tests. If the alternative
hypothesis is simple (i.e., θ1 is specified a priori), the best test of H0 against H1 at a given
significance level α shall be the test with the maximum power at θ = θ1. As an illustrative
example of this notion, Figure 6.16 compares the power functions of three hypothetical
tests noted A, B, and C. Test C exhibits a larger power than A and B at all values θ > θc,
and particularly at θ = θ1. It is thus considered the best test to discriminate against that
particular hypothesis. However, test A would be best for testing against hypotheses with
θ < θc, because it has the largest power in that region.

A test which is at least as powerful as any other possible test at a specific value of t
is called most powerful test at that particular value of t. A test which is most powerful
for all values of θ under consideration is known as Uniformly Most Powerful (UMP).
Figure 6.16 includes an example of a UMP test, noted U. A UMP test is obviously the
best choice to discriminate against an alternative hypothesis, but the use of a non-UMP
test might be preferred for reasons of simplicity and/or robustness (e.g., a test with low
sensitivity or dependence on unimportant changes in H0).

6.5.2 Test Consistency

Definition
Experimentally, one wishes for a test that provides an increasingly better discrimination
between a null hypothesis H0 and an alternative hypothesis H1 as the number of obser-
vations/measurements increases. For instance, the relative error δθ/θ on the mean of an
observable θ typically decreases inversely as the square root of the number N of sampled
values. One would thus expect that the PDFs p(t|H0) and p(t|H1) become progressively
distinct as N increases, thereby leading to an improved power at a fixed significance level.

A test is considered consistent if its power tends to unity as the number of observations
N goes to infinity, even though this cannot be achieved in practice. This can be written
formally as

lim
N→∞

p(t ∈ Dc|H1) = 1, (6.88)

where Dc is the critical region with probability α under H0.
Consistent tests feature a power function that tend to a step function for N → ∞, as

illustrated schematically in Figure 6.17.

A Simple Example with Gaussian Deviates (cont’d)
In order to illustrate the notion of consistency, we revisit the test example presented in
§6.5.1 and replace a single measurement of the observable X by the mean x̄ of a sample
consisting of N measurements of X . The error on x̄ is σN = σ/

√
N . The relative distance

&/σN between the two hypotheses then scales in proportion to
√

N . The PDFs of x̄ for both
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Fig. 6.17 A test is considered consistent if its power tends to unity as the number of observations N increases. Its power function
thus approaches a step function as N → ∞.

hypotheses thus narrow proportionally to
√

N and for large N , distinguishing between the
two hypotheses becomes quite straightforward, as illustrated in Figure 6.15b. The power of
the test, based on a significance level α = 0.01, is easily calculated. One finds

1 − β =
∫ ∞

µ0+2.326σ/
√

N

1√
2πσ

exp

[

− (x − µ1)2

2σ 2/N

]

dx, (6.89)

= 1 − %
(
−

√
N&/σ + 2.326

)
, (6.90)

which is plotted in Figure 6.15c for three values of & = µ1 − µ0. One finds, as anticipated,
that the test power increases with

√
N&/σ . Distinguishing between hypotheses H0 and H1

is thus possible even if &/σ is small, provided sufficiently many repeated measurements
of the observable X can be carried out. Indeed, the probability %(−

√
N&/σ + 2.326)

vanishes in the large N limit, and one concludes the test can be considered consistent. In
fact, it should nominally be possible to carry the test for an arbitrary large power 1 − β,
for any significance level α, provided measurements of X be carried out for sufficiently
large N . In practice, however, limitations also arise from systematic errors inherent to the
measurement of X . Unlike the statistical error on the sample mean, systematic errors can-
not be reduced or suppressed, usually, by increasing the size N of the data sample. They
thus impose a minimum limit on the difference & = µ1 − µ0 which can be resolved in
practice. Consequently, although a statistical test may be consistent, its power shall remain
smaller than unity, in practice, because of systematic errors involved in the measurement
procedure.

6.5.3 Test Bias

A test is generally considered biased if the power function p(θ ) does not rise monotonically
with θ . An example of a biased test is provided by test B in Figure 6.16. The power of
this test decreases below the confidence level α in the range θ0 < θ < θc and reaches a
minimum near θ = θb. This implies that H0 is more likely to be accepted when θ = θb than
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for θ = θ0, that is, the hypothesis H0 is more likely to be accepted when it is wrong than
when it is actually right, a clearly undesirable situation.

Although undesirable, a biased test might in principle be usable if, for instance, it pro-
vides a better power than other tests in a specific region of interest of the test statistic t.
This is illustrated in Figure 6.16 by the fact that test B has better power than test A in the
region θ = θ2. Test B might then be usable in spite of its bias if it is particularly important
to discriminate against the hypothesis θ = θ2.

6.6 Commonly Used Tests

A simple test can be formulated on the basis of the probability (density) distribution that
governs the fluctuations of a variable x of interest in a specific situation. Indeed, given a
PDF f (x|θ⃗ ) determined by parameters θ⃗ , assumed known a priori, one may define a null
hypothesis H0 as stating that observed values of x are consistent with the PDF f (x|θ⃗ ) and
parameters θ⃗ . The desired significance α of the test determines the bounds xmin and xmax

beyond which H0 is rejected. For a two-sided interval, one has

α = 1 −
∫ xmax

xmin

f (x|θ⃗ ) dx. (6.91)

The integral is replaced by a sum for discrete probability distributions.
We consider several commonly used tests in the remainder of this section.

6.6.1 Binomial Test

A binomial test is of interest whenever one has reasons to suspect changing conditions in a
fixed probability sampling experiment or process. One can, for instance, rely on binomial
sampling to monitor the sanity and good performance of the operation of a particle detector.
An analysis stream might be set up to identify a specific type of collision or process (e.g., a
very high charged particle multiplicity), hereafter called diagnostic events, which happen
with a probability p. Once the experimental conditions are fixed, one would expect this
particular process to “fire” a certain fraction of the time p and yield, on average, ⟨n⟩ = pN
diagnostic events in a set of N collected events. If the number n of observed diagnostic
events is too small or too large, one might then conclude that the experimental conditions
have changed, that is, that the response of the detector has shifted and now yields incorrect
results. Periodic measurements of event samples of size N could then be used to determine
whether the experimental response is improperly shifting.

Defining a central acceptance interval as [pN − 1, pN + 1], one writes

α = 1 −
pN−1∑

n=pN−1

N!
n!(N − n)!

pN (1 − p)N−n, (6.92)

which (approximately) determines the desired significance level α. For large values n and
N , one may use a Gaussian approximation with mean µ = pN and standard deviation
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σ =
√

p(1 − p)N :

α = 1 − 1√
2πσ

∫ µ−1

µ−1

dx exp

[

− (x − µ)2

2σ 2

]

, (6.93)

= 1 − %(−1/σ ) + %(1/σ ). (6.94)

Suppose, for instance, that the probability of the diagnostic events is p = 0.10. A sample
of N = 1000 events should thus, on average, yield ⟨n⟩ = 100 such events. Fluctuations well
below or far above this mean could be used to identify a shift in the detector performance.
Since one wishes to be on the safe side and identify potential problems early, one might
set the significance of the test to 10%. The standard deviation of a binomial distribution
is σ =

√
p(1 − p)N . For N = 1000, this yields σ = 9.5. Considering n and N are both

quite large, one can approximate the binomial distribution by a Gaussian distribution and
conclude that for a significance level α = 10%, degradation of the performance could be
identified if samples featured deviations by more than 1.65 × 9.5 = 15.7 from the mean
⟨n⟩ = 100. One could of course reduce the number of inquiries by reducing the significance
level of the test to 5%, but it would be probably be unwise to use a smaller value given that
changes in performance might be slow or small and not necessarily yield large shifts in the
value of the probability p.

6.6.2 Poisson Test

Whether by design or serendipitous happenstance, the discovery of new entities such as el-
ementary particles, stars, or galaxies, often occurs with the observation of a peak in a prob-
ability distribution, spectrum, or histogram. However, such a peak is commonly observed
atop a more or less flat background produced by known processes. What peak strength or
amplitude shall constitute grounds for a claim of discovery then seemingly stands as the
key question. Yet, proper scientific procedure requires that one first formulate a null hy-
pothesis H0 stipulating that the peak might be simply the result of background fluctuations.
The null hypothesis shall indeed be that the observed spectrum is consistent with known
processes or backgrounds, while the alternative hypothesis would be that the observed
peak corresponds to a new process or entity (e.g., a new particle). The task at hand, the
test, shall be to establish whether the observed peak is consistent with the null hypothesis,
that is, whether it might be caused by an upward fluctuation of background processes.

As a practical example, consider a search for a new particle based on the invariant mass
technique (described in §§8.2.1 and 8.5.1). The technique assumes that the purported par-
ticle decays in some specific channel involving two (or three) known particles. Having
measured the momenta of the particles, and accessorily identified their species, one can
determine the mass of the parent particle based on the invariant mass of the pair:

mp =

√√√√√m2
1 + m2

2 + 2| p⃗1|| p⃗2|

⎛

⎝
√

1 +
m2

1

| p⃗1|2

√

1 +
m2

2

| p⃗2|2
− cos θ12

⎞

⎠,
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where θ12 represents the angle between the momenta p⃗1 and p⃗2 of the detected particles.
Several (known) processes and combinatorial background could yield particle pairs with a
mass in the range of interest. Suppose that based on some prior knowledge, one expects the
background in a specific mass range will consist of nb = 52 pairs, but that ntot = 90 pairs
are actually measured. Can one conclude that the observed yield is incompatible with the
expected average, and that there is evidence for a new particle?

Clearly, one must decide, based on some general principles, what constitutes grounds
for inconsistency with the null hypothesis and thus a claim of discovery. While a signifi-
cance level of 10% or 5% is often considered sufficient to identify anomalous behaviors,
it does not seem justified to single out evidence for a new particle. Particle and nuclear
physicists alike typically require the level of significance to be of order of 3 × 10−7 or less
to reject the null hypothesis and announce the discovery of a new particle. In our exam-
ple, based on Poisson fluctuations one expects the standard deviation of the background
yield to be σ =

√
52 = 7.2. Excess above the expected background would thus be consid-

ered significant if it amounts to (approximately) five times the standard deviation, that is,
n = 52 + 5 × 7.2 = 88. Observation of 90 counts in the mass window of interest might
then be considered grounds for a claim of discovery, provided of course that one can un-
ambiguously demonstrate that the expected background level is correct. Observation of a
smaller number of counts (e.g, ntot = 73), though nearly 3σ in excess of the expected num-
ber of counts, would not be considered grounds for a claim of discovery. Deviations of this
magnitude, though rare, have in fact been observed experimentally with relatively small
datasets and later shown, with increased statistics, to indeed be only due to fluctuations.

Obvious complications arise in practice because the expected background may not be
known with absolute certainty, and thus, it has an estimated error of its own. The observed
counts should then exceed fluctuations from the expected background while accounting for
the fact that it might be underestimated. If the uncertainty on the background is σb = 3,
one might require the observed number of counts to exceed

n = nb + 3 × σB + 5 ×
√

nb + 3 × σb = 100 (6.95)

in order to conclude a new particle has been observed in our example, and then the observed
90 counts would not match this challenge. Note that we here used a factor of 3 toward the
estimation of an upper limit of the expected background. Even more conservative factors
(i.e., larger) can be used in practice.

6.6.3 Gaussian Test: Comparison of Sample Means with
Known Standard Deviations

A common situation encountered in statistical analysis involves the comparison of the sam-
ple means µ̂1 and µ̂2 obtained from two distinct sets of measurements of the same quantity.
One might, for instance, be interested in finding out whether values produced by different
experiments or techniques are compatible with one another. Alternatively, one might be
interested in assessing whether a change or improvement applied to a process has an im-
pact on the outcome of that process. In general, two samples taken from the same parent
distribution will have a different arithmetic mean. One is thus interested in distinguishing

1::79�  .�2��80 ������� 
�	���	���
�����	����291/.����2�/�� ���4�82.0/���2�/892: �8/99

https://doi.org/10.1017/9781108241922.008


266 Classical Inference III: Confidence Intervals and Statistical Tests

samples that are actually different from those that originate from the same parent distribu-
tion. The null hypothesis shall be that the two samples and their means are consistent with
one another.

Let us first consider the comparison of samples with means µ̂i, i = 1, 2, and known
standard deviation σi. The two values µ̂i are known to be randomly distributed about their
true value(s) according to Gaussian distributions with standard deviations σ1 and σ2, each
determined by the actual standard deviation of the samples divided by the number of mea-
surements in each sample. If the two means µ̂i, i = 1, 2 are representative of the same
parent distribution, their difference z = µ̂1 − µ̂2 should be compatible with zero. Actually,
the difference z should be distributed according to a Gaussian distribution with a null mean
and a variance equal to V [z] = σ 2

1 + σ 2
2 . We formulate a null hypothesis stipulating that z

should have fluctuations determined by σz =
√

V [z] with a null expectation value. One
can then test whether the means µ̂i, i = 1, 2 are compatible with one another by assessing
whether their difference z exceeds some threshold z0 considered to identify anomalous dif-
ferences. The threshold z0 determines the significance level α of the test (and conversely a
choice of α determines z0) according to

α = 1 − [%(z0/σz) − %(−z0/σz)] . (6.96)

Choosing, for instance, the confidence level α to correspond to a difference in excess of
3σ , one would reject the null hypothesis with a probability of 1% if the observed difference
|z| exceeds 3σ . Changes in the outcome of a measurement procedure could thus be readily
identified if the means differ by more than 3σ . Of course, one can require the test to be
less or more stringent based on the circumstances and needs of the situation. If the selected
value of α is large, the difference z required to flag an event or difference as anomalous is
small. Conversely, if α is chosen to be very small, the acceptance interval will be very large,
and very few normal events (or differences) will be considered as anomalous, and if differ-
ences in excess of |z0| are observed, they will be more likely due to genuine differences in
the two samples.

6.6.4 Student’s t-Test: Comparison of Sample Means with
Unknown Standard Deviations

While it might be reasonable to assume that two samples have Gaussian distributions, their
standard deviations may not be known a priori. A comparison of the means of the two
samples thus requires that one estimates their standard deviations according to

σ̂i =

√√√√ 1
ni − 1

ni∑

k=1

(
x(i)

k − µ̂i

)2
, (6.97)

where µ̂i represents the arithmetic means of the two samples, which consists of ni, i = 1, 2,
observed values x(i)

k .
Because estimates σ̂i rather than actual values σ of the standard values are available, one

cannot make use of the standard normal distribution to determine a confidence interval but
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must instead use Student’s t-distribution:

pt (t|n) = 1√
nπ

1(n + 1/2)
1(n/2)

1

(1 + t2/n)(n+1)/2
, (6.98)

for n degrees of freedom. A derivation of this expression is provided in §6.8. The variable
t is nominally defined as

t = (x − µ)
σ

σ

σ̂
= z

√
χ2/n

. (6.99)

In the context of the comparison of two sample means, one has x = µ̂1 − µ̂2, and µ = 0 if
the null hypothesis is correct. The variable z is the ratio of x by its standard deviation

z = µ̂1 − µ̂2√
σ 2

1 /n1 + σ 2
2 /n2

, (6.100)

while the χ2 can be written

χ2 = (n1 − 1)σ̂ 2
1

σ 2
1

+ (n2 − 1)σ̂ 2
2

σ 2
2

(6.101)

for n1 + n2 − 2 degrees of freedom. By virtue of the null hypothesis, it is legitimate to
assume that σ1 = σ2 and the variable t simplifies to

t = µ̂1 − µ̂2

S
√

1/n1 + 1/n2
, (6.102)

with

S2 = (n1 − 1)σ̂ 2
1 + (n2 − 1)σ̂ 2

2

n1 + n2 − 2
, (6.103)

which is a properly weighted estimate of the two samples’ standard deviation, known as a
“pooled estimate.”

Use of Student’s t-distribution to establish a confidence interval and/or significance level
proceeds as for other distributions. The probability that the difference |x| exceeds a specific
value x0 is given by

α =
∫ t0

−t0
pt (t|n) dt, (6.104)

where pt is computed according to Eq. (6.98) for n = n1 + n2 − 2 degrees of freedom and
t0 given by

t0 = x0

S
√

1/n1 + 1/n2
. (6.105)

Integrals of pt and values of t0 for specific significance levels α must nominally be com-
puted for each value of n. Such integrals are tabulated in the literature dating back to
times when computing resources were scarce [5]. However, tools to evaluate Student’s t-
distribution and the foregoing integral are now also available in most statistical software
packages, including ROOT [59].
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6.6.5 Theχ2 Test: Goodness-of-Fit

Modeling and fitting data is the bread and butter of physicists and scientists alike. Yet, the
question remains for every fit: does the model used in the fit provide a suitable representa-
tion of the data, or is there evidence of incompatibilities between the data and the model?
To answer this question, we formulate a null hypothesis that posits that the model does in
fact provide a good description of the data, but that fluctuations and errors may introduce
apparent deviations between the two. One then needs to consider the probability that such
fluctuations arise and establish, for a given significance level, a measure of what might
constitute a meaningful deviation between the data and the model (fit). This measure is
formulated in the form of a statistics based on the data sample and the results of the fit. If
the statistics deviates “too much” from values expected to be representative of a good fit,
one should reject the fit and/or the mathematical model used in the description of the data.

The χ2 test, by far the most commonly used goodness-of-fit test, is based on the statistics
χ2 defined as

χ2 =
N∑

i=1

(yi − f (xi|θ⃗ ))2

σ 2
i

. (6.106)

The sum is taken over N relevant data points (xi, yi) where xi and yi are considered in-
dependent and dependent variables, respectively. The function f (xi|θ⃗ ) is a mathematical
model meant to describe the relation between the observables x and y and is determined by
m parameters θk . The values σ 2

i represent the variance of the measurements yi, that is, they
represent the variance that (infinitely many) repeated measurements of the values yi would
yield if such repeated measurements could be performed.

If the measurements errors of the N data points yi are correlated, the χ2 is written

χ2 = (y⃗ − f⃗ )T V−1(y⃗ − f⃗ ), (6.107)

where V−1 is the inverse of the covariance matrix of the measurements yi.
The χ2 test can be used to compare data with a fixed-parameters model or with the

outcome of a fit. Fitting techniques to find model parameters that best match the data (i.e.,
minimize the χ2) are discussed in §§5.2 and 7.6.

The null hypothesis is that the function f (xi|θ⃗ ) does describe the data. If that is truly the
case, one would expect that each of the differences yi − f (xi|θ⃗ ) would be, on average, of
the order of σi owing to statistical fluctuations. One would then expect the χ2 to be roughly
equal to N on average. If χ2 is much larger than N , it provides an indication that the fit is
bad or that the model function f (xi|θ⃗ ) does not provide an appropriate description of the
data.

We showed in §3.13.3 that if the values yi fluctuates according to Gaussian distributions
with standard deviations σi, the χ2 function is expected to fluctuate according to a χ2-
distribution for n degrees of freedom:

pχ2 (χ2|n) = 1
2n/21(n/2)

χn−2e−χ2/2. (6.108)
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The number of degrees of freedom n here corresponds to the total number of points if the
model has no free parameter, or to the number of fitted points N minus the number of free
parameters m used in the fit. The probability α(χ2

0 , N ) of observing a χ2 in excess of a
certain value χ2

0 with n degrees of freedom is then

α(χ2
0 , N ) =

∫ ∞

χ2
0

pχ2 (χ2|n) dχ2. (6.109)

At this point, two paths are possible. One may decide on a desired level of significance and
determine the minimal values χ2

0 beyond which all observed χ2 would be flagged as in-
consistent with the null hypothesis. Unfortunately, this requires the values χ2

0 be calculated
for each possible values of the number of degrees of freedom n, a rather tedious process.
A second path is thus often used in practice, which consists in calculating the integral in
Eq. (6.109) with a lower boundary χ2

0 replaced by the χ2 obtained in specific fits. If the
integral yields a value smaller than a preselected significance level (e.g., α = 0.01), one
may then reject the null hypothesis and consider the function to be an invalid description
of the measured data.

However, it should be stressed that the probability α(χ2
0 , N ) is strictly accurate only if

the fluctuations of the variables yi are actually Gaussian and that the errors σi are properly
evaluated. If the errors are inflated (i.e., overestimated), the measured χ2 will be too small
and the function might not be appropriately rejected. Conversely, if the errors are under-
estimated, the measured χ2 will be too large, and the function might then be improperly
rejected. It is thus rather important to calibrate measurement errors if a χ2 test is to be used
to accept/reject fits performed on data sets. A very low χ2 might alternatively result from
“overfitting,” that is, the use of a function with too many parameters given the number of
data points. For instance, the fit of a distribution involving three data points with a poly-
nomial of order 3 or more would obviously yield a perfect fit and a null χ2, but it is clear
that three points alone do not provide sufficient information to uniquely determine the co-
efficients of such a polynomial. A small or null χ2 thus does not always provide a reliable
indicator of the goodness of a fit. In this context, indeed, the χ2 is essentially meaningless
because the fit function simply has too many parameters and the data can seemingly be
fitted to any degree of accuracy. While it is readily obvious that fitting three points with
a polynomial of order 2 (or higher order) shall yield a perfect fit, there are situations in
which it might not be readily obvious whether a fit function (i.e., a model) might have too
many parameters. In such cases, the χ2 shall be very low and the uncertainty on some the
model parameters very large, but there is no simple recipe to evaluate whether the data
quality warrants the given model complexity. Simply put, the frequentist paradigm does
not provide a statistic to readily evaluate whether a model might feature too many or too
few parameters. In contrast, we will see in Chapter 7 that the Bayesian paradigm provides
a natural Occam’s razor mechanism to identify unnecessary model parameters.

Figure 6.18 illustrates how the discriminating power of a fit (§6.4.1) and associated χ2

increases in inverse proportion to the size of measurements errors. For illustrative purposes,
data (xi, fi) were generated with Gaussian deviates to obey a parabolic dependence f (x) =
b0 + b1x + b2x2 with relative measurement errors, σ/ f , ranging between 0.05% and 50%,
as shown in panels (a) through (e). We then proceeded as if the true functional form of
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Fig. 6.18 Illustration of the discriminating power of theχ 2-test with decreasing errors. All simulated data were generated with
the same quadratic function but such that measurement errors ranged from 50% in panel (a) to 0.05% in panel (e).
Panel (f) displays theχ 2/DoF of the linear and quadratic fits to the data. The quadratic fit consistently yields
χ 2/DoF ≈ 1 but theχ 2/DoF of the linear fits rises to very large values for relative errors below 1%, and
the null hypothesis stipulating that a linear dependency is consistent with the data is readily rejected for such
small errors.

the data was unknown and fitted the data with a linear model f1(x) = a0 + a1x as a null
hypothesis, and a quadratic form f2(x) = a0 + a1x + a2x2 as an alternative hypothesis. The
χ2 of both fits were plotted as a function of the relative error in panel (e). One finds that
as the relative errors decrease the quality of the linear fit (solid line) progressively worsens
and yields large χ2/DoF, whereas, in contrast, the quadratic fit consistently improves and
yields more or less constant values χ2/DoF ≈ 1. The rejection of the linear model is not
warranted for large measurement errors but can be readily accomplished with small errors.
The power of the test 1 − β to reject the linear fit as the alternative hypothesis is plotted
in Figure 6.20 as a function of the relative measurement errors. One finds that for relative
measurement errors smaller than 0.5%, the χ2 distributions of the linear and quadratic fits
are very well separated, thereby yielding (within the precision of the calculation shown) a
power 1 − β essentially equal to unity. In situations where the variables yi represents a yield
Ni (e.g., number of counts, a number of events, etc.) and the function f (xi|θ⃗ ) amounts to
the expected rate of occurrences N pi(xi), with N being the total number of observed events,
the test becomes a Pearson’s χ2 test with

χ2 =
N∑

i=1

(Ni − N (xi|θ⃗ ))2

N (xi|θ⃗ )
, (6.110)
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271 6.6 Commonly Used Tests

Fig. 6.19 χ 2-Distributions obtained with the linear and quadratic fits shown in Figure 6.18 for 10,000 repeated simulated
measurements with relative errors ranging from 0.5% to 5% as shown. The confidence level shown in the top left
panel are for 22 degrees of freedom. The rejection power of the linear hypothesis (dotted line) clearly increases when
measurement errors are reduced.
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Fig. 6.20 Power of theχ 2 test shown in Figure 6.19 for three significance levels as a function of the relative errors used in the
simulations.
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Fig. 6.21 The principle of theRun Test is here illustrated with a linear fit of two distinct parent distributions. One expects
that statistical fluctuations should yield points randomly distributed below and above the fit if the parameterization
used is a reasonable model of the parent distribution, as shown on the left for f1. This basic expectation is clearly not
met with the linear fit of the quadratic function f2.

where one has replaced the variances σ 2
i by N (xi|θ⃗ ). This modified χ2 functions fluctu-

ates according to a χ2 distribution provided the values Ni fluctuate according to Gaussian
distributions or Poisson fluctuations in the large N limit.

The χ2-test is often not sufficient to convincingly accept or reject the null hypothesis. For
instance, structures in residuals (i.e., difference between the observed and values predicted
by a fit) may serve as an indicator of poor fit quality. Indeed, residuals considered as a func-
tion of the independent variable x should show a random (Gaussian if the measured values
have Gaussian deviates) distribution around zero to be trustworthy. Significant structures
or orderings of the residues thus provide an indicator that the null hypothesis might need
to be rejected. An additional goodness-of-fit test known as a run test may then be used
to discriminate situations where the χ2 is relatively small but the model visually incom-
patible with the data, as illustrated in Figure 6.21. The run test, discussed for instance by
Barlow [26], determines the probability that such seemingly unlikely situation (i.e., large
nonrandom residue structures) might occur and thus enables additional power toward the
rejection of a fit and the model on which it is based.

6.6.6 Histograms’ Compatibility

Just as it is commonly of interest to compare predictions of a model with data, it is of-
ten useful to compare two or more histograms against one another. One may, for instance,
compare data distributions produced by different experiments and examine their degree of
compatibility. Alternatively, one may wish to compare results produced by a single experi-
ment but across the life of the experiment. This is particularly useful in identifying whether
the conditions or performance of the experiment evolve over time.

Let us assume we wish to compare two histograms, a control distribution H⃗ (0) and a
sample H⃗ (1), in order to establish whether the two samples (distributions) have the same
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parent distribution. Let us assume the two histograms were obtained with the same number
of bins m and are both normalized to represent average number of entries per event. If the
two histograms have the same parent distribution, their difference calculated bin-by-bin,
&i = H (0)

i − H (1)
i , should average to zero with a variance σ 2

i = (σ (0)
i )2 + (σ (1)

i )2 where
(σ (0)

i )2 and (σ (1)
i )2 are the variances of the respective bins. Let us further assume that the

variances are either known or can be estimated with reasonably high precision. The sum∑
i (&i/σi)

2 then constitutes a χ2 variable distributed according to a χ2-distribution. One
can thus use a χ2-test with m degrees of freedom to evaluate the compatibility of the two
histograms to any desired level of significance.

Few remarks are in order. First, note that if the variances (σ (1)
i )2 of the m bins of sample

H⃗ (1) are not very well known, one can set σ 2
i = 2(σ (0)

i )2 since the null hypothesis stipulates
that the two histograms have same parent distribution. Additionally, note that if the two
histograms are normalized to have the same integral rather than being normalized per
event, the same procedure may be applied but the number of degrees of freedom is then
reduced by one unit. If the two distributions have unequal numbers of bins or points, it
might be possible to instead use the Kolmogorov test, presented in the next section.

6.6.7 Kolmogorov–Smirnov Test

The Kolmogorov–Smirnov test (KS test), also often called the Kolmogorov test, is a
nonparametric test of the equality of continuous, one-dimensional probability distributions.
It can be used to test the compatibility of a sample distribution with a reference probability
distribution (one-sample KS test), or to compare two samples (two-sample KS test). Unlike
the histogram compatibility test presented in the previous section, the KS test makes no
assumption on the number of points (bins) or the variances of the samples.

The test is based on the Kolmogorov–Smirnov statistic, which expresses the distance
or difference between the empirical distribution function (EDF) of the sample (defined
below) and the cumulative distribution function (CDF) of the reference distribution (or
alternatively, the sample and control empirical distributions).

The null hypothesis is that the sample being tested is determined by the reference dis-
tribution (one-sample KS test) or that two samples being compared have the same parent
distribution (two-sample case). The distributions considered under the null hypothesis are
continuous but otherwise unrestricted. Formally, the EDF Fn(x) of a sample is defined as

Fn(x) = 1
n

n∑

i=1

I (xi ≤ x) (6.111)

where n is the size of the sample and I (xi < x) is called the indicator function, defined
such that

I (xi < x) = 1 if xi ≤ x, (6.112)

0 otherwise. (6.113)

This is equivalent to sorting the measured values of a sample in ascending order and sum-
ming the number of sampled values smaller than x. Alternatively, if the sample is provided
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Table 6.3 Critical values dα of the KS test listed for selected significance levels

α 20% 10% 5% 2.5% 1% 0.5% 0.1%

dα 1.07 1.22 1.36 1.48 1.63 1.73 1.95

in the form of an m bins histogram H⃗ = (H1, . . . , Hm), where the values of x are implicitly
sorted in ascending order, rather than a list of values as earlier, the function Fn(x) becomes

Fk = 1
m

k∑

i=1

Hi, (6.114)

where k = 1, . . . , m. For a given cumulative distribution function, F (x), the Kolmogorov–
Smirnov statistic is defined as

Dn = sup
x

|Fn(x) − F (x)| , (6.115)

which corresponds to the maximum deviation between the cumulative distributions. One
finds that dn =

√
nDn converges to the Kolmogorov distribution [129], and one may reject

the null hypothesis at a level of significance α for

dn ≡
√

nDn > dα. (6.116)

Several critical values dα and their respective levels of significance are listed in
Table 6.3.

When the KS test is used to compare to measured samples, the Kolmogorov–Smirnov
statistic becomes

Dn,n′ = sup
x

∣∣F1,n(x) − F2,n′ (x)
∣∣ . (6.117)

The null hypothesis is then rejected at level α if

Dn,n′ > dα

√
n + n′

nn′ (6.118)

with values of the coefficient dα , listed in Table 6.3.

Example of the KS Test
Two samples of 1,000 events each, shown in Figure 6.22b, were generated according to
parent distributions

f1(x) = 1√
2πσ

e− (x−µ)2

2σ2 (dashed line), (6.119)

f2(x) = [1 + 0.2(x − µ)] × f1(x) (dotted line), (6.120)

with µ = 3 and σ = 0.7, shown in Figure 6.22a. While it is straightforward to distinguish
the two (parent) distributions (or with infinite statistics plotted on a log scale), it is rather
difficult to determine whether the two samples shown in Figure 6.22b originate from the
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Fig. 6.22 Example of application of the Kolmogorov–Smirnov test. (a) Parent distributions f1 and f2 listed in the text. (b) 1,000
events samples generated with distributions f1 and f2. (c) Cumulative distributions. (d) Relative probability of the
maximum difference dn for both types of samples.

same or distinct parent distributions. We thus carry out a KS test to establish whether either
sample is compatible with the parent f1. Cumulative distributions of the two samples are
compared to the cumulative distribution F1 of the first parent distribution f1 in Figure 6.22c.
One observes that the cumulative distribution of the first sample essentially overlaps with
F1, whereas the cumulative distribution (dotted line) of the second sample exhibit signifi-
cant differences with the parent cumulative distribution F1. The largest difference, of order
0.016, multiplied by

√
1,000, is found to be 1.19, which is in excess of the 20% confidence

level of 1.07 and thus constitutes grounds for excluding the null hypothesis that the second
sample might originate from the same parent distribution as the first sample.

The “experiment” was then repeated 100,000 times: for each experiment, we generated
a sample of 1,000 values and created their cumulative distributions. The maximum differ-
ences between these and the cumulative distribution F1 are plotted in Figure 6.22d where
arrows indicate the 20%, 10%, and 1%. One finds the distribution of dn obtained with the
first sample (dashed line) covers values typically smaller than unity whereas the second
distribution lies mostly above this value. The test thus indeed enables a distinction between
parent distributions to be made even when the difference may not be readily obvious to the
human eye.
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Fig. 6.23 (Left) A symmetry exists between parametersα andβ . If tcut is raisedβ increases whileα decreases, and conversely.
Right: Tests viewed as functions of bothα andβ .

6.7 Test Optimization and the Neyman–Pearson Test

6.7.1 Test Optimization

The choice between tests usually relies on a comparison of their power curves for a given
value of the significance level α. While the value of α determines the risk of an error of
the first kind (false rejection of H0), the value of β = 1 − p controls the risk of an error of
the second kind (contamination or incorrect acceptance of H0). It is common practice to
first choose α and thence find which test provides the best power. However, there is clearly
a certain form of symmetry between α and β, as shown in the left panel of Figure 6.23,
and one obviously wishes to minimize both types of errors. It is thus useful to regard tests
as simultaneous functions of both α and β, as illustrated in the right panel of the figure.
The function βα = 1 − α corresponds to the dotted diagonal line below which, for a fixed
value of α, all other tests have a large power than α, and can thus be considered consistent.
By extension, all tests described by curves below this straight line are therefore strictly
unbiased (for all values of α). Actual tests tend to follow a curve such as T (typical). For
specific values of θ0 and θ1, decreasing α usually requires raising the value tcut, used to
define the critical boundary, and this then simultaneously increases β, thereby reducing the
power of the test. Conversely, efforts to reduce β for a specific test will end up producing
a larger value of α. The question thus arises as to whether there might exists some tests
A or B, as illustrated in Figure 6.23, that are more acceptable than T because they reduce
the values of both α and β simultaneously. In 1933, Jerzy Neyman and Egon S. Pearson
established that given two hypotheses H0 and H1, there exists a most powerful test, now
known as the Neyman–Pearson (NP) test, which is at least as good as any other tests for
all values of α and β. This test is based on a ratio of likelihood functions and is described
below. Because the implementation of the Neyman–Pearson test is often cumbersome or
does not exist if hypotheses are composite, then it is commonly acceptable to resort to lower
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277 6.7 Test Optimization and the Neyman–Pearson Test

performing tests, such as tests A and B in Figure 6.23. Obviously, test A should be chosen,
in this example, if α < αAB is desired given that it enables a higher power in that range of
α. Conversely, B should be used if a value α > αAB is deemed acceptable. Comparing tests
according to their simultaneous performance as a function of α and β permits the selection
of the best test for a given job or analysis. In general, deciding on a specific value of α (and
consequently β) requires knowing the cost or consequences of a wrong decision. Errors of
the first kind might be more acceptable in certain experiments, while others might better
tolerate errors of the second kind.

6.7.2 Formulation of the Neyman–Pearson Test

In order to formulate the Neyman–Pearson test, let us consider a measured data sample
x⃗ = (x1, . . . , xn) in its entirety, and let us assume it is determined by a PDF fn(x⃗|θ ). For
simplicity’s sake, we will also assume that the parameter θ takes a value θ = θ0 if the null
hypothesis H0 is correct and a value θ = θ1 according to the alternative hypothesis H1. The
goal of the test is to find out whether the data x⃗ are consistent with the null hypothesis H0,
or if H0 should be rejected in favor of H1. We will additionally assume that fn(x⃗|θ ) is a
continuous and smooth function of θ between θ0 and θ1.

Given a desired significance level α, one expects that there is a portion of the domain of
x⃗ which can be identified as a critical (rejection) region Dc such that

∫

Dc

fn(x⃗|θ0) dx⃗ = α, (6.121)

∫

Dc

fn(x⃗|θ1) dx⃗ = 1 − β. (6.122)

Our goal is to find the region Dc, given α, which maximizes the power 1 − β. To this
end, it is convenient to rewrite Eq. (6.122) as

1 − β =
∫

Dc

fn(x⃗|θ1)
fn(x⃗|θ0)

fn(x⃗|θ0) dx⃗, (6.123)

=
∫

Dc

rn(x⃗|θ0, θ1) fn(x⃗|θ0) dx⃗, (6.124)

where we have introduced the ratio rn(x⃗|θ0, θ1) as

rn(x⃗|θ0, θ1) = fn(x⃗|θ1)
fn(x⃗|θ0)

. (6.125)

Inspection of Eq. (6.124) reveals that it corresponds to the expectation value of the function
rn over the domain Dc according to the null hypothesis H0(θ0):

1 − β = EDc [rn(x⃗|θ0, θ1)] , (6.126)

= EDc

[
fn(x⃗|θ1)
fn(x⃗|θ0)

∣∣∣∣
θ=θ0

]

. (6.127)
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The power is consequently optimal if and only if the Dc is a fraction of the domain of x⃗
which contains the maximum value of the ratio rn. This is easily guaranteed by selecting
points such that

rn(x⃗|θ0, θ1) = fn(x⃗|θ1)
fn(x⃗|θ0)

≥ rα, (6.128)

where the constant rα must be chosen to correspond to the desired level of significance α.
The Neyman–Pearson test is thus formulated as follows:

! If rn(x⃗|θ0, θ1) > rα , reject H0, and choose H1.! If rn(x⃗|θ0, θ1) ≤ rα , choose H0.

It is important to note that the function rn(x⃗|θ0, θ1) is a statistic evaluated for specific
points x⃗ and corresponds, in fact, to the ratio of the likelihood of x⃗ according to the hy-
potheses H1 and H0. Clearly, for the test to be usable it should be possible to calculate
the likelihood function fn(x⃗|θ ) for both θ = θ0 and θ = θ1 at all points of the space of
interest. This, in turn, implies that both H1 and H0 must be simple hypotheses. If these
conditions are verified, the Neyman–Pearson test provides by construction the best power
1 − β against the chosen value of the significance level α and the given data x⃗. Extensions
of the Neyman–Pearson test to composite hypotheses are possible but not guaranteed to
yield an optimal test [116].

6.7.3 Comparison of Sample Means with the Neyman–Pearson Test

Let us reexamine the situation, already discussed in §6.6.3, where a change is made to a
process that yields entities with a certain property x. The purpose of the test is to determine
whether the change has in fact affected the property value x. We once again assume that
the mean value of x prior to the change is known to be µ, and that measurement errors are
Gaussian deviates with a known standard deviation σ . The test is conducted by measuring
a sample of N values xi and taking their mean x̄. The null hypothesis H0 shall be that
the change in process has not altered the mean, that is, the measured mean x̄ shall have
an expectation value µ0 = µ. The alternative hypothesis shall then be that the mean has
changed and now has a value µ1.

Let us proceed to build a Neyman–Pearson test. Given that measurements are assumed
to yield Gaussian fluctuations with standard deviation σ , the test may then be formulated
based on the ratio r of the likelihood functions of x⃗ given hypotheses H1 and H0:

r =
1√

2πσ
exp

[
− 1

2σ 2

∑N
i=1 (xi − µ1)2

]

1√
2πσ

exp
[
− 1

2σ 2

∑N
i=1 (xi − µ0)2

] . (6.129)

Introducing the sample mean x̄ = 1
N

∑N
i xi, Eq. (6.129) simplifies to

r = exp
[
− N

2σ 2
(µ1 − µ0) (µ0 + µ1 − 2x̄)

]
(6.130)
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Taking the log on both sides, one writes

2σ 2

N
ln r = − (µ1 − µ0) (µ0 + µ1 − 2x̄) . (6.131)

The expectation value of x̄ depends on which of the two hypotheses is correct. If H0 is
correct, one gets E [x̄] = µ0, whereas if H1 is correct, one has E [x̄] = µ1. Either way, the
variance of x̄ is σ 2/N . It is then useful to define a deviate z according to

z = x̄ − µ0

σ/
√

N
, (6.132)

which, by construction, is Gaussian distributed with unit standard deviation and expecta-
tion values

E[z] =

⎧
⎨

⎩

0 for H0

µ1−µ0

σ/
√

N
for H1

(6.133)

Substituting in Eq. (6.131), one gets, after some simple algebra

r′ ≡ 2σ 2 ln r

N (µ1 − µ0)2 = −
(

1 − 2
zσ√

N (µ1 − µ0)

)
, (6.134)

where, for notational convenience, we introduced the statistics r′ which clearly has expec-
tations values

E[r′] = E
[

2σ 2 ln r
N (µ1 − µ0)2

]
=

{
−1 for H0,

+1 for H1

(6.135)

Since z is Gaussian distributed with unit standard deviation, the statistics r′ is also Gaus-
sian distributed but its standard deviation decreases proportionally to

√
N . For a given σ ,

the PDFs p(r′|Hi), i = 0, 1, are thus increasingly separated for increasing N , as illustrated
in Figure 6.24. For sufficiently large N , it then becomes possible to distinguishes which of
the two hypotheses is the best. The Neyman–Pearson test requires the ratio of likelihood
functions for hypotheses H1 and H0 to exceed some value rα , for a given significance level
α. Given Eq. (6.134), this translates in a cut on z. The critical region is then defined for val-
ues z > zα (assuming µ1 > µ0) where zα is the α-point of the standard normal distribution.
The power of the test is then

1 − β =
∫ ∞

zα

1√
2π

exp
(

− (z − &)2

2

)
dz, (6.136)

where

& =
√

N
σ

(µ1 − µ0) . (6.137)

One thus find that the power increases with µ1 − µ0 as well as N , as expected from Fig-
ure 6.24.
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Fig. 6.24 Probability density of r′ corresponding to the scaled ratio of likelihood of hypotheses H1 and H0, where
r′ ≡ 2σ 2 ln r/N(µ1 − µ0)2.

Other tests of the equivalence of two samples may be applied, but one can show that the
aforementioned Neyman–Pearson test indeed yields the most powerful test and discrimi-
nation power between the null and alternative hypotheses [116].

6.8 Appendix 1: Derivation of Student’s t-Distribution

Student’s t-distribution, Eq. (3.161), expresses the probability (density) of observing a cer-
tain value of t defined as

t = x − µ

σ̂
, (6.138)

where x is a continuous random variable Gaussian distributed with a mean µ and a standard
deviation σ , while σ̂ constitutes an estimates of σ obtained from a sample {xi} according
to

σ̂ 2 = 1
N

N∑

i=1

(xi − µ)2 (6.139)
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if the mean µ is known and

σ̂ 2 = 1
N − 1

N∑

i=1

(xi − µ̂)2 (6.140)

if calculated in terms of an estimate µ̂ of the mean.
In order to derive Student’s t-distribution, it is convenient to rewrite t as

t = (x − µ)
σ

σ

σ̂
= (x − µ) /σ

√
(nσ̂ 2/σ 2) /n

= z
√

χ2/n
, (6.141)

where, in the second equality, we introduced z = (x − µ)/σ and χ2 = nσ̂ 2/σ 2, with n
equal to N or N − 1 as appropriate. By construction, z and χ2 should be distributed as a
standard normal (i.e., σ = 1) and χ2-distribution for n degrees of freedom, respectively.
The joint probability of observing values z and χ2 is

p(z,χ2|n) = e−z2/2

√
2π

×
(
χ2

)n/2−1
e−χ2/2

2n/21(n/2)
. (6.142)

One obtains a distribution for t by integrating all values of z and χ2 meeting the condition
t = z/

√
χ2/n:

pt (t|n) =
∫

dχ2
∫

dz δ(t − z/
√

χ2/n) e−z2/2
√

2π
× (χ2 )n/2−1

e−χ2/2

2n/21(n/2) , (6.143)

= 1√
nπ

1(n + 1/2)
1(n/2)

1

(1 + t2/n)(n+1)/2
. (6.144)

Exercises

6.1 Consider an experiment measuring the mass and width of a short-lived resonance
based on an invariant mass spectrum. Assume the estimates are normally distributed
with a covariance matrix

V =
(

σ 2
M ρσMσ1

ρσMσ1 σ 2
1

)

.

Show that one can establish a symmetric β confidence interval for the mass of the
resonance M0 conditional on its width according to

M̂ − ρσM

σ1

(
1̂ − 10

)
− Z(1−β )/2σM

√
1 − ρ2 ≤ M0

≤ M̂ − ρσM

σ1

(
1̂ − 10

)
− Z(1+β )/2σM

√
1 − ρ2 (6.145)
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282 Classical Inference III: Confidence Intervals and Statistical Tests

where M̂ and 1̂ are estimates obtained by the experiment for the mass and width of
the resonance, respectively; Z(1±β )/2 correspond to the α and β points of the proba-
bility of the mass M given by

P(Zα ≤ Z ≤ Zα+β |1) = β,

where

Z =
M −

[
M0 + ρσM

σ1
(1 = 10)

]

σM

√
1 − ρ2

.

Discuss how this result can be used to constrain the mass M0 if a prior estimate 1∗

for the width 10 is known from a previous experiment.
6.2 The melting point of two material specimens are determined by actually melting a

fraction of each of the specimens. One finds that the first specimen has a melting
point of 303 ± 5 K, while the second specimen is determined to have a melting point
of 307 ± 4 K. Assuming measurements of temperatures yield Gaussian distributions
with the quoted standard deviations, establish if the two samples are likely to be the
same substance based on a Gaussian test using a confidence level of 5%.

6.3 A steel company changes the composition and shape of the steel beams it manufac-
tures in order to reduce production costs. However, the company needs to demon-
strate that the new beams feature the same quality standards as the older version. If
their measurements show that the original beams can withstand a tensile stress of
412 ± 20 MPa3, and the new beams have a mean strength of 393 ± 18 MPa, would
you conclude that the quality of the new beams is necessarily inferior to that of the
original beams?

6.4 An experiment searching for proton decays based on a sample of 2,000,000 kg of
hydrogen for one year reports the observation of five background events. Calculate
the 99% confidence level for the number of proton decays, and determine an upper
limit for the half-life of the proton.

6.5 A very high-precision magnetic spectrometer is used to measure the momentum of
electrons produced by beta decay of tritium nuclei. Researchers use the end-point of
the electrons’ momentum spectrum to determine the mass of the neutrino and find
a raw mass value of −0.1 eV. Assuming the spectrometer has a Gaussian response
with a standard deviation σ = 0.05 eV, determine a 90% upper limit on the mass
of the neutrino using (a) a basic upper limit belt and (b) the unified approach. Also
determine the minimum mass the neutrino must have for this experiment to claim
a discovery with a 5σ significance level. Compare your estimates to those of the
KATRIN experiment [142].

6.6 Consider an experiment for which you must determine the particle detection effi-
ciency as a function of momentum. Assume it is possible to determine the efficient

3 MPa = Mega-Pascal.

1::79�  .�2��80 ������� 
�	���	���
�����	����291/.����2�/�� ���4�82.0/���2�/892: �8/99

https://doi.org/10.1017/9781108241922.008


283 Exercises

based on the embedded track technique. Use the table below to estimate the detec-
tion efficiency and its error using (a) a simple Gaussian approximation and (b) the
Feldman–Cousins ordering technique.

p⊥ range Embedded Found
0.5–1.0 10,000 9,945
1.0–2.0 9,010 8,456
2.0–3.0 7,890 7,333
3.0–5.0 5,550 5,211
5.0–10.0 4,442 4,012

6.7 An experiment produces 100 data points, which you proceed to fit with linear
and quadratic models. You obtain a χ2/DoF = 2.5 with the linear fit whereas the
quadratic fit yields χ2/DoF = 2.1. Can you reject the linear hypothesis? Can you
accept the quadratic hypothesis?
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7 Bayesian Inference

Concepts and tools commonly used by classical statisticians and scientists in their work,
discussed in detail in the previous three chapters, may appear disconnected, and at times,
somewhat arbitrary. This uneasy feeling stems largely from the very definition of the fre-
quentist notion of probability as a limiting frequency. By contrast, within the Bayesian
paradigm, data are regarded as facts, and it is the models and their parameters, globally
regarded as hypotheses, that are given a probability. Indeed, the capacity to assign a de-
gree of plausibility to hypotheses, and the integration of probability as logic enables the
elaboration of a systematic and concise inference program that is easy to follow (if not to
calculate) and is well adapted to the scientific method.

The basic structure and components of the Bayesian inference process are defined and
summarized in §7.2. The following section, §7.3, presents a discussion of technical matters
associated with choices of prior probability functions as well as probability models. Basic
examples of Bayesian inference in the presence of Gaussian noise, including Bayesian
fits with linear models (i.e., models that are linear in their parameters), are discussed in
§7.4, while Bayesian fitting in the presence of non-Gaussian noise and nonlinear models
is introduced in §7.5. A variety of numerical techniques amenable to the calculation of the
mode of posterior probabilities and χ2 minimization are next discussed in §7.6. Finally,
§7.7 presents an introduction to Bayesian model comparison and entity classification with
two simple examples of commonly encountered model selection problems.

7.1 Introduction

Thanks to tremendous developments since the mid-twentieth century, frequentist statisti-
cians, and thus by extension all scientists, are now equipped with a rather sophisticated ar-
senal of tools adapted to a great variety of measurements and inference problems. However,
many Bayesian statisticians would argue that the frequentist methods are typically nonintu-
itive and form a collection of somewhat arbitrary and seemingly disconnected techniques.
They would further argue that a more intuitive and better integrated approach to infer-
ence is needed and, in fact, possible within the Bayesian paradigm, and most particularly
within the context of the interpretation of probability as an extension of logic. While the
goals of Bayesian inference are not altogether different from those of classical inference,
the Bayesian interpretation of the notion of probability as a level of plausibility (or degree
of belief) does in fact enable a more intuitive, systematic, and well-integrated inference
process. Indeed, the fact one can associate a prior degree of plausibility to statements or

284
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285 7.1 Introduction

hypotheses about the real world and determine the posterior degree of plausibility of said
hypotheses based on data greatly expands the realm of inference and enables a more satis-
factory set of procedures, which is arguably better adapted to the scientific method.

The practical difference between frequentist and Bayesian inferences is that a treatment
of statistics based on subjective probability enables statisticians to express model param-
eters and their uncertainties in terms of probabilities. This cannot actually be done in the
frequentist approach. For instance, frequentist 95% confidence intervals imply that for re-
peated measurements, 95% of confidence intervals derived from data would actually cover
the parameter being measured. But beyond that point, the notion of probability is not appli-
cable in the frequentist approach. By contrast, Bayesian statistics and inference can com-
pare hypotheses directly and choose (infer) which is best supported by the measured data.
Frequentists cannot use a probability in this fashion and must instead consider long-run
frequency as extreme or in excess of the observed values, which is intuitively somewhat
unclear.

All said, Bayesian statistical inference can be decomposed into three types of consider-
ations and classes of techniques. They include

1. Determination of the posterior probability of a model and its parameters based on mea-
sured data

2. Characterization of the posterior to estimate (model) parameters and their errors, as well
as compare models

3. Calculation of predictive distributions

By contrast, frequentist inference is focused on the data, which it regards as instances
drawn out of a sample space, and its main components include the formulation of a prob-
ability model to interpret the data, the calculation of the likelihood to distill key features
of the data or model parameter values, and comparison of a null hypothesis with compet-
ing hypotheses (hypothesis testing). These three components may obviously be regarded as
“special cases” of the broader and more comprehensive Bayesian inference process. Distil-
lation of key features of the data includes, in particular, the estimation of model parameters
and associated confidence intervals of interest in either approaches of probability, as is the
need to test hypotheses. The Bayesian approach, however, provides a more robust and com-
prehensive framework for such studies. We will thus endeavor to discuss all aspects of the
Bayesian inference process in detail throughout this chapter.

The centerpiece of these considerations is the determination of the posterior probability
of one or several hypotheses based on measured data. That involves the identification of
a suitable data probability model to describe the measurement process (e.g., fluctuations
of measured observables), the choice or evaluation of a prior probability for the physical
model and its parameters, the determination of a likelihood function based on the probabil-
ity model, the measured data and various assumptions about the measurement process, and,
finally, a straightforward use of Bayes’ theorem. Once the posterior is known, one can then
make specific statements about the observables (discrete or continuous hypothesis) or the
parameters of the model. Such statements about the posterior, commonly known as sum-
maries by Bayesian statisticians, include the determination of the most likely values of the
parameters (i.e., the mode of the distribution) as well as the evaluation of credible ranges
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286 Bayesian Inference

for the model parameters of interest. Additionally, given the posterior, it is also possible to
make predictive inferences and calculate the probability of other observables of interest or
predict the outcome of further measurements (predictive inference).

While many scientists still work within the frequentist paradigm and make regular use
of “frequentist techniques” to analyze their data, a growing number are embracing the
Bayesian paradigm and base their statistical analyses on the subjective interpretation of
probability and Bayes’ theorem. It was thus tempting to focus this textbook entirely on the
most recent developments in Bayesian statistics. We feel, however, that it would be unfair
to the young men and women beginning their training as scientists given that a very large
fraction of works published, even today, are rooted in the frequentist paradigm or, at the
very least, make use of frequentist terminology. It is thus important for young scientists
to be equipped with a minimal frequentist toolset so they can understand past works in
their field as well as the ongoing debate between Bayesians and frequentists. This said, it
is also clear that the framework provided by probability as logic and Bayesian inference
enables a robust and well-structured approach to data analysis including both deductive
and predictive inferences, which might eventually take precedence over classical inference.
There is in fact little doubt that Bayesian inference will steadily grow in popularity within
the scientific community over the next decades. It is thus then essential to also include a
sound discussion of Bayesian inference.

7.2 Basic Structure of the Bayesian Inference Process

Bayesian inference is defined in the context of Bayes’ theorem given by Eq. (2.17) and
centrally relies on the Bayesian interpretation of probability. It operates in a hypothesis
(or model) space where specific hypotheses, whether discrete or continuous, are associated
a probability expressing their plausibility. Measured data, considered as given (facts), are
used to update the degree of belief in model hypotheses, and whenever relevant, discrimi-
nate between competing hypotheses or models.

Bayesian inference involves the following components:

1. Determination of the posterior probability of a model and its parameters based on mea-
sured data:
a. Formulation of a data probability model based on prior information
b. Formulation of a prior probability (density) for a working hypothesis of interest
c. Calculation of the likelihood of the measured data based on the hypothesis
d. Calculation of the posterior probability of the working hypothesis with Bayes’

theorem
2. Distillation of key features of the posterior distribution:

a. Determination of the mode or expectation value(s) of the posterior relative to the
parameter(s) of interest

b. Calculation of credible ranges for the parameter(s) of interest
3. Comparison of the leading hypothesis with competing hypotheses (hypothesis testing)
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287 7.2 Basic Structure of the Bayesian Inference Process

4. Calculation of predictive distributions corresponding to the outcome of prospective
measurements

Two important and related points are worth stressing. First, as a general scientific rule,
the measurement and inference processes should be kept distinct. The gathering of “raw”
data must be carried out without interference or biasing from the inference process, that is,
the answer obtained by inference should not influence or bias the sampling process. The
data acquisition and analysis process must thus formally be considered as distinct and car-
ried out in such a way that one does not affect the other.1 Second, and for essentially the
same reasons, the formulation of a prior probability, the experimental process, and the cal-
culation of a posterior should also be considered as distinct and carried out independently.
More specifically, the formulation of the prior should be completed “before” the experi-
ment, or at the very least, without knowledge of the data produced by the experiment. As
we will discuss in more detail later in this section, it is the likelihood function, determined
by the data, that should influence the posterior. Having the data also influence the prior
probability would amount to double counting and is thus scientifically unwarranted.

We first briefly describe each of the aforementioned components of the inference pro-
cess in the following paragraphs of this section. We then elaborate on selected topics in
the following sections of this chapter. Evidently, the main goal of Bayesian statistics is
the determination of the posterior probability density or distribution function (PDF) of a
hypothesis of interest, which may be viewed as weighted average between the prior PDF
and the likelihood function. Once the posterior PDF is known, several basic features of
interest can be readily computed, such as the most probable value of a continuous hypoth-
esis, a confidence interval, as well as the plausibility of the hypothesis compared to other
hypotheses or models.

7.2.1 Probability Model of the Data

Scientific models are typically formulated to describe properties of systems or entities and
their relation with other systems or entities. For instance, in classical mechanics, Newton’s
third law embodies the notion that the acceleration of an object is strictly proportional to
the net force applied on it by external forces. Deterministic as it may be, Newton’s law says
little about the specificities of measurements that may be carried out to test it. Devices or
sensors may be used to determine the net force and the acceleration, or these quantities may
alternatively be determined from other measurements such as the compression of a spring
(force) and the time evolution of the speed of the object or measurements of its position
vs. time, and so on. Each of these measurements may in turn be affected by external con-
ditions, instrumental effects, and so on. Consequently, in addition to the (physical) model
of interest, one also needs a measurement model that describes how it is measured, and
how it might vary, measurement by measurement. In effect, this requires the formulation

1 An obvious exception to this rule is the need to monitor data acquisition to ensure all components of a complex
apparatus are performing properly.
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of a data probability model describing the probability of outcomes of the measurement
process.

Formulation of a Probability Model
A data probability model embodies the stochastic nature of the measurement process and
describe the probability p(x|x0) of measuring specific values x given the true value x0 of an
observable X . A probability model is formulated on the basis of prior information about
the system, which is either known or assumed to be true with a certain degree of belief.
Imagine, as a specific example, that you run a nuclear laboratory and that you are given
the task of measuring the lifetime of some radioactive compound embedded in a small ma-
terial sample. The lifetime of a nuclear isotope is evidently not measurable directly. But,
if it is reasonable to assume the sample is pure, that is, composed of a single radioactive
element, then one expects the activity (rate of decay) of the sample to follow a decreas-
ing exponential with a “slope” determined by the lifetime of the compound. The lifetime
may then be determined based on a measurement of the activity of the sample vs. time,
or explicit measurements of decay times taken over an extended period of time. A number
of complications may obviously arise in the measurement: the compound may not be per-
fectly pure, and the measurement precision of the activity or decay times shall evidently
be limited by the quality of the instrumentation as well as the experimental conditions of
the measurements. A proper description of the probability model of the measurement may
thus require the inclusion of a smearing function to account for the finite resolution of the
measurement and some form of background distribution to reckon for sample impurities
which contribute weak but finite activity, and so on.

The formulation of a probability model obviously depends on the specificities of the
measurement being considered and is perhaps best described with the detailed examples
we discuss in §7.4. However, at the outset, it is useful to briefly discuss the key steps in-
volved in the formulation of such a model. The basic idea is to formulate all information,
I , relevant to a system in terms of logical propositions, either known to be true, or whose
degree of belief or plausibility can be expressed in terms of a probability distribution or
probability density. Reasoning based on these propositions shall then indicate how indi-
vidual measurement instances will behave in practice. One may then model the probability
of an aggregate of n independent measurements in terms of the individual probabilities of
each of the measurements.

For illustrative purposes, let us consider a particular model, I , that stipulates that the
outcome y of a specific measurement has a PDF p(y|θ ), where θ represents one or several
model parameters. The probability of observing values y⃗ = {y1, y2, . . . , yn} in a series of n
independent measurements, written p(y⃗ |θ ), shall then be proportional to the product of the
individual probabilities of each of the measurements:

p(y⃗ |θ ) ∝ p(y1|θ ) × p(y2|θ ) × · · · × p(yn|θ ). (7.1)

Let us consider two simple examples illustrating the calculation of the probability
p(y⃗ |θ ): the first, presented in §7.2.1, is based on the Bernoulli distribution, while the sec-
ond, discussed in §7.2.1, makes use of the exponential distribution.
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289 7.2 Basic Structure of the Bayesian Inference Process

Example 1: Application of the Bernoulli Distribution
Let us first revisit the example discussed in §2.2.2 involving the manufacturing and testing
of auto parts by supplier 10P100Bad. Consider that a sample of n = 500 manufactured
parts are to be examined for defects. Let the outcome yi of each observation (i.e., each part)
be 1 if a defect is found, and 0 otherwise, for i = 1, . . . , n. Let θ represent the probability
that a randomly selected part might be defective. Each observation may then be represented
with the Bernoulli distribution (see §3.1 for a formal definition of the distribution):

p(yi|θ ) = θ yi (1 − θ )1−yi , for i = 1, . . . , n. (7.2)

The sampled data y⃗ = {y1, y2, . . . , yn} thus has a probability proportional to each of the
p(yi|θ ) of Eq. (7.2), and one obtains the probability model:

p(y⃗ |θ ) ∝
n∏

i=1

θ yi (1 − θ )1−yi , (7.3)

= θ
∑n

i=1 yi (1 − θ )n−
∑n

i=1 yi , (7.4)

= θnȳ (1 − θ )n(1−ȳ) , (7.5)

where we introduced the arithmetic mean ȳ = 1
n

∑n
i=1 yi of the measured values. The prob-

ability model amounts to the likelihood of the observed data given a hypothesis θ , which
when combined with a prior probability, as we discuss in more detail later in this chapter,
determines the posterior PDF of the (physical) model parameter θ .

Example 2: Application of the Exponential Distribution
Let us formulate in concrete terms the example mentioned in the beginning of this section
concerning a measurement of the lifetime of an unknown compound. As discussed in detail
in §3.5, one can model the probability p(t|τ ) of a radioactive decay at time t in terms of
a decreasing exponential with a parameter τ , corresponding to the lifetime of the nucleus
under investigation, as follows:

p(t|τ ) = 1
τ

exp
(

− t
τ

)
. (7.6)

Observations of n decays at times t⃗ = {t1, t2, . . . , tn}, may then be modeled according to

p(⃗t |τ ) ∝ 1
τ n

n∏

i=1

exp
(

− ti
τ

)
, (7.7)

= 1
τ n

exp
(

−nt̄
τ

)
, (7.8)

where t̄ = 1
n

∑n
i=1 ti is the mean of the measured decay times. Here again, the probability

model p(⃗t |τ ) corresponds to the likelihood of the measured decay times t⃗ = {t1, t2, . . . , tn}
given τ . It must be combined to the prior probability of τ to determine its posterior PDF.
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Probability Models in Real Life
In general, observations may involve a number of complications associated with instru-
mental effects and the presence of background processes. The basic principle of the for-
mulation of a probability model nonetheless remains the same: all relevant information
about the system must be explicitly stated and encoded to determine the probability of
specific datasets. For instance, in the case of the measurement of radioactive decays, one
might have to account for the precision of the time measurements. Assuming, for instance,
that the timer used in the measurement exhibits Gaussian fluctuations with a standard de-
viation σt , one may then write the data probability model of each time measurement t as an
integral of the product of two PDFs: an exponential to account for the nature of the decay
process and a Gaussian to take into account the smearing imparted by the finite resolution
of the timer (clock) used in the measurement.

p(t|σt, τ ) =
∫ ∞

−∞
pGaus(t|t ′, σt ) × pExp(t ′|τ ) dt ′, (7.9)

=
∫ ∞

−∞

1√
2πσt

exp

[

− (t − t ′)2

2σ 2
t

]
1
τ

exp
(

− t ′

τ

)
dt ′. (7.10)

The method can be readily extended to joint measurements of two or more observables
determined by several model parameters, as we illustrate through several examples later in
this chapter.

As we saw in §2.2.4, the introduction of the notion of probability as logic naturally en-
larges the scientific discourse to include the probability of models and their parameters. In
this context, the choice of a data probability model implicitly involves the formulation of
one or several hypotheses about the measurement process, including the choice of a par-
ticular PDF to describe fluctuations of the measurement outcome, and parameters of the
PDFs. The parameters of the data model PDF may be unspecified a priori and must then be
either measured explicitly, or marginalized, as appropriate in the context of a specific mea-
surement. Detailed studies either through actual measurements or computer simulations
may then be used to establish the plausibility of the measurement model. Clearly, scien-
tists often assume, based either on their experience or understanding of the measurement
process, that the model they use is appropriate, that is, has a large plausibility of properly
representing the measurement process. While such an assumption may be viable in most
experimental contexts, it may have to be examined in detail if the level of accuracy and
precision required of a measurement is very large. As an example, consider that the use
of a Gaussian distribution to describe an observable’s fluctuations is perfectly adequate as
long as one ignores very rare and large fluctuations. By construction, a Gaussian has finite
probability density extending to infinity (on either sides of the mean). Since infinities are
not possible in practice, the Gaussian model is thus obviously flawed for very large fluctu-
ations and must thus be replaced by a more appropriate PDF whenever extreme deviations
(e.g., larger than 5σ ) from the mean are considered of interest.

The preceding discussion illustrates that the Bayesian inference framework naturally
enables discussions of hypotheses about the measurement process and its modeling. Con-
sideration of the plausibility of a measurement model may thus be naturally and explicitly
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291 7.2 Basic Structure of the Bayesian Inference Process

included in the calculation of physical model parameters. Such inclusion is not readily
possible or feasible, strictly speaking, in the context of the frequentist approach.

7.2.2 Formulation of Prior PDFs

Use of Bayes’ theorem toward the determination of a posterior probability of a model
hypothesis H evidently requires assumptions about the prior probability distribution (or
density) of this hypothesis. In many cases, prior distributions may be derived from the
posterior distribution of previous experiments. It is indeed the very nature of the scientific
process that knowledge begets knowledge and foundational experiments may be used to
produce informed guesses on parameters or model hypotheses motivating additional ex-
periments. Prior probabilities may then be assigned directly from the posterior of previous
experiments, or through the use of well-established models or frameworks. However, there
are also plenty of scientific cases in which no prior experimental data exist or little infor-
mation is available to construct a prior distribution. One may then establish a prior based
on some general guiding principles, if any, or admit total ignorance and encode one’s igno-
rance as a prior that considers all competing hypotheses as equally probable.

Broadly speaking, there are thus two classes of approaches discussed in the literature to-
ward the formulation of prior distributions: they yield prior distributions commonly known
as informative and noninformative. Informative priors, as the name suggests, are meant
to convey and encode whatever substantive knowledge may already exist about a partic-
ular system, whether derived from other data or by reasonings based on well-established
scientific principles. By contrast, noninformative priors are designed to encode one’s basic
ignorance of a system or a specific set of hypotheses.

Critics of the Bayesian approach argue that there exists too much freedom in the choice
of priors, and that as such, the notion of prior introduces a large degree of arbitrariness and
subjectivity in the inference process. Although this is true to a degree, many a Bayesian
statistician would counteract that a certain level of arbitrariness also exists in frequentist
procedures, and more specifically, in the choice of probability models. Supporters of the
Bayesian interpretation would also argue that it would be unscientific to neglect or ignore
prior information pertaining to a model that can, for instance, narrow the range of plausibil-
ity of a given continuous hypothesis. Indeed, neglecting well established facts or (physics)
principles would seem rather unsound a scientific approach, much like rejecting data points
because they might not support one’s preconceived ideas. Bayesians would additionally ar-
gue that what really matters is that equivalent states of prior knowledge properly encoded
into prior probability should lead to equivalent conclusions. This means that statisticians
implementing the same prior knowledge independently, and having access to the same like-
lihood function, should reach equivalent posteriors and obtain similar conclusions. While
such a statement can be made mathematically correct if all statisticians implement prior
knowledge with the same functions and parameters, the choice of priors, most particularly
uninformative priors, has remained somewhat of a contentious issue for quite some time.
This apparent excess of freedom has generated quite a bit of discussions and arguments
among statisticians, and much research has gone into the elaboration of techniques that
enable sound choices of priors.
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Given a lack of prior knowledge, the goal is to represent the ignorance of a parameter
before it is measured in an objective and self-consistent manner. It would seem sensible to
choose a noninformative prior distribution that encodes this ignorance by assigning equal
probabilities to all possible values of a discrete parameter, or a uniform (defined in §3.4)
probability density to all values of a continuous parameter.

p(θ |I ) = constant; Uniform prior. (7.11)

Indeed, one could seemingly argue there is little arbitrariness involved in assigning a con-
stant value to a noninformative prior. Unfortunately, the issue is not so simple, and there
are in fact several distinct criteria that may be used to build a noninformative prior based
on identical data models and phenomenological contexts. Arguably, these distinct crite-
ria produce distinct priors that may thus lead to different conclusions, numerically, in the
assignment of modes, expectation values, error intervals, and hypothesis testing. This sim-
plistic approach may thus lead to troubling inconsistencies.

A central issue is that in many statistical analyses, one has a rather vague prior knowl-
edge of the parameters (continuous hypotheses) of a model. But from a physical perspec-
tive, one should expect that the choice of units or scale of a parameter, in particular, should
have no bearing on the inference process and the outcome of a statistical analysis. More
specifically, consider for instance that if a model formulated in terms of a parameter θ is
transformed to depend on a parameter ρ ≡ ln θ , one should expect the prior distributions
of θ and ρ to carry the same information. This is obviously quite problematic, however,
because the logarithmic scaling entails that it is, by construction, impossible for both pa-
rameters to be characterized by a uniform probability density. Indeed, if θ is chosen to have
a uniform prior density, the prior distribution of ρ cannot be uniform, and conversely. The
question arises, then, as to which of the two variables, θ or ρ, should be given a uniform
prior. One might also wonder how to best choose the parameters that should be uniform.
For instance, while using a normal distribution model (§3.9), should the standard deviation
or the variance be considered more fundamental and thus assigned a uniform prior? Does
the question actually make sense? Indeed, is it meaningful to express lack of knowledge
by stating that the width of the normal distribution could be infinitely small (σ = 0) or
infinite? To make matters worse, one should also acknowledge that arbitrarily many forms
of scaling might be possible and of interest. Which expression of a physical quantity can
thus be deemed most fundamental and given a uniform prior?

Although there does not exist a universal solution to this difficult question, statisticians
have developed a number of “rules” to formulate prior probabilities applicable in specific
contexts. We explore some of these rules in §7.3. At this point, let us just state that Bayesian
statisticians often adopt a strategy that, for instance, involves the construction of nearly (but
not perfectly) uniform distributions as noninformative priors. Distributions are chosen such
that variations among a set of relatively flat priors should not grossly affect the outcome
of the analysis. But if it does, in practice, it is likely an indication that the parameters of
interest are in fact rather poorly constrained by the data (likelihood function). Indeed, it
should be the data (i.e., measurements of the real world) that constrain model parameters,
not a scientist’s pre- or misconceptions!
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293 7.2 Basic Structure of the Bayesian Inference Process

7.2.3 Posterior PDF Calculation

Given a prior distribution, p(Hi|I ), for a hypothesis Hi and the likelihood function of mea-
sured data, p(D|Hi, I ), the posterior probability of the hypothesis, p(Hi|D, I ), is readily
calculated according to Bayes’ theorem:

p(Hi|D, I ) = p(Hi|I )p(D|Hi, I )
p(D|I )

, (7.12)

where p(D|I ) is the probability of the data given prior information I about the system.
While it can in principle be calculated on the basis of the law of total probability,

p(D|I ) =
∫

p(Hi|I )p(D|Hi, I ) dHi, (7.13)

the factor p(D|I ) may often be regarded as a normalization constant, which becomes un-
necessary when, for instance, computing the ratio of the probability of two hypotheses
(§7.7).

We consider practical cases of inference and calculation of posteriors in §§7.4, 7.6,
and 7.7.

7.2.4 Posterior PDF Characterization (Summaries)

Bayesian Estimators
The posterior PDF p(Hi|D, I ) nominally embodies everything there is to know about a hy-
pothesis Hi based on measured data, D, and prior information, I , about the system. By all
accounts, it is the Bayesian estimator of an observable. Although a rather wide spectrum
of types of hypotheses may be formulated and put to the test, one is most often concerned
with continuous hypotheses H (θ ) about the value of a system or model parameter θ . It
is frequently the case that θ might represent a single or specific value (e.g., a constant of
nature), but the measurement process and instruments invariably produce smearing effects.
The outcome of a measurement of such a parameter is thus typically a posterior probability
density with a finite spread across the nominal domain of θ . This finite spread is merely an
artifact of the measurement process and not an intrinsic characteristic of the parameter it-
self. For instance, repeated measurements of the Planck constant or Big G would naturally
produce distinct values that gather around the actual values of these constants. The disper-
sion of values arise from the measurement process, not from fluctuations of these physical
parameters over time.2 One then wishes to use the calculated posterior density p(Hi|D, I )
to extract a best estimate of the value of the physical parameter θ . Conceptually, the task of
the Bayesian statistician thus becomes rather similar to that of classical statisticians: that
of obtaining an optimal estimate of the parameter value and evaluating what might be the
error on that value, that is, estimate how far the extracted value might lie from the actual

2 In the context of commonly accepted and vetted physical theories, there is no reason to believe such variations
or fluctuations might occur.
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value. Important differences exist, however, in the manner in which Bayesian and classical
statisticians might carry out this task. Classical statisticians have no use for a prior or a
posterior. Their parameter estimation, as discussed in Chapter 4, is based on a choice of
statistics (an estimator actually) in which they plug in measured data values, and while they
do need a probability model to calculate the likelihood of the data, the model parameter
themselves are not given a probability. Bayesian statisticians, on the other hand, wish to use
prior information to constrain the estimation process; they thus carry out their estimates
based on posterior probabilities that combine prior information, that is, prior probability
distributions of model parameters, as well the likelihood function of the data.

The distinction between frequentist and Bayesian parameter estimation extends well be-
yond the numerical techniques used to obtain the estimates. In the frequentist interpreta-
tion, the probability of a given value represents the frequency with which the value would
be obtained if the measurement could be repeated indefinitely. For instance, a 95% fre-
quentist confidence interval (discussed in §6.1) corresponds to a range that should cover
the actual value of the parameter 95% of the time (i.e., in 95% of measurement instances),
whereas in the Bayesian approach, the true value is actually believed to be within the range
with a probability of 95%.

Important differences exist also in the manner in which hypotheses are to be tested.
Hypothesis testing in the frequentist paradigm, discussed in §6.4, relies on the rather unin-
tuitive notion of a test statistics exceeding a preset threshold. Indeed, recall that one should
reject a hypothesis if its test statistics has a value equal or larger than a specific value deter-
mined by the (chosen) significance level of the test. In contrast, in the Bayesian approach,
one computes and compares the odds of the hypotheses themselves, that is, their respective
probabilities. A particular hypothesis can then be adopted (rejected) if its probability is
appreciably larger (weaker) than that of competing hypotheses.

It is important to stress once again that there could be no scientific method without
proper assessment of measurement errors. A sound discussion of methods to assess the
magnitude of experimental errors is thus paramount. This is not an easy topic, and several
aspects of the problem had to be drawn before rigorous methods of error assessment could
be considered approachable by beginning students. This is why we used a staged approach
and introduced the notion of error as well as error propagation, confidence intervals, and
so on, in several steps beginning already in Chapter 2, §2.11, with an appeal to intuition
and development of probability distributions in series. The notion of error was formalized
in Chapter 4 through the introduction of the variance of estimators and in Chapter 6 with
a discussion of classical confidence intervals. In this chapter, we revisit the notion of error
in the context of the Bayesian interpretation of probability and introduce the notion of
credible range based on hypothesis posteriors.

Mode of the Posterior PDF
As already stated in the previous section, a posterior PDF p(θ |D, I ) embodies everything
there is to know about the model parameter θ based on the measurement D, and as such
constitutes a complete Bayesian estimator of θ . But if θ represents an observable with a
single value (or at the very least is believed to have a single and unique value), one shall
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wish to extract a specific value θ̂ that is most likely to be the true value of θ . Given the
posterior probability density p(θ |D, I ) represents the degree of belief that the true value of
θ be found in the interval [θ , θ + dθ ], it then makes sense to seek and report the mode of
this function, that is, the value of θ with the largest probability density, as the best estimate
of the parameter or observable. Evidently, if p(θ |D, I ) is a symmetric function, the mode
(extremum of the function) shall also correspond to the expectation value of θ . In general,
however, the expectation value of θ shall not have the largest probability and thus should
not be reported as the value of the observable.

Finding the extremum of a PDF p(θ |D, I ) is in principle straightforward whenever it is
obtained from an analytical data probability model and a conjugate prior since, by con-
struction, it is also analytical and a member of the same family of functions as the prior.
In general, however, the posterior may be obtained from a nonlinear parametric likelihood
function, it may involve several “fit” parameters, or its prior PDF might have been gen-
erated by Monte Carlo simulations and thus available in the form of a histogram: finding
an extremum of p(θ |D, I ) may then be somewhat arduous and require use of numerical
techniques. We discuss various examples of analytical cases in §§7.3.3 and 7.4, while basic
principles of extremum searches based on numerical techniques are presented in §7.6.

Credible Range
Almost invariably, a posterior p(θ |D, I ) shall have a finite spread across the domain of the
parameter θ . While one might wish for a very narrow distribution or even an infinitely
narrow distribution (i.e., a delta function δ(θ − θ0)), the measurement process and instru-
mental effects invariably lead to a distribution with a finite dispersion. The mode has the
highest probability (density) but a range of other values have a finite probability (density),
as well, of corresponding to the true value. It is thus meaningful to define a range of values
as a credible range (CR) within which the value of θ is most likely to fall. Evidently, as
for confidence intervals, the breadth, or width, of a credible range shall be defined by its
probability content or confidence level α according to

∫

CR
p(θ |D, I ) dθ = α, (7.14)

and there exists an infinite number of ranges CR that satisfy this condition.
Given p(θ |D, I ) represents the degree of belief the observable has a value in the range

[θ , θ + dθ ], it is most meaningful to include portions of the PDF that have largest values.
The credible range must then include the mode and adjoining regions of the domain of
θ where p(θ |D, I ) is the largest. For a symmetric distribution, this naturally leads, as for
confidence intervals, to the selection of a central interval [θmin, θmax] defined according to

∫ θmin

−∞ p(θ |D, I ) dθ = (1 − α)/2,

∫ ∞
θmax

p(θ |D, I ) dθ = (1 − α)/2,
(7.15)

and such that θmin and θmax are at equal distances from the mode of the distribution. While
central intervals are also commonly applied for the selection of confidence intervals in
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the case of asymmetric PDFs, the desire to include elements of the domain of θ with the
largest probabilities leads to a different range construction algorithm. Indeed, it appears
more sensible to proceed similarly to the Feldman–Cousin algorithm (§6.1.8) and include
elements of the domain of θ starting with the mode and with decreasing amplitude there-
after, as illustrated in Figure 7.1a. This then also leads to the shortest interval [θmin, θmax].
One obvious drawback of this approach, however, is that the interval is not invariant under
a transformation θ → ξ (θ ); that is, an interval in ξ defined with the same algorithm would
not map onto the interval for θ .

Use of the posterior p(θ |D, I ), rather than the likelihood distribution p(D|θ , I ), to iden-
tify an error interval presents two very important advantages. First, no interval inversion
of the type used in the frequentist approach (and discussed in §6.1.8) is required since the
“inversion” is already embodied in the posterior. And second, the presence of a physical
boundary is handled gracefully. For instance, in a measurement of the a priori unknown
mass of a particle (e.g., the neutrino mass), one may use an uninformative and improper
prior PDF of the form

p(m|I ) = 0 for m < 0,

p(m|I ) = 1 for 0 ≤ m ≤ M,
(7.16)

where M is a suitably large constant. If the detector response is Gaussian with a precision
ξ0, and given the aforementioned prior, one can show that the posterior (§7.4.1) has the
form of a truncated Gaussian distribution

p(m|D, I ) = 0 for m < 0,

p(m|D, I ) = Nm

√
ξ0

2π
exp

[
−ξ0

2
(m − m̂)2

]
for 0 ≤ m ≤ M,

(7.17)

where m̂ is the uncorrected mass reported by the measurement, and Nm is a normalization
constant equal to

Nm =
(√

ξ0

2π

∫ M

0
exp

[
−ξ0

2
(m − m̂)2

])−1

. (7.18)

Because of instrumental effects, the measured mass m̂ may be negative. However, the no-
tion that the mass of a particle cannot be negative is ab initio built in the posterior by virtue
of the prior, Eq. (7.16). One can then use the probability density sorting method mentioned
previously to establish a credible range for the measured mass: if m̂ is large and far exceeds
the mass resolution σ , one will naturally obtain a symmetric central interval, as illustrated
in Figure 7.1b. However, if m̂ is very close to the physical boundary, that is, is smaller or
of the order of the mass resolution, then the sorting procedure will automatically yield a
credible range with a lower bound m = 0 and an upper bound mmax (effectively a one-sided
interval) determined by the precision ξ0 as well as the probability content α, as schemat-
ically illustrated in Figure 7.1c. One thus readily avoids technical issues of flip-flopping,
lack of coverage, and empty confidence intervals, encountered in the frequentist approach
(§6.1.8).
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297 7.2 Basic Structure of the Bayesian Inference Process

Fig. 7.1 (a) Schematic illustration of the sorting technique used to build credible ranges with the largest probability densities.
(b) Central credible region associated with a signal far from physical boundaries. (c) One-sided credible region
obtained near a physical boundary (mass measurement).

7.2.5 Predictive Data Distributions

The Bayesian approach readily provides a framework for the computation of predic-
tive distributions. Indeed, suppose a measurement has yielded a dataset with values y⃗ =
(y1, . . . , yn) resulting in the evaluation of posterior probability p(θ |y⃗, I ) for the model pa-
rameter θ . One may then use this posterior probability as the prior of a new experiment to
predict the distribution of values y⃗ ′ = (y′

1, . . . , y′
n) that might be obtained in that measure-

ment. This is known as a Posterior Predictive Distribution (PPD) and denoted p(y⃗ ′|y⃗, I ).
It can be regarded as the probability of new data y⃗ ′ given old data y⃗. In this context, the
value of the model parameter θ might be considered of minor or no interest, and the sole
purpose purpose of the procedure might then be the prediction of future data, or more aptly,
the distribution of new data.

The PPD is readily calculated on the basis of the posterior probability of the model
parameter(s), θ⃗ , and the likelihood function according to

p(y⃗ ′|y⃗, I ) =
∫

p(y⃗ ′|θ )p(θ |y⃗, I ) dθ , (7.19)

where the integration is taken over the entire domain of the model parameter(s) θ⃗ .
Although the expression p(y⃗ ′|y⃗, I ) might suggest some form of causal connection be-

tween the old and the new data, it should be clear that no mechanism for such connection
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is actually implied. The value of y⃗ ′ is not caused by y⃗, but the knowledge of what it could
become is. The PPD of y⃗ ′ is conditioned by knowledge of the parameter θ⃗ deduced from
the old data y⃗. In other words, it becomes possible to effect a prediction of the PDF of
new data because the data (old and new) can be described by a model. The old data con-
dition the model and the model so conditioned makes a prediction of the outcome of new
measurements.

Causal connections or new data conditioned by old data may occur if the existence of a
particular outcome y has an explicit influence (causal) influence on future outcomes y′. Ac-
counting for such connections (conditioning) is possible but requires proper knowledge of
the conditioning mechanism. The formalism of Kalman filters, discussed in §5.6, provides
a convenient framework for calculations of the evolution of p(y⃗ ′|y⃗, I ) for cases in which
causal connections exist between the old and the new data and can be described based on a
model of the evolution of the parameters θ⃗ with time or some other independent (ordering)
parameter.

7.3 Choosing a Prior

Calculation of the posterior probability p(H |D, I ) of a hypothesis H with Bayes’ theo-
rem requires a prior probability p(H |I ) be formulated before the data are processed (or
become available) and the likelihood p(D|H, I ) calculated. A difficulty often arises that
only a rather limited amount of prior information might be available about a particular hy-
pothesis and the system it describes. In some cases, the prior information available may be
sufficient to select an informative prior, that is, a definite probability density with specific
parameters (e.g., a beta distribution with well informed parameters α and β), but in most
cases the amount of information is too limited and, at the outset, the selection of a prior
might appear as an impossible challenge. Indeed, what functional dependence should one
use? Should one limit or bias the range of a model parameter? And so on. One is then com-
pelled to choose an uninformative prior, that is, a prior distribution that actually carries
little information about the parameter or observable of interest.

Implementing an arbitrary functional form with ad hoc model parameter boundaries
constitutes a rather unsatisfactory course of action toward the selection of an uninforma-
tive prior. Fortunately, two foundational methods, guided by simple yet profound principles
regarding the information carried by probability distributions, enable rational as well as
practical choices of distributions. The first method was devised by Edwin Jaynes (1922–
1998)3 and relies on Shannon’s entropy measure of uncertainty, while the second method,
credited to Sir Harold Jeffreys (1891–1989)4, relies on the notion of Fisher information
already discussed in §4.7. In actual fact, a number of other methods and principles are dis-
cussed and used in the literature for the definition and implementation of prior probabilities.

3 American physicist famous for his work on statistical mechanics and the foundation of probability and statistical
inference.

4 English mathematician, statistician, geophysicist, and astronomer who played an important role in the revival
of the Bayesian view of probability.
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Indeed, the topic of prior is still somewhat contentious and much in flux. Regardless of such
concerns, we will restrict our discussion to Jaynes’ method, in §7.3.1, and Jeffreys’ defi-
nition of the prior based on the Fisher information of a probability distribution in §7.3.2.
Readers should consult more advanced texts for a fully comprehensive discussion of this
difficult topic. In particular, see the book by Harney [103] for an extensive discussion of
form invariant probability distributions. This said, statistical inference operates in the real
word and thus requires much practicality. The choice of priors is indeed often guided by
practical needs and considerations. Priors should be relatively easy to define and use; they
and the posteriors one derives from them should be integrable, and so on. Families of func-
tions known as conjugate priors offer much of this needed practicality. We introduce their
definition and provide selected examples of conjugate families in §7.3.3.

7.3.1 Choice of Prior Functional Form and Jaynes’Maximum Entropy Principle

Prior information I about a system might be terse, but in some cases, it might be possible to
make a testable statement concerning a specific facet of the system, a particular hypothesis,
or model parameter value. For instance, a statement of the type

I : mean value of θ is θ0

is readily testable. Indeed, testing I involves repeated measurements of θ to get a better
estimate of its value and we will see that under such conditions, Jaynes’ method yields an
exponential as a prior PDF for θ . However, other types of information, such as θ is smaller
than θ0, might be too vague to identify a specific PDF as a prior.

Jaynes’ method is based on the maximization of Shannon’s entropy under specific con-
straints defined by testable statements about the outcomes of a particular measurement.
Understanding the method requires a minimal level of familiarity with Shannon’s entropy.
We thus first present a brief description of the definition of entropy in the context of prob-
ability distributions in §§7.3.1–7.3.1 and proceed to describe the basic principles of the
method in §7.3.1. Specific applications of the methods are presented in §7.3.1.

Information Entropy
The notion of information entropy stems from the basic observation that stochastic systems
are, in general, not equally uncertain. Bizarre as it may seem, this statement can be readily
understood by considering the random draw of red and blue balls, otherwise identical in all
respect, from a large vat. Imagine the vat contains 1,000 balls, only one of which is blue. It
then seems rather likely that a random draw would yield a red ball. Although one is dealing
with a stochastic system, the outcome of the draw indeed seems rather certain: a red ball
will most likely be picked out.

What if the vat contained 500 red balls and as many blues? The odds would then be 50 :
50, and one would be just as likely to draw a red or a blue ball. The outcome would then be
far less predictable. In fact, it would be maximally uncertain! But certainty and uncertainty
are relative concepts. Add yellow, white, green, and black balls in equal proportions to the
vat. With six colors equally probable, the outcome of a draw is even less certain. The more
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diverse and numerous the options are, the less certain is the outcome of a draw. This seems
rather obvious. But how, then, can one quantify the degree of certainty of a particular draw
or, more generally, the outcome of stochastic processes?

In a seminal paper on information theory published in 1948 [172], Claude Shanon
demonstrated that the uncertainty of a discrete probability distribution {p1, p2, . . . , pn}
is embodied in its information entropy S(p1, p2, . . . , pn), defined as

Entropy ≡ S(p1, p2, . . . , pn) = −
n∑

k=1

pk ln pk . (7.20)

A convenient way to visualize the meaning of Shannon’s entropy is to consider the out-
come of a multinomial draw, that is, a stochastic process describable by a multinomial
probability distribution (§3.2). As an example of such a process, let us consider N succes-
sive rolls of an m-side die. We denote by pi and by ni the probability of a given face i and
the number of times it is observed in a sequence of n rolls, respectively. All rolls being
independent, the probability of a specific sequence of n independent rolls yielding n1 times
face 1, n2 times face 2, and so on, is proportional to the product P ≡ pn1

1 pn2
2 . . . pnm

m . Since
there are M ≡ n!/n1! . . . nm! ways of generating such a sequence, its probability is thus
indeed a multinomial distribution:

p(n1, . . . , nm|N; p1, . . . , pm) = MP (7.21)

= n!
n1! · · · nm!

pn1
1 pn2

2 · · · pnm
m , (7.22)

with
m∑

k=1

nk = n, (7.23)

m∑

k=1

pk = 1. (7.24)

The number of sequence permutations, hereafter called multiplicity, tells us much about
the (un)certainty of a sequence. For instance, let us consider the multiplicity of selected
sequences of n = 8 rolls of an m = 4 face die. The number of sequences yielding eight
times face 1 is

M (8)
8000 = 8!

8!0!0!0!
= 1, (7.25)

whereas the number of sequences yielding each face twice is given by

M (8)
2222 = 8!

2!2!2!2!
= 2520, (7.26)

and the number of sequences with n1 = 3, n2 = 3, n3 = 1, and n4 = 1 amounts to

M (8)
3311 = 8!

3!3!1!1!
= 1120. (7.27)

Without prior knowledge of the probabilities pi, it seems rather certain that sequences
producing a single face (e.g., 8000, 0800, etc.) are far less likely than sequences involving
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an unequal mix of all faces, and less likely still than having all four faces in equal numbers.
Actual sequences involving n rolls of course have probabilities also determined by the
probabilities pi of each of the faces. A given selection of n rolls thus provides a means to
gather information about these probabilities. Quite obviously, the information shall be of
limited value if only a few rolls are realized. Indeed, for a number of rolls smaller or of the
order of m, fluctuations should dominate and observed values ni cannot provide a robust
estimate of the probabilities pi. However, for increasingly large values of the number of
rolls n, the numbers ni shall narrowly cluster about their expectation values E[ni] = ⟨ni⟩ =
npi thereby enabling a reasonably robust estimation of the pi. Parenthetically, this also
implies that (prior) statements about the means and variances (or standard deviations) of
the ni are testable and can form the basis for the selection of prior distributions of the
parameters pi.

Let us then consider the multiplicity M in the large sequence size limit. For large values
n, calculations of factorials n! yield extremely large numbers that may be impractical to
handle even with modern computers. It is then convenient to consider the natural logarithm
of these factorials and use the Stirling approximation

ln n! ≈ n ln n − n. (7.28)

The log of the multiplicity M may then be written

ln M = ln n −
m∑

k=1

ln nk (7.29)

= n ln n − n −
m∑

k=1

(nk ln nk − nk ) (7.30)

= n ln n −
m∑

k=1

nk ln nk, (7.31)

where in the second line, we use the Stirling approximation, and in the third, the sum∑
ni = n. In the large n limit here considered, it is legitimate to replace the values nk by

their expectation values, and we get

ln M = n ln n − n
m∑

k=1

pk ln(npk ), (7.32)

= n ln n − n ln n
m∑

k=1

pk − n
m∑

k=1

pk ln pk, (7.33)

= −n
m∑

k=1

pk ln pk, (7.34)

where in the third line, we use the normalization
∑

pi = 1. We can then finally write

ln M = nS, (7.35)
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where S is Shannon’s entropy of the distribution

S =
m∑

k=1

pk ln pk . (7.36)

The multiplicity M of a sequence may then be written

M = exp(nS). (7.37)

Given the multiplicity M of a particular type of sequence tells us something about its
(un)certainty, we conclude that the entropy S corresponds to a degree of certainty per draw
(so to speak). Indeed S provides a measure of the level of certainty embodied in a specific
probability distribution.

The multiplicity has an extremum which we label Mmax corresponding to a maximum
entropy Smax. Defining +S ≡ Smax − S, we can then also write

M = Mmax exp (−n+S) . (7.38)

In practical situations, where n is very large, one finds that the multiplicity can be extremely
large for +S = 0, but it shall quickly vanish for +S > 0. That implies that for a given
probability distribution, certain types of outcomes are far more numerous than others, and
thus more “uncertain.”

Generalized Entropy
Let us once again consider the roll of an m-face die and assume one has estimates {qi}
for the probabilities {pi} of each of the faces. Using these prior estimates, one can obtain
approximate values of the probability of arbitrary sequences {ni} of n rolls of the die based
on the expression of the multinomial distribution where the pi are replaced by qi:

p(n1, . . . , nm|n; q1, . . . , qm) = n!
n1! · · · nm!

qn1
1 qn2

2 · · · qnm
m , (7.39)

Let us take the logarithm of this expression. Assuming the number of rolls is very large
and using the Stirling approximation, one gets

ln p = ln n! −
m∑

k=1

ln nk! +
m∑

k=1

nk ln qk (7.40)

= n ln n −
m∑

k=1

nk ln nk +
m∑

k=1

nk ln qk (7.41)

Replacing nk by their expectation values, one obtains after simplification

1
n

ln p = −
m∑

k=1

pk ln pk +
m∑

k=1

pk ln qk, (7.42)

= −
m∑

k=1

pk ln (pk/qk ) , (7.43)

= SSJ , (7.44)
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303 7.3 Choosing a Prior

which defines a generalized entropy SSJ commonly known as Shannon–Jaynes entropy
and Kullback entropy5. SSJ is related to the Kullback–Leibler6 divergence, also known as
information divergence or information gain, which is a measure of the difference between
two probability distributions.

Entropy of Continuous Distributions
Equation (7.43) has the right functional form for an extension of the notion of entropy to
continuous distributions

Sc = −
∫

p(x) ln
[

p(x)
m(x)

]
dx, (7.45)

where p(x) is a continuous probability density and m(x) is known as Lebesgue measure.
The inclusion of the measure m(x) insures that Sc is invariant under a change of variable
z ≡ z(x) because both the probability p(x)dx and the ratio p(x)/m(x) are invariant under
such transformation. One may choose the measure m(x) to be a constant km across the
domain of x. The entropy Sc then becomes

Sc = −
∫

p(x) ln p(x) dx + ln km

∫
p(x) dx, (7.46)

= −
∫

p(x) ln p(x) dx + constant. (7.47)

This expression tells us that the entropy of a probability density is defined up to an incon-
sequential constant value. This constant should indeed have no effect on Jaynes’ entropy
maximization principle we discuss in the next section.

Maximization of the Entropy
Consider a measurement yielding m distinct outcomes {xi}. Let us assume very little in-
formation is available about the phenomenon or system considered. Yet, we would like to
determine the prior probability distribution p(xi|I ) of observing such outcomes. If very lit-
tle is known about the system of interest, there is a priori no guidance or reason to choose
any particular functional form for p(xi|I ). One must then seek a functional form that yields
maximum entropy, that is, a probability distribution with maximum uncertainty about the
outcomes {xi}. However, if some testable (prior) information is available about the sys-
tem, one may also use this information as a constraint in the maximization of the entropy.
The basic idea of Jaynes’ principle of entropy maximization is to carry a variational cal-
culation to find an expression that maximizes the entropy in the presence of finitely many
constraints. One thus seeks a maximum of the entropy S by variation of the (unknown)
probabilities pi of the observed values xi. A variation of these probabilities should yield a

5 Named after American cryptanalyst and mathematician Solomon Kullback (1907–1994).
6 Richard A. Leibler (1914–2003), American mathematician and cryptanalyst.
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stationary solution for S at the extremum:

dS =
m∑

k=1

∂S
∂ pk

d pk ≡ 0. (7.48)

In the absence of further information, one might assume that the probabilities pk are mu-
tually independent, and one would then conclude that all coefficients ∂S/∂ pk are null. S
would then be a constant independent of the probabilities pk and not much could be said
about the functional form of the probability p(x). Suppose, however, that some constraints
are imposed on the pi based on prior information about the system, one should then be
able to use the calculus of variation with Lagrange underdetermined multipliers to obtain
a functional form for the pi.

Let us illustrate the idea using a basic constraint. Since the measurement of n values is
known to happen, its probability is unity. The sum of the probabilities of the m values xi

must then be unity:
m∑

k=1

pk = 1. (7.49)

We write the constrained (generalized) entropy as

S′ = S − λ

(
m∑

k=1

pk − 1

)

(7.50)

= −
∑

k=1

pk ln pk − λ

(
m∑

k=1

pk − 1

)

, (7.51)

where λ is a Lagrange multiplier and we seek a variation of the pi that yields an extremum
of S′:

dS′ =
m∑

k=1

∂S′

∂ pk
d pk ≡ 0. (7.52)

Assuming all pi are a priori independent, the coefficients ∂S′/∂ pk must all be null and we
find

0 = ∂S′

∂ pi
, (7.53)

= − ∂

∂ pi

[
∑

k=1

pk ln pk + λ

(
m∑

k=1

pk − 1

)]

= 0, (7.54)

=
∑

k=1

δik ln pk +
∑

k=1

δik + λ
∑

k=1

δik, (7.55)

= ln pi + (1 + λ). (7.56)

We find that the probabilities pi should be of the form

pi = exp [−(1 + λ)] , (7.57)

= exp(−λ0), (7.58)
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305 7.3 Choosing a Prior

where, for notational convenience, we introduced the constant λ0 = 1 + λ. In order
to determine this modified multiplier, let us insert Eq. (7.58) in the equation of the
constraint

m∑

k=1

exp(−λ0) = 1. (7.59)

This yields

exp(−λ0) = 1
m

, (7.60)

and we conclude that in the absence of prior information, the principle of maximum entropy
tells us that all probabilities pi should be equal

pi = 1
m

. (7.61)

This result reinforces the intuitive notion that in the absence of prior information, all
values of a parameter or hypothesis should be considered equally probable. Indeed, with no
prior information whatsoever, the most sensible choice for a prior probability of hypothesis,
that which is most uncertain, should be taken as a uniform distribution.

Let us next consider what one can learn about the pk if additional testable information
is available about the observable x. Let us write this additional information in the form of
s independent constraints

m∑

i=1

g j(xi)pi = ⟨g j⟩, (7.62)

where the g j(x) represent s independent functions of x. Adding these constraints with mul-
tipliers λ j to the entropy S′, we get

S′ = −
∑

i=1

pi ln pi − λ

(
m∑

i=1

pi − 1

)

−
s∑

j=1

λ j

(
m∑

i=1

g j(xi)pi − ⟨g j⟩
)

(7.63)

Seeking once again a stationary solution for dS′ = 0, we obtain

0 = ln pi + (1 + λ) +
s∑

j=1

λ jg j(xi) (7.64)

which yields a generic solution of the form

pi = exp(−λ0) exp

⎡

⎣−
s∑

j=1

λ jg j(xi)

⎤

⎦ . (7.65)

The first constraint (i.e.,
∑

pi = 1) now yields

exp(λ0) =
m∑

i=1

exp

⎡

⎣−
s∑

j=1

λ jg j(xi)

⎤

⎦ . (7.66)
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The multipliers λ j can similarly be determined by insertion of the pi given by Eq. (7.65)
into the constraint equations (7.62). Solution of these s equations for the λ j may in general
require numerical algorithms. Analytical solutions are possible in some cases, however, as
we discuss next.

Maximization of the Entropy with Simple Constraints
Equation (7.65) provides a generic solution for the probability coefficients pi in the pres-
ence of s constraints of the form given by Eq. (7.62). Let us consider two applications of
this equation, each involving two simple constraints.

An Estimate of the Mean as a Constraint
Let us first derive a specific functional form for pi in the context of a single nontrivial
constraint (i.e., one constraint aside from

∑
pi = 1) consisting of an estimate of the mean

of x. That is, let

g1(x) = x. (7.67)

and
m∑

i=1

g1(xi)pi =
m∑

i=1

xi pi = ⟨x⟩. (7.68)

Equation (7.65) then reduces to an exponential distribution:

pi = exp(−λ0) exp [−λ1xi] . (7.69)

The normalization constraint
∑

pi = 1 yields

exp(λ0) =
m∑

i=1

exp (−λ1xi) . (7.70)

and the constraint imposed by the mean gives us

⟨x⟩ =
∑m

i=1 xi exp (−λ1xi)∑m
i=1 exp (−λ1xi)

, (7.71)

which can be solved numerically for λ1 and finitely many values xi. In the continuum limit,
sums are replaced with integrals. Restricting the domain of x to [0,∞], one gets

⟨x⟩ =
∫ ∞

0 x exp (−λ1x) dx
∫ ∞

0 exp (−λ1x) dx
= 1

λ1
. (7.72)

The maximum entropy principle tells us that in cases for which an estimate ⟨x⟩ of the mean
of an otherwise unconstrained parameter is known, one should use an exponential prior
probability distribution

p(x) = 1
⟨x⟩

exp
(

− x
⟨x⟩

)
for x ≥ 0. (7.73)
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307 7.3 Choosing a Prior

An Estimate of the Variance as a Constraint
In many studies, the dispersion of a parameter may be more telling than its average. Let us
thus consider a constraint based on an estimate of the variance. Let

g1(x) = (x − ⟨x⟩)2. (7.74)

and
m∑

i=1

g1(xi)pi =
m∑

i=1

(xi − ⟨x⟩)2 pi = ⟨+x2⟩. (7.75)

Equation (7.65 ) then reduces to

pi = exp(−λ0) exp
[
−λ1 (xi − ⟨x⟩)2] . (7.76)

which in the continuous limit gives us

p(x) = exp(−λ0) exp
[
−λ1

(
(x − ⟨x⟩)2)] . (7.77)

The next step is to insert Eq. (7.77) in the two constraint equations in order to obtain values
for the parameters λ0 and λ1. In the continuum limit, one has

1 = exp(−λ0)
∫ ∞

−∞
exp

[
−λ1 (xi − ⟨x⟩)2] dx, (7.78)

⟨+x2⟩ = exp(−λ0)
∫ ∞

−∞
((x − ⟨x⟩)2 exp

[
−λ1 ((x − ⟨x⟩)2] dx, (7.79)

from which one gets

exp (λ0) =
√

2π⟨+x2⟩1/2 (7.80)

λ1 = 1
2⟨+x2⟩

. (7.81)

Given a constraint determined by an estimate of the variance ⟨+x2⟩, the principle of maxi-
mum entropy yields a Gaussian distribution with a mean ⟨x⟩ and standard deviation equal
to the square root of this estimate. This means a Gaussian carries the largest uncertain in
this context. This is a rather important result. It indicates, that unless additional informa-
tion is available, the Gaussian distribution is the least certain and thus carries the fewest
assumption about the system considered and should thus lead to the most conservative
results. If the value of ⟨+x2⟩ is unknown (i.e., with no available estimates), the Gaussian
distribution still provides a safe prior insofar as it can be established that the dispersion of
the data is finite and that its variance can be treated as nuisance parameter, that is, it can
eventually be marginalized.

In some cases, the range of a model parameter can be limited a priori to a finite do-
main xL ! x < xH . The maximum entropy principle can then be applied to the generalized
entropy SSJ , Eq. (7.42), with

qi =

⎧
⎨

⎩

1
xH −xL

for xL ! x < xH

0 elsewhere.
(7.82)
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Because qi is a constant, the entropy maximization procedure remains essentially the
same provided one replaces pi by pi/qi. The integrals of Eq. (7.78) must include a factor
1/(xH − xL) and the bounds of integration set to xL and xH . The integration may then be
carried out in terms of error functions, and the resulting PDFs is a truncated Gaussian (see
Problem 7.1).

7.3.2 Scalable Priors and Jeffreys’Priors

Issues with Uniform Priors
Let us once again consider the problem of the determination of the detection efficiency of
elementary particles in a complex detector. Recall from §4.7.4 that the problem is equiv-
alent to that of an unfair coin toss determined by a binomial probability model with a
probability ε of yielding “head” (i.e., a success). Let us assume, perhaps dramatically, that
no information whatsoever is available about the detection efficiency and that it could have
a value anywhere in the range [0, 1]. Given the binomial probability model determining the
outcome of N repeated measurements (or coin tosses), it would make sense to use a con-
jugate prior, that is, a prior probability in the form of a beta distribution7. Unfortunately,
the assumed lack of knowledge makes such a choice totally arbitrary. How indeed can one
justify the use of any particular values for the shape parameters α and β?

Bayes and Laplace proposed that prior (total) ignorance of the value of ε should be
represented by a uniform PDF within the range of applicability of the parameter. In the
context of our detection efficiency problem, this Bayes’ prior takes the form

p(ε) =
{

1 for 0 ≤ ε ≤ 1

0 elsewhere.
(7.83)

The posterior probability p(ε|D) would then be strictly equal to the likelihood p(D|ε) yield-
ing, in the case at hand, a posterior in the form of a binomial distribution with a mode equal
to the maximum likelihood estimate ε = n/N , where n and N are the number of observed
and produced particles respectively. Note, parenthetically, that a uniform distribution in a
finite range corresponds in fact to a beta distribution with parameters α = β = 1. If the
range of the parameter is unbound, the prior is said to be improper because its integral over
the full range of the parameter diverges. It is relatively easy to verify, however, that the
posterior remains proper, i.e., with a finite and well-defined normalization.

The notion of using a uniform distribution for a completely unknown parameter is quite
appealing and sounds rather straightforward. It is also corresponds, as we saw in §7.3.1, to
a functional shape with maximum uncertainty. The obvious problem arises, however, that
a different choice of parameterization, θ ≡ θ (ε), shall lead to an arbitrarily shaped prior.
For instance, let the total ignorance about ε be represented by Eq. (7.83) and let us choose
the new parameterization θ = ε2. By definition of the notion of probability, one must have

7 The notion of conjugate prior is formally introduced in §7.3.3.
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p(θ )dθ = p(ε)dε and conclude that the PDF of θ is equal to

p(θ ) = 1
2θ1/2

, (7.84)

which is manifestly not a uniform distribution in the range [0, 1]. It then appears that the
actual formulation of the parameter matters. Indeed, if one chooses θ to have a uniform
prior, this prior shall be clearly incompatible with a uniform prior for ε. The two priors
would lead to different and irreconcilable results for the posterior. This seems rather awk-
ward at the outset although in practice, a particular formulation or choice of parameter
might be better justified or natural. For instance, in the case of a binomial distribution,
it seems natural and reasonable to define a uniform prior in terms of the probability of
success ε, and any other parameterization might be considered artificial or unnatural. The
choice is considerably less obvious, however, with other commonly used PDFs such as the
Gaussian PDF for which one might choose to parameterize a prior in terms of a uniform
standard deviation σ or uniform variance σ 2.

Working with a binomial model, J. B. S. Haldane, a geneticist, advocated the use of an
improper prior density of the form p(ε) ∝ ε−1(1 − ε)−1, which is a conjugate of the bi-
nomial distribution (and more specifically a particular case of the beta distribution with
α = β = 1). Although this distribution yield the right limiting behavior for the mean
(mode), it yields an improper and thus problematic posterior if n = 0 or n = N are en-
countered experimentally.

Harold Jeffrey, proposed to instead use

p(ε) ∝ ε−1/2(1 − ε)−1/2 (7.85)

as a conjugate prior for a binomial probability model. He based this particular form of the
beta distribution on a simple invariance principle we discuss in detail in §7.3.2. But first,
we consider uninformative location and scaling priors in the next two sections.

Uninformative Location Priors
A model parameter θ may be considered a location parameter whenever a probability
distribution may be written in the form p(x − θ |θ , I ). A sensible candidate for an uninfor-
mative prior would be a uniform prior p(θ |I ) ∝ 1. If θ is bounded within a finite interval
θmin ≤ θ ≤ θmax, the prior may be properly normalized

p(θ |I ) =
{

(θmax − θmin)−1 for θmin ≤ θ ≤ θmax

0 elsewhere.
(7.86)

However, if the domain of θ is R, the flat prior is said to be improper because its inte-
gral over the domain diverges. Be it as it may, given this improper normalization appears
both in the numerator and the denominator of Bayes’ theorem used toward the calculation
of a posterior probability for θ , use of such an improper probability distribution remains
technically acceptable.
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Uninformative Scaling Priors
Consider a physical observable X scalable by an arbitrary factor θ . This factor might cor-
respond to a change of units (e.g., transforming a distance from meters to kilometers) but it
is more interesting to consider an actual physical scaling of the observable. Such a scaling
should leave the total probability

∫
p(x|I ) of observing X unchanged; one can thus write

pθ (x|I ) = 1
θ

p(x/θ |I ). (7.87)

The actual scale factor of a phenomenon might be a priori unknown (e.g., a cross-section)
and the goal of a measurement might then be to determine this factor. Since the scale factor
is totally unknown, the prior on θ should then be invariant under an arbitrary rescaling of
θ by a positive constant c, that is,

p(θ ) = 1
c

p(θ/c). (7.88)

This implies that a rescaling of θ should not change the prior, and consequently, the prior
provides no information about the physical scale of the process and parameter θ of interest.
Equation (7.88) is a functional equation that must admit a single solution for p(θ ) up to an
arbitrary scaling factor. The prior must thus be of the form

p(θ ) ∝ 1
θ
. (7.89)

Applied without bounds in R, its integral diverges, and it is thus an improper probability
distribution. It may also defined with bounds

p(θ ) =
{ k

θ
for θmin ≤ θ ≤ θmax

0 otherwise.
(7.90)

The normalization constant k is obtained by integration

1 =
∫ θmax

θmin

p(θ |H1, I )dθ = k ln θ |θmax
θmin

, (7.91)

which yields k−1 = ln θmax/θmin. The bound prior may then be written

p(θ ) =

⎧
⎨

⎩

1
ln θmax/θmin

1
θ

for θmin ≤ θ ≤ θmax

0 otherwise
(7.92)

It is of obvious interest to seek a transformed variable ξ (θ ) endowed with a flat (improper)
prior. By definition of the notion of probability, one writes

p(ξ ) = p(θ )

∣∣∣∣
dθ

dξ

∣∣∣∣ , (7.93)

where p(ξ ) is required to be flat and p(θ ) ∝ 1/θ . One thus find that

dξ

dθ
= 1

θ
, (7.94)
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which implies that ξ is of the form

ξ = ln θ . (7.95)

We thus conclude that a flat prior formulated in terms of log θ provides an arbitrary scalable
probability distribution and the logarithm ensures that all orders of magnitude of the scaling
factor are treated equally, that is, given equal probability.

As we will see later in this chapter, flat priors in log A, where A is the unknown amplitude
of a signal, are quite useful in the study and search of weak signals of unknown amplitude.

Improper Priors
Improper prior are based on density distributions whose integral does not exist or diverges.
They are commonly used as noninformative priors. They can usually be viewed as limits
of proper priors, with the corresponding posterior being the limit of the posteriors corre-
sponding to those priors. Although they cannot formally be used as probability density,
their use is generally deemed acceptable provided the posterior obtained with Bayes’ the-
orem is a proper probability distribution, and when the data are sufficiently informative
about the parameter of interest to render the prior essentially irrelevant.

Locally Uniform Priors
Locally uniform priors are based on functions that are essentially constant over the region
in which the likelihood is appreciable and do not feature large values outside that range.
Because the prior is nearly constant in the range where the likelihood is large, one can
write

p(θ |x) = p(x|θ )p(θ )∫
p(x|θ )p(θ ) dθ

≈ p(x|θ )∫
p(x|θ ) dθ

= L(x|θ )∫
L(x|θ ) dθ

. (7.96)

A locally uniform prior p(θ ) thus effectively provides a convenient uninformative prior for
the parameter of interest θ . Locally uniform priors can be defined based on proper density
distributions and thus eliminate the need for improper priors.

Conjugate priors (discussed in §7.3.3), such as the beta and Gaussian distributions, may
be selected to yield large ranges of parameter space where they are nearly constant and
thus provide, effectively, an uninformative prior. Because the posterior of a conjugate prior
is in the same family of distributions as the prior, calculations of the posterior and its
properties are greatly simplified. Conjugate priors thus provide double convenience: they
can be suitably chosen as uninformative priors and provide for simplified calculations of
posteriors and their properties.

However, the use of a locally uniform prior may be consider philosophically unsatisfying
because it requires a peep at the likelihood distribution to ensure the prior’s flat region in
fact covers the entire domain where the likelihood is large, thereby violating the principle
that a prior should be formulated based on prior knowledge only, that is, without looking
at the data for which it is designed to serve as a prior.

1::79�  .�2��80 ������� 
�	���	���
�����
����291/.����2�/�� ���4�82.0/���2�/892: �8/99

https://doi.org/10.1017/9781108241922.009


312 Bayesian Inference

Jeffreys’ Invariance Principle
Jeffreys argued that equivalent propositions should have the same probability. If two or
more parameterizations of a particular proposition are possible, they should be equivalent,
that is, they should yield the same end result. Jeffreys additionally argued that the prior
probability distribution of a parameter should be determined by the Fisher information of
that parameter derived from the data probability model. This makes sense. If a parameter
is unknown, its prior probability distribution should be as vague as possible but no more
vague than the information that can be extracted from the data. Jeffreys therefore proposed
that the prior p(ε|I ) be proportional to some simple power of the Fisher information. But
no particular choice of parameterization should have preeminence. More specifically, given
some choice of parameter ε, it should be possible to switch to any new model parameteri-
zation, θ ≡ θ (ε), provided the densities satisfy

p(θ ) = p(ε)
dε

dθ
. (7.97)

Given the transformation property of the Fisher information under a variable transform
derived in §4.7.3, Eq. (4.97),

I(θ ) = I(ε)
(

∂ε

∂θ

)2

(7.98)

and the preceding requirement, one concludes that a self-consistent prior is obtained with
a power one-half, that is,

p(ε) ∝ [I(ε)]1/2 . (7.99)

Let us verify that this prior indeed features the desired transformation property. By virtue
of the invariance principle, the prior for θ is written

p(θ ) ∝ [I(θ )]1/2 . (7.100)

Applying the transformation property of the Fisher information, Eq. (7.98), under a change
of variable ε → θ , one gets

p(θ ) ∝ [I(ε)]1/2 ∂ε

∂θ
, (7.101)

= p(ε)
∂ε

∂θ
, (7.102)

which indeed satisfies the transformation, Eq. (7.97).

Examples of Jeffreys’Prior
Let us apply Jeffreys’ invariance principle with selected probability models to obtain prior
probability distributions applicable in various contexts.
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313 7.3 Choosing a Prior

Uninformative Scaling Prior Revisited
Let us first verify that the uninformative scaling prior discussed in §7.3.2 is in fact a Jeffreys
prior for the amplitude A of (improper) distributions of the form

p(x|A) = A f (x), (7.103)

where f (x) is a nonnegative, finite, and integrable function of x, independent of the ampli-
tude A. Using the definition, Eq. (4.89), to calculate the Fisher information, we find

I(A) = −E
[

∂2

∂A2
ln p

]

= −E
[

∂

∂A
1
A

]

= 1
A2

. (7.104)

Taking the square root of the information,

p(A) = I(A)1/2 =
(

1
A2

)1/2

= 1
A

. (7.105)

we find that Jeffreys prior for A is indeed of the form, Eq. (7.89), obtained for scalable
parameters.

Binomial Distribution
Next, consider Jeffreys prior for the success rate, ε, of a binomial distribution. As we saw
in §4.109, the Fisher information I(ε) of a binomial PDF is given by

I(ε) = N
ε (1 − ε)

. (7.106)

We thus verify that Eq. (7.85), reproduced below, indeed corresponds to Jeffreys prior for
a binomial PDF, that is, it satisfies Jeffreys invariance principle

p(ε) ∝ ε−1/2(1 − ε)−1/2. (7.107)

Gaussian Distribution
Next consider the prior for the parameters of a Gaussian PDF. Given that the off-diagonal
elements of the Fisher information matrix of a Gaussian are null, as shown in Eq. (4.116),
one can sensibly formulate independent priors for the mean µ and variance σ 2 of the dis-
tribution. For the mean, we get

p(µ) ∝
√

Iµ,µ(µ, σ 2), (7.108)

= k
σ

, (7.109)
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where in the second line, we introduced a normalization constant determined, for proper
priors, by the range of applicability µmin ≤ µ ≤ µmax of the mean, that is, k = σ (µmax −
µmin). In effect, since σ is a constant, albeit of unknown value, we find that the prior for µ

is independent of µ, and thus amounts to a flat prior.
For the variance, one gets

p(σ 2) ∝
√

Iσ 2,σ 2 (µ, σ 2), (7.110)

= k′

σ 2
. (7.111)

One thus concludes that the prior for σ 2 is not flat. However, it is easy to verify (Problem
7.2) that this implies that the prior for log σ 2 is a uniform distribution. This is both conve-
nient and meaningful. If a particular observable is really Gaussian distributed, its standard
deviation must be finite and bound under some scale. Since the scale may not be known a
priori, a uniform prior for log σ 2 ensures that smaller values of σ 2 are far more probable
that very large values. In essence, it preserves the Gaussian nature of the distribution, which
for very large values of σ might otherwise appear flat in a small range of the observable.

Poisson Distribution
Jeffreys prior for the rate parameter λ of a Poisson distribution is similarly calculated.

p(λ) ∝
√

I(λ), (7.112)

=

√√√√E

[(
∂

∂λ
ln p(n|λ)

)2
]

, (7.113)

=
√

1
λ2

E
[
(n − λ)2

]
. (7.114)

Noting that E
[
(n − λ)2

]
corresponds to the variance of the distribution, Var[n] = λ, one

concludes that the prior for the rate parameter may be written

p(λ) ∝ 1√
λ

. (7.115)

Multinomial Distribution
Finally, let us consider the prior distributions for the rate parameters, p⃗ = (p1, p2, . . . , pm),
of a multinomial distribution, with the constraint

∑m
i=1 pi = 1. One can show that Jeffreys

prior for the coefficients p⃗ is the Dirichlet distribution with all of its parameters set to
half. One can additionally show that with transformations pi = φ2

i , the parameters φ⃗ are
uniformly distributed on a unit sphere of m − 1 dimensions.

7.3.3 Conjugate Priors

The choice of a particular functional form for a prior probability density is often
guided by practical considerations. One finds, indeed, that certain functional forms are
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315 7.3 Choosing a Prior

particularly well suited, or convenient, for use with specific probability models. For in-
stance, if a data sample may be described with a Bernoulli probability model, the choice of
a beta distribution as prior is quite convenient because, as we demonstrate in the text that
follows, the posterior obtained from the product of a beta distribution by the likelihood of
a sample of values determined by a Bernoulli distribution is also a beta distribution. The
beta distribution (family) is then said to be conjugate prior to the Bernoulli distribution
(family).

Having a posterior in the same distribution family as the prior is quite convenient be-
cause it enables a dynamic and iterative improvement of the knowledge of the parameters
of the data model. Indeed, once data are acquired, the product of the likelihood by the prior
enables the determination of a posterior of the same family that can then be used as a prior
for another sequence of measurements. The process can be iterated indefinitely because the
posterior remains in the same family as the prior regardless of the observed values or the
number of samples. In that sense, the family of beta distributions is then also said to be be
closed under sampling from a Bernoulli distribution.

The notion of conjugate distribution can be extended to virtually any data probability
models. Indeed, essentially all data probability models commonly in use in statistical analy-
ses are associated with a family of distributions useable as conjugate priors. In this section,
we introduce a basic selection of such conjugate families for illustrative purposes and as a
foundation for examples of Bayesian inference discussed in later sections of this chapter.
Several additional conjugate prior families, as well as Jeffreys priors, are documented in
the very comprehensive compendium produced by D. Fink [82].

Bernoulli Processes
Consider the sum, y =

∑n
i=1 xi, of n instances xi of random variables Xi

8 drawn from a
common Bernoulli distribution with an unknown success parameter ε defined in the range
0 < ε < 1. The likelihood distribution of the sum y is the joint PDF p(x⃗ |ε):

p(x⃗ |ε) =
n∏

i=1

p(xi|ε), (7.116)

=
n∏

i=1

εxi (1 − ε)1−xi , (7.117)

= εy (1 − ε)n−y . (7.118)

The functional dependence of the likelihood on ε and 1 − ε suggests that the beta distribu-
tion (§3.7) might be an appropriate prior for the Bernoulli distribution. The beta distribution
may be written

p(ε|α,β ) = 0(α + β )
0(α)0(β )

εα−1 (1 − ε)β−1 , (7.119)

8 In a Bernoulli process the variable X equals 1 for successes and 0 for failures.
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which indeed features factors in ε and 1 − ε similar to those of the likelihood. The posterior
is, by construction, proportional to the product of the prior and the likelihood. Keeping
exclusively the factors with an explicit dependence on ε, we get

p(ε|x) ∝ εy (1 − ε)n−y εα−1 (1 − ε)β−1 , (7.120)

∝ εy+α−1 (1 − ε)β+n−y−1 , (7.121)

which up to a normalization constant may be recognized as a beta distribution of the form
Eq. (7.119) with parameters

α′ = α + y, (7.122)

β ′ = β + n − y, (7.123)

and a normalization constant equal to

0(α + β + n)
0(α + y)0(β + n − y)

. (7.124)

The family of beta distributions thus indeed constitutes a conjugate to the Bernoulli distri-
bution.

The use of a conjugate distribution has an interesting practical advantage. Suppose that
the value of ε is unknown but that a beta prior with specific values for α and β is available.
A single measurement (trial) would yield either x = 0 or x = 1. If the value is 1, the pos-
terior of this measurement is a new beta distribution with α′ = α + 1 and β ′ = β whereas
if the value is 0, the posterior has α′ = α and β ′ = β + 1. Effectively, α counts the suc-
cesses while β accounts for the number of failures. As the number of trials N increases,
the parameters α and β will tend toward their respective expectation values: ⟨α⟩ = εN and
⟨β⟩ = (1 − ε)N but recall from §3.7 that the expectation value of a beta distribution is
α/β. That means that for increasing N , the ratio α/β will tend toward ε/(1 − ε) and, as
such, provides an estimator for ε.

ε = α/β

1 + α/β
. (7.125)

Also recall from §3.7 that the variance of the beta distribution is σ 2 = α/β2. Substituting
the expectation values for α and β, we find

σ 2 = 1
N

ε

(1 − ε)2
, (7.126)

which means that the width of the posterior distribution should decrease in proportion to√
N . As illustrated in Figure 7.2, the posteriors of successive Bernoulli experiments (with

a beta prior) provide estimates for ε with an accuracy that improves as
√

N . However, note
that the choice of a beta prior is disadvantageous for values of ε very close to zero or unity
given the variance of the distribution diverges in these two limits.
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Fig. 7.2 Illustration of the evolution of the beta posterior observed in a succession of Bernoulli measurements. Parameters of
the prior (solid line) were arbitrarily set toα = 1.8 andβ = 1.9 to obtain a relatively uninformative prior. Beta
posteriors are shown for n = 10, 50, 300, and 1,500 trials sampling of a Bernoulli distribution with ε = 0.8.

Poisson Processes
Let x1, x2, . . . , xn represent a random sample from a Poisson distribution with a positive
definite rate parameter λ. The likelihood function of the sample is

pn(x⃗ |λ) =
n∏

i=1

λxi e−λ

xi!
, for λ > 0 (7.127)

= λye−nλ

∏n
i=1 xi!

, (7.128)

where, once again, we defined y =
∑n

k=0. Choosing a prior PDF for λ in the form of a
gamma distribution (§3.6), we write

p(λ|α,β ) = βα

0(α)
λα−1e−βλ. (7.129)

The posterior p(λ|x⃗ ) is thus of the form

p(λ|x⃗ ) ∝ βα

0(α)
λα−1e−βλ λye−nλ

∏n
i=1 xi!

, for λ > 0

∝ λy+α−1e−(n+β )λ, (7.130)

which is itself a gamma distribution with parameters

α′ = α + y,
β ′ = β + n.

(7.131)

We thus conclude that the family of gamma distributions constitute a conjugate to the
family of Poisson distributions.
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Normal Processes (Known Variance)
For convenience, we define a precision parameter ξ as the multiplicative inverse of the
variance of a Gaussian distribution

ξ ≡ 1
σ 2

. (7.132)

The Gaussian distribution may then be written

p(x|µ, ξ ) =
√

ξ

2π
exp

[
−1

2
ξ (x − µ)2

]
, (7.133)

and the likelihood of a set of data x⃗ = (x1, x2, . . . , xn) is

pn(x⃗ |µ, ξ ) =
(

ξ0

2π

)n/2

exp

[

−1
2
ξ0

n∑

i=1

(xi − µ)2

]

, (7.134)

where ξ0 is the known value of the precision.
Given the Gaussian dependence of the likelihood on µ, let us formulate a conjugate prior

for this variable also in terms of a Gaussian distribution

p(µ|µp, ξp) =
√

ξp

2π
exp

[
−1

2
ξp

(
µ − µp

)2
]

, (7.135)

where µp is a prior estimate of the mean and ξp is the assumed precision of that estimate.
The posterior is then of the form

p(µ|µp, ξp) ∝ exp

{

−1
2

[

ξ0

n∑

i=1

(xi − µ)2 + ξp
(
µ − µp

)2

]}

. (7.136)

We next show that the argument of Eq. (7.136) may be written in the form − 1
2ξ ′

p(µ − µ′
p)2.

We first decompose the square (xi − µ)2 as follows:

(xi − µ)2 = (xi − x̄)2 + (µ − x̄)2 + 2 (xi − x̄) (x̄ − µ) . (7.137)

where x̄ represents the arithmetic mean of the sample. A sum of n such terms may be
written

n∑

i=1

(xi − µ)2 =
n∑

i=1

(xi − x̄)2 + n (µ − x̄)2 + 2 (x̄ − mu)
n∑

i=1

(xi − x̄) , (7.138)

where the last term identically vanishes because the sum of xi equals nx̄. Omitting factors
with no dependence on µ, the posterior probability becomes

p(µ|x⃗ ) ∝ exp
{
−1

2

[
nξ0 (µ − x̄)2 + ξp

(
µ − µp

)2
]}

.

In order to further simplify this expression, we introduce

Q(µ) = nξ0 (µ − x̄)2 + ξp
(
µ − µp

)2
. (7.139)
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It is straightforward, although somewhat tedious, to show that Q(µ) may be transformed in
the form

Q(µ) =
(
nξ0 + ξp

) [
µ −

nξ0x̄ + µpξp

nξ0 + ξp

]2

+ K, (7.140)

where K represents a constant expression independent of µ that can be relegated to the
normalization constant of the posterior (Problem 7.4). We thus finally get

p(µ|x⃗ ) ∝ exp (−Q(µ)/2) , (7.141)

∝ exp
[
−1

2
ξ ′

p

(
µ − µ′

p

)2
]

(7.142)

where we introduced the updated mean and precision

µ′
p = nξ0

nξ0 + ξp
x̄ +

ξp

nξ0 + ξp
µp, (7.143)

ξ ′
p = nξ0 + ξp. (7.144)

Note that µ′
p actually corresponds to the weighted mean of the sample mean, x̄, and the

prior estimate of the mean µp with weights dependent on the actual precision of the mea-
surement ξ0, the size n of the sample, and the prior precision of the estimate. The precision
of the estimate µ′

p is itself greatly improved as it becomes equal to the sum of the precision
of n measurements and the prior estimate of the precision. The variance of the posterior
mean may then be written

σ ′2
p =

σ 2
0 σ 2

p

nσ 2
n + σ 2

0

. (7.145)

Normal Processes (Fixed Mean)
Let us next assume that the mean of a process is known (and equal to µ0) but that its
variance (or precision) is not. The likelihood, Eq. (7.134), features an exponent of ξ and an
exponential function of ξ . It is thus natural to invoke a gamma distribution as a prior. This
yields a posterior of the form

p(ξ |x⃗ ) ∝ βα

0(α)
ξα−1e−βξ

(
ξ

2π

)n/2 n∏

i=1

exp
[
−ξ

2
(xi − µ0)2

]
, (7.146)

∝ ξα+ n
2 −1 exp

{

−ξ

[
1
2

n∑

i=1

(xi − µ0)2 + β

]}

, (7.147)

which is itself a gamma distribution with parameters

α′ = α + n/2, (7.148)

β ′ = β + 1
2

n∑

i=1

(xi − µ0)2 . (7.149)
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We thus conclude that the gamma distribution constitutes a conjugate of the Gaussian dis-
tribution for the precision parameter ξ when the mean of the normal process is fixed.

Normal Processes (General Case)
The general case requires special care. Given both the mean µ and the precision ξ are
conditioned by the data x, the order in which they are inferred matters. The joint posterior
of µ and ξ may be written

p(ξ , µ|x⃗ ) ∝ p(ξ ) × p(µ|ξ , I ) × p(x⃗ |ξ , µ, I ). (7.150)

The prior p(ξ ) is a beta distribution (as in the previous section). For p(µ|ξ , I ), we use
a Gaussian distribution, as in §7.3.3, with a precision equal to ξp = npξ where ξ is the
prior precision of the measurement and np a multiplicative factor that determines the prior
precision on the mean relative to the measurement precision. The joint posterior may then
be written

p(ξ , µ|x⃗ ) ∝ ξα−1 exp [−βξ ]

× ξ 1/2 exp
[
−

npξ

2
(µ − µp)2

]

× ξ n/2 exp

[

−ξ

2

n∑

i=1

(xi − µ)2

]

. (7.151)

Inserting x̄ − x̄ in the xi − µ terms, we find after some simple algebra

p(ξ , µ|x⃗ ) ∝ ξα+ n
2 −1 exp

{

−ξ

[

β + 1
2

n∑

i=1

(xi − x̄)2

]}

(7.152)

× ξ 1/2 exp
{
−ξ

2

[
np(µ − µp)2 + n(x̄ − µ)2]

}
.

One may then obtain a posterior for ξ alone by marginalization of µ. Integration of Eq.
(7.152) relative to µ yields the posterior for ξ (Problem 7.5):

p(ξ |x⃗ ) ∝ ξα+n/2−1 exp

{

−ξ

[

β + 1
2

n∑

i=1

(xi − x̄)2 (7.153)

+
nnp

2(n + np)
(x̄ − µp)2

]}
,

which is a beta distribution, of the form Eq. (7.119), with parameters

α′ = α + n/2, (7.154)

β ′ = β + 1
2

n∑

i=1

(xi − x̄)2 +
nnp

2(n + np)
(x̄ − µp)2. (7.155)

The posterior for µ is a Gaussian with a mean µ′ = n
n+np

x̄ + np

n+np
µp and a precision ξ ′

p =
(n + np)ξ . Summarizing, given a set of data x⃗, one can use Eqs. (154) and (155) to get an
estimate of ξ and subsequently Eq. (7.139) to get an estimate of the mean.
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321 7.4 Bayesian Inference with Gaussian Noise

Multivariate Normal Processes
The choice of a generic conjugate distribution for a multivariate normal distribution is
somewhat more involved than the examples presented in previous sections. Several pa-
rameterizations are possible and discussed in the literature (e.g., see [82] and references
therein).

Brief Epilog on Conjugates
The use of conjugate priors confers several interesting properties to a Bayesian inference
analysis. The first obvious advantage derives from the definition of conjugate priors: the
posterior remains in the same family as the prior, thus greatly reducing the mathematical
complexity of an analysis. Furthermore, since priors of a specific family of functions have
a common dependency on finitely many parameters, it is typically possible to obtain closed
expressions for the evolution of these parameters with added data, as we have shown in
§§7.3.3–7.3.3. This means that one can regard the inference process as an iterative process.

Given a prior and its parameters, the acquisition of new data enables an update of the
parameters according to a closed form expression. These updated parameters can then be
used for the definition of a prior (of the same family) for another measurement. The proce-
dure may then be iterated arbitrarily as many times as there are new available datasets. The
end result is a set of posterior parameters that seamlessly takes into account all measure-
ments pertaining to a specific observable. Additionally note that the explicit dependence
of the updated parameters on the measurement precision (e.g., normal process with known
precision discussed in §7.3.3) means this iterative analysis process takes into account the
actual precision of all measurements in the series. Effectively, the procedure enables full
and optimal accounting of all relevant data in a sequence of multiple experiments. This iter-
ative procedure is in fact rather similar to the Kalman filtering technique discussed in §5.6
in which a sequence of measurements are used, one after the other, to improve the knowl-
edge of the state of a system. As for Kalman filtering, one can also treat systems with an
evolving state driven by known external parameters. In effect, the notion of Kalman filter-
ing can then be articulated and developed within the Bayesian inference paradigm (see [63]
for a recent review), but such a discussion lies far beyond the scope of this textbook.

Conjugate priors may be used even when there is a very little prior information about
a system or observable. Indeed, it is typically possible (as illustrated in Figure 7.2) to
choose the parameters of a prior to produce a very broad and essentially uninformative
prior probability density. In effect, if the parameters are chosen to yield a probability den-
sity much broader than the typical precision of measurements, the posterior parameters
shall be mainly determined by the measurement and with only a very weak dependency on
the prior parameter values.

7.4 Bayesian Inference with Gaussian Noise

Process and measurement noise can often be considered Gaussian or approximately Gaus-
sian; it is thus of great interest to consider applications of Bayesian inference involving
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Gaussian data probability model. We begin, in §§7.4.1 and 7.4.2, with examples of
Bayesian inference involving the estimation of the mean µ of a signal in the presence
of Gaussian noise and the evaluation of the variance such a signal. These two examples set
the stage for more elaborate problems involving the determination of model parameters by
means of Bayesian fits. Linear model fits are considered in §7.4.3 whereas nonlinear model
fits are discussed in §7.6.

7.4.1 Sample Mean Estimation

We first discuss the estimation of the mean µ of a constant signal in the presence of Gaus-
sian noise with known and constant variance in §7.4.1. Given the noise level encountered in
measurements may change, we enlarge the discussion to include varying but known noise
variance in §7.4.1 and a priori unknown noise variance in §7.4.1.

Sample Mean Estimation with Fixed Variance Noise
Consider n independent measurements x⃗ = (x1, x2, . . . , xn) of a constant observable X . As
prior information, let us assume measurements of X are known to fluctuate with zero bias
but Gaussian noise of fixed and known variance σ 2

0 .
Our goal is to determine the posterior probability p(µ|X , σ0, I ). From Bayes’ theorem,

we get

p(µ|x⃗, σ0, I ) = p(µ|I )p(x⃗ |µ, σ0, I )
p(x⃗ |σ0, I )

, (7.156)

where p(x⃗ |µ, σ0, I ) is the likelihood of the data for parameters µ and σ0, p(µ|I ) is the prior
of µ, and p(x⃗ |σ0, I ) is the global likelihood of the data.

Let us first determine the likelihood function p(X |µ, σ0, I ). From the prior information,
we know that each value xi, i = 1, . . . , n, represents a constant observable X with Gaussian
noise and null bias. We can then model each measurement according to

xi = µ + ei, (7.157)

where the term ei represents Gaussian noise with null mean and standard deviation σ0:

p(ei|σ0, I ) = 1√
2πσ0

exp
[
− e2

i

2σ 2
0

]
(7.158)

Substituting ei = xi − µ in Eq. (7.58), one gets a data probability model for the fluctuations
of the measurements xi:

p(xi|µ, σ0, I ) = 1√
2πσ0

exp
[
− (xi − µ)2

2σ 2
0

]
(7.159)
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323 7.4 Bayesian Inference with Gaussian Noise

For notational convenience, let us define precision factors ξ0 = 1/σ 2
0 . The likelihood of the

data x⃗ may then be written

p(x⃗ |µ, ξ0, I ) =
n∏

i=1

p(xi|µ, ξ0, I ) =
n∏

i=1

√
ξ0

2π
exp

[
−ξ0

2
(xi − µ)2

]
(7.160)

=
(

ξ0

2π

) n
2

exp

[

−ξ0

2

n∑

i=1

(xi − µ)2

]

(7.161)

=
(

ξ0

2π

) n
2

exp
[
−ξ0

2
S
]

, (7.162)

where we defined the sum S =
∑n

i=1(xi − µ)2. Expanding this sum and introducing the
sample mean x̄ = n−1 ∑n

i=1 xi, and variance s2 = n−1 ∑n
i=1(xi − x̄)2 = n−1 ∑

x2
i − x̄2, one

gets

S = n (µ − x̄)2 + ns2. (7.163)

Defining ξn = nξ0, the likelihood can then be written

p(x⃗ |µ, ξ0, I ) =
(

1
n

) n
2
(

ξn

2π

) n
2 −1 √

ξn

2π
exp

[
−ξn

2
s2

]
(7.164)

×
√

ξn

2π
exp

[
−ξn

2
(µ − x̄)2

]
.

Calculation of the posterior for µ requires a prior p(µ|I ). For illustrative purposes, we
will consider two cases of prior information on µ. In the first case, we will assume the
mean µ is bound in some range µL ≤ µ < µH based on some theoretical considerations
but without any particular preference within that range. This will require an uninformative
prior. In the second case, we will assume previous experiments have reported an estimate
µp with a standard deviation σp. We will then use a Gaussian conjugate prior.

Uninformative Prior (Case 1)
Given the bounds µL ≤ µ < µH and lack of preference in that range, we choose a uniform
prior distribution

p(µ|I ) =
{

R−1
µ µL ≤ µ ≤ µH

0 elsewhere,
(7.165)

where the constant Rµ = µH − µL is determined by the normalization condition∫
p(µ|I ) dµ = 1.
Equipped with the prior, Eq. (7.165), and the likelihood, Eq. (7.164), we calculate the

global likelihood of the data according to

p(X |I ) =
∫ µH

µL

p(µ|I )p(X |µ, ξ0, I ) dµ, (7.166)

= ILH

Rµ

(
1
n

) n
2
(

ξn

2π

) n
2 −1 √

ξn

2π
exp

[
−ξn

2
s2

]
, (7.167)
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with

ILH =
√

ξn

2π

∫ µH

µL

exp
(

−ξn

2
(µ − x̄)2

)
dµ, (7.168)

= 1 (zH ) − 1 (zL) , (7.169)

in which the standard normal cumulative distribution 1(z) is evaluated at zH =
√

ξn(µH −
x̄) and zL =

√
ξn(µL − x̄).

Computation of the posterior of µ with Eq. (7.156) finally yields

p(µ|x⃗, σ0, I ) =

⎧
⎨

⎩

1
ILH

1√
2πσn

exp
[
− (µ−x̄)2

2σ 2
n

]
for µL ≤ µ < µH ,

0 elsewhere,
(7.170)

which corresponds to a truncated Gaussian distribution defined in the range µL ≤ µ ≤ µH ,
with mode x̄, standard deviation parameter σn = σ0/

√
n, and normalization ILH . We thus

conclude that the observed sample mean x̄ has the highest probability of being the true
value of µ and the uncertainty of this estimate is inversely proportional to the square root
of the sample size n.

Gaussian Conjugate Prior (Case 2)
Let us next consider a Gaussian prior with mean µp and precision ξp.

p(µ|I ) =
√

ξp

2π
exp

[
−

ξp

2

(
µ − µp

)2
]

. (7.171)

From our discussion of Gaussian conjugate priors in §7.3.3, we conclude that the posterior
of µ is a Gaussian

p(µ|x⃗, ξ0, I ) =

√
ξ ′

p

2π
exp

[
−

ξ ′
p

2

(
µ − µ′

p

)2
]

, (7.172)

with mean µ′
p and precision ξ ′

p given by

µ′
p = nξ0

nξ0 + ξp
x̄ +

ξp

nξ0 + ξp
µp, (7.173)

ξ ′
p = nξ0 + ξp, (7.174)

and the updated standard deviation may then be written

σ ′
p =

σpσ0/
√

n
√

σ 2
0 /n + σ 2

p

. (7.175)

The results obtained in this section are obviously reminiscent of the classical inference
properties of estimators for the mean of a sample discussed in §§5.1 and 5.5. Important
differences exist, however, between the Bayesian result derived in this section and ear-
lier results. In the frequentist approach, it is not possible to make a statement about the
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325 7.4 Bayesian Inference with Gaussian Noise

probability of a model parameter, and one obtains a confidence interval based on the
measurement. Strictly speaking, the probability content of the interval is not the prob-
ability of finding the value of µ within the interval, but the probability of the interval
to contain the observable value if and when the measurement is repeated several times.
Consider, for instance, a 68% confidence interval. If the experiment is repeated m = 100
times, m distinct 68% confidence intervals will be obtained and only 68% of these inter-
vals, on average, are expected to contain the actual value of the observable. By contrast, the
Bayesian distribution obtained in this section does state the probability of finding µ in a
certain interval, whether the experiment is repeated or not. This important difference stems
from the definition of probability used in the Bayesian paradigm. Indeed, the Bayesian in-
terpretation is far simpler and direct. The posterior p(µ|X , I ) gives the probability density
of µ and it can then be used to determine the probability of the observable value being
any range of interest. Note in particular that if the bounds µL and µH are very broad and
far outside the interval x̄ ± σ/

√
n, then the value of ILH quickly converges to unity. An

interval ±σ/
√

n then has a probability of 68% as in the frequentist paradigm. However, if
the bounds µL and µH are near the interval x̄ ± σ/

√
n, the integral ILH may deviate sig-

nificantly from unity, and the probability of µ being found within [x̄ − σ/
√

n, x̄ + σ/
√

n]
may then far exceed 68% and even reach 100%. Note that in this case, the data do not add
much to the prior information, and the posterior remains broad within the bounding range
µL ≤ µ ≤ µH .

Sample Mean Estimation with Variable Noise
Let us extend the discussion of the previous section to measurements in which the vari-
ance of the noise may vary from measurement to measurement. Let us continue to assume,
however, that the variances are known, that is, we assign variances σ 2

i to each of the n mea-
surements and assume these values to be known based either on previous measurements or
some other considerations.

The prior probability p(µ|I ) is indifferent to the new noise conditions but the likelihood
function must be slightly modified. For convenience, let us define precision factors ξi =
1/σ 2

i . The likelihood can then be written

p(x⃗ |µ, σ, I ) =
n∏

i=1

√
ξi

2π
exp

[
−ξi

2
(xi − µ)2

]
(7.176)

=
(

n∏

i=1

√
ξi

2π

)

exp
[
−1

2
Sw

]
, (7.177)

where n is the number of measurements and the sum Sw is defined as

Sw =
n∑

i=1

ξi (xi − µ)2 . (7.178)
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Introducing the weighted mean x̄w and the weighted variance s2
w defined respectively as

x̄w =

n∑
i=1

ξixi

∑n
i=1 ξi

, (7.179)

s2
w =

n∑
i=1

ξi (xi − x̄w )2

n∑
i=1

ξi

, (7.180)

as well as the sum of the precision factors

ξw =
n∑

i=1

ξi, (7.181)

it is relatively simple to verify that the sum Sw may be written

Sw = ξw (µ − x̄w )2 + ξws2
w, (7.182)

from which we obtain the likelihood

p(x⃗ |µ, {ξi}, I ) =
(

n∏

i=1

√
ξi

2π

)

exp
(

−ξw

2
s2
w

)
exp

[
−ξw

2
(µ − x̄w )2

]
. (7.183)

Defining the average measurement precision ξ̄ as

ξ̄ = 1
n

n∑

i=1

ξi, (7.184)

the precision parameter ξw is written

ξw = nξ̄ , (7.185)

from which we conclude that the precision ξw improves in proportion to the number n of
measurements. Consequently, the standard deviation of the likelihood,

σw = 1/
√

ξw, (7.186)

decreases as the square root of the number of measurements, that is, σw ∝ 1/
√

n.
The posterior PDF p(µ|x⃗, {ξi}, I ) is calculated similarly as in the previous section.

Bounded Uniform Prior (Case 1)
In the case of a bounded uniform prior, one gets

p(µ|X , I ) =

⎧
⎨

⎩

1
Iw

√
ξw

2π
exp

[
− ξw

2 (µ − x̄w )2
]
, for µL ≤ µ < µH ,

0 elsewhere.
(7.187)
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327 7.4 Bayesian Inference with Gaussian Noise

The posterior PDF of µ is once again a truncated Gaussian distribution with a normaliza-
tion factor Iw defined by

Iw =
√

ξw

2π

∫ µH

µL

exp
[
−ξw

2
(µ − x̄w )2

]
dµ. (7.188)

The expectation value and most probable value of µ is x̄w and the distribution has a stan-
dard deviation parameter σw, which, as per Eq. (7.186), varies inversely with the number of
points xi collected in the data sample. Once again, one can directly calculate the probability
of the value µ be found in any particular interval with Eq. (7.187).

Gaussian Conjugate Prior (Case 2)
Given the likelihood, Eq. (7.183), and the Gaussian conjugate prior, Eq. (7.171), the poste-
rior PDF for µ is a regular Gaussian with posterior mean µ′

p and precision ξ ′
p given by

µ′
p = ξw

ξw + ξp
x̄w +

ξp

ξw + ξp
µp, (7.189)

ξ ′
p = ξw + ξp = nξ̄ + ξp (7.190)

and the updated standard deviation may then be written

σ ′
p =

σpσ̄/
√

n
√

σ̄ 2/n + σ 2
p

, (7.191)

where

σ̄ = 1/

√
ξ̄ . (7.192)

For sufficiently large n (and finite ξ̄ and ξp), the prior parameter ξp becomes negligible, and
the standard deviation of the posterior scales as

σ ′
p ∝ 1√

n
, (7.193)

as expected. For small n, the mode of the distribution is very much influenced by the prior
parameter µp, but for increasing larger values of n, the second term of Eq. (7.189) becomes
progressively smaller and eventually negligible relative to the first term. The mode of the
posterior is thus indeed eventually (i.e., for suitably large n) entirely determined by x̄w.

Sample Mean Estimation with Unknown Noise
In the two previous sections, we determined the posterior probability of the mean of a
sample assuming a priori knowledge of the variance of the noise. What if the variance of
the noise is in fact a priori unknown but can be assumed constant? Or what if the measured
xi also contain a weak but unknown periodic signal? With such limited knowledge, one
must conduct a generic analysis that disregards specific unknown details of the observables
xi. The CLT tells us that a sum of several processes should have a Gaussian distribution.
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Alternatively, the Max Entropy principle informs us that the most conservative choice for
the situation at hand is also a Gaussian distribution. Either way, as long as the noise is
finite, we should once again be able use the data model

xi = µ + ei (7.194)

and assume the ei are Gaussian distributed with some unknown standard deviation σ0.
Since we now have two unknowns, we must first conduct our analysis to determine a pos-
terior probability of both µ and σ . From Bayes’ theorem, we get

p(µ, σ |X , I ) = p(µ, σ |I )p(X |µ, σ, I )
p(X |I )

. (7.195)

An estimate of µ can then be obtained by marginalization of this posterior probability
against σ .

p(µ|X , I ) =
∫

p(µ, σ |X , I ) dσ. (7.196)

Calculation of the posterior proceeds as in previous sections. Given we assumed the stan-
dard deviation of the measurement σ0 is constant, albeit unknown, the likelihood of the
data is given by Eq. (7.160). We also need a prior p(µ, σ |I ) for µ and σ . Since little is
known about the noise, it is safe to factorize the prior into a product

p(µ, σ |I ) = p(µ|I )p(σ |I ). (7.197)

Let use the uninformative uniform prior PDF, Eq. (7.165), for µ. Determination of p(σ |I )
requires additional considerations. The standard deviation σ0 is positive definite and be-
haves, for all practical intents, as a scale parameter. It is also very unlikely to be infinite,
as this would imply a signal that carries very large energy. It is thus sensible to assume a
Jeffreys prior with minimum and maximum bounds σL and σH , respectively.

p(σ |I ) =
{

1
σ0 ln(σH /σL ) for σL ≤ σ < σH

0 elsewhere.
(7.198)

Inserting the expressions for the priors and the likelihood in Eq. (7.196), the posterior
p(µ|X , I ) may now be calculated. One gets after simplification

p(µ|X , I ) =

∫ σH

σL
dσ0σ

−(n+1)
0 exp

[
− S

2σ 2
0

]

∫ µH

µL
dµ

∫ σH

σL
dσ0σ

−(n+1)
0 exp

[
− S

2σ 2
0

] . (7.199)

In order to evaluate the preceding integrals, it is convenient to define ζ = S/2σ 2
0 . Insertion

in Eq. (7.199) yields after a short calculation,

p(µ|X , I ) =
∫ ζH

ζL
S−n/2ζ n/2−1e−ζ dζ

∫ µH

µL

∫ ζH

ζL
S−n/2ξ n/2−1e−ζ dζdµ

, (7.200)

which involves integrals that may be evaluated in terms of the incomplete gamma function.
Although the integral in ζ depends on µ (through S dependency on µ), one can verify
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329 7.4 Bayesian Inference with Gaussian Noise

that provided σL ≪ s and σH ≫ s, it is essentially constant. Equation (7.200) thus approx-
imately simplifies to

p(µ|X , I ) ≈ S−n/2

∫ µH

µL
S−n/2dµ

, (7.201)

Substituting the value of S given by Eq. (7.163), we get after some additional algebra

p(µ|X , I ) ≈

[
1 + (µ−x̄)2

s2

]− n
2

∫ µH

µL

[
1 + (µ−x̄)2

s2

]− n
2

dµ

, (7.202)

which, as it happens, features a structure rather similar to Student’s t-distribution. To see
this, first recall from §3.12.1 that Student’s t-distribution is defined according to

pt (t|ν) =
0

(
ν+1

2

)
√

νπ0
(

ν
2

)
(

1 + t2

ν

)− ν+1
2

, (7.203)

where ν = n − 1 is the number of degrees of freedom being sampled. Setting

t2

ν
= (µ − x̄)2

s2
, (7.204)

we find that the numerator of Eq. (7.202) is indeed structurally similar to Student’s t-
distribution. We can then write

p(µ|X , I ) ≈ 1
Is

1
√

π (n − 1)

0( n
2 )

0( n−1
2 )

[
1 + (µ − x̄)2

s2

]−n/2

(7.205)

where the extra normalization factor Is is defined as an integral of Student’s t-distribution,

Is = 1
√

π (n − 1)

0( n
2 )

0( n−1
2 )

∫ µH

µL

[
1 + (µ − x̄)2

s2

]−n/2

dµ. (7.206)

As in the case of the coefficients ILH and Iw defined in previous sections, one finds that
Is is essentially equal to unity for bounds of µ extending to ±∞, and p(µ|X , I ) can then
be strictly identified to a Student t-distribution. For a narrow range µL ≤ µ ≤ µH , the
functional shape remains the same, but the normalization is changed by the presence of the
factor Is. That means that the probability of µ being, say, in the interval µ ± s in general
exceeds that of the Student t-distribution and can even reach 100% if µL and µH are both
very close to the actual value of µ9.

7.4.2 Sample Standard Deviation Estimation

Let us now turn to the determination of the variance (or standard deviation) of a sample
{xi} of size n. As in the previous section, we can use the data to infer a joint posterior
probability p(µ, σ |x⃗, I ) for µ and σ , but we shall now marginalize this probability against

9 Similarly to the case of the Gaussian distribution encountered in §7.4.1.
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µ to focus our attention on σ . We must then compute

p(σ |x⃗, I ) =
p(σ |I )

∫
p(µ|I )p(x⃗ |µ, σ, I ) dµ

p(x⃗ |I )
, (7.207)

where the priors and likelihood are the same as in the previous section. Substituting ex-
pressions for the priors and likelihoods, and simplifying factors common to the numerator
and denominator, one gets

p(σ |x⃗, I ) =
σ−(n+1) exp

(
−ns2/2σ 2

) ∫ µH

µL
dµ exp

(
− n(µ−x̄)2

2σ 2

)

∫ σH

σL
dσσ−(n+1) exp (−ns2/2σ 2)

∫ µH

µL
dµ exp

(
− n(µ−x̄)2

2σ 2

) (7.208)

The integrals in µ would yield
√

2π/nσ if the bounds µL and µH extended to ±∞. For
finite values, we may then replace the integrals by f

√
2π/nσ , where f is a constant in the

range 0 ≤ f ≤ 1 determined by µL, µH , σ , and n. The posterior thus simplifies to

p(σ |x⃗, I ) =
{

Kσ−n exp
(
− ns2

2σ 2

)
for σL ≤ σ < σH

0 elsewhere,
(7.209)

with

K−1 =
∫ σH

σL

dσσ−n exp
(

− ns2

2σ 2

)
(7.210)

It is illustrated in Figure 7.3 for s2 = 1 and selected values of n. One observes that the
function p(σ |x⃗, I ) is peaked at σ = s and that it becomes progressively narrower with in-
creasing values of n. Calculating and solving ∂ p/∂σ = 0 for σ , one verifies the mode of
the distribution is indeed

σ̂ = s. (7.211)

Moreover, computing the first and second moments of the distribution in terms of the in-
verse gamma integral, one finds

⟨σ ⟩ =
√

ns0 [(n − 2)/2]
√

20 [(n − 1)/2]
(7.212)

⟨σ 2⟩ = ns2

n − 1
. (7.213)

One thus concludes that values of the mode σ̂ , the first moment ⟨σ ⟩, and the root mean
square

√
⟨σ 2⟩ are distinct. However, one can readily verify that all three values asymptoti-

cally converge to s in the large n limit.

7.4.3 Bayesian Fitting with a Linear Model

Problem Definition
The basic Bayesian inference procedure we have used for the estimation of the mean
and standard deviation of a dataset can be readily extended for the determination of the
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Fig. 7.3 Evolution of the posterior p(σ |⃗x, I), given by Eq. (7.209), with the sample size n for s2 = 1.

parameters of a model meant to describe the relation between a dependent observable Y
and an independent variable X .

Let us consider a set of n measurements {xi, yi}, i = 1, . . . , n. Let us posit that there
exists a relation between the measured values xi and yi we can model according to

yi = f (xi|a⃗) + ei, (7.214)

where, as in previous sections, the terms ei represent Gaussian noise with null expecta-
tion value and known standard deviation σi, while f (xi|a⃗) is a (physical) model func-
tion expressing the relation between X and Y but with m unknown model parameters
a⃗ = (a1, a2, . . . , am).

Calculation of the Likelihood
Bayesian fits with arbitrary models (i.e., models featuring nonlinear dependencies on pa-
rameters a⃗) will be considered in §7.6. In this section, we first consider generalized linear
model functions of the form given by Eq. (5.90) encountered in §5.2.5:

f (xi|a⃗) =
m∑

k=1

ak fk (xi), (7.215)

where the coefficients fk (xi) are linearly independent functions of x that do not depend on
the model parameters a⃗. The noise terms may then be written

ei = yi − f (xi|a⃗) (7.216)

= yi −
m∑

k=1

ak fk (xi). (7.217)

Here again, it is convenient to define the precision ξi of each of the n measurements ac-
cording to

ξi = 1
σ 2

i

. (7.218)
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If the noise terms ei are all mutually independent, the likelihood of the data is the product
of each of their probabilities

p(y⃗ |a⃗, I ) =
n∏

i=1

√
ξi

2π
exp

[
−ξi

2
(yi − f (xi))

2
]

(7.219)

= (2π )−n/2

(
n∏

i=1

√
ξi

)

exp

[

−1
2

n∑

i=1

ξi (yi − f (xi))
2

]

(7.220)

= (2π )−n/2

(
n∏

i=1

√
ξi

)

exp
[
−1

2
Sw

]
(7.221)

where, in the third line, we introduced the sum Sw defined as

Sw =
n∑

i=1

ξi (yi − f (xi))
2 . (7.222)

If the noise terms ei are correlated with a covariance matrix V, the sum may instead be
written

Sw =
n∑

i=1

n∑

j=1

(

yi −
m∑

k=1

ak fk (xi)

)
(
V −1)

i j

(

y j −
m∑

k′=1

ak′ fk′ (xi)

)

, (7.223)

which is identical to the χ2 function given by Eq. (5.92), for a linear model, dis-
cussed in §5.2.5 in the context of classical inference. For notational convenience, we
once again introduce coefficients Fik ≡ fk (xi) as well as vector notations y⃗ = (y1, . . . , yN ),
a⃗ = (a1, . . . , aN ), and matrix notations F and V. The likelihood p(y⃗ |a⃗, I ) then becomes

p(y⃗ |a⃗, I ) = 1

(2π )n/2

1
|V|1/2

exp
[
−1

2
Sw

]
, (7.224)

where |V| represents the determinant of the covariance matrix V, and the quadratic form
Sw can now be written

Sw = y⃗ T V−1y⃗ − a⃗ T FT V−1y⃗ − y⃗ T V−1Fa⃗ + a⃗ T FT V−1Fa⃗. (7.225)

Calculation of the Posterior
With the likelihood p(y⃗ |a⃗, I ) and the expression, Eq. (7.225 ), for Sw in hand, we now
need prior probabilities for the parameters a⃗. Given the Gaussian form of the likelihood,
two choices are readily possible and convenient: bounded uniform priors for all ai and
conjugate Gaussian priors.

Bounded Uniform Priors (Case 1)
Let us first consider bounded flat priors for each of the m parameters:

p(a⃗ |I ) =
{∏m

i=1 R−1
i ai,min ! ai ! ai,max

0 elsewhere
(7.226)
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where Ri = ai,max − ai,min. The posterior probability of parameters a⃗ may then be written

p(a⃗ |y⃗, I ) = K exp (−Sw/2) (flat priors)

where K is a constant determined by

K = p(a⃗ |I )
p(y⃗ |I )

(7.227)

with

p(y⃗ |I ) =
∫

Ri

∏
dai p(a⃗ |I )p(y⃗ |a⃗, I ) (7.228)

=
m∏

i=1

R−1
i (2π )−n/2|V|−1/2

∫

Ri

exp(−Sw/2). (7.229)

The posterior p(a⃗ |y⃗, I ), given by Eq. (7.227), constitutes the formal answer to the
Bayesian inference optimization problem we set out to solve. It gives the probability den-
sity of all values of parameters a⃗ in parameter space. As such, it contains everything there
is to know about the parameters a⃗ given a particular set of n measured values yi and their
respective measurement noise σi.

A full determination of p(a⃗ |y⃗, I ) requires the cumbersome calculation of the integral in
Eq. (7.229). However, much can be said about the parameters a⃗ without actually performing
this integral. The PDF p(a⃗ |y⃗, I ) typically spans a wide range of values in parameter space,
but as per the physical model, Eq. (7.214), each of the ai should have a specific value, that
is, a⃗ should be a specific vector in parameter space. Which vector should one choose? It
stands to reason that one should choose the value a⃗ that maximizes the posterior p(a⃗ |y⃗, I ).
One is then interested in finding the (global) maximum or mode of this function in the
model parameter space defined by the bounds ai,min ! ai ! ai,max. This is achieved, as
usual, by jointly setting derivatives of p(a⃗ |y⃗, I ) to zero and solving for a⃗.

∂ p(a⃗ |y⃗, I )
∂ai

= 0 for i = 1, . . . , m. (7.230)

Given our choice of flat prior, ∂ p(a⃗ |y⃗, I )/∂ai is proportional to an exponential function of
−Sw/2. There is thus no need to calculate the constant K, and optimization of the expo-
nential amounts to minimization of Sw.

∂Sw

∂ai
= 0 for i = 1, . . . , m. (7.231)

The optimization of the posterior p(a⃗ |y⃗, I ) by Eq. (7.227) with uniform priors is thus
strictly equivalent to the least-squares minimization problem we encountered in §5.2.5
(classical inference). Optimum estimators of the parameters a⃗ are thus given by

â = α−1b⃗. (7.232)

where, as we showed already in §5.2.5, the matrix α and the vector b⃗ are given by

α = FTV −1F, (7.233)

b⃗ = FTV −1y⃗. (7.234)
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Based on the similitude between the foregoing solution and the frequentist solution dis-
cussed in §5.2.5, it may appear as if Bayesian inference brings nothing new to the op-
timization problem. But that is not quite correct. Bayesian inference in fact provides at
least two advantages. The first has to do with the Bayesian interpretation of probability:
the posterior p(a⃗ |y⃗, I ) expresses the degree of belief of observing the parameters ai in
ranges [ai, ai + dai]. One can then directly calculate credible ranges for the parameters ai

by simple integration and marginalization of the posterior p(a⃗ |y⃗, I ). These integrals then
represent the probability of observing the parameters ai in such ranges, as we discuss in
more detail in §7.4.3. Second, Bayesian inference enables the determination of posteri-
ors when prior information about a system a priori restricts the ranges of the parameters.
Bayesian inference then effectively combines old and new information toward the determi-
nation of optimum parameters. Such a combination is not formally defined in the context
of the frequentist paradigm.

Linear Model Fit with Gaussian Priors (Case 2)
Let us now consider that an experiment might be the successor of one or several prior
experiments. Instead of using flat priors for the parameters ai, one might then use the
(combined) outcome of these previous experiments, which we may assume have yielded a
Gaussian posterior with optimum values a⃗0 and a covariance matrix Q. Let us then define
a generic Gaussian prior as

p(a⃗ |I ) = 1
(2π )m |Q|1/2

exp
[
−1

2
(a⃗ − a⃗0)T Q−1(a⃗ − a⃗0)

]
, (7.235)

where m is the number of parameters a⃗ (i.e., the dimension of a⃗), and |Q| is the determi-
nant of the covariance matrix Q. The likelihood, Eq. (7.224), remains unchanged but the
posterior must be modified to account for the Gaussian priors. One gets

p(a⃗ |y⃗, I ) = p(a⃗ |I )p(y⃗ |a⃗, I )
p(y⃗ |I )

(7.236)

= K exp
[
−1

2
(a⃗ − a⃗0)T Q−1(a⃗ − a⃗0)

]
exp (−Sw/2) , (7.237)

where K is a constant determined by the global likelihood p(y⃗ |I ). The preceding product of
exponentials may be reduced to a single exponential by addition of their arguments, which
we write

p(a⃗ |Y, I ) = K exp
(
−S′

w/2
)

(7.238)

with

S′
w = (a⃗ − a⃗0)T Q−1(a⃗ − a⃗0) + Sw. (7.239)

Expanding the terms, and rearranging, S′
w may be written

S′
w = y⃗ T V−1y⃗ + a⃗ T

0 Q−1a⃗0 − a⃗ T (
Q−1a⃗0 + FT V−1y⃗

)
(7.240)

−
(
a⃗ T

0 Q−1 + y⃗ T V−1F
)

a⃗ + a⃗ T (
Q−1 + FT V−1F

)
a⃗. (7.241)
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335 7.4 Bayesian Inference with Gaussian Noise

It is then possible (Problem 7.6) to show that the optimal solution for a⃗ is of the form of
Eq. (7.232) but with modified values of the matrix α and vector b⃗ as follows:

α′ = FTV −1F + Q−1 (7.242)

b⃗′ = Q−1a⃗0 + FT V−1y⃗. (7.243)

Errors and Credible Ranges
Let δak = ak − âk represent the difference between an arbitrary value ak and the optimal
estimate obtained by optimization of the posterior p(a⃗ |Y, I ) and let Smin be the value of Sw

corresponding to that optimum. In order to make a statement about parameter errors and
credible ranges, it is convenient to express the value of Sw for arbitrary parameters a⃗ as a
Taylor expansion:

Sw(δa⃗) = Smin +
m∑

k=1

∂Sw

∂ak

∣∣∣∣
min

δak + 1
2

m∑

k,k′=1

∂2Sw

∂ak∂ak′

∣∣∣∣
min

δakδak′ . (7.244)

First note that the second term of this expression is null by construction because the first
derivative is evaluated at the minimum. Additionally note that the series does not involve
terms of third or higher order because Eq. (7.225) does not contain such terms. Let us
define +Sw = Sw − Smin. From Eq. (7.244), we get

+Sw = 1
2

m∑

k,k′=1

∂2Sw

∂ak∂ak′

∣∣∣∣
min

δakδak′ . (7.245)

Flat Parameter Priors (Case 1)
For flat parameter model priors, calculation of second derivatives of the solution
Eq. (7.225) yields

+Sw = δa⃗ T FT V−1Fδa⃗. (7.246)

We can then write the posterior p(a⃗ |Y, I ) as

p(a⃗ |Y, I ) = K ′ exp
(

−1
2
+Sw

)
(7.247)

where K ′, given by

K ′ = K exp
(

−1
2

Smin

)
, (7.248)

is just a constant. It then becomes relatively straightforward to determine the covariance
matrix U of the parameters a⃗ as it may be calculated in terms of the variance V of the data
points y⃗ as follows:

U =
[

da⃗
dy⃗

]
V

[
da⃗
dy⃗

]T

. (7.249)
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Fig. 7.4 +χ 2 = κ ellipse in a1 vs. a2 parameter space.

Using Eqs. (7.233) and (7.234), calculation of the derivative da⃗/dy⃗ yields

da⃗
dy⃗

=
(
FT V−1F

)−1
FT V−1. (7.250)

Substitution of this expression in Eq. (7.249) yields

U =
(
FT V−1F

)−1
FT V−1V

[(
FT V−1F

)−1
FT V−1

]T
. (7.251)

The matrix V and its inverse are symmetric by construction. Remembering that the trans-
pose of a product of matrices is equal to the product of the transposed in reversed order
(e.g., [ABC]T = CT BT AT ), Eq. (7.251) simplifies and we thus conclude that

U =
(
FT V−1F

)−1
. (7.252)

We find that the expression of U−1 = FT V−1F is identical to α, given by Eq. (7.233). We
can then write p(a⃗ |y⃗, I ) as a multidimensional Gaussian of the form

p(a⃗ |Y, I ) = K ′ exp
(

−1
2
δa⃗ T U−1δa⃗

)
, (7.253)

where U represents the covariance matrix of the model parameters a⃗ we calculated earlier.
Since U is a symmetric matrix, the principal axis theorem tells us there exists a trans-

formation δa⃗ = Oδθ⃗ that transforms δa⃗ T U−1δa⃗ into δθ⃗ T !θ⃗ and such that ! is a diagonal
matrix whose diagonal elements are the eigenvalues of U. It is thus always possible to
transform the parameters a⃗ to uncorrelated parameters θ⃗ . For m = 2, this takes the form

+Sw =
(
δθ1 δθ2

) (
λ1 0
0 λ2

)(
δθ1

δθ2

)
(7.254)

= λ1δθ
2
1 + λ2δθ

2
2 , (7.255)

where λ1 and λ2 are the eigenvalues of U. Clearly, +Sw = κ defines an ellipse

1 = θ2
1

κ/λ1
+ θ2

2

κ/λ2
, (7.256)

as illustrated in Figure 7.4.
In general, fixed values of +Sw define credible regions consisting of a simple range in

one dimension (i.e., a single parameter), ellipses in two dimensions, ellipsoids in three,
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Fig. 7.5 Increment+χ 2 vs. 1 − P for selected values of the number of degrees of freedom ν (fit parameters).

and hyper-ellipsoids in more than three dimensions. The probability P associated with
such credible regions is obtained by integration of the posterior within the boundary of the
ellipse (or ellipsoid in m = 3 or hyper-ellipsoid m ≥ 4 dimensions) defined by +Sw = κcrit

P =
∫

+Sw<κcrit

p(a⃗ |Y, I )
∏

k

dai. (7.257)

Since Sw is by construction a χ2 variable, one can show that the probability P is given by

P = 1 − γ (m/2, κ/2)
0(m/2)

, (7.258)

where γ (α,β ) is the incomplete gamma function. For instance, a region containing a prob-
ability of P = 68.3% corresponds to a +χ2 = 1 for m = 1 and +χ2 = 2.3 for m = 2,
while for P = 90.0% one has +χ2 = 2.71 and 4.61 for m = 1 and m = 2, respectively.
Other values of +χ2 are shown as a function of 1 − P for several values of the number of
degrees of freedom ν in Figure 7.5.

Recall from our discussion in §6.1.2 that the notion of error is not absolute but predi-
cated by a choice of probability content. In the frequentist approach, with one parameter
and Gaussian errors, a probability content of 68.3% determines a ±1σ interval which
may then be interpreted as the error on the parameter. Choosing the probability content to
be 95.45% instead, one gets a ±2σ error interval. In the Bayesian approach discussed in
this section, the notion of error is also readily derived from the probability content within
selected intervals. However, rather than being called confidence intervals, the selected in-
tervals are typically named credible intervals and they are defined by integration of the
posterior which yields a given probability content. The interpretation of the credible inter-
val is also far more direct. Because the posterior is the probability density of the parameters
ai, integrals over selected intervals of the parameters (e.g., credible range) of the posterior
correspond to the probability of finding the true value of the parameter within the selected
interval. It then becomes possible to define credible ranges associated with probability of
68%, 96%, or any other probability. Equation (7.258) then provides a one-to-one relation
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between the probability content and the increment κ = +χ2 defining its associated credi-
ble range. It should be stressed that for m ≥ 2 parameters, the credible range is not a simple
interval but typically a hyper-ellipsoidal locus in parameter space. It is thus not formally
possible (or correct) to identify the error on a given parameter by stating a single interval
such as µ ± δµ. One must produce the whole ellipsoidal region, which for m = 2 reduces
to an ellipse, as illustrated in Figure 7.4. However, it is also possible to obtain the error on
a single parameter by marginalizing all the others, as we discuss in §7.4.3.

Gaussian Conjugate Priors (Case 2)
Calculation of the (modified) covariance matrix U′ of the model parameters a⃗′ obtained
with Gaussian priors proceeds similarly to the calculation of U. Using the modified solu-
tions, Eq. (7.242), one finds

U′ =
(
FT V−1F + Q−1)−1

FT V−1V
[(

FT V−1F + Q−1)−1
FT V−1

]T
, (7.259)

=
(
FT V−1F + Q−1)−1

FT V−1F
(
FT V−1F + Q−1)−1

. (7.260)

Substituting the inverse of the parameter covariance, U−1 = FT V−1F, obtained for flat
priors, Eq. (7.252), we get

U′ =
(
U−1 + Q−1)−1

U−1 (
U−1 + Q−1)−1

. (7.261)

Inspection of this expression shows that the fit modifies (shifts) the prior a0 and re-
duces the prior variances Qii of the parameters. These effects are easiest to identify when
reducing the scope of the problem to a single parameter. Let Q ≡ σ 2

0 represent the vari-
ance of the parameter observed by the previous experiment (prior knowledge) and let
U =

(
FT V−1F

)−1 ≡ σ 2 be the variance of the parameter determined with uniform pri-
ors (or from the likelihood function alone). The original solution a⃗ = α−1b may be written
a = σ 2b, or b = a/σ 2. The modified solution is then a′ = (σ−2

0 + σ−2)−1(a0σ
−2
0 + aσ−2)

which simplifies to

a′ = a0 + ζ (a − a0) , (7.262)

where

ζ =
σ 2

0

σ 2 + σ 2
0

. (7.263)

We find, similarly to Kalman filters, that the (new) value a′ obtained from the fit is equal
to the prior value, a, plus a term proportional to the difference a − a0 times a “gain” factor
ζ . Effectively, the parameter value obtained with the inclusion of the prior information is
shifted by an amount proportional to the difference between the prior value of the parameter
and that obtained on the basis of the likelihood alone. The information carried by the prior
carries little weight, however, if the variance of the measurement, σ 2, is much smaller than
the variance σ 2

0 of the prior. Indeed, for σ 2 ≪ σ 2
0 , one gets ζ → 1 and a′ ≈ a. Similarly,
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for a single parameter, the variance U′, Eq. (7.261), may be written

σ ′2 =
(
σ−2 + σ−2

0

)−1
σ−2 (

σ−2 + σ−2
0

)−1
, (7.264)

which simplifies to

σ ′ = σ
σ 2

0

σ 2
0 + σ 2

. (7.265)

The posterior variance is determined by a combination of the prior variance σ 2
0 and the

variance σ 2 of the measurement. The posterior variance is reduced relative to the prior
variance thanks to new knowledge acquired with the measurement. If the procedure is
repeated several times, each time with a measurement variance σ 2, the posterior of one
measurement can be used as the prior of the next. Initially, the prior variance σ 2

0 is likely
to be much larger than the variance of the measurement σ 2 and a single measurement shall
then produce a posterior variance σ 2 significantly smaller than the prior’s. However, with
successive iterations, the posterior variance shall eventually become smaller than measure-
ment variance and successive iterations shall then produce only a small gain in precision.
In effect, the precision shall then increase in proportion to the number n of measurements,
which means σ ′ ∝ σ/

√
n.

For fits involving m ≥ 2 parameters, shifts in parameter values and width reductions are
similarly obtained, albeit somewhat less transparently.

Parameter Marginalization and Errors
Marginalization is required whenever one wishes to determine the probability distribution
of one parameter (or several) irrespective of the other parameters. It enables the determi-
nation of the credible range, and thus the error, of the parameter(s) of interest. For a model
involving m parameters, marginalization may be achieved iteratively by integration of Eq.
7.253 one parameter at a time.

Let us exemplify the procedure for the marginalization of a single parameter, which,
for the sake of notational simplicity, we choose to be the first one. The posterior of m
parameters marginalized against the first parameter is given by

p(a2, . . . , am|y⃗, I ) =
∫

+a1

p(a1, . . . , am|y⃗, I ) da1, (7.266)

where y⃗ represents the measured data and the integration is carried over the domain +a1

of the parameter a1. We now substitute the posterior, Eq. (7.247), obtained in the previous
section and write

p(a2, . . . , am|y⃗, I ) = K ′
∫

+a1

exp
(

−1
2
+χ2

)
da1, (7.267)

= K ′
∫

+a1

exp
(

−1
2
δa⃗ T U−1δa⃗

)
dδa1, (7.268)
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In order to carry out the integral in δa1, we must factorize the terms in a1 from other terms.
To accomplish this, let us first focus on the argument +χ2 of the exponential and write

+χ2 = δa⃗ T U−1δa⃗ (7.269)

=
m∑

k,k′=1

δak (U −1)kk′ak′ (7.270)

= (U −1)11δa2
1 + 2δa1

m∑

k=2

(U −1)1kδak

+
m∑

k,k′=2

δak (U −1)1kδak′ , (7.271)

where in the third line, we have explicitly separated terms in k, k′ = 1 from others. Com-
pleting the square formed by the first two terms of this expression, we get

+χ2 = (U −1)11δa2
1 + 2δa1

m∑

k=2

(U −1)1kδak + 1
(U −1)11

(
m∑

k=2

(U −1)1kδak

)2

− 1
(U −1)11

(
m∑

k=2

(U −1)1kδak

)2

+
m∑

k,k′=2

δak (U −1)1kδak′ ,

= (U −1)11

[

δa1 + 1
(U −1)11

m∑

k=2

(U −1)1kδak

]2

+ +χ2
r , (7.272)

where we have introduced a “reduced” +χ2 defined as

+χ2
r = − 1

(U −1)11

(
m∑

k=2

(U −1)1kδak

)2

+
m∑

k,k′=2

δak (U −1)kk′ak′ . (7.273)

The marginalized posterior we seek is thus

p(a2, . . . , am|Y, I ) = K ′ exp
(

−1
2
+χ2

r

)
(7.274)

×
∫

+a1

exp

⎛

⎝−1
2

(U −1)11

[

δa1+
1

(U −1)11

m∑

k=2

(U −1)1kδak

)2
⎤

⎦ dδa1.

The integrand is a Gaussian in δa1 with a variance σ 2 = 1/(U −1)11. For an infinite range
of integration, the integral yields

√
2πσ =

√
2π/(U −1)11. If the range is finite but far

exceeds the region where the integrand is finite,
√

2π/(U −1)11 constitutes a very good
approximation of the true value of the integral. We can then write

p(a2, . . . , am|Y, I ) = K ′′ exp
(

1
2
+χ2

r

)
, (7.275)

with K ′′ = K ′
√

2π/(U −1)11.
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Let us consider a specific case involving m = 2 parameters only. The reduced χ2 is then

+χ2
r = − 1

(U −1)11

[
(U −1)12δa2

]2 + (U −1)22δa2
2 (7.276)

= δa2
2

[
(U −1)11(U −1)22

]
− (U −1)2

12

(U −1)11
. (7.277)

Since the inverse of an inverse matrix is the matrix itself, the ratio of the right-hand side
may be recognized as the multiplicative inverse of the matrix element U22 which one may
write σ 2

2 . We thus conclude that the marginal probability p(a2|Y, I ) is a Gaussian with a
variance U22 = σ 2

2 . The matrix U −1 is indeed the inverse of the covariance matrix of the
parameters a1 and a2. After marginalization of a1, the estimate of a2 and its associated
error may then be written

a2 ± σ2. (7.278)

Repeating the reasoning for marginalization of parameter a2, we conclude similarly that
the estimate of a1 and associated error may then be written

a1 ± σ1. (7.279)

The error σk reflect the credible range obtained for a specific probability content P after
marginalization of the other parameter. Indeed, it is important to reiterate that the errors
±σ1 and ±σ2 are applicable only after marginalization, that is, they apply only when a
single parameter is considered after the other has been marginalized. If no marginalization
is performed, the joint error on the parameters is described by the full ellipse, Eq. (7.256),
and the individual ranges ±σ1 and ±σ2 are not strictly applicable as (joint) errors on a1

and a2.

7.5 Bayesian Inference with Nonlinear Models and
Non-Gaussian Processes

As we saw in the previous section, Bayesian fits of linear models of the form given by
Eq. (7.215), with Gaussian measurement noise, reduce to problems of χ2 minimization
that can be expressed in terms of linear matrix equations readily solvable by standard lin-
ear algebra techniques. Alas, linear models are not the norm in scientific studies. One
indeed often encounters models that cannot be linearized, that is, models whose free pa-
rameters θ⃗ = (θ1, . . . , θm) cannot be expressed in terms of linear equations of the form
Eq. (7.215). Commonly encountered examples of such nonlinear models include Gaus-
sian and Breit–Wigner distributions with polynomial backgrounds. Additionally, one finds
that measurements fluctuations, or noise, may also be strictly non-Gaussian. This is the
case, for instance, for measurements of rare particle production cross sections in nuclear
scattering experiments, which can be described in terms of Poisson and Bernoulli statis-
tics. Poisson statistics is used to describe the stochastic nature of rare particle production
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processes whereas Bernoulli statistics (binomial distribution) is used to account for in-
strumental effects such as particle losses (detection efficiency). We must thus seek and
develop techniques of Bayesian inference amenable to both nonlinear physical models and
non-Gaussian data probability models. The basic goal of Bayesian inference nonetheless
remains the same and involves calculation of the posterior probability of the model param-
eters, p(θ⃗ |D, M, I ). Unfortunately, the determination of the mode (maximum probability
density) of the posterior and credible ranges of the model parameters typically becomes
nontrivial problem that must be solved by numerical techniques.

We consider Bayesian inference with nonlinear physical models in §7.5.1, whereas non-
Gaussian data probability models are introduced in §7.5.2. General optimization techniques
to determine the mode of posterior PDFs are discussed in §7.6.

7.5.1 Bayesian Inference with Nonlinear Models

Consider an experiment reporting n data points (xi, yi), i = 1, . . . , n. We shall assume the
data may be described with a data model M of the form

yi = f (xi|θ⃗ ) + ei, (7.280)

where f (xi|θ⃗ ) is a physical model expressing a relation between an independent ob-
servable X and a dependent observable Y with m free or unspecified model parameters
θ⃗ = (θ1, . . . , θm). The model f (xi|θ⃗ ) is considered nonlinear in its parameter θ⃗ if it cannot
be linearized and expressed in the form of Eq. (7.215). Let us further assume that the noise
terms ei have null expectation values and are Gaussian distributed with a known covariance
V. The posterior may then be written

p(θ⃗ |y⃗, M, I ) = p(θ⃗ |M, I )
p(y⃗ |M, I )

1
(2π )N/2|V|1/2

× exp

⎡

⎣1
2

∑

i, j

(yi − f (xi))V −1
i j

(
y j − f (x j )

)
⎤

⎦, (7.281)

where p(y⃗ |M, I ) is the global likelihood of the data. This probability density should yield
a maximum for the optimal value of the parameters θ⃗ , denoted θ̂ , corresponding to the
mode of the distribution. Finding this maximum is an optimization problem, which may be
addressed with the numerical techniques presented in §7.6. Given such an optimum θ̂ , and
based on our treatment of linear models, it is possible to write

p(θ⃗ |y⃗, M, I ) = K exp
(

−1
2
δθ⃗ T Iδθ⃗

)
+ O(3), (7.282)

where δθ̂ = θ⃗ − θ̂ , O(3) represents contributions of higher orders admissible for a
nonlinear model, while the constant K is determined by the prior p(θ̂ |M, I ) and likelihood
L(θ̂ ) ≡ p(y⃗ |θ̂, M, I ) at the mode, as well as the global likelihood p(y⃗ |M, I ):

K = p(θ⃗ |M, I )
p(y⃗ |M, I )

L(θ̂ ), (7.283)
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and I is known as Fisher information matrix. I may be numerically evaluated using
Eqs. (7.281, 7.281). One first uses Eq. (7.281), based on the measured data (xi, yi),
i = 1, . . . , n, to compute p(θ⃗ |y⃗, M, I ). Taking the logarithm of Eq. (7.282), one next gets

ln
[

p(θ⃗ |y⃗, M, I )
]

= ln (K ) − 1
2

(
δθ⃗ T Iδθ⃗

)
. (7.284)

Second derivatives of ln[p(θ⃗ |y⃗, M, I )], evaluated at θ̂ , then yield

Ii j = − ∂2

∂θi∂θ j
ln

[
p(θ⃗ |y⃗, M, I )

]∣∣∣∣
θ̂

. (7.285)

In the context of a linear model, as we saw in previous sections, the inverse of I
would correspond to the covariance matrix of the model parameters. For nonlinear mod-
els, Eq. (7.282) is only approximate, and the neglect of higher-order terms implies I−1 is
not equal, strictly speaking, to the covariance matrix of the parameters. In practice, how-
ever, one finds that for sufficiently large datasets, the Gaussian approximation embodied
in Eq. (7.282) may be sufficient and yield an inverse matrix, I−1, which provides a useful
approximation of the covariance matrix of the model parameters θ⃗ .

Equation (7.282) may also be used to evaluate the global hypothesis posterior p(M |y⃗, I )
by marginalization of all model parameters. This is useful, for instance, in hypotheses test-
ing based on the odds ratio of the global posteriors of competing hypotheses. However,
given the Fisher information matrix I is in general nondiagonal, integration over all pa-
rameters θ⃗ may become nontrivial and rather tedious, particularly in the presence of finite
bounds on each of the parameters. Integration may be achieved, nonetheless, based on an
eigenvalue decomposition of the matrix. Since I is by definition real and symmetric, there
indeed exists a transformation δθ⃗ = Oδξ⃗ such that

δθ⃗T Iδθ⃗ = δξ⃗T !δξ⃗ , (7.286)

where 6 is a diagonal matrix consisting of eigenvalues λk of I. The integral we seek is thus

I =
∫ ∏

k

dθk exp
(

−1
2
δθ⃗T Iδθ⃗

)

= J
∫ ∏

k

dξk exp
(

−1
2
δξ⃗T !δξ⃗

)

=
∏

k

∫ ξk,max

ξk,min

dξk exp
(

−1
2
δξkλkδξk

)
, (7.287)

where, in the third line, we used J =
∣∣∣ ∂θ
∂ξ

∣∣∣ = detO = 1, and the fact ! is a diagonal matrix

consisting of values λk . The boundaries of integration ξk,min and ξk,max are obtained from
those on θ⃗ based on the inverse transformation δξ⃗min,max = O−1δθ⃗min,max.
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7.5.2 Bayesian Inference with Non-Gaussian Processes

There exists a plurality of phenomena (or systems) for which a Gaussian data probability
model is not suitable or applicable. Of particular interest in astronomy and high-energy
physics are processes involving Poisson, binomial, or multinomial sampling. Unfortu-
nately, the difficulty arises that, for such data probability models, it is typically not possible
to reduce the calculation of the posterior to the evaluation of a single quantity such as a
χ2 function, and one must then handle the full posterior probability distribution. Consider-
able simplifications are possible, however, if the parameters of the probability data model
are constant and the prior probability of these parameters may be expressed as conjugate
priors. A more general example involving model parameters dependencies on a control
variable is considered in §7.5.3.

We limit our discussion to Poisson processes but the techniques introduced in the fol-
lowing can be straightforwardly extended to other types of statistical processes.

Finding the Rate Parameter of a Poisson Process
Poisson sampling describes phenomena with a specific rate, that is, an average number of
instances, or events, per unit of time (or dependency on a specific control variable). Let r be
the process rate. If observations are carried out over a time period of T , one then expects,
on average, to observe ⟨n⟩ ≡ µ = rT instances of the phenomenon. The actual number of
instances observed in any given interval, n, should fluctuate (i.e., vary interval by interval)
according to a Poisson distribution

p(n|µ, I ) = µne−µ

n!
. (7.288)

If the rate r is a priori unknown but can be sensibly expected to be constant over extended
time periods, one can use measurements of the number of occurrences, nk , in m different
time intervals of duration T to estimate r. For notational convenience, let us denote these
m measurements in terms of a vector n⃗ = (n1, . . . , nm).

The rate r may be trivially computed on the basis of the mean number of instances, µ̂,
and the duration of the time interval T during which events are counted:

r = µ̂/T. (7.289)

We thus focus on the determination of µ̂. A frequentist evaluation of µ̂ could of course be
readily obtained from the mean of the measured values nk , but we here consider a Bayesian
estimation instead. That means we need to calculate the posterior probability of µ:

p(µ|n⃗, I ) = p(µ|I )p(n⃗|µ, I )
p(n⃗|I )

, (7.290)

where p(µ|I ) is the prior probability of µ, p(n⃗|µ, I ) is the likelihood of the data given µ,
and p(n⃗|I ) is the global likelihood of the data.
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The likelihood p(n⃗|µ, I ) is readily evaluated by multiplying the probabilities of each of
the observed values nk , k = 1, . . . , m:

p(n⃗|µ, I ) =
m∏

k=1

p(nk|µ, I ), (7.291)

=
m∏

k=1

µnk e−µ

nk!
,

= µze−mµ

∏m
k=1 nk!

,

where we have introduced the variable z defined as a sum of the measured nk

z =
m∑

k=1

nk . (7.292)

Recall from §7.3.3 that for a Poisson data probability model, it is convenient to use a
conjugate prior for the rate parameter in the form of a gamma distribution (§3.6). We thus
write

p(µ|α,β ) = βα

0(α)
µα−1e−βµ, (7.293)

where the distribution parameters α and β may be chosen to reflect an uninformative scal-
ing prior (e.g., α = 1.0 and β = 1.0) or may be constrained by prior measurements or
knowledge of the phenomenon of interest. And as we showed in §7.3.3, this readily implies
that the posterior p(µ|x⃗ ) is then also a gamma distribution. Including proper normalization,
one gets

p(µ|n⃗, I ) = pγ (µ|z + α, m + β )

= (m + β )z+α µz+α−1e−(m+β )µ

0(z + α)
. (7.294)

with a mode given by

µ̂ = z + α − 1
β + m

, (7.295)

and a variance equal to

σ 2
µ = z + α

(β + m)2 . (7.296)

Credible ranges [µmin, µmax], with probability content C, are determined by simultaneously
solving

Pγ (µmax|z + α, m + β ) − Pγ (µmin|z + α, m + β ) = C (7.297)

and

pγ (µmin|z + α, m + β ) = pγ (µmax|z + α, m + β ). (7.298)
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Pγ (µ|α,β ) represents the cumulative density function (CDF) of the gamma distribution
with parameters α and β, given by Eq. (3.113), which may be computed according to

Pγ (µ|α,β ) = γ (α, µ)
0(α)

, (7.299)

in which 0(x) and γ (α, x) are the gamma function and the (lower) incomplete gamma func-
tion. Evaluation of these functions is possible within commonly available math packages
such as Mathematica®, MATLAB®, or ROOT.

Rate Parameter of a Poisson Process with Fixed Background
In practical situations, the observed process rate r may result from a combination of the
signal of interest, with rate rs, and some background process, with rate rb, such that r =
rs + rb. In a time interval T , one then expects average numbers of signal and background
instances equal to µs = rsT and µb = rbT , respectively.

If the background rate rb or number of background instances µb are precisely known
(and thus fixed), the posterior probability p(µ|n⃗, I ) determines the probability distribution
of µs uniquely:

p(µs|n⃗, µb, I ) = p(µ|n⃗, I ). (7.300)

One can then compute p(µs|n⃗, µb, I ) based on Eq. (7.294) provided one replaces µ by
µb + µs:

p(µs|n⃗, µb, I ) = pγ (µs + µb|z + α, m + β )

= (m + β )z+α (µs + µb)z+α−1 e−(m+β )(µs+µb)

0(z + α)
(7.301)

The most probable value of µs is then

µ̂s = z + α − 1
β + m

− µb, (7.302)

and the credible range for µ̂s is obtained by shifting the range of µ̂ calculated earlier
by −µb.

Rate Parameter of a Poisson Process with Unknown Background
If the background rate is a priori unknown, it may be possible to turn off the signal in
order to estimate the background rate. One should then proceed to carry out m′ measure-
ments, with signal turned off, of the number of instances n(B)

k observed during intervals of
equal duration T . Evidently, the number of background instances shall fluctuate and the
background rate thus cannot be determined with absolute precision. Repeating the afore-
mentioned reasoning, one obtains a posterior probability for the number of background
instance µb per time interval T :

p
(
µb|n⃗ (B), I

)
= pγ (µb|zb + α, m′ + β )

=
(m′ + β )zb+α µzb+α−1

b e−(m′+β )µb

0(zb + α)
, (7.303)

where zb =
∑m′

k=1 n(B)
k .

1::79�  .�2��80 ������� 
�	���	���
�����
����291/.����2�/�� ���4�82.0/���2�/892: �8/99

https://doi.org/10.1017/9781108241922.009
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Given the preceding posterior for µb, one can then return to the evaluation of the pos-
terior probability of µs. For a known background rate, we found that the posterior of µs is
given by Eq. (7.300). The background rate is not known precisely, however, and one must
then account for all possible values of µb. To accomplish this, one can think of the samples
nk and n(B)

k as a joint measurement of the background and signal rates, yielding a joint
posterior we denote p(µs, µb|n⃗, n⃗ (B), I ). We are not actually interested in the background
rate; we thus marginalize this posterior for µb and obtain a posterior for µs by integration
over all values of µb. But since the measurements of the samples nk and n(B)

k are in fact dis-
joint (or independent), the joint posterior p(µs, µb|n⃗, n⃗ (B), I ) is simply the product of the
posteriors for µs (at fixed µb) and µb (with signal turned off). It then suffices to integrate
this product over all physically possible values of µb. One gets

p(µs|n⃗, n⃗ (B) ) =
∫ ∞

0
p(µs|n⃗, µb, I )p(µb|n⃗ (B), I ) dµb, (7.304)

which can be readily computed with standard numerical techniques.

7.5.3 Bayesian Fitting with Non-Gaussian Processes

Bayesian fitting in the context of non-Gaussian data probability models involving one or
several unknown parameters cannot be reduced, in general, to the evaluation and optimiza-
tion of a χ2 function but relies on the evaluation of the joint posterior probability of the
model parameters. Generally, the evaluation of the posterior proceeds similarly as for cases
involving Gaussian noise, and once the mode of the posterior is found, with any of the
techniques presented in §7.6, nuisance parameters can be eliminated by marginalization.
Overall, the treatment of problems involving non-Gaussian data probability models is thus
not very different from the methods already discussed in this chapter. One must acknowl-
edge, however, that the calculation and optimization of non-Gaussian posteriors may be
computationally rather intensive and has thus been readily feasible only since the advent of
high-performance computers. A number of model-specific methods have been developed
to streamline and simplify calculations. Examples of such methods are presented in [97].

7.6 Optimization Techniques for Nonlinear Models

Inference methods seeking the optimal values of a model, that is, the values that best de-
scribe measured data, require the optimization of an objective function, often called goal
or merit function. Depending on the circumstances, the objective function may be the pos-
terior probability of model parameters, a likelihood function, or a χ2 function. Either way,
one seeks an extremum (also called optimum) of these functions in the n-dimension space
defined by the parameters of the model. Evidently, in the case of probabilities, the ex-
tremum must be a maximum whereas for χ2 functions, it must be a minimum.

We saw in §7.4.3 that optimization problems involving linear models in the presence of
Gaussian noise can be reduced to linear equations readily solved, at least in principle, by
matrix inversion. Data modeling, however, as we discuss in §7.5, often involves nonlinear
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equations or non-Gaussian probability models not amenable to linear solutions. Finding the
extremum of such objective functions must thus, in general, be achieved with numerical
techniques.

There is no general solution to the global optimization encountered in classical and
Bayesian inference. However, a plurality of methods have been developed over the years to
tackle the problem. The techniques most often used include

1. Hill climbing and gradient methods

a. Extended Newton methods
b. Levenberg–Marquardt algorithm
c. Powell’s algorithm
d. Simplex algorithm

2. Stochastic methods

a. Simulated annealing
b. Genetic algorithms

3. Hybrid methods consisting of a combination of hill climbing, gradient based, and
stochastic methods

We discuss the principle and applicability of these and related techniques throughout this
section beginning in §7.6.1 with hill climbing and gradient methods. Stochastic methods
are introduced in §7.6.5. Several other methods and variants of the aforementioned methods
exist and are documented in the computing literature but a comprehensive discussion of all
these methods is beyond the scope of this book. In-depth discussions and implementation
of several optimization algorithms are discussed by Press et al. [156], Besset [36], and
Gregory [97]. It should also be clear at the outset that many of the methods discussed in
this section find applications in a variety of optimization problems and are not restricted to
“fitting” problems, but our discussion will focus on optimization of continuous functions
in the context of statistical inference and model fitting.

7.6.1 Hill Climbing and Gradient Methods

Consider a function f (x⃗ ) defined over a space of n-dimensions, Rn. Our goal is to find a
global extremum of the function, that is, the position x⃗ that globally minimizes or max-
imizes the function as appropriate. The function f (x⃗ ) may be rather generic and is not
restricted to objective functions measuring the level of fitness of a model to measured data.
Many of the techniques discussed in the text that follows indeed apply to a wide range of
functions. In the context of inference problems, however, the vector x⃗ shall here stand for
a collection of model parameters that need to be optimized or fitted to measured data (and
not the data itself).

Let us assume the function f (x⃗ ) is continuous everywhere in the search space and deriv-
able relative to all components of x⃗. Extrema of the function may then be sought for by
searching values of x⃗ where the gradient of the function vanishes.

∇ f (x⃗ ) = df (x⃗ )
dx⃗

= 0 (7.305)
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Fig. 7.6 A vanishing gradient,∇ f (⃗x ) = 0, is a necessary but insufficient condition in the search for a function’s global
extremum.

Unfortunately, this condition does not guarantee the existence of an extremum. In n >

1 dimensions, points or regions where ∇ f vanish may indeed include saddle points as
well as minima and maxima, as illustrated in Figure 7.6. The condition Eq. (7.305) thus
provides a necessary but not sufficient condition for the existence of extrema. Solutions x⃗
of Eq. (7.305) are, however, easily tested to verify whether they correspond to a minimum,
a maximum, or a saddle point region by considering second derivatives of the functions
along all of its components. Positive and negative second derivatives identify minima and
maxima, respectively, while a mix of negative and positive second derivatives (or all null
second derivatives) reveals saddle point regions.10 A more difficult issue arises from the
fact that, in general, the function f (x⃗ ) may feature several minima or maxima as well as
saddle points. Extrema search algorithms may then end up finding local minima or maxima,
not the lowest (global minimum) or highest value (global maximum) of the function. In
fitting and inference problems, this entails that the solutions obtained may not be truly
optimal, that is, they may not represent the model parameters that best fit the data. We
will see that optimization algorithms vary greatly in their capacity to identify a global
extremum. Hill climbing and gradient based algorithms are typically very fast and efficient
but tend, by their very nature, to settle onto the first extremum they find whether global
or not. By contrast, Monte Carlo algorithms are typically designed to provide a better
and fuller exploration of the search space, albeit at the cost of requiring many function
evaluations and thus greater CPU time.

Newton Optimization Methods
Newton optimization methods implement a generalized version of Newton’s zero-finding
algorithm to find an extremum of a function f (x⃗ ). Starting from an initial position x⃗ (0),

10 Note that in one dimension a “saddle point” is observed whenever both the first and second derivative of a
function vanish at the same point.
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they use derivatives of the function f (x) to quickly home in on an extremum but provide
no guarantee whatsoever that the extremum found is a global minimum or maximum.

Newton’s method and related techniques are based on a Taylor expansion of the function
f (x⃗ ) in the vicinity of a point x⃗ (k=0) believed to be near the sought for optimum of the
function:

f (x⃗ ) = f (x⃗ (k) ) +
n∑

i=1

∂ f (x⃗ )
∂xi

∣∣∣∣
x⃗ (k)

(
xi − x(k)

i

)
+ O(2), (7.306)

where higher-order terms O(2) are neglected. Inserting this expression in Eq. (7.305), we
get

n∑

i=1

∂2 f (x⃗ )
∂xi∂x j

∣∣∣∣
x⃗(k)

(
xi − x(k)

i

)
+ ∂ f (x⃗ )

∂x j

∣∣∣∣
x⃗(k)

= 0, (7.307)

which can readily be written as an approximate linear equation of the form

α(k)δx⃗ (k) = b⃗(k), (7.308)

where

δx⃗ (k) = x⃗ − x⃗ (k), (7.309)

α
(k)
i j = ∂2 f (x⃗ )

∂xi∂x j

∣∣∣∣
x⃗ (k)

, (7.310)

b(k)
i = − ∂ f (x⃗ )

∂x j

∣∣∣∣
x⃗ (k)

. (7.311)

Multiplying Eq. (7.308) on both sides by the inverse (α(k)
i j )−1, one gets

δx⃗ (k+1) =
(
α

(k)
i j

)−1
b⃗(k). (7.312)

Given an initial estimate of the extremum, x⃗ (k), also called prior estimate, one obtains
an updated and more accurate estimate of the extremum’s position, x⃗ (k+1), by addition of
δx⃗ (k+1):

x⃗ (k+1) = x⃗ (k) + δx⃗ (k+1). (7.313)

We labeled the solution with an index (k + 1) to indicate that the procedure can be iterated.
Indeed, given an initial value x⃗ (0), the solution provided by Eq. (7.312) is strictly exact
only if higher-order terms in Eq. (7.306) are truly negligible. However, one can use the
preceding equations iteratively to obtain an approximation of the sought for extremum.
Iterations should be terminated when |δx⃗ (k+1)| < ε or | f (x⃗ (k+1)) − f (x⃗ (k) )| < ξ , where ε

and ξ define the required precision of the search.
Newton’s algorithm is commonly used in optimization engines and packages such as

Minuit [115] for extremum searches, but it is important to be aware of its limitations.
The algorithm is efficient and precise but will typically home in on the closest extremum
because it does not have built-in capabilities to differentiate between local extrema and
a global extremum. Indeed, the algorithm can be rather quickly locked in a local mini-
mum. Other techniques must then be used to first identify a region of global extremum and
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select a seed value x⃗ (0) with which to initiate the algorithm. It should also be noted that the
matrix α may be ill conditioned and not invertible for seed values x⃗ (0) “far” from an ex-
tremum. Yet another limitation of the technique is that it requires the evaluation of first and
second derivatives. If such analytical derivatives are not available or possible, numerical
techniques must be used, which may reduce the accuracy and the efficiency of the tech-
nique. Numerical calculations of second derivatives, in particular, require several calls to
evaluate the function and may then considerably increase the CPU time needed to achieve
solutions of required precision. It may then be preferable to make use of techniques that
do not require calculations of derivatives such as the hill climbing techniques introduced
in §7.6.3.

7.6.2 Levenberg–Marquardt Algorithm

The Levenberg–Marquardt algorithm is a popular and efficient variant of Newton’s algo-
rithm used in LS minimization problems. The objective function is the χ2 function defined
as

χ2(θ⃗ ) =
N∑

i=1

[
yi − f (xi|θ⃗ )

σi

]2

, (7.314)

in which N is the number of data points (xi, yi), f (x|θ⃗ ) represents the model, and θ⃗ are
the unknown (free) parameters to be determined by χ2 minimization. As for Newton’s
algorithm, one assumes the χ2-function can be represented by a quadratic form in the
vicinity of the optimal values of the parameters θ⃗min:

χ2(θ⃗ ) ≈ χ2
min + 1

2

(
θ⃗ − θ⃗min

)T
D

(
θ⃗ − θ⃗min

)
, (7.315)

where χ2
min is the minimum of the function achieved for the optimal value of the parameters

θ⃗min; D is an m × m symmetric matrix that depends on the data points and the model to
be fitted; and θ⃗ is an 1 × m column vector one can vary to explore the shape of the χ2-
function.

Let us assume a prior estimate θ⃗ (0) of the model parameters is known. If the preceding
quadratic form is a reasonable approximation of the actual χ2-function, then one can use
the gradient of the χ2-function at θ⃗ (0) to seek the minimum

∂χ2

∂θk

∣∣∣∣
θ⃗ (0)

= 1
2

∑

i j

∂

∂θk

[
(θi − θmin,i) Di j

(
θ j − θmin, j

)]
∣∣∣∣∣∣
θ⃗ (0)

, (7.316)

=
∑

j

Dk j

(
θ

(0)
j − θmin, j

)
, (7.317)

where we have used ∂θi/∂θk = δik , the symmetric nature of D, and carried sums to elimi-
nate the delta functions. It is convenient to write this expression in matrix form:

∇χ2
∣∣
θ⃗ (0) = D ·

(
θ⃗ (0) − θ⃗min

)
. (7.318)
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One solves for θ⃗min by multiplying both sides of this expression by the inverse D−1:

θ⃗min = θ⃗ (0) − D−1 ∇χ2
∣∣
θ⃗ (0) . (7.319)

In principle, the values θ⃗min should correspond to the minimum of the χ2-function and pro-
vide optimal values of the parameters θ⃗ . In practice, the quadratic form, Eq. (7.315), may
be a poor approximation of the actual shape of the χ2-function. It also relies on numerical
calculations of the gradient ∇χ2

∣∣
θ⃗ (0) and the matrix D, which may not be perfectly accu-

rate. One may, however, replace the matrix D by a constant and achieve what is commonly
known as the steepest descent method. Given a prior estimate θ (i−1), a posterior (i.e., an
improved estimate) can be evaluated as

θ (i) = θ (i−1) − k × ∇χ2
∣∣
θ⃗ (i−1) , (7.320)

in which k is a suitably chosen constant.
Computation of Eq. (7.319) requires knowledge of the gradient ∇χ2 and the matrix D.

The gradient ∇χ2 may be calculated according to

∂χ2

∂θk
= −2

N∑

i=1

(
yi − f (xi|θ⃗ )

σ 2
i

)
∂ f (xi|θ⃗ )

∂θk
. (7.321)

Calculation of the matrix D, called the Hessian matrix11, involves second-order deriva-
tives of the χ2-function with respect to θk at any value of θk :

∂χ2

∂θk∂θl
= 2

N∑

i=1

1
σ 2

i

[
∂ f (xi|θ⃗ )

∂θl

∂ f (xi|θ⃗ )
∂θk

(7.322)

−
(

yi − f (xi|θ⃗ )
) ∂2 f (xi|θ⃗ )

∂θl∂θk

]

.

It is convenient to define coefficients βk and αkl as follows:

βk ≡ −1
2

∂χ2

∂θk
, (7.323)

αkl ≡ 1
2

∂2χ2

∂θl∂θk
. (7.324)

The coefficients αkl form a matrix α = D/2. Equation (7.319) can thus be recast as
m∑

l=1

αklδθ
(i)
l = βk . (7.325)

Starting with a prior estimate θ (i−1), solution of the linear equation (7.325) yields an incre-
ment δθ

(i)
l , which one can use to obtain an improved estimate θ (i):

θ⃗ (i) = θ⃗ (i−1) + δ⃗θ
(i)

. (7.326)

11 The Hessian matrix is named after the nineteenth-century German mathematician Ludwig Otto Hesse (1811–
1874), who used the determinant of the matrix as a measure of the local curvature of a function of many
variables.
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α is commonly called curvature matrix, as well as Hessian matrix. Its inverse and
Eq. (7.325) provide for the inverse-Hessian formula

δ⃗θ = α−1β⃗. (7.327)

As per Eq. (7.322), calculation of α in principle involves both first- and second-order
derivatives of the functions f (x|θ⃗ ) with respect to parameters θ⃗ . Second-order derivatives
arise because the gradient, Eq. (7.321), involves first-order derivatives ∂ f /∂θk . However,
these are often ignored in practice because the term containing second-order derivatives
in Eq. (7.322) also includes the coefficients (yi − f (xi|θ⃗ )). These coefficients are expected
to be small and oscillate around zero when the fit converges to a minimum χ2. The sum
involving the second-order derivatives thus tends to vanish or at the very least be negli-
gible compared to the first term, which involves a product of first-order derivatives. The
calculation of the curvature matrix α is thus reduced to

αkl =
N∑

i=1

1
σ 2

i

[
∂ f (xi|θ⃗ )

∂θl

∂ f (xi|θ⃗ )
∂θk

]

. (7.328)

The inverse-Hessian formula usually converges toward the true minimum of the χ2-
function, but the convergence may be slow because of the relatively small steps produced
by the method. The calculation of the Hessian and its inverse can also be computationally
intensive. Early computers were not as fast and powerful as those in use today. Finding
ways to improve the rate of convergence and reduce the computation involved in numer-
ical fits was thus highly desirable. Clearly, the steepest descent method, Eq. (7.320), has
the advantages of simplicity and speed. Calculation of the matrix α is not required, and

given a suitably chosen constant provides for large increments δ⃗θ
(i)

and a fast descent to-
ward the minimum of the χ2-function. The use of large increments, however, implies the
method can easily overshoot the position of the minimum and end up oscillating around it
without ever reaching it. It is thus useful to “turn on” the slower but more precise inverse-
Hessian method when nearing the minimum. This idea was first suggested in 1944 by K.
Levenberg [136] and further developed by D. W. Marquardt in 1963 [140]. It is thus now
commonly known as the Levenberg–Marquardt algorithm (LMA) or alternatively as the
Damped Least-Squares (DLS) method. It forms the basis of many fitting packages com-
monly available today.

In order to use Eq. (7.320), one must identify a proper scale for the constant k that
controls the rate of descent. We first note that the χ2 is by definition nondimensional; in
other words, it is a pure number. The fit parameters θk , on the other hand, generally have
dimensions and units such as cm, kg, and so on. Since the coefficients βk are defined as
first-order derivatives of χ2 with respect to to θk , they must carry dimensions of 1/θk .
Equation (7.320) thus implies the constants k have units of 1/θ2

k . The diagonal elements of
the Hessian matrix α have the same dimension and as such constitute a natural choice to
determine the scale of the constant k. The diagonal elements might, however, be too large.
Marquadt thus had the insight to include a “fudge” factor λ:

δθk = 1
λαkk

βk . (7.329)
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Since the coefficients αkk are by construction positive definite, the increment δθk remains
proportional to the gradient βk and provides the intended behavior. Marquardt also real-
ized he could combine the preceding steepest descent with the inverse-Hessian formula by
introducing modified matrix elements α′

i j as follows:

α′
ii ≡ αii (1 + λ) , (7.330)

α′
i j ≡ αi j, (7.331)

and replace αi j by α′
i j in Eq. (7.327), thereby yielding

δ⃗θ = α′−1
β⃗. (7.332)

When the scale parameter λ is very large, the matrix α′ is effectively diagonal and so is its
inverse. Equation (7.332) thus yields the steepest descent, Eq. (7.320). On the other hand, if
λ vanishes, one recovers the inverse-Hessian formula, Eq. (7.327). The LMA method is it-
erative. It should converge relatively rapidly to a region of the parameter space θ⃗ that yields
near-minimum χ2 values. However, the search should be stopped if (1) it fails to converge
or (2) incremental reduction (decreases) of the χ2 become negligible (e.g., smaller than
0.01 in absolute value), or some small fractional change, like 10−3. One should not stop
the procedure when the χ2 increases, unless, of course, the method fails to converge in a
reasonable number of iterations.

The LMA can be implemented as follows:

1. Obtain an initial rough guess θ⃗ (i=0) of the fit parameters.
2. Compute χ2(θ⃗ (i=0)).
3. Select a small value for λ, for example, λ = 0.001.
4. Solve the linear equation (7.332) for δθ (i).
5. Evaluate χ2(θ⃗ (i) + δθ (i) ) and calculate the change +χ2 = χ2(θ⃗ (i) + δθ (i) ) − χ2(θ⃗ (i) ).
6. If +χ2 ≥ 0, increase λ by a factor of 10, and repeat step 3.
7. If |+χ2| < ϵ, with ϵ set to be a reasonably small number (e.g., 0.01), stop the search.
8. Otherwise decrease λ by a factor of 10, update the parameters: θ⃗ (i+1) = θ⃗ (i) + δθ , and

repeat step 3.

Once an acceptable minimum has been reached, one should set λ = 0 and compute C =
α−1 in order to obtain an estimate of the covariance matrix of the standard errors of the
final parameters θ⃗ (i).

While in general the LMA works rather well, it may be slow to converge when the
number of fitted parameters is very large. A variety of modern methods have thus been de-
veloped to improve on its basic principles, some of which are presented in other sections of
this text. Techniques have also been developed to carry out fits with user-defined constraints
on the parameter space. This is particularly useful to avoid nonphysical parameter regions
or pathological behaviors. The minimization and fitting package Minuit [115], popular in
the high-energy physics community, uses a combination of Monte Carlo search methods;
the simplex method of Nelder and Mead [147], discussed in §7.6.4; and the variable metric
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Fig. 7.7 Basic principle of hill climbing methods: Thin solid lines represent iso-contours of the objective function; thick arrows
represent paths followed by the hill climbing algorithm along successive directions until a local extremum of the
function is reached.

method of Fletcher [84]. It also gives the ability to impose constraints on the parameter
space accessible to a search and to control how errors are handled and calculated.

7.6.3 Hill Climbing Methods

Hill climbing methods provide convenient objective function optimization techniques that
do not require evaluations of function derivatives. They seek a function’s extremum in n-
dimensions by sequentially finding extrema along straight lines, as schematically illustrated
in Figure 7.7. Indeed, rather than seeking an extremum simultaneously in several dimen-
sions, the hill climbing carries out the search along straight lines of arbitrary direction in
n-dimension space. Once a particular extremum is found, the direction is changed, and an
improved extremum sought for. The process is repeated iteratively until a true extremum is
found within the desired precision. Several distinct techniques may be used for the selec-
tion of the direction d⃗ (k) and the 1D optimization. We will restrict our discussion to a few
illustrative techniques in this and the following sections.

The basic idea is to reduce the objective function f (x⃗ ) to a single variable function g(z)
defined as follows:

g(z) = f (x⃗ (k) + zd⃗ (k) ). (7.333)

where the vectors x⃗ (k) and d⃗ (k) represent the starting point and direction, respectively,
of the kth iteration of the search algorithm. A 1D search algorithm is invoked to find the
extremum of g(z) at each iteration. The extremum z is then used to calculate the starting
point of the next iteration. The algorithm may thus be summarized as follows:

1. Set k = 0, and choose a starting point x⃗ (k) by any appropriate method.
2. Select a search direction d⃗ (k) in n-dimensions.
3. Find an extremum z(k) of g(z) using a suitable 1D search technique.
4. Calculate the corresponding point in full space according to x⃗ (k+1) = x⃗ (k) + z(k)d⃗ (k).
5. If convergence is achieved, terminate the search and produce x⃗ (k+1) as the sought for

extremum.
6. Otherwise, set x⃗ (k+1) as a new starting point, set k = k + 1, and proceed to step 2.
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Fig. 7.8 Illustration of the bisection algorithm. The initial triplet (za, zb, zc) is replaced by (zb, zd, zc) or (za, zb, zd ) depending
on whether g(zd ) is better or worse than g(zb).

Bisection and Bracketing Algorithms
The principle of the bisection algorithm is illustrated in Figure 7.8. One seeks an extremum
of a continuous function g(z) assuming its derivatives are unknown or not readily calcula-
ble. As a starting point, the algorithm requires a triplet (za, zb, zc) such that za < zb < zc.
Let us assume g(zb) is “better” than g(za) and g(zc). In this context, better means a higher
value if searching for a maximum, or a lower value if searching for a minimum. Given the
function is continuous, the fact that g(zb) is better than g(za) and g(zc) implies the sought
for extremum is necessarily within the range za ≤ z ≤ zc. Let us thus seek a new triplet
that narrows this interval. On general grounds, one can assume there is a larger probability
to find the extremum in the larger of the two intervals [za, zb] and [zb, zc]. For illustrative
purposes, let us assume zb − za < zc − zb and select a point zd = zb + λ(zc − zb) where λ

is typically chosen to be the golden ratio (3 −
√

5)/2. If g(zd ) is better than g(zb), the new
triplet is identified as (zb, zd, zc); otherwise it is set to (za, zb, zd ). The procedure is then
iterated with the new triplet. The search proceeds iteratively and identifies successively
narrower intervals. It is terminated when +z = zc − za ≤ ε, that is, when the width of the
triplet is narrower than the required precision ε. By construction, the sought for extremum
is somewhere in the interval [za, zc], the solution zb achieved thus has a precision of order
±(zc − za)/2.

In the preceding discussion, we assumed the starting triplet (za, zb, zc) featured a point
zb better than both za and zc. If the three points of the triplet are chosen randomly, there
is a good chance that za or zc might be better than zb. There is thus no guarantee that the
interval [za, zc] brackets the extremum; that is, the extremum is not necessarily within the
interval. One must then seek a new a new triplet (za, zb, zc), with g(zb) < g(za), g(zc), that
brackets the extremum.

Bracketing of the extremum may be accomplished with a rather simple algorithm as
follows. Consider two given points zb and zc. Let us assume that g(zc) is better than
g(zb) as illustrated in Figure 7.9. Let +z = zc − zb. We then choose a point ze such that
ze = zc + 2+z = 3zc − 2zb in the direction of the optimum. If g(zc) is better than g(ze),
then the extremum is bracketed in the interval [zb, ze], and one can proceed with the bisec-
tion algorithm discussed earlier. Otherwise, iterate the extension, that is, let z(k+1)

b = z(k)
c ,
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Fig. 7.9 Extension algorithm used to bracket an extremum.

z(k+1)
c = z(k)

e , and z(k+1)
e = 3z(k+1)

c − 2z(k+1)
b . The width of the interval increases by a factor

of 2 at each iteration and is thus guaranteed to eventually contain the extremum, unless an
extremum does not exist for finite z values. Implementations of this algorithm should thus
check for floating point exceptions.

Insofar as the function g(z) is continuous, the bisection algorithm cannot fail and will al-
ways return a valid approximation of the extremum. However, its convergence rate is rather
slow, and obtaining a solution of high precision may require a large number of iterations.
The required precision ε should thus be set to a practical value reflecting the needs of the
application. If extremely high precision is required, one can complete the search with the
faster and more precise Newton (gradient) method, which is essentially guaranteed to work
well in the immediate vicinity of the extremum.

Powell’s Algorithm
Powell’s conjugate direction method, commonly known as Powell’s algorithm [154], pro-
vides a straightforward implementation of the hill climbing method toward the search for a
function’s extremum. The algorithm relies on the notion that once an optimum has been ob-
tained along a particular direction d⃗k , the likelihood for greatest improvement lies in a new
direction d⃗(k+1) perpendicular to the original direction d⃗k , that is, such that d⃗(k+1) · d⃗k = 0.
However, since this condition does not uniquely define d⃗(k+1), the algorithm also includes
a specific recipe to decide on the next best direction at each step. The algorithm may be
summarized as follows:

1. Select the required precision of the search, ε.
2. Let k = 0.
3. Given a best point x⃗ (k) at iteration k, initialize n unit vectors êi to form a complete basis

of the search space. The initial set of vectors may be defined as ê1 = (1, 0, . . . , 0),
ê2 = (0, 1, . . . , 0), . . ., ên = (0, . . . , 0, n).

4. Initiate the search with k = 1.
5. Determine the optimum x⃗ (k) of the function f (x⃗ ) along the direction êk starting from

x⃗ (k−1).
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Fig. 7.10 Illustration of Powell’s algorithm for (a) a function nearly quadratic in the vicinity of its extremum and (b) a function
exhibiting a narrow and elongated extremum structure.

6. Increment k by one unit and if k ≤ n, proceed to step 5.
7. Otherwise, set êk = êk−1.
8. Set ên = (x⃗ (n) − x⃗ (0) )/|x⃗ (n) − x⃗ (0)|.
9. Find a new extremum x⃗ (n+1) of f (x⃗ ) along ên.

10. If |x⃗ (n) − x⃗ (0)| < ε, terminate the algorithm.
11. Otherwise, set x⃗ (0) = x⃗ (n+1), and proceed to step 3.

Powell’s algorithm is robust for functions exhibiting a (nearly) quadratic behavior near
their extremum, as illustrated in Figure 7.10a, but may be extremely slow to converge (or
in some cases not converge at all) if the extremum is located within a very narrow and
elongated hill (or valley), as schematically shown in Figure 7.10b.

7.6.4 Simplex Algorithm

The simplex algorithm, invented by Nelder and Mead [147], uses the notion of simplex to
subdivide a large parameter space and carry out a search for the extremum of a function.
Defined in n-dimension space, an n-simplex is a polytope figure formed by joining n + 1
vertices (or summits) by straight lines. The n + 1 vertices x⃗k of an n-simplex must be
affinely independent, that is, the differences x⃗1 − x⃗0, x⃗2 − x⃗0, . . . , x⃗n − x⃗0 must be linearly
independent. Formally, a point may be considered a 1-simplex and a line segment a 2-
simplex. But the notion of simplex applied to searches for function extremum is of interest
mostly for n ≥ 2. A 3-simplex is a regular triangle in two dimensions, a 4-simplex is a
tetrahedron in three dimensions, and so on, as illustrated in Figure 7.11.

Fig. 7.11 Illustration of basic simplex of order n = 1–4: (a) single vertex, (b) line segment, (c) triangle, (d) tetrahedron.
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Fig. 7.12 Illustration of the simplex algorithm: (a) original simplex, (b) simplex obtained by reflection of the weakest vertex; (c)
simplex contraction relative to the best vertex B⃗; (d) example of the evolution of a 3-simplex involving two reflections
and one contraction.

The bisection technique presented in §7.6.3 has guaranteed success in one dimension
but is not applicable in n ≥ 2 dimensions. It is indeed not possible to robustly bracket
the extremum of a function in two or more dimensions. Segmentation of the search space
nonetheless remains possible with the notion of simplex. Given the edges and faces of an
n-simplex cut across all dimensions of the search space, one may naturally consider how a
function of interest behaves across these faces and seek regions where the function grows
(search for a maximum) or decreases (search for a minimum).

The algorithm is relatively simple and involves no derivatives. The search for an ex-
tremum is based solely on evaluations of the function at the vertices of a simplex while
its shape, orientation, and size are varied. The value of the function at a vertex is said to
be better if larger (smaller) than those at other vertices in searches for a maximum (min-
imum). Although bracketing of an extremum is not possible in n ≥ 2, the shape of the
simplex can be varied to stretch or shrink in directions where the function is better. It is
thus possible to progressively converge toward an extremum of the function. The simplex
algorithm, schematically illustrated in Figure 7.12, may be decomposed as follows:

1. Select a simplex consisting of n + 1 vertices x⃗i.

a. If no prior guess of the function’s extremum exists, the vertices of the simplex may
be selected randomly in the search space of interest. For instance, if the search
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consists of an n-dimensions box B (i.e., a hyperrectangle), the vertices may be gen-
erated according to

x⃗i = r × (xmax,i − xmin,i) êi, (7.334)

where r is a random number in the range 0 ≤ r ≤ 1; xmax,i and xmin,i represent the
upper and lower boundaries of the box, respectively, along dimension i; and êi are
unit vectors along each of the dimensions i.

b. Alternatively, given an initial guess x⃗ (0), one can use x⃗0 ≡ x⃗ (0) as the first vertex of
the simplex and generate n additional vertices according to

x⃗i = x⃗0 + kêi, (7.335)

where k is constant representative of the scale of the search, and êi are once again
unit vectors along each of the dimensions i. If the search space is of considerably
different sizes along each of the dimensions, the constant k may be replaced by
scale factors for each of the coordinates.

2. Evaluate the objective function at each of the vertices.
3. Tag the worst vertex as W⃗ .
4. If the size of the simplex is smaller than the desired precision ε, terminate the algo-

rithm.
5. Determine the center of gravity, G⃗, of the simplex according to

G⃗ = 1
n

n+1∑

i̸=W

x⃗i, (7.336)

where the worst vertex is excluded.
6. Determine a point S⃗ located symmetrically to W⃗ relative to G⃗,

S⃗ = G⃗ − (W⃗ − G⃗) = 2G⃗ − A⃗. (7.337)

7. Evaluate the function at S⃗, and skip to step 11 if f (S⃗) is not better than all other points
of the simplex.

8. Otherwise, calculate a new point T⃗ that is twice as far from G⃗ than S⃗

T⃗ = G⃗ − 2(S⃗ − G⃗) = 3G⃗ − 2A⃗. (7.338)

9. Evaluate the function at T⃗ , and if f (T⃗ ) is better than f (S⃗), update the current simplex
by replacing W⃗ by T⃗ and proceed to step 4.

10. Otherwise, replace W⃗ by S⃗ and proceed to step 4.
11. Calculate the point B⃗ = (G⃗ + W⃗ )/2.
12. If f (B⃗) is better than all vertices, update the simplex by replacing W⃗ by T⃗ , and proceed

to step 4.
13. Otherwise, contract the simplex by a factor of 2 relative to the best vertex, that is,

reduce in half all edges leading to the best vertex, and proceed to step 4.
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Step 8 expands the simplex in the direction of the best point and guarantees that the next
step will be in a different direction, thereby enabling a complete exploration of the sur-
rounding space. Step 13 shrinks the simplex and thus guarantees an eventual convergence
onto an optimum.

The simplex algorithm is reasonably efficient and is guaranteed to converge to an ex-
tremum. It is particularly well suited for searches in multidimensional space of large di-
mensionality, that is, large values of n. Unfortunately, the algorithm may easily get trapped
in a local extremum and thus fail to find the sought for global extremum. The algorithm
is also found to progress somewhat slowly in the immediate vicinity of an extremum. The
simplex algorithm should thus be used with a relatively low precision ε, and once an ap-
proximate extremum has been identified, one should switch to more robust and efficient
algorithms that work best in the immediate vicinity of an extremum (e.g., Newton algo-
rithm, Levenberg–Marquardt, etc.). The algorithm may also be used in conjunction with
the simulated annealing method to reduce the risk of terminating the algorithm at a local
extremum.

7.6.5 Random Search Methods

Objective functions involved in modeling of data with nonlinear models often feature a
large number of extrema. An extremum search conducted with a gradient or hill climb-
ing type algorithm and initiated totally at random thus runs the risk of homing-in on the
“closest” local extremum, thereby missing the true global optimum and the best model
parameter set. A technique capable of scanning the entire parameter space that does not
get stuck on a local extremum and is capable of finding the best extremum (i.e., the global
extremum) of the function is thus needed. Such a global extremum finding method should
be particularly useful for modeling problems where the number of parameters is very large
or whenever a sensible initialization of the model parameters, either algorithmically or by a
user, is not feasible. We discuss two illustrative examples of random model space scanning:
simulated annealing and genetic algorithms.

7.6.6 Simulated Annealing Methods

The numerical method of simulated annealing is inspired by the annealing technique used
in metallurgy to control the size of crystals and minimize the number and size of defects in
materials produced. Studies in metallurgy have shown that the size of crystals and defects
are largely determined by the thermodynamic free energy and the rate of cooling used
in the production of materials: slow cooling enables uniform temperature decrease and
the atoms of the material are then less likely to settle in local configurations that produce
“local” minima of the free energy. The numerical method of simulated annealing paral-
lels the slow cooling process by introducing a modified objective function that depends on
a temperature parameter T . The technique involves a random exploration of the param-
eter space in which a migration to better parameters (in the sense of producing a higher
likelihood or minimum χ2) is always accepted, but such that occasional jumps to worse
local solutions are also possible. It is those random jumps away from a local minimum that
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allow, eventually, finding stronger (better) regions of the objective function and, ultimately,
the identification of a true global extremum.

Initial developments of the simulated annealing technique are commonly attributed to
S. Kirkpatrick et al. [126] and V. Cerny [62], who independently adapted the Metropolis–
Hastings algorithm [143] used in Monte Carlo simulations of thermodynamic systems.
Several variants of the technique have been developed that find a wide range of applica-
tions in physical sciences, life sciences, and manufacturing. A detailed discussion of these
variants, their range of applicability, strengths, and weaknesses is beyond the scope of this
text and can be found in the computing literature. Our discussion is thus limited to a brief
conceptual introduction of the principle and merits of the method.

The basic principle of the simulated annealing technique is to replace the posterior
p(θ⃗ |D, I ) by a modified posterior pT (θ⃗ |D, I ) defined as follows:

pT (θ⃗ |D, I ) = exp

(
ln p(θ⃗ |D, I )

T

)

, (7.339)

where T plays the role of a temperature parameter. For T = 1, the function pT (θ⃗ |D, I ) is
obviously strictly equivalent to the posterior p(θ⃗ |D, I ). However, for increasingly larger
values of the temperature, the ratio of the logarithm of p(θ⃗ |D, I ) to T produces pro-
gressively flatter and flatter profiles of probability. Random motions in parameter space
thus do not result in large changes in probability. It is then possible to randomly ex-
plore the entire parameter space at low cost and run a lower risk of being stuck in a local
minimum.

The algorithm achieves an extensive exploration of the space by using random jumps
from its “current” position:

θ⃗ (k+1) = θ⃗ (k) + +θ⃗ , (7.340)

where the size of the jump, +θ⃗ , is determined randomly for each jump. One then computes
the difference of the probabilities at θ⃗ (k+1) and θ⃗ (k)

+p = pT (θ⃗ (k+1)|D, I ) − pT (θ⃗ (k)|D, I ). (7.341)

A new value θ⃗ (k+1) is considered more advantageous (better), and thus readily accepted as
a current estimate of the solution, if +p > 0. If it is not better, the jump may nonetheless
be randomly accepted with an acceptance rate α determined by the temperature T . The
search begins at high temperature and yields a high acceptance rate for bad jumps. This
enables a wide (though not systematic) exploration of the parameter space. It is then likely
that the algorithm can stumble onto better regions of the parameter space. The temperature
is slowly and steadily decreased toward unity as the search proceeds, and with it, the ac-
ceptance rate of bad jumps. As the rate of bad jumps decreases, the search becomes more
focused on the local region surrounding the current value of the parameter. The hope is
then that the random exploration of the space has enabled the identification of the region
of the true extremum of pT (θ⃗ |D, I ), so that, as the temperature finally converges to unity,
the search yields a true global extremum of p(θ⃗ |D, I ).
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The simulated annealing technique involves several parameters and features of its own,
including

1. A model for the rate at which T is reduced relative to the number of iterations k com-
pleted

2. A model for the bad jumps acceptance rate α

3. A model for the (maximum) size of random jumps +θ⃗

Various annealing models are discussed in the computing literature, which are shown to
have varying degrees of success and performance. See [156] and references therein for a
more in-depth discussion of these models.

An important drawback of the basic annealing algorithm is that random jumps can be
quite ineffective at finding a better region of the objective function. Indeed, a large frac-
tion of jumps carried out may be nonadvantageous and the CPU time spent on useless
parameter values (or regions) may be quite large. The problem may be particularly acute
if the objective function has narrow valleys or peaks. A very large fraction of the jumps
may then end up in the flat and nondiscriminating landscape of the function, thus render-
ing the algorithm rather ineffective. Fortunately, the concept of simulated annealing does
not require the jumps to be totally random and one may in fact couple the annealing tech-
nique to more structured search algorithms. Press et al. [156] present such an algorithm in
which the search parameter θ⃗ (k) is replaced by a simplex. The search for an extremum is
then largely driven by the structure of the objective function. However, in order to avoid
being stuck on local extrema, the annealed simplex of Press et al. accepts disadvanta-
geous changes of the simplex with an acceptance rate that depends on the temperature.
It is thus in principle possible to avoid getting stuck in a local extremum of the objec-
tive function, while, relatively speaking, limiting the number of useless function calls and
steps across the search space. Other variants of the annealing algorithm have also been
considered.

7.6.7 Genetic Algorithms

Genetic algorithms (GAs) use a search heuristic that simulates the process of natural selec-
tion toward the solution of optimization and search problems. They belong to a larger class
of algorithms known as evolutionary algorithms used most particularly in artificial intel-
ligence problems. Many GA variants have been developed and reported in the computing
literature. In this section, we focus on the application of GAs in problems of model pa-
rameter optimization. As for simulated annealing algorithms, our discussion is meant to be
a conceptual introduction: readers interested in implementing and using GAs in practical
applications should consult specialized works on this topic [36, 107, 144, 145].

The concept of the GA was introduced in 1975 by John Holland [107] as an alterna-
tive optimization technique capable of avoiding getting stuck on local extrema. The tech-
nique is called genetic because it mimics the evolutionary process of all known living
species. In the context of GAs, parameter values within a search space are considered
as chromosomes of individuals. The objective function is then regarded as a measure of
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Fig. 7.13 Schematic illustration of the (a) gene mutation and (b) crossover processes involved in genetic algorithms used toward
objective function optimization.

the fitness of individuals toward adaptation to their environment. The GA proceeds by
successive iterations. At each iteration, gene mutations and cross-overs are produced and
examined. The fittest individuals (i.e., in this context, chromosomes with best objective
function values) are selected. They “reproduce” and thus make it into the next iteration. A
mutation involves a change of one chromosome at reproduction time whereas a crossover
occurs when two chromosomes randomly split and recombine with components (genes)
of each other, as schematically illustrated in Figure 7.13. The choice of which individuals
(i.e., which chromosomes) survive and are selected for reproduction is carried out ran-
domly. This enables a full exploration of the parameter space and local extrema are thus
avoided.

In the context of optimization problems, GA is typically implemented by considering
individual elements θi of a parameter vector θ⃗ = (θ1, . . . , θm) as individual genes. The re-
production of an individual involves a perfect copy of all elements of the vector but the
selection of which individuals are reproduced and/or genetically modified is a random pro-
cess. The notion of survival of the fittest is implemented by assigning a selection probabil-
ity larger for more fit individuals, that is, those with better values of the objective function.
Mutations create individuals with genes that span the entire parameter space. Evidently,
most mutants are found to have poor objective function value and discarded; that is, they
do not make it to the next generation (iteration). However, occasionally, mutations reveal
more fit individuals, and those are more likely to make it into the next generation. Simi-
larly, crossovers mix good genes with the intent of producing more fit individuals. They
complement mutations toward a full exploration of the parameter space. Their production
and selection involves a stochastic process as well. Many crossovers lead to unfit individ-
uals but few produce better adapted individuals that survive into the following generation.
Successive iterations eventually yield parameter values that constitute a global extremum
of the objective function.

An elegant implementation of the genetic algorithm for parameter estimation in
SmallTalk and Java is presented by D. Besset [36].
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7.7 Model Comparison and Entity Classification

7.7.1 Problem Definition

Model selection and entity classification problems are encountered in all scientific disci-
plines. And, although they have rather different practical goals, that of determining which
of several models is best and identifying the type or class of a specific observed entity,
they are mathematically equivalent. The two types of problems can thus be treated with the
same tools and inference framework. We will here restrict our discussion to the Bayesian
approach, having already discussed in §6.4 the notion of which test can be used, within the
frequentist paradigm, to evaluate the goodness of models and classify entities. One may
argue, however, that the Bayesian paradigm provides tools and methods far more intuitive
and better adapted to either tasks than the frequentist approach.

As an example of model selection drawn from nuclear physics, consider a measurement
of the momenta, p⃗, of particles produced by some nuclear interaction (e.g., proton on pro-
ton at 7 TeV). The goal shall be to determine and use the shape of the momentum spectrum
in order to compare and hopefully falsify12 competing models of the particle production
dynamics. Let D = {p1, p2, . . . , pn}, where n is a very large integer corresponding to the
number of observed particles, represent the set of measured momenta. The inference task
shall then be to determine which of m > 1 model hypotheses Hk , best represent the data D.
For example, one could consider whether the data are best represented by an exponential
distribution, a Maxwell–Boltzmann distribution, a Blast–Wave model [170], a power law,
and so on. Evidently, the models Hk may have distinct parameters θ⃗ (k). The model selec-
tion problem shall then consist in finding which of the m models Hk features the largest
posterior probability p(Hk|D, I ) irrespective of these parameters.

Data classification problems involve a rather similar logic and process. For instance, in
nuclear collision studies, one might be interested in identifying the species of measured
particles such as pions, kaons, protons, and so on, based on their energy loss in a detector
(e.g., a Time Projection Chamber, TPC), or one might wish to use shower shapes observed
in a calorimeter system to distinguish photons and electrons from hadrons, and so on.
One then formulates m > 1 distinct hypotheses Hk corresponding to the several classes,
categories, or types the measured entities (e.g., particles or calorimeter showers) might
belong to. The probabilities p(Hk|D, I ) a given entity might belong to each of the types are
then evaluated on the basis of prior probabilities and likelihood functions of each of the
models. The hypothesis Hk with the largest posterior probability p(Hk|D, I ) may then be
selected as the most likely type of the measure entity based on the data D.

7.7.2 Comparing the Odds of Two Hypotheses

Let us consider a specific example of the model selection problem within the Bayesian
paradigm. Let us assume that we have carried out a measurement and obtained a dataset

12 Demonstrate as false or invalid.
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D. Our task shall then be to assess which of several models (or model hypotheses) Hk best
match or fit the data by comparing the odds, that is, the probabilities, of the models.

The comparison of the odds of the two or more models is readily formulated in terms of
ratios of their posterior probabilities. For instance, in order to compare two models H0 and
H1, with model parameters θ⃗ (H0 ) and θ⃗ (H1 ), respectively, we define the odds ratio of model
H1 in favor of model H0 as

O10 = p(H1|D, I )
p(H0|D, I )

, (7.342)

where p(H0|D) and p(H1|D) represent the posterior probabilities of the models H0 and
H1, respectively, regardless of the specific parameter values θ⃗ (Hj ) = (θ (Hj )

1 , . . . , θ
(Hj )
mj ) that

best fit the data. The posteriors p(Hj|D, I ), j = 1, 2, are obtained by marginalization of all
parameters θ⃗ (Hj ) of the models according to

p(Hj|D, I ) =
∫

8θ⃗

dθ
(Hj )
1 · · · dθ

(Hj )
mj p

(
θ

(Hj )
1 , . . . , θ

(Hj )
mj |D, I

)
, (7.343)

where the integration is carried over all model parameters θ⃗ (Hj ) and across the entire
domain 8θ⃗ of these parameters. Typically, the hypothesis H0 shall be considered as the
null hypothesis representing a commonly adopted model. A large value of the odds ratio,
O10 ≫ 1, shall indicate that the alternative hypothesis H1 is a far more suitable represen-
tation (explanation) of the data than the null hypothesis H0, while a value of order unity or
smaller would indicate H1 is not particularly favored by the data, and thus should not be
adopted in favor of the null hypothesis.

The comparison of the two hypotheses is thus, in principle, rather straightforward as
it suffices to take the ratio of their respective probabilities. One may in fact forgo the
normalization of the posteriors by the global likelihood of the data, p(D|I ), and write

O10 = p(H1|I )p(D|H1, I )/p(D|I )
p(H0|I )p(D|H0, I )/p(D|I )

= p(H1|I )p(D|H1, I )
p(H0|I )p(D|H0, I )

, (7.344)

which involves ratios of priors and likelihoods of the data according to the two hypotheses.
Introducing the priors odds ratio

Oprior
10 = p(H1|I )

p(H0|I )
, (7.345)

and the Bayes factor

B10 = p(D|H1, I )
p(D|H0, I )

(7.346)

as the ratio of the likelihoods of the data based on the two hypotheses, one can determine
the posterior odds ratio in terms of a product of the priors odds ratio and the Bayes factor

O10 = Oprior
10 B10. (7.347)

Examples of computation of Bayes factors and odds ratio are discussed later in this
section.
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7.7.3 Comparing the Odds of Hypotheses with a Different Number of Parameters

A commonly encountered class of problems involves the fitting of data and comparison
of models with different numbers of free parameters. For such comparisons, it is often
possible (although not essential for the following discussion) to represent measured data
with generic linear models of the form

f (x|a⃗) =
m∑

k=1

ak fk (x), (7.348)

where the coefficients ak are free model parameters and the fk (x) represent a set of lin-
early independent functions. Examples of applications of such linear models include fits
of polynomials, orthogonal polynomials, and Fourier decompositions. By construction, the
inclusion of several functions fk (x) in a model may enable representation of a wide range
of functional dependencies on x, and thus provide the capacity to obtain arbitrarily good
fits of the data. Indeed, unless there is prior knowledge dictating how many terms ak fk (x)
should be included in the sum, one could, in principle, add arbitrarily many such terms
and obtain arbitrarily good fits of measured data. However, given finite measurement er-
rors, it may be unclear, a priori, what the true functional shape of the data should be, and
what number m of functions fk (x) should actually be included in the parameterization of
the data. One thus wishes for a mathematical procedure capable of enabling an objective
decision as to whether the addition of one or several model parameters might be justified.

The problem arises, obviously, that by arbitrarily increasing the number of parameters,
one might be able to fit the data exactly. Indeed, a polynomial of order n shall perfectly
fit a dataset consisting of n + 1 points, but such a perfect fit should not be construed as
meaningful or representative of the data. Evidently, the presence of (random) measurement
errors can give the illusion of high-frequency components in the measured data. Such high-
frequency components should not be included, however, unless they are motivated by a
physical understanding of the observed phenomenon. The decision-making mathematical
procedure we seek should thus have a built-in mechanism to disfavor complicated hypothe-
ses with too many parameters. The goal of this section is to show that odds ratios, equipped
with the notion of Occam factors introduced in the text that follows, do in fact provide a
more or less objective procedure to compare the merits of models of the form, Eq. (7.348),
that penalizes overly complicated models.

For simplicity’s sake, let us begin our discussion with the comparison of a null hypoth-
esis (a model) H0 determined by a single and fixed parameter, θ = θ0, and an alternative
hypothesis H1 functionally identical to H0, but in which the parameter θ is allowed to
vary within some specific domain θmin ≤ θ ≤ θmax. We will see, later in this section, how
Bayesian model comparison may be trivially extended to any finite number of parameters
and any finite number of models. By virtue of the fact that H1 has an adjustable parameter
θ , one might naively expect that it should readily provide a better fit of the data and thus
have a larger probability. However, we shall next calculate the odds ratio O10 and show that
the posterior probability of H1 is in fact suppressed, relative to H0, by the added parameter
space.
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Let us assume that the models H0 and H1 span the entire space of models so one can
write

p(H0|D, I ) + p(H1|D, I ) = 1. (7.349)

Dividing this expression by p(H0|D, I ), and rearranging the terms, one gets

p(H1|D, I ) = 1 − p(H0|D, I ) = 1

1 + (O10)−1 , (7.350)

which tells us that the probability of the alternative hypothesis is determined entirely by the
posterior odds ratio O10. If O10 is very large, p(H1|D, I ) → 1, whereas if O10 is very small,
one gets p(H1|D, I ) ≈ 0. In the specific context of the comparison of two models of similar
functional dependence, but different numbers of free parameters, one may assume there are
no a priori reasons to favor one model or the other, and choose Oprior

10 = 1. Equation (7.350)
then reduces to

p(H1|D, I ) = 1

1 + (B10)−1 . (7.351)

Let us thus focus our attention on the Bayes factor B10. This requires marginalization of
the posterior probability, p(θ |D, H1, I ), of the parameter θ . In turn, it also necessitates
the choice of a prior for θ and calculation of the likelihood of hypothesis H1. Let us first
consider the prior of θ .

Assuming the range of θ may be sensibly bound to θmin ≤ θ ≤ θmax, and given the prior
lack of information about this parameter, it is reasonable to choose a flat prior for θ and
write

p(θ |H1, I ) =
{ 1

+θ
for θmin ! θ ! θmax

0 elsewhere,
(7.352)

where +θ = θmax − θmin. A calculation of the likelihood p(D|θ , H1, I ) evidently requires
knowledge of the data D and the specificities of the model H1, but, in general, one may
write

∫

+θ

p(D|θ , H1, I ) dθ ≡ δθ × p(D|θ̂ , H1, I ) = δθ × Lmax, (7.353)

where Lmax ≡ p(D|θ̂ , H1, I ) corresponds to the maximum value of the likelihood function
achieved at the mode θ̂ , and δθ thence corresponds to a “characteristic width” of the like-
lihood function, as illustrated in Figure 7.14. For a Gaussian likelihood, the integral in Eq.
(7.353) would yield δθ =

√
2πσθ , where σθ is the error on the parameter θ . In the more

general case of a non-Gaussian likelihood, one may write δθ = ασθ , where α is a constant
determined by the specific shape of the likelihood function. This is immaterial, however,
for the calculation of the global likelihood of the data given H1

L(H1) ≡ p(D|H1, I ) =
∫

p(θ |H1, I )p(D|θ , H1, I ) dθ (7.354)

= 1
+θ

∫

+θ

p(D|θ , H1, I ) dθ

= p(D|θ̂ , H1, I )
δθ

+θ
.
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Fig. 7.14 Schematic illustration of the notion of Occam factor,8θ = δθ/+θ . The dashed and solid curves represent the prior
probability of the model parameter θ and the likelihood distribution of the data D given hypothesis H1, respectively.

The global likelihood, L(H1), of model H1 is thus equal to the maximum likelihood of the
model, denoted Lmax ≡ L(θ̂ ), achieved at the mode θ̂ multiplied by a purely geometrical
factor δθ/+θ , involving the width δθ of the likelihood distribution as well as the width +θ

of the nominal domain of the parameter θ . Noting that the likelihood of hypothesis H0 is
simply

p(D|H0, I ) = p(D|θ0, H0, I ) ≡ L(θ0) (7.355)

We can then complete the calculation of the Bayesian factor B10 and write

B10 = p(D|θ̂ , H1, I )
p(D|θ0, H0, I )

δθ

+θ
, (7.356)

= L(θ̂ )
L(θ0)

δθ

+θ
.

In general, the nominal parameter range +θ is much wider than the posterior width δθ .
The ratio δθ/+θ ≪ 1 thus penalizes the model H1 for the presence of its (extra) parameter
θ relative to H0, which has no free parameter. Indeed, the Bayes factor must satisfy

L(θ̂ )
L(θ0)

≫ +θ

δθ
(7.357)

in order to favor the hypothesis H1. Since δθ/+θ ≪ 1, the maximum likelihood Lmax ≡
L(θ̂ ) must then be much larger than L(θ0) to favor H1. The search domain associated with
the parameter θ thus indeed imposes a penalty on H1 that the model must overcome by
featuring a very large maximum likelihood L(θ̂ ) before it can be deemed a better descrip-
tion of the data. Effectively, the ratio δθ/+θ plays the role of Occam’s razor, as it disfavors
the more “complicated model,” that is, the model with an extra parameter. The ratio is thus
known as the Occam factor and commonly denoted 8θ . The global likelihood p(D|H1, I )
may then be written

p(D|H1, I ) = L(θ̂ )8θ . (7.358)
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If the hypothesis H1 has m extra parameters θ1, . . . , θm, one similarly finds

p(D|H1, I ) =
∫

p(D|θ1, . . . , θm, H1, I )
m∏

k=1

p(θk|H1, I ) dθk (7.359)

= L(θ̂1, . . . , θ̂m)
δθ1

+θ1
· · · δθm

+θm

= L(θ̂1, . . . , θ̂m)8θ1 · · · 8θm , (7.360)

where 81, . . . ,8m represent the Occam factors associated with the parameters θ1, . . . , θm.
Under ideal circumstances, each Occam factor should be much smaller than 0.1. Consider,
for instance, a case involving three (extra) fit parameters, each with an Occam factor of the
order of 0.01. The ratio L(θ̂ )/L(θ0) would then be required to be much in excess of 106 to
favor the hypothesis H1. Effectively, the Occam factors collectively disfavor the alternative
hypothesis, H1, unless it is, in fact, correct and well supported by precise data. As we
shall discuss with examples in §§7.7.4 and 7.7.4, measurement errors must in general be
sufficiently small to render the test conclusive. If the data have large errors, the likelihood
L(θ̂1, . . . , θ̂m) might be too small to overcome the Occam factors, and model H1 will remain
of questionable value. In the context of a linear model with Gaussian noise, the integral
Eq. (7.353) implies δθ =

√
2πσθ , where σθ is the error on the parameter θ . By virtue of

Eq. (7.252), one then indeed expects the error σθ to scale as σy/
√

n, where σy is the typical
measurement error, and n is the number of points in the dataset. The value of the Occam
factor 8θ = δθ/+θ is thus dependent on the size of the measurement errors as well as the
size of the data sample. Availability of better and larger datasets shall thus lead to smaller
Occam factors, and thus more stringent demands on the maximum likelihood of the model
H1, and unless the ratio L(θ̂ )/L(θ0) is sufficiently large, the Bayes factor will consistently
favor the simpler model.

In general, there is little interest in calculating the Occam factors explicitly, but because
they naturally arise as a result of the marginalization procedure, complex models (with
many extra parameters) shall be transparently and automatically disfavored unless strongly
supported by the data.

We illustrate the aforementioned principle of model comparison, and the effect of the
Occam factors, with two examples: the first, presented in §7.7.4, involves the identification
of a (new) signal amidst a noisy background, while the second, in §7.7.5, illustrates the
comparison of models that differ by the addition of one or few parameters.

7.7.4 Example 1: Is There a Signal?

Problem Definition
Let us consider a problem often encountered in physics: a search for a predicted signal
amidst background noise. For simplicity’s sake, we will here neglect much of the exper-
imental considerations involved in such searches and reduce the complexity of the prob-
lem to one unknown: the amplitude of the signal (assuming the signal does exist). Let us
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assume the measurement D is reported in terms of a Fourier spectrum n⃗ = (n1, n2, . . . , nm)
consisting of m bins (channels) of equal width + f in the range fmin = 0 to fmax = 100 (in
arbitrary units). Let us further assume, to keep the problem relatively simple, that the sig-
nal is expected to have a Gaussian line shape centered at a frequency f0 = 50.5 and of
width σ0 = 1.5, as illustrated in Figure 7.15a. For illustrative purposes, we will carry out
the analysis assuming four different measurement outcomes displayed in Figure 7.15b–e,
which feature the same Gaussian noise characterized by a null expectation value, a stan-
dard deviation of σn = 0.1, and no bin-to-bin cross correlations. Spectra (b–e) have been
generated with a signal of amplitude A equal to 15.0, 5.0, 1.0, and 0.1 (arbitrary units),
respectively but we will of course pretend we have no knowledge whatsoever of these am-
plitudes in our analysis. In fact, we will assume that a prior search of the signal has found
the signal is weaker than some upper bound Amax = 100 and that the theory stipulates the
signal should have a minimum amplitude Amin = 0.01 (again in arbitrary units).

Comparing the Odds of ModelsH1 andH0

Our goal is to establish whether the observed spectra (b–e) provide evidence in support
of a model H1 stating the existence of the signal, or a null hypothesis H0 asserting there
is no such new signal. The presence of a signal is clearly obvious in panels b and c but
rather difficult to establish visually in panels d and e. Our goal is to show how Bayesian
inference can support this visual impression quantitatively when the signal seems obvious
but can also provide odds of one model against the other even when the signal is not visually
evident. In order to realize this goal, we will compare the posterior probabilities p(H1|D, I )
and p(H0|D, I ) of models H1 and H0, respectively, and calculate the posterior odds ratio of
the two hypotheses

O10 ≡ p(H1|D, I )
p(H0|D, I )

. (7.361)

Recall, from §7.7.2, that the odds ratio O10 may be expressed in terms of the prior odds
ratio Oprior

10 and the Bayes factor B10 defined as

O10 = Oprior
10 B10 (7.362)

with

Oprior
10 = p(H1|I )

p(H0|I )
, (7.363)

and

B10 = p(D|H1, I )
p(D|H0, I )

= L(H1)
L(H0)

, (7.364)

where L(H1) and L(H0) are the global likelihoods of the models H1 and H0, respectively.
Given the limited amount of prior information about the existence of the signal, it ap-

pears legitimate to set the prior odds ratio to unity, Oprior
10 = 1. The posterior odds ratio shall
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thus be entirely determined by the Bayes factor, that is, the ratio of the global likelihood of
the two models.

It is important to note that we actually seek posterior probabilities for the models H1 and
H0 irrespective of their “internal” parameter values. In the context of this problem, only H1

has an internal parameter, and this parameter is the unknown amplitude A of the purported
signal. Since the actual value of this amplitude is irrelevant for the central goal of our
study (i.e., establish the existence of the signal), we obtain p(D|H1, I ) by marginalization
according to

p(D|H1, I ) =
∫

+A
p(A|H1, I )p(D|H1, A, I ) dA (7.365)

where p(D|H1, A, I ) is the probability of observing the data D given H1 is valid and for a
specific amplitude A, and p(A|H1, I ) is the prior degree of belief in the strength A of the
signal given H1 is true.

Probability Model and Likelihoods
Let us first identify and discuss each of the components required in our Bayesian analy-
sis of the spectra. The measured data D (one the four spectra in Figure 7.15) are repre-
sented as a vector n⃗ = (n1, n2, . . . , nm) and values ni correspond to the number of counts
(after background subtraction) in bins i = 1, . . . , m. By construction, the bin content ni

is the sum of the fraction of the signal si expected in bin i and the noise ei in that
bin:

ni = si + ei. (7.366)

Model H1 tells us that, for a fixed amplitude A, the fraction of the signal si is equal to

si = Api (7.367)

where

pi =
∫ fi,max

fi,min

1√
2πσ0

exp
[
− ( f − f0)2

2σ 2
0

]
df (7.368)

is the relative fraction of the signal in each bin i, not a random number, determined by
the model parameters f0, σ0, and the bin boundaries fi,min and fi,max. The signal yield si

is thus a random number only insofar as A might itself be considered a random number.
The noise terms ei, however, are random Gaussian deviates, which we assume all have the
same standard deviation σn. The probability density that the noise ei be found in the range
[ei, ei + dei] is

p(ei|σn, I ) = 1√
2πσn

exp
(

− e2
i

2σ 2
n

)
. (7.369)

But, given the noise ei may be written as

ei = ni − si, (7.370)
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Fig. 7.15 Simulated spectra used in the example of Bayesian inference presented in §7.7.4. (a) Signal line shape and position
predicted by model H1. (b–e) Simulated measurement outcomes with amplitudes A = 20, 5, 1, 0.005, and a
Gaussian noise with standard deviation σ = 0.1. Best fits (posterior modes) are shown with dashed lines.

this implies that for a fixed signal amplitude A, the probability that the bin content ni will
be found in the range [ni, ni + dni] is equal to the probability the noise will be found in
[ei, ei + dei], and we thus obtain the data probability model

p(ni|H1, A, σn, I ) = 1√
2πσn

exp
[
− (ni − Api)2

2σ 2
n

]
. (7.371)
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Fig. 7.16 Likelihood distributions p(D|H1, A, I) vs. A for the measurement outcomes shown in Figure 7.15b–e, with respective
true amplitudes 20, 5, 1, and 0.005.

The likelihood of the data D given the model H1 and a fixed amplitude A may then be
written

p(D|H1, A, I ) =
m∏

i=1

1√
2πσn

exp
[
− (ni − Api)2

2σ 2
n

]
,

= (2π )−m/2σ−m exp
[
−

∑m
i=1(ni − Api)2

2σ 2
n

]
,

= (2π )−m/2σ−m exp
[
−1

2
χ2

]
, (7.372)

where we introduced the χ2 function defined by

χ2 =
m∑

i=1

(ni − Api)2

σ 2
n

. (7.373)

The likelihood of the model H0 is readily obtained by setting A = 0 in the preceding ex-
pressions.

p(D|H0, σn, I ) = (2π )−m/2σ−m exp
[
−1

2
χ2

0

]
, (7.374)

with

χ2
0 =

m∑

i=1

n2
i

σ 2
n
. (7.375)

The likelihood distributions p(D|H1, A, σn, I ) corresponding to spectra (b–e) are dis-
played in Figure 7.16 using a log-log scale to facilitate visualization of the tails of the
distributions. Spectra (b) and (c) are characterized by very narrow p(D|H1, A, σn, I ) dis-
tributions, with an approximate Gaussian shape, centered at the expected amplitudes and
a maximum likelihood value of 3.1 × 1018. Distributions associated with spectra (d) and
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(e) have similar maximum likelihood values but feature non-Gaussian shapes. Somewhat
wider, the likelihood distribution of spectrum (d) features a sizable low-side tail while the
likelihood distribution of spectrum (e) is peaked near the origin, thereby indicating it is
consistent with a signal of null amplitude (i.e., no signal).

We now wish to determine and compare the posteriors p(H0|D, I ) and p(H1|D, I ). Since
H0 has no amplitude parameter, its posterior may be obtained directly from the likelihood
p(D|H1, I ) of the measured spectra. Determination of p(H1|D, I ), however, requires one
marginalizes the p(H1, A|D, I ) for A. This implies we must first formulate p(A|H1, I ) ex-
pressing the prior probability density of the signal amplitude A given H1 is assumed valid.
Note that to keep everybody honest, the prior should be selected before the measurement is
carried out so that one is not tempted to look at the answer (i.e., the data) in order to make
that choice. Here, the problem is academic, and we will actually explore what happens
under two different choices of prior.

Comparison of Uniform and Scaling Priors for p(A|H1, I )

Obviously, the problem arises that we have only a rather limited amount of information
about H1 and more specifically the signal amplitude A. We do know, based on a prior
experiment, that A is smaller than some upper bound Amax and that it should, according to
the model H1, be larger than some minimal value Amin. But that’s it! How then should we
formulate the prior p(A|H1, I )? Given the lack of additional information, it seems natural
to express our ignorance about A by choosing a uniform prior

p(A|H1, I ) =
{

1
+A for Amin ≤ A ≤ Amax

0 otherwise,
(7.376)

with +A = Amax − Amin. It is worth noting, however, that this choice implies the top range
of values is far more probable than the bottom range. For illustrative purposes, assume
Amin = 0.01 and Amax = 10.0, and let us calculate the ratio of the probabilities of finding
A in the ranges 1 ≤ A ≤ 10.0 and 0.01 ≤ A ≤ 0.1:

∫ 10
1 p(A|H1, I ) dA

∫ 0.1
0.01 p(A|H1, I ) dA

=
∫ 10

1 dA
∫ 0.1

0.01 dA
= A|10

1

A|0.1
0.01

= 100. (7.377)

We find, indeed, that a uniform prior implies the upper range is far more probable than the
lower range. But considering the signal sought for has never been observed and thus may
qualify as a rare process, it would seem sensible to expect lower ranges of values should be
more probable than larger values. A prior that gives higher probability to lower amplitudes
therefore sounds far more reasonable. We thus choose13 to use an uninformative scaling
prior of the form, Eq. (7.92), introduced in §7.3.2, and write

p(A|H1, I ) =
{ 1

ln(Amax/Amin )
1
A for Amin ≤ A ≤ Amax

0 otherwise,
(7.378)

13 For comparative purposes, we actually use both uniform and scaling priors in the following.
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where the logarithmic factor ensures the proper normalization by integration over the range
Amin ≤ A ≤ Amax. Also recall from §7.3.2 that integrals of this prior in the form of loga-
rithms imply the log of the amplitude, ln A, has a uniform distribution. Effectively, ranges
such as 0.01 ≤ A ≤ 0.1, 0.1 ≤ A ≤ 1, and 1 ≤ A ≤ 10 have equal (prior) probability, and
ranges of higher values are not more probable than ranges of smaller values, as required.
Such a prior thus seems far more appropriate, for a search for a weak signal, than the flat
prior given by Eq. (7.376).

Posteriors ofH0 andH1

The hypothesis H0 has no free parameters. Its posterior is thus obtained simply by applica-
tion of Bayes’ theorem:

p(H0|D, I ) = 1
p(D|I )

p(D|H0, I ), (7.379)

with

p(D|I ) = p(D|H0, I ) + p(D|H1, I ), (7.380)

where p(D|H0, I ) and p(D|H1, I ) are the global likelihoods of hypotheses H0 and H1,
respectively. Note that p(H0|I ) was omitted in the numerator of Eq. (7.379) because we
have chosen equal global model priors, that is, p(H0|I ) = p(H1|I ). The global model prior
p(H1|I ) is likewise omitted in the following. Calculation of the posterior of H1 requires
marginalization of its free parameter A. With the uniform amplitude prior, one gets

p(H1|D, I ) = 1
p(D|I )

1
+A

∫ Amax

Amin

p(D|H1, A, σn, I ) dA (7.381)

whereas the scaling prior yields

p(H1|D, I ) = 1
p(D|I )

1
ln Amax/Amin

∫ Amax

Amin

1
A

p(D|H1, A, σn, I ) dA. (7.382)

Results from the evaluations of the posteriors p(H0|D, I ) and p(H1|D, I ), with Eqs.
(7.379, 7.381, 7.382) are shown in Figure 7.17 for the four measurement outcomes in-
troduced in Figure 7.15b–e, while odds ratios calculated from these probabilities are listed
in Table 7.1 for both uniform and scaling priors. The posterior probability, p(H1|D, I ), is
unequivocally equal to unity for the clear signals shown in Figure 7.16b and c and the
choice of prior makes no significant difference in these two cases. However, in the case
of the much weaker signals displayed in Figure 7.16d and e, the choice of a scaling prior
for the amplitude A appreciably increases the posterior probability p(H1|D, I ) and the odds
ratios O10. A prior favoring weaker signals should indeed yield a larger posterior for weak
signals. It should be noted, however, that an odds ratio of 8.0 constitutes a tantalizing but
somewhat weak indication that there might be a signal in the spectrum (d). Indeed, the
use of a scaling prior significantly increases the odds ratio, from 0.6 to 8.0, but the latter
value is not sufficiently large to provide incontrovertible evidence for a signal. In the case
of spectrum (e), the scaling prior produces a significant increase of the odds ratio in favor
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Table 7.1 Odds ratios O10 in favor of model H1 relative to
model H0 calculated with uniform (u) and scaling (s) priors,

for data samples shown in Figure 7.16

Dataset O(u)
10 O(s)

10

A = 20 ∞ ∞
A = 5 1.6 × 1045 3.6 × 1045

A = 1 0.60 8.0
A = 0.005 0.004 0.38

of model H1, but most scientists would likely regard a value of 0.38 as far too small to
conclude the spectrum contains a signal, even though it actually does in the simulation.

Although not absolutely essential, it is interesting to evaluate the Occam factor of model
H1. Based on Eq. (7.353) and assuming a uniform prior for A, we write

∫

+A
p(D|θ , H1, I ) dA = δA × Lmax, (7.383)

We carry out numerical evaluations of the integral in Eq. (7.383) for all four spectra (A =
20, 5, 1, 0.005) and divide by the observed maximum likelihood values Lmax ≈ 3.1 × 1018

to find widths δA ≈ 0.84 for spectra A = 20, 5, 1 and a width δA ≈ 0.41 for A = 0.005.
Dividing these by the width of the search domain, +A = 100, we find Occam factors
8 = δA/+A of order 0.008 and 0.004, respectively. Using a scaling prior does not ap-
preciably changes these values. Clearly, these small Occam factor values strongly disfavor
hypothesis H1 and given hypothesis H0 has a likelihood of order 3 × 1018 for null sig-
nals (noise only), the posterior of H1 is given a small probability for spectra (d) and (e).
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Fig. 7.17 Posteriors p(H0|D, I) and p(H1|D, I) for the measurement outcomes shown in Figure 7.15b–e, with respective true
amplitudes A = 20, 5, 1, and 0.005, based on (a) uniform and (b) scaling priors.
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378 Bayesian Inference

However, the likelihood of H0 falls dramatically for strong signals and H1 is then ascribed
a high probability in spite of the small value of the Occam factor.

7.7.5 Example 2: Comparison of Linear and Quadratic Models

Problem Definition
An issue often encountered in practical data analyses is whether one or several parameters
should be added to a model to obtain a better fit of the data. This is the case, for instance,
with the study of Fourier decompositions of angular correlations, or fits of data with poly-
nomials. In either case, one must decide whether the data warrant the addition of one or
more additional parameters, that is, higher-order Fourier terms or higher degree terms in a
polynomial.

As a practical case, let us revisit the comparison of linear and quadratic models toward
the description of a dataset D introduced in §6.6.5 under the frequentist paradigm. For
the purpose of this example, we simulated datasets consisting of n = 25 measurements
(xi, yi ± σi) of an observable Y measured as a function of a control (independent) observ-
able X generated based on the data model

y(x) = µy(x) + R, (7.384)

where R represents random Gaussian deviates with standard deviation σi = γ
√

µy(x), and
µy(x) expresses the physical relation between observables Y and X , here taken to be a
second-degree polynomial:

µy(x) = b0 + b1x + b2x2, (7.385)

with fixed coefficients

b0 = 500.0,

b1 = 10.0,

b2 = −1.0.

The scaling factor γ was set to arbitrary values {2.0, 1.0, 0.5, . . .} in order to generate
datasets of different precision levels. Each of the produced datasets was then analyzed to
establish whether they could be properly represented as straight lines or whether a quadratic
term should be included. Evidently, in the analysis, we assumed the quadratic dependence
of Y on X is not established or known. We thus formulated a null hypothesis, H0, stipulating
that a linear model is sufficient to “explain” the data while the alternative hypothesis, H1,
requires the use of quadratic model, that is, a fit with a second-degree polynomial.

H0 : f0(x) = a0 + a1x,

H1 : f1(x) = a0 + a1x + a2x2.

Determination of the Odds Ratio of Global Posteriors
We saw in the context of the frequentist paradigm (§6.6.5) that the χ2 of fits based on
two distinct hypotheses, a linear and a quadratic model, may be used as a statistical test to
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challenge and reject the linear hypothesis (null hypothesis) provided its χ2 exceeds some
minimal value determined by the significance level of the test. The null hypothesis shall
be retained, however, if the χ2 falls below the cut. The problem, of course, is that the
χ2 obtained with the quadratic fit might also be relatively small. The test then features a
relatively small power and thus cannot be deemed significant.

The necessity to consider both the significance level of a test and its power raises both
technical and philosophical issues. Is it possible, in particular, to identify a statistic whose
value might combine both the significance level and the power of the test? Can a statistic
be found that is capable of rejecting the null hypothesis while showing that the alternative
hypothesis has strong merits? Can such a statistic disfavor overly complicated models not
properly supported by data? The short answer is that an odds ratio based on the global
posteriors of alternative and null hypotheses in fact satisfy (mostly) all these criteria.

Let us indeed reexamine a Bayesian test based on the odds ratio of the global posteriors
of hypotheses H1 and H0 in the context of the comparison of linear and quadratic models
and show that the odds ratio provides an effective tool to meaningfully sustain or reject a
null hypothesis challenged by a more complicated model, that is, a model with more free
parameters.

The odds ratio is defined and calculated according to

O10 = p(H1|D)
p(H0|D)

= Oprior
10 B10 (7.386)

with

Oprior
10 = p(H1|I )

p(H0|I )
, (7.387)

and

B10 = p(D|H1, I )
p(D|H0, I )

≡ L(H1)
L(H0)

, (7.388)

where L(H1) and L(H0) are the global likelihoods of the models H1 and H0, respectively.
These can be calculated by marginalization of the model likelihoods p(D|H0, a0, a1, I ) and
p(D|H1, a0, a1, a2, I ), respectively.

Given there are no tangible reasons to favor either hypothesis,14 we set the prior odds
ratio Oprior

10 to unity. The posterior odds ratio is thus determined solely by integrals of the
likelihood functions p(D|H0, a0, a1, I ) and p(D|H1, a0, a1, a2, I ) over the domains of pa-
rameters a0, a1, and a2. In order to determine sensible ranges of integration for these pa-
rameters, we first plot the likelihood functions p(D|H0, a0, a1, I ) and p(D|H1, a0, a1, a2, I ),
in Figure 7.18, as a function of their parameters. The likelihood functions are calculated
numerically according to

p(D|H0, a0, a1, I ) ∝ exp
[
−1

2
χ2

0 (a0, a1)
]

, (7.389)

p(D|H1, a0, a1, a2, I ) ∝ exp
[
−1

2
χ2

1 (a0, a1, a2)
]

, (7.390)

14 Remember that we pretend to ignore the datasets were generated with a quadratic model.
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Fig. 7.18 Examples of the likelihoods p(D|H0, a0, a1, I) of a linear model and p(D|H0, a0, a1, a2, I) of a quadratic model
obtained with (a) large noise (γ = 0.4) and (b) very small noise (γ = 0.01).

where

χ2
0 (a0, a1) =

n∑

k=1

(
yi −

∑1
n=0 anxn

)2

σ 2
i

,

χ2
1 (a0, a1, a2) =

n∑

k=1

(
yi −

∑2
n=0 anxn

)2

σ 2
i

. (7.391)
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Fig. 7.19 Bayes factor B10 = L(H1)/L(H0) as a function of the relative error size (determined by the error scaling factor γ ).

Bounds of integration are chosen to approximately correspond to ±6 times the widths
of the distributions along each axis, and thus such that the functions are negligible (rel-
ative to the maximum) beyond the bounds. Marginalization of the likelihood functions
p(D|H0, a0, a1, I ) and p(D|H1, a0, a1, a2, I ) is obtained by numerical integration within
these bounds. The Bayes factors and odds ratios are then computed according to Eqs.
(7.388, 7.386). Calculated values of the Bayes factor B10 = L(H1)/L(H0) are presented
in Figure 7.19 for simulated datasets produced with γ values ranging from 0.01 to 2. One
finds that for large relative errors (i.e., obtained with large values of γ ), the odds ratio is
smaller than or of order unity and thus favors the null hypothesis (i.e., a linear model of
the data). For small errors, obtained with γ ≤ 0.3, the odds ratios increases significantly
and unambiguously favors the alternative hypotheses, that is, the notion that the signal Y
involves a quadratic dependence on X .

The posteriors p(H1|D, I ) and p(H0|D, I ) are statistics (i.e., functions of the measured
data points). As such, they would fluctuate sample by sample, much like a χ2 function,
if it were in fact possible to acquire several distinct data samples. As a ratio of these two
statistics, the posterior odds ratio O10 is thus also a statistic, and it too shall fluctuate sample
to sample. This is illustrated in the three sets of panels of Figure 7.20. The left set of panels
displays linear and quadratic model fits of typical simulated spectra obtained with selected
values of the error scaling parameter γ , while the central and right sets of panels display
χ2/DoF distributions and histograms of the logarithm of the odds ratio determined for
successions of 1,000 Monte Carlo generated samples of n = 25 points. From top to bottom,
the samples are generated with error scale parameter values of γ = 2.0, 0.4, 0.2, and 0.01.
One finds that for γ = 2.0 and γ = 0.4 corresponding to relative errors of the order of 10%
and 2%, respectively, the χ2 distributions of the two hypotheses overlap considerably and
the log of the odds ratio of the global posteriors is sharply distributed near zero, implying
the odds ratio is of order 1. For smaller relative errors, the χ2 distributions no longer
overlap and the odds ratio grows increasingly large, thereby indicating that the alternative
hypothesis H1 is strongly favored by the data.

It is interesting to note that much like the χ2 of the fits, the odds ratio fluctuates quite
considerably. This stems from the fact that these quantities are in fact not independent of
one another. Indeed, Eqs. (7.389,7.390) tell us that for Gaussian deviates, the likelihood of
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Fig. 7.20 (Left) Representative fits of the linear and quadratic models obtained with, from top to bottom, γ = 2.0, 0.4, 0.2,
and 0.01. (Middle) Histograms of theχ 2/DoF obtained with the two models for 1000 distinct samples of 25 points
(as described in the text) generated with same values of γ . (Right) Histograms of the logarithm of the odds ratios
obtained with the same samples and γ values.

a dataset, given specific models parameters a0, a1, . . . , is strictly related to the χ2 obtained
with those parameters. And, given the models H0 and H1 are linear in their coefficients, one
can write

χ2
1 (a0, a1, a2) =

n∑

i=1

(
[yi − a0 − a1x] − a2x2

i

)2

σ 2
i

= χ2
0 (a0, a1) − 2a2

n∑

i=1

[yi − a0 − a1x] x2
i

σ 2
i

+ a2
2

n∑

i=1

x4
i

σ 2
i

The Bayes factor may thus be considered a function of the model parameters

B10 = exp
[
−1

2

(
χ2

1 − χ2
0

)]

= a2

n∑

i=1

[yi − a0 − a1x] x2
i

σ 2
i

− 1
2

a2
2

n∑

i=1

x4
i

σ 2
i

, (7.392)
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which, evidently, peak for some specific values of the model parameters a0, a1, and a2.
Effectively, there is no new information contained in the odds ratio O10 or the Bayes factor
B10, given the one-to-one relation between the global likelihoods of hypotheses H1 and
H0 and their respective χ2 functions. However, the Bayes factor and odds ratio provide a
practical and simple tool to decide whether the null hypothesis should sensibly be rejected.

With a single value, the odds ratio enables the rejection/acceptance of the null hypothesis
and effectively provides a minimal statement about the power of the test. If the odds ratio
is small (i.e., not much larger than unity), then the null hypothesis cannot be rejected. This
can be the case either because the data are very precise and the null hypothesis happens to
be correct, or because the data are poor (large errors) and the power of the test is too weak
to enable a decision. In this latter case, a single number suffices to make the statement, and
one is not required to explicitly calculated the power β of the test, according to Eq. (6.79).
If, instead, the value of the odds ratio is very large, one immediately learns that the data
are incompatible with the null hypothesis and simultaneously in favor of the alternative
hypothesis. Again, there is no need to calculate the power of the test. There is, of course,
a possibility that the χ2 of the null hypothesis might be large due to fluctuations, but the
large value of the odds ratio readily indicates that the χ2 of the alternative hypothesis is in
fact very good. It then makes sense to (tentatively) reject the null hypothesis because the
large value of the odds ratio guarantees the alternative hypothesis is a good fit to the data.

The calculation of an odds ratio thus has several advantages, both conceptually and in
practice. It enables the rejection/acceptance of the null/alternative hypothesis on the basis
of a single number without the need for possibly complicated and cumbersome calculations
of the power of the test. The decision may then be taken rapidly and efficiently, either by a
human or by an algorithm (machine). The value of the odds ratio also readily informs us
about the quality of the decision and thus the power of the test. Clearly, an odds ratio of
1000 is far more significant than a ratio of 10 or 100. And likewise, a ratio in excess of 106

or 109 readily indicates that the alternative hypothesis is very strongly favored by the data.

7.7.6 Minimal Odds Ratio for a Discovery

As we discussed in the context of the frequentist interpretation of probability (see also
§6.6.2), scientists commonly require a null hypothesis to be incompatible with the data
with a significance level of 3 × 10−7 to claim and announce a discovery. That means the
p-value of the null hypothesis must be equal to or less than 3 × 10−7. For instance, a peak
in an invariant mass plot must be deemed incompatible with a background fluctuation
because it has a probability equal to or smaller than 3 × 10−7 before it can be considered
acceptable to claim a discovery of a new particle. What is then the Bayesian equivalent of
this significance level? What indeed should be the minimal odds ratio required to claim a
discovery?

Although, ab initio, there is no simple or correct answer to this question, one can es-
tablish a minimal criterion, which can be deemed both necessary and sufficient by most
scientists, and applicable in most situations. Clearly, the larger the odds ratio is, the more
likely is the alternative hypothesis to be correct. One should thus define a minimal value
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for the odds ratio. What should this minimum value be to provide a significance level of
3 × 10−7?

In the frequentist approach, a test of the null hypothesis is based on a chosen statistic,
called a test statistic. The data are considered incompatible with the null hypothesis if the
probability to obtain a statistic in excess of the observed value is smaller than 3 × 10−7,
while the probability of the observed statistic for the alternative hypothesis is large (but
often unspecified). The probability pt to obtain a statistic t value in excess of the observed
value to is given by

pt =
∫ ∞

to
p(t|Hi) dt, (7.393)

where p(t|Hi) represents the PDF of t given the hypothesis Hi is true. The integration to in-
finity sums over the probability of all suboptimal parameter values. In effect, it corresponds
to the marginalization of the model parameters, and thus corresponds to the probability of
the null hypothesis given any parameter value.

In the Bayesian paradigm, there is no need for an extra statistical test; the global poste-
rior probability of an hypothesis is the test. It expresses the probability of a hypothesis to
be true by marginalization (as necessary) of all model parameters, that is, given any param-
eter values. Effectively, there is then a one-to-one correspondence between the probability
of a (frequentist) test statistic to be found in excess of a specific value and the posterior
probability. It is thus reasonable to require the posterior probability of the null hypothesis
to be equal or smaller than 3 × 10−7. If the alternative and the null hypotheses can be con-
sidered an exhaustive set of options, the posterior probability of the alternative hypothesis
is equal to 1 − 3 × 10−7. The discovery criterion thus corresponds to an odds ratio with a
minimum value of 3 × 106:

Odiscovery
10 = 1 − 3 × 10−7

3 × 10−7
= 3 × 106. (7.394)

Indication of a new phenomenon, which usually requires a 3σ significance level, shall have
a correspondingly smaller minimum odds ratio value.

A few remarks are in order. First, one must recognize that an odds ratio is a statistic, as
are the respective global posterior probabilities of the hypotheses used in the calculation
of the ratio. This means that the odds ratio obtained from several samples extracted from
a common parent population (using the same experimental procedure and apparatus) shall
have values that appear to fluctuate from sample to sample, as illustrated in Figure 7.20 for
the curve fitting example discussed in §7.7.5. It is thus conceivable, owing to the vagaries
of the measurement protocol, that the odds ratio of a particular data sample might meet
the discovery criterion threshold, while some others do not. Indeed, because of fluctua-
tions (i.e., experimental errors) a given data sample might be less of a match to a specific
hypothesis.

Second, it is important to realize that the notion of odds ratio does not require calcula-
tion of an additional variable to determine the power of a test. If two hypotheses are truly
exhaustive (i.e., with no other options in the model space of a particular phenomenon),
the probability of one is the complement of the other (i.e., p(H1|D, I ) = 1 − p(H0|D, I ))
and the odds ratio is perfectly well defined and determined. There is no need for a test
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threshold and thus for the notion of power as defined by Eq. (6.79). In fact, the odds ra-
tio itself provides an assessment of the discriminating power of the test. On the one hand,
if the odds ratio is very large, O10 ≫ 1, or very small, O10 ≪ 1, one knows immediately
that the test strongly favors a specific hypothesis. The measured data thus provide strong
discriminatory power in the selection of the best hypothesis. On the other hand, if the ratio
is of order unity, O10 ∼ 1, it is clear that given the experimental errors, neither the null
nor the alternative hypotheses are favored by the data. The “test” thus has essentially no
discriminatory power toward the selection or adoption of H0 and H1.

Third, and last, one may contrast the notion of odds ratio with the Neyman–Pearson
test (as a most powerful test for simple hypotheses). Recall from §6.7.2 that a Neyman–
Pearson test is based on the ratio of the likelihoods of the alternative and null hypotheses.
For instance, for two competing hypotheses about the value of a specific parameter θ , one
writes

rn(x⃗ |θ0, θ1) = fn(x⃗ |θ1)
fn(x⃗ |θ0)

, (7.395)

where x⃗ represents a set of n measured points, fn(x⃗ |θ0) and fn(x⃗ |θ1) are the likelihoods of
these data points given parameter values θ = θ0 (hypothesis H0), and θ = θ1 (hypothesis
H1). The power of the test is then calculated as the expectation value of rn(x⃗ |θ0, θ1) given
the null hypothesis, H0, is true, a rather unintuitive notion to say the least. However, note
that the notion of using a ratio of likelihoods (for the alternative and null hypotheses) is
totally in line with a Bayesian test of the null hypothesis based on the odds ratio O10, de-
fined as a ratio of the global posterior probabilities of the two hypotheses. The advantage of
the odds ratio is that it is conceptually far easier to visualize and interpret. The only differ-
ence, of course, is that posterior probabilities may also include nontrivial (i.e., nonuniform)
prior probabilities of the model parameters, which are subsequently marginalized to obtain
the global posteriors. In essence, the odds ratio thus provides a Bayesian extension of the
Neyman–Pearson test, and because its calculation involves all facets of the model and all
of the data, it is guaranteed to be the most powerful test. Consequently, if an odds ratio
of order unity, O10 ∼ 1, is obtained in the comparison of two hypotheses H1 and H0, no
manipulation of the data or use of other statistics shall improve the power of the test and
discrimination of the hypotheses. Rejection of the null hypothesis H0 in favor of the alter-
native H1 thus rests entirely on the quality of the data (i.e., the size of the errors) used to
carry out the test.

Exercises

7.1 Show that the use of the measure qi given by Eq. (7.82), with a constraint on the
variance according to Eq. (7.74), leads to a truncated Gaussian prior PDF of the
form

p(x|µ, σ ) =

⎧
⎨

⎩

1
1(zL )−1(zH )

1
σ

exp
[
− (x−µ)2

2σ 2

]
for xL ≤ x ≤ xH

0 elsewhere,
(7.396)
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where zL = (xL − µ)/σ and zH = (xH − µ)/σ , corresponding to the boundaries
within which the observable is allowed (or defined).

7.2 Verify that if the variance parameter σ 2 of a Gaussian PDF is given a prior of the
form p(σ 2) = k/σ 2, then the log of the variance has a flat prior.

7.3 Show that Jeffreys’ prior for a multinomial distribution with rate parameters p⃗ =
(p1, p2, . . . , pm), with the constraint

∑m
i=1 pi = 1, is the Dirichlet distribution (§3.8)

with all its parameters set to half.
7.4 Demonstrate that the expression for Q(µ), given by Eq. (7.139), may be transformed

to yield

Q(µ) =
(
nξ0 + ξp

) [
µ −

nξ0x̄ + µpξp

nξ0 + ξp

]2

+ K,

where K represents a constant expression independent of µ.
7.5 Derive the expression, Eq. (7.153), for the posterior of the precision ξ based on

Eq. (7.152).
7.6 Derive the expression, Eqs. (7.240), (7.242), and (7.243), for the Bayesian solution

of a linear model fit with Gaussian priors for the model parameters.

1::79�  .�2��80 ������� 
�	���	���
�����
����291/.����2�/�� ���4�82.0/���2�/892: �8/99

https://doi.org/10.1017/9781108241922.009


PART II

MEASUREMENT TECHNIQUES

 �����
�������������������	������������� ����



 �����
�������������������	������������� ����



8 Basic Measurements

Measurements in particle and nuclear physics span a wide range of observables, condi-
tions, and collision systems. They may involve the determination of cross section, momen-
tum spectra, angular distributions, particle lifetimes, particle mass, and so on. This chapter
introduces several of these types of measurements and observables. We begin, in §8.1, with
definitions and commonly used notations used by practitioners of the field and follow up in
§8.2 with notions of particle decay and cross section. Measurements of elementary observ-
ables such as the momentum and the energy of particles produced in scattering experiments
are discussed §8.3 whereas techniques for the identification of long- and short-lived parti-
cles are described in §§8.4 and 8.5, respectively. Lastly, §8.6 discusses issues involved in
searches and discoveries of new particles and elementary processes.

8.1 Basic Concepts and Notations

8.1.1 Particle Scattering and Definition of Cross Section

The scattering of α-particles off a thin foil of gold (illustrated schematically in Figure 8.1)
by H. Geiger and E. Marsden in the early 1910s led E. Rutherford to the discovery of the
atomic nucleus and a first estimate of its size. Geiger and Marsden observed that while
most of the α-particles were little deflected by their passage through this gold foil, a small
but significant fraction was backscattered (i.e., scattered by more than 90o). Rutherford un-
derstood that only a massive object could deflect the charged and heavy alpha particles. He
formulated a model based on the Coulomb interaction by which he could predict the num-
ber of scattered α as a function of their scattering angle θ relative to their initial direction,
and he was able to accurately reproduce the observations of Geiger and Marsden. He thus
concluded the existence of a massive and extremely small atomic nucleus. This discovery
gave birth to the fields of nuclear and particle physics.

Rutherford relied on a quantitative description of the number of deflected particles, dN ,
detected in a small solid angle d#, as a function of their scattering angle θ , as illustrated in
Figure 8.1. In his model, the scattering angle θ is determined by the impact parameter b of
the incoming α-particle onto the target nucleus, thereby defining a ring of area 2πb db, as
shown in Figure 8.2. Classically, this defines the differential cross section of the nucleus
dσ associated with a specific scattering direction

dσ

d#
(θ ) = − b

sin θ

db
dθ

, (8.1)

389
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390 Basic Measurements

Fig. 8.1 (Left) Schematic of the apparatus used by Rutherford, Geiger, and Marsden to study the scattering ofα-particles off a
gold foil. (Right) Model formulated by Rutherford to explain the observation of back-scattered particles.

where b is the impact parameter of the collision, θ is the deflection angle of the particle
relative to its incident direction, and d# the solid angle in which the particle is measured.
For a purely Coulomb (electrostatic) interaction, one has

dσ

d#
(θ ) =

(
ZZ′e2

4E

)2 1

sin4 θ/2
, (8.2)

where Z and Z′ are the atomic number of the colliding nuclei, e the electron charge, and E
the kinetic energy of the incoming particle. Integration over all rings 2πb db, correspond-
ing to the observation of all scattering angles, leads to the total effective area of the target
or total scattering cross section.

In a scattering experiment involving a fixed-target and an incoming beam, the number
of particles dn deflected in a solid angle d#, per unit time, is proportional to the incoming
flux N0 (particles per unit time) of beam particles, the number of target nuclei per unit area,

Fig. 8.2 Geometric definition of cross section in the context of Rutherford’s model of the scattering ofα-particles off gold
nuclei.
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391 8.1 Basic Concepts and Notations

N/S, and the differential scattering cross section:

dn
d#

= N0
N
S

dσ

d#
(θ ,φ). (8.3)

The number of target nuclei per unit area may be written

N
S

= ρt
A

A0, (8.4)

where ρ is the target material density, t is the physical thickness of the target foil, A is
the atomic mass of the material, and A0 is Avogadro’s number. The differential scattering
cross section may then be determined by precise measurements of the incoming flux, the
target thickness, and the outgoing flux of particles dn(θ ,φ) in a specific solid angle d# at
scattering angle θ relative to the direction of the incoming particle:

dσ

d#
(θ ,φ) = 1

N0

A
ρtA0

dn(θ ,φ)
d#

. (8.5)

The scattering cross section, between a projectile and a target, depends on the nature
of the interaction that takes place, as well as the size and internal structure of colliding
particles. The Coulomb interaction of two point-like objects leads to a definite and specific
angular dependence of the scattering cross section. Deviations from the differential scatter-
ing cross section expected from a Coulomb interaction at very large deflection angle and
higher collisional energies revealed the existence of an object of finite size within the atom,
the nucleus, and eventually enabled study of the nuclear force. Scattering experiments, and
more specifically measurements of differential cross sections were thus instrumental in the
discovery and study of the atomic nucleus, its structure, the nuclear force, and so on.

The notions of differential and total cross sections are readily extended to all types of
elementary collisions, whether elastic or inelastic, and are determined by the number of
particles produced at specific angles or momenta relative to the number of incoming pro-
jectiles. Given its 1/r2 dependence, the total elastic interaction cross section associated
with the Coulomb force is infinite for point-like objects. Other types of processes and in-
teractions have different behaviors and accordingly different differential and total cross
sections. It is consequently of much interest to measure partial cross sections (both differ-
ential and total) associated with specific subprocesses of an interaction between two collid-
ing particles or nuclei. The cross section of a specific process or interaction expresses its
effective surface probability and, as such, says much about the nature and strength of the
interaction.

It is customary to break down the cross section of elementary processes according to
their type and properties, for instance, elastic scattering cross section, diffractive cross
section, interaction or inelastic cross section, and so on. It is also common to report cross
sections corresponding to specific particle production processes whether exclusive, semi-
exclusive, or inclusive. One can, for example, measure the production cross section of
pions, kaons, or other particle species, in the context of a specific interaction. By extension,
one can also consider how such cross sections depend on the colliding partners (whether
protons, neutrons, or nuclei, etc.) and the beam energy. It is also possible to break down
cross section measurements in terms of other global collision characteristics such as the
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(estimated) impact parameter of collisions or the presence/absence of specific particles or
other specific features in the final state of interactions.

In closing this section, it is important to remark that the cross section of particular pro-
cess is a property of that process and should thus be independent of experimental condi-
tions. Evidently, experimental conditions may hinder or alter measurements of this cross
section (integral or differential) and it is thus necessary to consider how experimental con-
ditions may affect or alter the outcome of a specific measurement. This very important
topic is discussed in detail in Chapter 12.

8.1.2 Relativistic Kinematics

Modern experiments in particle and nuclear physics are commonly carried out at high
collisional energies and involve measurements of particles with large momenta. The use
of relativistic kinematics is thus usually advised, if not required. In this and the following
sections, we use natural units: c = h̄ = 1.

In special relativity, and even more so in general relativity, one distinguishes vectors ac-
cording to their properties of transformation when expressed in two different coordinate
systems. Space–time coordinates are denoted with a contravariant four vector with compo-
nents xµ:

xµ = (x0, x1, x2, x3) ≡ (t, x⃗). (8.6)

Similarly, the components of the contravariant four momentum of a particle are denoted
pµ:

pµ = (p0, p1, p2, p3) ≡ (E, p⃗). (8.7)

The time-like component p0 corresponds to the total energy of the particle while the space-
like components p1, p2, p3 correspond to the momentum components, commonly denoted
p⃗ = (px, py, pz).

Many of the problems of interest in nuclear and particle physics involve collisions of
beam particles (also called projectiles) onto a fixed target (see Figure 8.6) or collisions of
two beams traveling colinearly, but in opposite directions. We thus adopt a right-handed co-
ordinate system with the z-axis, or third component of the momentum vector, correspond-
ing to the beam axis (and direction). In this context, there are three natural and convenient
choices of reference frames: the target rest frame, the projectile rest frame, and the cen-
ter of mass (CM) rest frame. These correspond to reference frames where the target, the
projectile, and the CM are at rest, respectively.

Given our choice of z-axis, coordinate transformations between these three frames of
reference leave the first and second components of the momentum invariant, while the
third component and energy are transformed according to a Lorentz transformation (dis-
cussed in the text that follows). It is thus convenient to introduce the notion of transverse
momentum vector p⃗T , defined as

p⃗T ≡ (px, py), (8.8)
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and its norm (magnitude)

pT =
√

p2
x + p2

y. (8.9)

The four-momentum vector of a particle may thus also be written p = (E, p⃗T , pz).
We adopt the space–time metric tensor convention gµν , defined as

gµν = gµν =

⎛

⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟⎟⎠ . (8.10)

The covariant vectors (also called one-form) xµ and pµ are related to their contravariant
counterparts according to

xµ = gµνxν = (t,−x1,−x2,−x3), (8.11)

pµ = gµν pν = (E,−p1,−p2,−p3), (8.12)

where we used the Einstein convention that a repeated index is summed (unless indicated
otherwise). Conversely, one also has

xµ = gµνxν, (8.13)

pµ = gµν pν . (8.14)

The scalar product of two four-vectors a and b is defined as

a · b = aµbµ = gµνaµbν = gµνaµbν . (8.15)

In particular, the modulus of the four momentum vector p is written

p2 = p · p = p2
o − p2

1 − p2
2 − p2

3 = E2 − | p⃗|2 = m2, (8.16)

where we introduced the mass m of the particle (recall that we are using natural units in
which c = 1).

8.1.3 Lorentz Transformation

A Lorentz transformation along the beam axis leaves the transverse momentum invariant.
Consider the momentum, p = (E, p⃗T , pz), of a particle in a reference frame K (e.g., the
target rest frame). The components p′ = (E ′, p⃗T

′, pz
′) in a frame K ′ (e.g., projectile rest

frame) moving along +z at a velocity β relative to K are written

E ′ = γ (E − βpz), (8.17)

p⃗T
′ = p⃗T , (8.18)

pz
′ = γ (pz − βE ), (8.19)

where γ = (1 − β2)−1/2.
Transformations for motion along x- or y-axes are trivially obtained by substitution of

the appropriate momentum components. Transformations for motion along an arbitrary
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direction,1 β̂, at velocity β, requires one explicitly separates the momentum components
parallel and perpendicular to β̂. One writes

p⃗ = p⃗T + p⃗∥, (8.20)

with

p⃗∥ = ( p⃗ · β̂ )β̂, (8.21)

p⃗T = p⃗ − p⃗∥. (8.22)

The p⃗T component is unmodified by the transformation along β̂, but the parallel component
is boosted according to

| p⃗∥
′| = γ

(
| p⃗∥| + βE

)
. (8.23)

The boosted moment can consequently be written

p⃗ ′ = p⃗ +
[
(γ − 1) p⃗ · β̂ + γ E

]
β̂. (8.24)

8.1.4 Rapidity

Equation (8.16) reduces the number of degrees of freedom of a free particle from four to
three. Given the invariance of p⃗T relative to Lorentz transformations along the beam axis
(z), one can regard Eq. (8.16) as introducing a special connection between the energy and
the z-component of the momentum. In this context, it is convenient to introduce the notion
of particle rapidity, noted y, and defined according to

y = 1
2

ln
(

E + pz

E − pz
.

)
(8.25)

The rapidity is by construction a dimensionless quantity, and it can be either positive,
negative, or null. In the nonrelativistic limit, v ≈ 0, it is equal to the velocity in units of the
speed of light (see Problem 8.1), thereby providing a justification for the name “rapidity.”

While y is not an invariant under Lorentz transformations, one finds its transformation
law is particularly simple. Consider, for instance, the rapidity of a particle in frame K ′

introduced in Eq. (8.25):

y′ = 1
2

ln
(

E ′ + pz
′

E ′ − pz
′

)
, (8.26)

1 Breaking with earlier chapters where the caret indicates statistical estimators, the caret is used here to denote
unit vectors.
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Fig. 8.3 Beam rapidity as a function of the momentum of beam particles plotted for protons (solid line) and pions (dashed
line).

and substitute the expressions for E ′ and pz
′ from Eq. (8.17).

y′ = 1
2

ln
(

γ (E − βpz) + γ (pz − βE )
γ (E − βpz) − γ (pz − βE )

)
, (8.27)

y′ = 1
2

ln
(

1 − β

1 + β
× E + pz

E − pz

)
, (8.28)

y′ = y − 1
2

ln
(

1 + β

1 − β

)
, (8.29)

y′ = y − yβ , (8.30)

where in the last line, we introduced the rapidity of the moving frame K ′ relative to K,
noted yβ . The simplicity of this transformation relation makes it very convenient for trans-
formation of the particle kinematics between the target, projectile, and CM rest frames.

The rapidity of particles propagating along the z-axis (e.g., p = pz, the beam axis) is
plotted in Figure 8.3 as a function of their momentum p.

8.1.5 Pseudorapidity

Experimentally, the determination of the rapidity of a particle requires that one identifies
its mass. But as we will see later in this chapter, although it is relatively straightforward to
measure the momentum of a particle (or its energy), it is not always possible to measure
both quantities directly or to readily identify the species of the particle detected. Thus,
the masses of detected particles are often unknown, and calculation of their rapidity from,
say, measured momenta, is consequently not feasible. Fortunately, there is a convenient
substitute, known as pseudorapidity, defined according to

η = − ln (tan(θ/2)) , (8.31)

where θ is the polar angle between the particle momentum p⃗ and the beam axis. It is easy
to verify (see Problem 8.3) that η equals y in the limit where the mass of a particle is
negligible compared to its energy, that is, for m << E.
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Evidently, in the limit m = 0, which hold for (real) photons, one has (in natural units)

E = p (8.32)

mT = pT , (8.33)

and consequently

y = η. (8.34)

8.1.6 Useful Kinematic Relations

The energy and momentum of a particle of known mass may be expressed in terms of its
velocity, β⃗ = v⃗/c, according to (in natural units)

E = γ m, (8.35)

p⃗ = γ mβ⃗, (8.36)

with the Lorentz factor γ = (1 − β2)−1/2. The velocity, β, can consequently be determined
from the ratio

β = | p⃗|
E

. (8.37)

It is useful to introduce the notion of transverse mass:

mT =
√

p2
T + m2. (8.38)

One may then express the energy and the longitudinal (or z) component of the momentum
of a particle in terms of y and mT , as follows (see Problem 8.4):

E = mT cosh y, (8.39)

pz = mT sinh y. (8.40)

Alternatively, one may also obtain the modulus of the momentum |p⃗| and the z-component
based on the transverse momentum pT and the pseudorapidity (see Problem 8.7):

| p⃗| = pT cosh η, (8.41)

pz = pT sinh η. (8.42)

Measurements of momentum components are commonly carried out in terms of spher-
ical coordinates (p, θ ,φ), defined in Figure 8.4. The momentum components (px, py, pz)
may then be obtained with the following relations:

px = pT cos φ, (8.43)

py = pT sin φ, (8.44)

pz = p cos θ , (8.45)
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Fig. 8.4 Definition of spherical coordinates relative to the beam direction (z-axis).

where pT = p sin θ . The angles are obtained with the relations

φ = tan−1(py/px), (8.46)

θ = tan−1(pT /pz). (8.47)

8.1.7 Mandelstam Variables

The Mandelstam variables, denoted s, t, and u, were introduced by Stanley Mandelstam
in 1958. They are defined in the context of nuclear collisions involving two incoming and
two outgoing particles, with four momenta denoted p1, p2, p3, and p4 as illustrated in
Figure 8.5:

s = (p1 + p2)2 = (p3 + p4)2, (8.48)

t = (p1 − p3)2 = (p2 − p4)2, (8.49)

u = (p1 − p4)2 = (p2 − p3)2, (8.50)

where the right-hand side equalities are determined by virtue of energy and momentum
conservation. By construction as squares of four-momentum sums or differences, the three
variables s, t, and u are Lorentz invariants and thus have the same value in all reference
frames.

The variable s is particularly useful to quantify the collision energy. For instance, in
fixed-target geometry, one has p1 = (E1, p⃗1), and p2 = (m2, 0). One then gets

s = (E1 + m2)2 − p2
1 = m2

1 + m2
2 + 2E1m2, (8.51)

Fig. 8.5 The Mandelstam variables s, t , and u are defined based on the four-momenta p1, p2, p3, and p4 as shown. The circle
represents an energy and momentum conserving interaction between two incoming particles with 4-momenta p1
and p2, and producing two particles with momenta p3, and p4.
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which is proportional to the beam energy E1. On the other hand, in symmetric collider
geometry, that is, with colliding beams of equal momentum but opposite directions, one
has p1 = (E, p⃗) and p2 = (E,−p⃗), thereby yielding

s = (E + E )2 − ( p⃗ − p⃗) = 4E2, (8.52)

which is proportional to the square of the beam energy. In symmetric collider geome-
try, the CM is at rest relative to the laboratory. All the energy of the incoming beams is
consequently available in the CM frame of the collision. In contrast, in fixed-target ge-
ometry the CM is moving toward the target with a velocity βCM = | p⃗1,lab|/(E1,lab + m2).
Only a small fraction of the beam energy is therefore available in the CM frame of the
collision. Considering that the acceleration of high-energy beams is an energy-intensive
and costly endeavor, it is thus advantageous to collide particles in a collider geometry to
maximize the usefulness of the beam energy delivered toward interactions and particle
production.

Mandelstam variables are particularly useful also in the calculation of scattering am-
plitudes because they are frame independent. The variable t, in particular, determines the
momentum transferred to particle 3 by the collision.

Finally, note that the tree variables s, t, and u are not independent, and are, in fact,
constrained by the relation

s + t + u = m2
1 + m2

2 + m2
3 + m2

4. (8.53)

8.1.8 Basic Classifications of Scattering Experiments

Research conducted in the last half century has involved a wide range of collisional ener-
gies, beam particles, and target materials. Experiments can be broadly divided into fixed-
target and collider geometry experiments. Fixed-target experiments involve accelerated
beams consisting of specific particle species and transport of these beams to bombard a
fixed target, which may consist of a “thin” foil or a gas contained in a special vessel.
Collider experiments require the acceleration of two beams brought to collide in a colin-
ear geometry, moving in opposite directions (clockwise and counterclockwise). Existing
colliders typically use two concentric acceleration/storage rings. The beams intersect and
collide at one or more crossing points along the rings, as illustrated in Figure 8.7. Colliders
are said to operate in symmetric collider mode if the two beams being accelerated consist
of identical particle species (as well as particle and antiparticle combinations, e.g., e+e−,
pp̄) at the same energy. They are said to be asymmetric if the two beams have different
energies. It is also possible to produce asymmetric colliding systems, such as p + Pb or
d + Au.

Huge advances have been realized since the modest beginnings of early accelerators
that produced protons and alpha particles of a few MeV. Past and existing facilities were
developed to accelerate a wide variety of beams, including electrons, protons, light and
heavy stable nuclei, radioactive nuclei with very short half-lives, as well as elementary
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Fig. 8.6 Illustration of the collision geometry of fixed-target and collider mode experiments.

particles such as pions or muons. Figure 8.8 presents a summary of trends in accelerators
at facilities worldwide since the 1930s.

Collisions between two elementary particles (or nuclei) can be broadly divided into elas-
tic and inelastic interactions. Elastic collisions, as the name suggests, are nondissipative
and involve the deflection of the incoming particles only. At low energy, proton on pro-
ton (p + p) inelastic collisions involve the excitation of one or both colliding particles

Tandem1 MeV/u

PHOBOS

PHENIX
STAR

RHIC Collider

200 MeV/u

BRAHMS

Interaction Region

Dipole Magnets

9 MeV/u

AGS

Fig. 8.7 Schematic of the BNL/RHIC collider geometry. Beams traveling counterclockwise (CCW) and clockwise (CW) are tuned
to collide at marked intersections points.
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Fig. 8.8 Trend in accelerator energies. Open and solid symbols show fixed-target and collider facilities, respectively, since 1935.

and typically lead to the production two or more particles. At higher energy, p + p colli-
sions produce several tens or even hundreds of particles, while head-on heavy-ion colli-
sions may produce several thousands. Diffractive p + p collisions are inelastic collisions
involving a modest energy dissipation and momentum transfer between the colliding part-
ners. One or both of the protons are produced in an excited state from which they decay
by emission of one or several hadrons. Such interactions are said to be singly and dou-
bly diffractive depending on whether only one or both protons end up in an excited state
and produce particles. Nondiffractive inelastic collisions involve substantial energy dis-
sipation and typically the production of large particle multiplicities (number of particle
produced).

It is useful to classify produced particles according to their source. For instance, parti-
cles produced by the breakup of the projectile, a process known as beam fragmentation,
are observed at rapidities near the projectile rapidity, yP, and are said to be part of the pro-
jectile fragmentation region. Likewise, particles found near the target rapidity, yT (e.g.,
yT ∼ 0 in fixed-target geometry or yT ∼ −yP in a symmetric collider mode) are commonly
associated with the target fragmentation region, whereas particles produced in between
these two extremes, particularly those around the CM rapidity, yCM , are said to be part of
the central rapidity region. Clearly, the gap between the projectile and target rapidities
grows with increasing beam energy. At Relativistic Heavy-Ion Collider (RHIC) top heavy-
ion energy,

√
sNN = 200 GeV, the beams have rapidities of ±5.3, while at CERN, the
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Fig. 8.9 Longitudinal (left) and transverse (right) profiles of two heavy-ion nuclei shortly before a collision at relativistic
(β ∼ c) energy. The diameter d of the nuclei is Lorentz contracted by a factor γ in the beam direction. The light gray
area between the nuclei (longitudinal profile) is where most of the particle production takes place after the nuclei
have passed through each other.

7 TeV proton beams have a rapidity of ±9.6. Observations indicate that projectile and tar-
get fragmentation produce particles clustered within approximately one unit of rapidity of
the projectile and target rapidity, respectively. The central rapidity region thus spreads con-
siderably with increasing beam energy. This means that at large beam energies, it is rather
challenging to design and build detector systems capable of measuring all three regions,
and experiments are consequently designed to focus on only particular aspects of the par-
ticle production. For instance, detectors such as STAR, PHENIX at RHIC, DO, and CDF
at the Tevatron, and CMS, ATLAS, and ALICE at the LHC are best equipped to measure
the central rapidity region, whereas TOTEM and LHCf at the LHC were designed to study
the production of “forward” particles.

In the context of heavy-ion collisions, one can further extend this source classification
based on the impact parameter of the collision between two nuclei. Figure 8.9 schemati-
cally illustrates the longitudinal and transverse profiles of two large nuclei colliding with an
impact parameter b. In the longitudinal profile, the nuclei are represented in the CM refer-
ence frame (assuming a symmetric collision) just before the collision. They appear as thin
slices because their longitudinal size is contracted by the Lorentz factor γ = (1 − β2)−1/2,
with β being their velocity in the CM frame. In the transverse profile, the nuclei are rep-
resented as they pass through one another. At collider energies, the nuclei have speeds
approaching the speed of light. The penetration time (measured in the CM frame) is thus
of the order of d/γ c, with d being the diameter of the nuclei. At RHIC top energy, this
amounts to ∼ 4 × 10−25s, or 0.12 fm/c. On the other hand, transverse propagation of a
signal from one side (for instance, the top of the transverse profile in Fig. 8.9) to the
other side (the bottom) of a nucleus requires a minimum of ∼ 12 fm/c. In the transverse
plane, one can consequently divide the colliding nuclei into two regions, as illustrated in
Figure 8.9. The darker shade region, consisting of the two nuclei overlapping area, is
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Fig. 8.10 Exclusive measurements involve all particles produced whereas semiexclusive and inclusive measurements specify
only a small fraction of the final state of collisions (or decays).

directly and instantly affected by the collision. Nucleons in this region are thus called
participants. Their interactions may produce particles at all rapidities, that is, in both the
central rapidity region and the beam/target fragmentation regions. Nucleons in the lighter
shaded areas of the two nuclei are referred to as spectators. Signals that nucleons of the
participant region have undergone interactions with another nucleus do not reach them un-
til well after the two nuclei have passed through one another. These nucleons are therefore
not directly involved in the main part of the interaction and can thus indeed be considered
spectators. The two colliding nuclei are completely shattered, but the spectator nucleons
continue their path forward/backward at the beam/target rapidity. They lead to particle
production in the beam/target fragmentation regions. Particle produced by the participants,
typically deemed of more interest, dominate the central rapidity region.

Experiments can be further classified according to the type of measurements they carry
(Figure 8.10). Measurements are said to be exclusive if they involve the totality of pro-
duced particles. Such measurements were possible in the early days of particle physics
with, for instance, bubble chamber detectors. However, modern experiments conducted at
high-beam energy typically do not cover all regions of particle production and thus cannot
measure all produced particles (charged or neutral). They are consequently called semi-
exclusive or inclusive. In an inclusive measurement, only one or a few of the produced
particles are detected and their properties (e.g., momentum, species type, and so forth)
measured. The final state of a collision thus cannot be completely specified or identified.

8.2 Particle Decays and Cross Sections

8.2.1 Particle Decays

The decay of an elementary particle of mass M and four-momentum p = (E, p⃗) is a
stochastic phenomena determined by an exponential distribution (§3.5)

P(t ) = 1
γ τ

exp
(

− t
γ τ

)
, (8.54)

where τ is the proper lifetime of the particle determined by the decay rate -,

τ = h̄/-, (8.55)
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and γ = E/M . The function P(t ) gives the probability the particle lives for a time t or
greater before decaying. For a particles with n decay channels, the rate - is the sum of the
partial decay rates -i corresponding to each of the decay channels:

- =
n∑

i=1

-i. (8.56)

The partial decay rate of a particle of mass M into n particles, in its rest frame, is given by

d- = (2π )4

2M
|M|2 d.n(P; p1, ..., pn), (8.57)

where |M| represents the amplitude of the decay process. The factor d.n is an element of
n-body phase space equal to

d.n(P; p1, ..., pn) = δ4

(

P −
n∑

i=1

pi

)
n∏

i=1

d3 pi

(2π )32Ei
, (8.58)

where the delta function δ4(P −
∑n

i=1 pi) encapsulates energy conservation between the
parent and decay particles. It is useful to note that the n-body phase space factor d.n can
be calculated recursively

d.n(P; p1, ..., pn) = d. j(P; p1, ..., p j )

×d.n− j+1(P; q, p j+1, ..., pn)(2π )3dq2, (8.59)

where

q2 =
( j∑

i=1

Ei

)2

−
( j∑

i=1

p⃗i

)2

. (8.60)

Two-Body Decays
In the rest frame of a particle of mass M , a two-body decay yields p⃗1 = −p⃗2. Energy
conservation implies M = E1 + E2. One thus finds

E1 = M2 − m2
2 + m2

1

2M
, (8.61)

=
[
(M2 − (m1 + m2)2)(M2 − (m1 − m2)2)

]1/2

2M
, (8.62)

from which we conclude

d- = 1
32π2

|M|2 |p1|
M2

d#, (8.63)

where d# = dφ1d(cos θ1) is the solid angle within which particle 1 is emitted. Experimen-
tally, M2 can be obtained from the invariant mass (p1 + p2)2 of the pair and thus provides
a basis for short-lived particle reconstruction and identification (see §8.5).
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Three-Body Decays
In the rest frame of a three-body decaying particle of mass M , momentum conservation
constrains the momenta p⃗1, p⃗2, and p⃗3 of the produced particles to lie in the same (decay)
plane. Energy conservation further constrains the energy of the three particles, and one has

m2
12 = (P − p3)2 = M2 + m2

3 − 2ME3, (8.64)

where we defined m2
i j = p2

i j with pi j = pi + p j. Additionally, one has

m2
12 + m2

13 + m2
23 = M2 + m2

1 + m2
2 + m2

3. (8.65)

One can then write the decay rate as

d- = 1
16M (2π )5

|M|2 dE1dE2dαd(cosβ )dγ , (8.66)

where α, β, and γ represent three Euler angles defining the orientation of the decay plane.
The decay rate may also be written (see Problem 8.10)

d- = 1
16M (2π )5

|M|2 |p∗
1||p3|dm12d#∗

1d#3, (8.67)

where |p∗
1| and d#∗

1 represent the momentum and solid angle of emission of particle 1 in
the rest frame of particles 1 and 2, while d#3 is the angle of the third particle in the rest
frame of the decaying particle. The momenta |p∗

1| and |p3| are given by

|p∗
1| =

[
(m2

12 − (m1 + m2)2)(m2
12 − (m1 − m2)2)

]1/2

2m12
, (8.68)

|p3| =
[
(M2 − (m12 + m3)2)(M2 − (m12 − m3)2)

]1/2

2M
, (8.69)

For angular momentum J = 0 decaying particles, or averaging over all spin states of a
J ̸= 0 particle, the rate simplifies to

d- = 1
8M (2π )3

|M|2dE1dE2, (8.70)

= 1
8M (2π )3

|M|2dm2
12dE2

23, (8.71)

which provides a basis for Dalitz plots (see §8.5.2).

8.2.2 Cross Section Measurements

Invariant Cross Section
Because the longitudinal momentum component, pz, of produced particles is reference-
frame dependent, the expression of the differential cross section is also reference-frame
dependent. It is thus useful to seek an expression for the cross section in terms of a rela-
tivistic invariant. Given E2 = m2 + p2

T + p2
z , and for fixed pT , one gets EdE = pz d pz. A
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longitudinal boost of the differential d pz thus yields

d pz
∗ = γ (d pz − βdE ) = γ

(
d pz − β

pz

E
d pz

)
,

= γ
d pz

E
(E − βpz) = d pz

E
E∗, (8.72)

from which we find that d pz
∗/E∗ = d pz/E. Since pT is invariant under a longitudinal

boost, we thus conclude that d3 p/E is a Lorentz invariant. One can thus express cross
sections in a frame-independent way using the invariant cross section

E
d3σ

d p3
= E

d3σ

dφpT d pT d pz
, (8.73)

= d2σ

πd p2
T dy

, (8.74)

where, in the second line, we used the fact that d pz/E = dy and averaged over φ.
As stated earlier, it is not always possible to identify the species or type of detected

particles. It is thus convenient to also define cross section in terms of the pseudorapidity
variable η. At a fixed or given pT , one writes

dN
dη

= dN
dy

dy
dη

. (8.75)

The derivative dy/dη is calculated at fixed pT as follows:

dy
dη

= dy/d pz

dη/d pz
= p

E
=

√

1 − m2

m2
T cosh2y

. (8.76)

The differential cross section may thus be written

dN
dηd pT

=
√

1 − m2

m2
T cosh2y

dN
dyd pT

,

=
√

1 − (1 + p2
T /m2)−1cosh−2y

dN
dyd pT

. (8.77)

The Jacobian J =
√

1 − (1 + p2
T /m2)−1cosh−2y, illustrated in Figure 8.11 as a function of

y for selected values of the ratio pT /m, tends to unity for pT ≫ m. It may thus be neglected
when the mass of particles are very small compared with the energy or momentum scale
of the process.

n-Body Cross Section
The exclusive differential cross section of a collision producing n particles (illustrated in
Figure 8.12) may be written as

dσ = (2π )4 |M|2

4
√

(p1 · p2)2 − m2
1m2

2

d.n(p1 + p2; p3, ..., pn + 2), (8.78)
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Fig. 8.11 Jacobian J = ∂y/∂η for selected values of the ratio pT/m.

with

d.n = δ(4)

⎛

⎝P⃗ −
n∑

j=1

p⃗ j

⎞

⎠
n∏

i=1

δ
(
p2

i − m2
i

)
d4 pi, (8.79)

where |M| represents the amplitude of the scattering process and .n is a phase space factor
defined by Eq. (8.58). In the rest frame of m2 (the lab frame), one has p1 = (E1, p⃗1) and
p2 = (m2, 0), which yields

√
(p1 · p2)2 − m2

1m2
2 = m2 p1. (8.80)

In the center-of-mass frame, p1 = (E1, p⃗1,cm) and p2 = (E2,−p⃗1,cm), Eq. (8.80) becomes
√

(p1 · p2)2 − m2
1m2

2 = p1,cm
√

s. (8.81)

Two-Body Reactions
Cross sections for two-body processes are conveniently expressed in terms of the Mandel-
stam variable t defined in Eq. (8.48):

dσ

dt
= 1

64πs
1

|p1,cm|2
|M|2 (8.82)

In the CM frame, one has

t = (E1,cm − E3,cm)2 − p2
1,cm − p2

3,cm + 2p1,cm p3,cm cos θcm, (8.83)

Fig. 8.12 Differential cross section of an n-body process.
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407 8.2 Particle Decays and Cross Sections

where θcm is the angle of emission, in the CM frame, relative to the direction of particle 1.
Since cos u = 1 − 2 sin2 u/2, one gets

t = (E1,cm − E3,cm)2 − (p1,cm − p3,cm)2 − p1,cm p3,cm sin2 θcm/2. (8.84)

For 2 → 2 scatterings, limiting values for t0 and t1, corresponding to θcm = 0 and θcm = π

respectively, are given by (see Problem 8.8):

t0(t1) =
[

m2
1 − m2

3 − m2
2 + m2

4

2
√

s

]2

− (p1,cm ∓ p3,cm)2 . (8.85)

Luminosity
In a fixed-target experiment, the rate of interactions of a specific type, hereafter noted Wi, is
proportional to the flux of incoming beam particles, F , the total number of target particles,
NT , and the cross section, σi, of the process, so that

Wi = σiNT F, (8.86)

where the rate Wi has units of inverse time, [T −1], the number of targets has units of inverse
area [L−2], and the flux has units of inverse time [T −1]. In contrast, in a collider experi-
ment, there is no “solid target,” one must then replace the product of the number of target
nuclei (per unit area) and the flux of incoming particles by a beam parameter known as
instantaneous luminosity, L. The measured rate is thus

Wi = σiL, (8.87)

where L has units of inverse area, inverse time [T −1L−2].
The time-integrated luminosity multiplied by the cross section yields the number of

observable interactions, Ni, of a given type over the life of an experiment:

Ni = σi

∫
L dt. (8.88)

The luminosity L delivered by a collider depends on the number of beam particles, the
frequency of beam crossings, as well as beam focusing according to

L = n f B1B2

A
(8.89)

where n is the number of beam bunches, f the revolution frequency, B1 and B2 are the
number of beam particles contained per bunch, and A is the cross-sectional area of the
overlapping crossing beams. While the number of bunches n, and the frequency f are typ-
ically fixed by an accelerator’s design, the parameters B1, B2, and A are functions of the
accelerator tuning and may thus vary over time. Since tuning an accelerator is an intricate
and complex task, accelerator facilities typically begin their existence with small delivered
luminosities. However, as beam physicists master the operation of their machine, they gen-
erally raise the delivered luminosity to eventually achieve design luminosity within weeks
or months of operation.

The design luminosity of a machine is limited by various conditions, including the max-
imum number of bunches, maximum number of ions per bunch, and focusing. The LHC
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was originally designed to achieve a luminosity of 1034 cm−2s−1. The total interaction
cross section of proton–proton collisions is of the order of 60 mb (6 × 10−26 cm2) at LHC
energy. This makes for an interaction rate of about 6 × 108 s−1 or 600 MHz.

Given a process cross section σi, the number of observable interactions Ni is intrinsically
limited by the integrated luminosity

∫
L dt (as well as the efficiency of the measurement).

Accelerator facilities thus typically report delivered integrated luminosities in terms of the
inverse of cross section units. For instance, an integrated luminosity of one inverse pico-
barn corresponds to the minimal luminosity required to observe (on average) one event
with a cross section of one picobarn, while an integrated luminosity of one inverse femto-
barn, which is one thousand times larger, corresponds to the minimal integrated luminosity
needed to observe a one femtobarn process. Laboratories also customarily report plots of
the delivered integrated luminosity as a function of (operation) time as an indicator of the
performance of their accelerator facilities.

8.2.3 Measurements of Differential Cross Sections

Differential measurements of cross section may be carried out for single or multiple parti-
cles concurrently. Whether one wishes to obtain differential cross sections as a function of
transverse momentum, pT , rapidity, y, or other kinematic variables, it is necessary to scan
a dataset and fill one or several histograms corresponding to the kinematic variables and
particles of interest. One uses one-dimensional histograms (§4.6) for differential quantities
with dependency on a single variable and multidimensional histograms (§4.6.3) for cross
sections involving several kinematic variables, several particles, or both.

Consider, as an example, the determination of the transverse momentum differential
cross section for the production of charged particles in A + A collisions. Let us assume
one has a dataset consisting of a known number of events, Nev , satisfying some event
conditions and data quality criteria (commonly called quality cuts). The dataset must
then be scanned for all events satisfying the event condition and quality criteria of interest.
Each event is itself scanned for particles, with appropriate particle selection and quality
selection criteria. Each particle satisfying the selection criteria produce entries in a pT

histogram, HpT (i), in bin i determined by the momentum of the particle and the partition
of the histogram (i.e., its minimum and maximum value boundaries and the number of
bins). A raw differential spectrum SpT is obtained by scaling the histogram by the number
of events included in the dataset scan. That is, for each bin i, one calculates

SpT (i) = 1
Nev

HpT (i), (8.90)

where Nev is the actual number of events satisfying the event selection and quality selection
criteria. One obtains an estimator of the particle density ρ̂1(pT ) = dN/d pT = σ−1dσ/d pT

as function of pT by further dividing SpT (i) by the bin width, 1pT,i, of each bin i:

ρ̂1(pT ) ≡ dN/d pT =
SpT (i)
1pT,i

, (8.91)

= 1
Nev1pT,i

HpT (i). (8.92)
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409 8.3 Measurements of Elementary Observables

Technically, the quantity ρ̂1(pT ) obtained with this formula is “still” a histogram. To ob-
tain an actual function, one must account for bin width averaging, as discussed in §12.3.5.
Additionally, various instrumental conditions typically limit the efficiency of the measure-
ment and introduce pT smearing effects, as well as backgrounds. Techniques to correct for
such effects are presented in §12.3.1. Neglecting such effects, or assuming they have been
properly accounted for, one obtains the differential cross section by dividing the density
ρ1(pT ) by the luminosity L integrated by the experiment and the event selection efficiency
ε:

dσ/d pT = 1
Lε

ρ1(pT ). (8.93)

Techniques and issues related to the evaluation and correction of instrumental inefficiencies
are discussed in §12.3.1.

The aforementioned procedure can be readily extended for differential cross section
measurements involving two or more kinematical variables. For instance, one obtains the
density ρ1(η, pT ) by filling a two-dimensional histograms with the particles pseudorapidity
η and transverse momentum pT :

ρ̂1(η, pT ) ≡ d2N
dηd pT

= 1
σ

dσ

dηd pT
=

Sη,pT (i)
1ηi1pT,i

, (8.94)

= 1
Nev1ηi1pT,i

Hη,pT (i, j), (8.95)

where the indices i and j span bins in pseudorapidity and transverse momentum, respec-
tively. The double differential density d2σ/dηd pT is obtained, as for single differential
cross section, by dividing by the integrated luminosity L and event efficiency. The proce-
dure is similar for two- or multiparticle cross sections, except that one must then scan each
event for pairs, triplets, or n-tuplets of particles, as appropriate. This involves two, three, or
more, nested loops over all particles of each event. The number of pairs and triplets scale
as n(n − 1) and n(n − 1)(n − 2), respectively. The process can thus become particularly
CPU-intensive and fastidious for very large multiplicity events such as those produced in
high-energy nucleus nucleus collisions at RHIC or LHC. However, note that for indistin-
guishable particles, it is unnecessary to examine all pairs (triplets or n-tuplets). For pairs,
one can use a loop over all particles of the event for the first particle, that is, i = 1, . . . , n,
while the loop for the second particle is restricted to j = i + 1, . . . , n. Subsequently, one
must then appropriately symmetrize the histograms used to evaluate two-particle densities.

8.3 Measurements of Elementary Observables

Studies of interest in nuclear and particle physics include measurements of total and differ-
ential cross sections, correlation functions, particles mass and lifetimes, and much more.
At their very core, all these measurement involve elementary measurements of particle mo-
mentum, energy, production angles, and so on. We discuss basic measurement techniques
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x x

Fig. 8.13 (Left) Principle of measurement of particle momenta with a magnetic spectrometer. (Right) illustration of helicoidal
trajectories described by Eqs. (8.98–8.100).

in this section and describe more advanced techniques in remaining section of this Chap-
ter as well as in Chapters 10 and 11. Several data correction techniques are presented in
Chapter 12.

8.3.1 MomentumMeasurements

The momentum of a particle can be measured by observing its trajectory under the in-
fluence of a force of known magnitude and direction. For charged particles, this can be
readily accomplished with static electric or magnetic fields. Here, we focus our discussion
on magnetic spectrometers, which are far more common than electric field based momen-
tum analyzers.

A charged particle, q, traveling in a magnetic field B⃗ at speed v⃗ is deflected by the
Lorentz force, which acts as a centripetal force. The particle thus follows (in the absence
of other forces) a helicoidal path of radius R such that

|F⃗Lorentz| = kq|⃗v × B⃗| = kqvT B = mv2
T

R
, (8.96)

for vT perpendicular to B⃗. We then conclude that the particle momentum transverse to the
field (as illustrated in Figure 8.13) is given by

pT = kqBR, (8.97)

where k = 0.3 when the charge q is expressed in unit charge (e.g., ±1), the momentum pT

in GeV, the magnetic field B in Tesla, and the trajectory radius R in meters. For a uniform
magnetic field oriented along the z-direction, the momentum component pz is a constant,
and the trajectory may be described parametrically as a helicoidal trajectory

x(t ) = xc + R cos (ωt + φ0) , (8.98)

y(t ) = yc + R sin (ωt + φ0) , (8.99)

z(t ) = zc + vzt, (8.100)
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Fig. 8.14 Particle momentum determination with a dipole magnetic spectrometer.

where the coordinates (xc, yc) represent the center of the circular path and zc is the position
of the particle along the z-axis at t = 0. The particle’s angular velocity is

ω = vT

R
= pT

mR
(8.101)

and the pitch λ of the helicoidal trajectory depends on the ratio of the momentum compo-
nents parallel and transverse to the magnetic field

tan λ = pz

pT
. (8.102)

Reconstruction of the momentum of a particle can be achieved by detecting the trajectory
of the particle r⃗(t ) and evaluating its radius R and pitch angle λ. Equation (8.97) provides
the magnitude pT while Eq. (8.102) enables the determination of pz. The magnitude of the

momentum is thus p =
√

p2
T + p2

z .
The determination of the trajectory r⃗(t ) is typically accomplished using position-

sensitive sensors, discussed in §8.3.3, and requires sophisticated pattern recognition tech-
niques to identify the charged particle trajectories measured by these sensors. Examples of
these techniques are discussed in Chapter 9.

Charged Particles Detection and Tracking
Several magnetic field and detector geometries are commonly used to carry out magnetic
analysis of particle momenta, including dipole, solenoidal, and toroidal field configura-
tions. A plurality of detector technologies have been developed to measure charged particle
trajectories within these field configurations and determine momenta and identify particle
species. Detector technologies much in use include scintillator slats, straw tube chambers,
wire chambers, pad chambers, time projection chambers, as well as solid-state detectors
such as pixel detectors, strip detectors, or silicon drift detectors. Detectors may be placed
either within or outside the field region, as schematically illustrated in Figure 8.14. A full
discussion of tracker topologies and associated technologies is well beyond the scope of
this textbook. We thus limit our discussion to few illustrative examples of the methods
used in charged particle detection with a solenoidal field configuration (Figure 8.15).
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412 Basic Measurements

Fig. 8.15 Charged particle detection in a multilayer charged particle detector within a solenoidal field configuration. Open
rectangles represent detector layers and solid dots represent energy deposition “hits”within these layers. Solid lines
represent primary charged particle tracks, whereas the dotted line represents a neutral short-lived particle that
decayed into two charged particles within the detector volume.

High-momentum charged particles passing through matter lose energy via interactions
with (mostly) electrons of the medium. Electronic excitations resulting from these interac-
tions can be exploited toward ionization of the medium or light emission (fluorescence).
Tracking detectors are thus designed to either detect the presence and position of ioniza-
tion or light emission within a specific detection plane or volume. A combination of several
detection planes, as illustrated in Figure 8.15, then yield hits that provide an “image” or
snapshot of the particle trajectory called track. Tracking detectors measure the position
and energy deposited at these hits. Pattern recognition software can then be used to find
series of hits that belong to a given track, and the curvature and trajectory of each track
are used to determine the momentum of the particles as per Eq. (8.97). Extrapolation of
the trajectories to their point of origin then yields the momentum vector of the particles at
their point of production, called production vertex or just vertex.

Tracks may be fitted for momentum vector determination with or without the inclusion
of their production vertex position. Tracks reconstructed and fitted without the inclusion
of the primary vertex are often known as global tracks, whereas those fitted with the pri-
mary vertex are loosely called primary tracks, although they may, technically, originate
from unresolved secondary decays taking place near the primary vertex. Such unresolved
secondary tracks constitute a systematic background in the determination of particle pro-
duction cross sections and correlation functions.
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A wide variety of pattern recognition techniques are commonly used to reconstruct hits,
tracks, and production vertices. We here limit our discussion to some of the most basic
techniques in Chapter 9 and refer the interested reader to specialized works [18, 41, 42, 43,
60, 86, 88, 89, 94, 95, 102, 127, 139, 178].

Tracks are usually classified based on their vertex of origin and mechanism of produc-
tion. Tracks originating from the main collision vertex, known as a primary vertex, are
called primary tracks, while those produced by decays of long-lived particles (e.g., K0

s ,
50) are called secondary tracks and are associated with a secondary vertex, as illustrated
in Figure 8.15. Tracks produced within the detection apparatus by particle interactions with
detector materials may be referred to as tertiary or background tracks.2 Tracks obtained
by wrong or accidental associations of hits are generally known as faked tracks or ghost
tracks. It is important to realize that secondary tracks are a byproduct of the scattering pro-
cess under study and cannot be avoided. Measurements of the production cross section of
the short-lived particle decays that produce secondary tracks are actually of interest to fully
characterize the scattering processes under study. Tertiary and ghost tracks, however, are
detector artifacts and thus ought to be minimized by careful design of the tracking system
and the software used in the reconstruction of the data. This calls for detection systems that
reduce the amount of materials that can cause tertiary tracks. It also requires the number
of tracking planes be optimized to reduce ambiguities in the extrapolation and extension
of tracks. Also note that minimization of materials reduces Multiple Coulomb Scattering
(MCS), which otherwise limits the achievable momentum resolution (see discussion that
follows).

Momentum Resolution
The magnetic fields used in magnetic spectrometers are typically quite stable and measured
with very high precision. The momentum resolution achieved in measurements is thus al-
most entirely determined by tracking resolution and more specifically by the resolution δC
of the track curvature C defined as the multiplicative inverse of the radius R. Fluctuations
of the curvature are driven by process noise consisting predominantly of MCS and mea-
surement noise associated with the spatial or hit resolution (RES) of measuring devices
(discussed in §8.3.3)3:

δC2 = δC2
res + δC2

MCS. (8.103)

Let us first examine the term δCres dependent on position resolution. At a minimum,
three position measurements are required to estimate the radius of a circular trajectory,
as illustrated in Figure 8.16a. The center of the circle is readily obtained by finding the
intersection of segment bisectors S1 and S2. Let us define midpoints r⃗A = r⃗1 + 1r⃗12/2 and
r⃗B = r⃗2 + 1r⃗23/2, with 1r⃗12 = r⃗2 − r⃗1 and 1r⃗23 = r⃗3 − r⃗2. The bisectors may be written
1r⃗AC = r⃗A − r⃗C and 1r⃗BC = r⃗B − r⃗C , with r⃗C defining the position of the center of the

2 Note that background tracks are often referred to as secondary tracks also.
3 In a wider context, Cres is known as measurement noise while CMCS corresponds to process noise. These con-

cepts are discussed in §12.1.
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Fig. 8.16 (a) Determination of a track center and f radius. (b) Definition of the track sagitta s.

circle. By definition of the bisectors, one has

1r⃗12 · 1r⃗AC = 0, (8.104)

1r⃗23 · 1r⃗BC = 0, (8.105)

which reduces to

1r⃗12 · r⃗C = 1
2

(
r2

1 − r2
2

)
, (8.106)

1r⃗23 · r⃗C = 1
2

(
r2

2 − r2
3

)
. (8.107)

These two equations can be solved (see Problem 8.11) for the components r⃗C = (xc, yc).
The radius R of the circle is then

R =
√

(⃗r1 − r⃗C ) · (⃗r1 − r⃗C ) . (8.108)

In order to estimate the curvature resolution based on the position resolution, consider
the diagram shown in Figure 8.16b, which defines the track sagitta s = x2 − (x1 + x3)/2
in terms of three position measurements. For a track length L much smaller than the radius,
L << R, one has

s = R(1 − cos α) ≈ R
α2

2
. (8.109)

Introducing the momentum of the track transverse to the field, and noting L ≈ Rα, one
obtains

s ≈ R2α2

2R
= qBL2

8pT
. (8.110)

The transverse momentum can then be expressed in the terms of the length of the track L
and its sagitta s:

pT = qBL2

8s
. (8.111)

Assuming all three measurements have the same position resolution σx, and with L >> s,
the momentum resolution δp is thus entirely determined by the resolution on the sagitta.
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For a measurement involving three hits, each with a position resolution σx, one gets σs =√
3/2σx. The relative momentum resolution is

δpT

pT
= σs

s
=

√
96σx

pT

qBL2
. (8.112)

The momentum resolution can of course be improved by carrying out N uniformly dis-
tributed measurements of the track trajectory. Assuming all measurements have the same
resolution σx, one finds [150]

δpT

pT
= σs

s
=

√
720

N + 4
σx

pT

qBL2
. (8.113)

One thus concludes that the relative momentum uncertainty δp/p is proportional to the
position resolution σx and grows linearly with the particle momentum, inversely as the
strength of the field B and inversely as the square of the measured track length. There is
thus an interest in carrying out momentum measurements with large magnetic fields and
large spectrometer enabling large path lengths L determined with very high precision σx.

The momentum resolution is also affected by MCS, which amounts to a process noise.
Its impact on the relative momentum uncertainty can be estimated as

δpT

pT
= 13.6

√
X/X0

qBL
, (8.114)

where X/X0 is the material thickness expressed in units of radiation lengths X0 [35].
In practice, the usable field strength is limited by the smallest momentum one wishes

to detect. Indeed, if the field is very high, low pT tracks end up having very small radii
and may not be measurable. The resolution σx is determined by the technologies employed.
Drift chambers (wire) have resolutions in the range 50–200 µm, whereas Si pixel and Si
strip detectors can achieve resolutions down to a few microns.

The momentum resolution of modern complex detectors is commonly estimated based
on Monte Carlo simulations of track propagation and reconstruction involving a detailed
description of all detector components and materials, as well as simulators of the sensor
responses and resolution. It may also be studied using cosmic rays and the reconstruction
of decaying particles with a very narrow (or very well known) decay width (§8.5).

Track Quality Characterization
Not all reconstructed tracks have the same quality. Indeed, various instrumental effects
may degrade and smear the quality of tracks randomly. Fortunately, several parameters
may be used to assess the quality of reconstructed tracks and reject tracks of lesser quality.
Quality criteria common to most reconstruction techniques and experiments include the
track χ2, the number of hits on a track, and the track’s distance of closest approach to
the primary collision vertex (or secondary vertex in the case of secondary tracks). It is in
general possible to carry out analyses with quality criteria that are tailored to the needs of
a specific physics analysis.
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The track χ2 is defined as

χ2 =
n∑

i=1

(
r⃗i − f⃗i(xi|θ̂ )

)T
V−1

i

(
r⃗i − f⃗i(xi|θ̂ )

)
, (8.115)

where r⃗i = (yi, zi), i = 1, . . . , n, are measured hit positions, Vi = Cov[yi, zi], and f⃗i(xi)
is the position predicted by the model representing the track in terms of fit parameters
θ̂ . Fit parameters include the momentum (or track curvature) and angles of emission of
the track. If the measurements yi and zi can be considered Gaussian deviates and yield
a well-calibrated covariance matrix V, the χ2 values obtained for genuine tracks can be
characterized by a χ2 distribution (see §3.13). It is then possible to use the track χ2 as a
reliable and predictable quality criterion to identify and eliminate bad tracks. Indeed, one
can select a maximum χ2

max value and reject all tracks that exceed this criterion with a
well-defined selection criterion efficiency given by

ε =
∫ χ2

max

0
fχ2 (z; n) dz, (8.116)

where fχ2 (z; n) is the χ2 distribution for n degrees of freedom given by Eq. (3.163). A
track χ2 thus nominally constitutes a robust, reliable, and well-defined quality selection
criterion. In practice, however, the determination of hit errors is often met with considerable
challenges, and a proper and precise assessment of the size and correlations of the errors
may not be possible. Although a χ2 may still be used to reject tracks, the efficiency (or
losses) associated with a particular maximum χ2 value may no longer be obtained from Eq.
(8.116) but must instead be determined by means of Monte Carlo or embedding techniques
(see §12.4.6).

The number of found hits associated with a track, nF , also provides powerful control
of the quality of tracks, particularly when compared to the total number of “possible”
hits, nmax, that could be on the track given its specific geometry, that is, the number of
active sensors (detection planes) physically traversed by the track. Given a particular sensor
technology, one expects there is a finite probability εHit for finding hits produced by a
particular track. For illustrative purposes, let us assume this efficiency is identical for all
tracking planes and independent of kinematical track parameters. Let us further assume that
the probability of finding a track hit on a particular plane is independent of the probability
of finding one on other planes. The probability of finding nF hits on a track with a possible
maximum of nmax may then be modeled with a binomial distribution (§3.1):

PB(nF |nmax, εHit ) = nmax!
nF !(nmax − nF )!

(εHit )nF (1 − εHit )nmax−nF . (8.117)

This is illustrated in Figure 8.17 for selected values of efficiencies εHit and a maximum
value nmax = 150.

Because the number of hits actually detected on a track affects the momentum resolution,
it is desirable to impose a minimum number of hits, Nmin, requirement on reconstructed
tracks. One must, however, realize that for fixed hit efficiency and number of detector
layers, the number of hits detected will then influence the track reconstruction efficiency,
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Fig. 8.17 Probability distribution of the number of hits, nHits, associated with reconstructed tracks modeled according to a
binomial distribution with selected hit-finding efficiencies ε, and for a maximum number of hits nmax = 150.

which amounts at best4 to

εTrack(εHit) =
nmax∑

nF =nmin

PB(nF |nmax, εHit ), (8.118)

and is shown in Figure 8.18 as a function of the hit-finding efficiency εHit for selected
values of Nmin. Since short tracks are expected to yield inferior momentum resolution and
wider distance of closest approach (DCA) distributions, and are also more likely to con-
sists of faked tracks, it is legitimate to require tracks to have a specific minimum number
of hits. Equation (8.118) nominally determines the efficiency of the selection criterion (re-
quirement). However, several additional factors may influence the likelihood of adding a
found hit to a track. The hit-finding efficiency used in the preceding formula should thus
obviously include all these effects.

A selection criterion on the number of hits is particularly useful to eliminate split tracks,
that is, charged particle trajectories that for one reason or another are reconstructed as two
or more track segments rather than a single track. Inclusion of split tracks in measurements
leads to overestimation of the particle production cross section as well as spurious features
in correlation functions. Fortunately, one can greatly reduce the double counting associated
with split tracks by requiring that tracks accepted in an analysis feature a ratio nF/nmax

larger than 50%. Indeed, requiring a minimum length of 50% ensures the longest split
track segment is utilized while shorter segment(s) are eliminated. One can optionally use a
higher ratio requirement (e.g., 60%) if there is a concern that spurious hits may randomly
be added to split tracks.

4 This expression accounts only for hit-finding efficiency; other effects may reduce the track-finding efficiency
also.
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Fig. 8.18 Track-finding efficiency as a function of the hit-finding efficiency for selected values of the minimum of hits
requirement Nmin, assuming a binomial hit-finding distribution and nmax = 150.

In practical analyses, it is often the case that the hit-finding efficiency may vary from
one detection plane/sensor to the next. It may also depend on the track parameters, and
more specifically on the energy deposition of the track determined by the momentum of
the track and the angle at which it crosses a specific detection plane. It is also the case
that various detector components may malfunction intermittently or become completely
nonoperational. An exact calculation of the probability of the track-finding efficiency as
determined by hit-finding efficiencies may thus become impractical. Experimenters com-
monly resort to estimations of track-finding efficiency based on Monte Carlo simulation of
the detector performance or embedding techniques (§12.4.6).

The DCA to the collision primary vertex, defined in Figure 8.19, is yet another track
parameter routinely used to assess the quality of tracks. It may be expressed as a single
quantity or broken into two components, one along the beam axis, and one in the plane
transverse to the beam axis. Track DCAs are particularly useful to distinguish primary,
secondary, and background tracks. Indeed, secondary and tertiary tracks are produced ei-
ther by decays or interactions throughout the detector. They are thus unlikely to project

Track

Track

Primary
Vertex

Primary
Vertex

DCAz

DCAxy
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Fig. 8.19 Definition of the distance of closest approach (DCA) to the primary vertex.
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back to the primary vertex. A measurement of DCA thus nominally provides an indicator
of the origin of the track: secondary or tertiary tracks are expected to have large DCA,
while primary tracks should have null DCA.

In practice, finite resolution of hit reconstruction and MCS lead to finite resolution in
momentum and angle determination. Primary tracks projected to the main vertex thus have
a finite DCA also. The width of the primary track DCA distribution depends on the vector-
ing resolution and is typically a function of the track momentum and rapidity. It is of course
determined largely by the position resolution of the tracking detectors used to identify the
tracks. The discrimination of secondary tracks is complicated by the fact that short-lived
particles decay stochastically on a time scale determined by their mean life τ . For in-
stance, kaon-short (K0

s ) have a mean life of (8.954 ± 0.004) × 10−11 s and travel a mean
distance cτ = 2.69 cm at the speed of light before decaying. The probability of decaying
on a shorter distance is, however, finite. In practice, this means that the secondary parti-
cles produced by a decay may look as if they were produced very near the primary vertex.
Since primary tracks have a finite width DCA distribution, it becomes strictly impossible,
for small DCA values, to distinguish whether a particle is a true primary or actually a
secondary. One must then carry out a statistical analysis to determine the likelihood of sec-
ondary particles being reconstructed and identified as primary particles (and reciprocally).

Short-lived particles have typically a much smaller production cross section, and sec-
ondary tracks thus constitute a small background to primary tracks. It is in fact often suffi-
cient to eliminate secondary tracks on the basis of DCA selection criteria in the longitudinal
and transverse directions. The use of specific maximum DCA selection criteria obviously
implies losses of primary particles (efficiency) and contamination by secondary particles.
One expects the DCA resolution to be determined by MCS effects as well as by the detector
granularity and hit precision. The DCA width is thus typically largest at the lowest track
momenta and decreases with increasing momentum. It eventually rises, however, when the
track curvature is small relative to the position resolution of the detector. Understanding
primary track losses and contamination by secondaries is thus typically a nontrivial task
best accomplished on the basis of Monte Carlo simulations.

It is also worth pointing out that the track χ2, the number of hits on a track, and the
DCA are typically highly correlated because all three parameters depend on the momen-
tum resolution. The efficiency associated with selection criteria on the χ2, the number of
hits nF and the DCA thus cannot be represented by a product of three independent effi-
ciencies. Monte Carlo and embedding techniques are thus best for estimating losses and
contamination effects.

8.3.2 Calorimeters and Energy Measurements

Calorimeters are devices designed to measure the total energy of particles produced in
elementary collisions. They involve complete absorption of particle energy by means of
either hadronic or electromagnetic processes. As such, calorimeters tend to be rather bulky
and massive. As for tracking devices, several types of calorimeters have been developed
and tailored toward various kinds of applications. One generally distinguishes between
electromagnetic and hadronic calorimeters.
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Electromagnetic and Hadronic Calorimeters
Electromagnetic calorimeters are designed and optimized to measure the energy of lep-
tons (i.e., photons and electrons) by means of electromagnetic interactions. For instance,
high-energy electrons penetrating through matter lose energy by scattering and by emission
of radiation in the form of photons called bremsstrahlung radiation. High-energy photons,
in turn, interact through matter via photoelectric effect, Compton scattering, or pair pro-
duction. These processes lead to the production of electron and photons that also interact
with the medium bulk and thereby produce a large flurry of particles known as an electro-
magnetic shower.

Hadronic calorimeters are optimized for the detection of high-energy hadrons but are
also generally sensitive to electromagnetic energy. They rely on hadronic interactions of
hadrons (e.g., protons, neutrons, pions, etc.) within the bulk material. These interactions
produce large numbers of charged and neutral pions. Neutral pions decay and initiate elec-
tromagnetic showers, while charged pions have further hadronic interactions that develop
into a mixed shower of hadrons and leptons.

Calorimeters are commonly characterized in terms of the e/h ratio, which measures their
relative response to leptons and hadrons. A calorimeter is said to be perfectly compensated
if it features a ratio e/h = 1, which means it is equally sensitive (with same gain) to both
hadrons and leptons.

Calorimeters are built either with a single and homogeneous material or a combination
of absorbing and sensing (shower sampling) materials. Homogeneous calorimeters rely
on the same material for both the initiation of showers and the production of signals. They
usually consist of inorganic crystals (e.g., lead-glass) transparent to light and are read out
either by photomultiplier tubes or photodiodes. As such they provide a poor response to
hadron and are thus used as electromagnetic calorimeters exclusively.

Sampling calorimeters are typically constructed with alternating layers of absorbing
and sampling materials. Absorber materials commonly used include high-density, large
atomic number (Z) materials such as lead, tungsten, or uranium. The sampling material
may be solid or liquid and chosen to either transmit light (e.g., plastic scintillators) or
electric currents (e.g., liquid argon, liquid krypton).

Calorimeters may also be segmented into cells and modules both longitudinally and
transversely. Not too common, longitudinal segmentation enables measurements of the lon-
gitudinal shape and depth of showers. It may then be used to discriminate hadronic from
electromagnetic showers, or high-energy electrons from photons. Transverse segmentation,
on the other hand, is used almost universally because it enables measurements of the posi-
tion (direction) of produced particles based on energy sharing between calorimeter cells.

Electromagnetic showers have a shape and depth that fluctuates within comparatively
narrow limits and feature an overall scale determined by the radiation length of the mate-
rials composing the calorimeter. Hadronic interactions have smaller cross sections than
electromagnetic processes. Hadronic showers thus exhibit larger shower shape fluctua-
tions both transversely and longitudinally. They typically start at a depth determined by
the interaction length of the material but their size do not have a simple dependence on
the interaction length and are partly determined by the radiation length of the material.
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Although calorimeters do not typically contain or stop muons, they are nonetheless sensi-
tive to energy deposition by these particles.

Bolometric Calorimeters
Bolometric calorimeters measure incoming energy fluxes based on the change in temper-
ature 1T they produce. Assuming the incoming flux is entirely converted into heat, the
temperature rise amounts to the ratio of incoming energy by the heat capacity of the heat-
sensing material C:

1T = E
C

. (8.119)

Since the heat capacity scales as the cube of the temperature T 3, best sensitivities are
achieved by cooling calorimeter materials at cryogenic temperatures.

Bolometric devices are used in measurements of cosmic microwaves and in searches of
dark matter.

Basic Calorimeter Signal Characterization
Hadronic and electromagnetic shower developments are stochastic processes. This implies
that the signals produced by calorimeters exhibit relatively large fluctuations. The relative
energy resolution of a calorimeter, δE/E, is thus an intricate function of the material used
in its construction, its geometry, as well as the readout process. It is commonly described
in terms of the empirical formula

δE
E

= a ⊕ b√
E

⊕ c
E

, (8.120)

where the constants a, b, and c are determined by physical characteristics of the calorimeter,
including the type of materials used and geometry, the technique used to generate and read
out a signal, the amplification of the signal, and so on. The term a arises from nonunifor-
mities in the construction and response of different modules, nonlinearities, while the term
inversely proportional to

√
E originates from the stochastic nature of the shower process.

Roughly speaking, this stems from the fact that the shower contains a number of particle
n proportional to the energy of the particle that initiated it. Each particle deposits a small
amount of energy with some variance. The variance of the energy of the whole shower
thus decreases with

√
n and is inversely proportional to

√
E. The third component results

mainly from instrumental effects that are energy independent (e.g., electronic noise). Its
relative contribution thus decreases inversely with the energy.

Electromagnetic and hadronic showers have very different responses and resolutions.
The resolution of electromagnetic showers is intrinsically limited by the variance of the
path length of charged particles within the shower. For homogeneous calorimeters, it has
been shown to be

δE
E

∝ 0.005√
E [GeV]

. (8.121)
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Fluctuations are quite a bit larger in sampling calorimeters, and one typically gets

δE
E

∝ 0.04

√
1000E0

E [GeV]
, (8.122)

where E0 represents the energy loss of a single charged particle in one sampling layer. En-
ergy resolutions below the percent level are routinely achieved with homogeneous devices,
but percent resolution appears to be a lower limit for E&M sampling calorimeters [81].

The resolution of hadronic shower calorimeters is larger still owing to fluctuations in
the fractional energy loss of shower particles. Hadronic showers involve several processes,
some of which produce muons, electrons, positrons, and slow neutrons. Because these par-
ticles have very different rates of energy deposition in the material, there are considerable
fluctuations in the development and energy deposition of hadronic showers with resolution
of the order of

δE
E

∝ 0.25 − 0.45√
E [GeV]

, (8.123)

where the lower limit is achieved with perfect compensation for nuclear effects.
Hadronic showers tend to be spatially large, both transversely and longitudinally. The

aforementioned performance is in fact possible only when the showers are fully contained
within the active calorimeter volume.

Calorimeters are an essential component of high-energy physics detectors and have thus
been the subject of considerable developments and performance studies [81, 194].

8.3.3 Measurements of Hit Positions

Measurements of particle hit position are an essential component of measurements of track
momenta in magnetic spectrometers and particle detection with calorimeters. Hit position
detectors are extremely varied in design, construction, and operation. At a basic level, the
determination of positions relies on particle energy deposition in energy-sensing detector
modules and components.

Charged Particle Energy Loss in Materials
Charged particles passing through matter interact with individual electrons and nuclei as
well as the medium as a whole under appropriate conditions, leading to scattering, en-
ergy loss, Cherenkov radiation, and coherent bremsstrahlung. Scattering and energy loss
dominate at intermediate energies: light projectiles (e.g., electrons) colliding with heavier
target particles (e.g., nuclei) randomly deflect but lose relatively little energy unless they
undergo inelastic collisions, whereas heavy projectiles colliding with lighter targets lose
energy without being appreciably deflected. Repeated stochastic deflections of particles
traversing a medium are predominantly caused by Multiple Coulomb Scattering (MCS).
MCS degrades a spectrometer’s capacity to determine the direction of a particle and thus
introduces uncertainties in the determination of both the magnitude and direction of its
momentum vector. Energy losses and fluctuations in energy loss degrade and smear the
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Fig. 8.20 Illustration of hit position determination based on charge sharing between contiguous energy deposition sensing
components or cells.

momentum of particles and thus contribute to an additional loss of information and reso-
lution. However, energy loss is a necessity in order to detect and analyze the trajectory of
particles through detector layers, which enables tracking and momentum reconstruction.
Additionally, because the energy loss of a particle depends on both its charge and momen-
tum, measurements of energy deposition along a particle’s trajectory make its identification
possible (see §8.4).

Broadly speaking, position sensitive detectors can be grouped into two categories: those
that sense the energy deposition but do not report its amplitude and those that do. This said,
while hit sensing may be accomplished with either gas or solid state devices, basically
all technologies rely on charge sharing between modules, illustrated in Figure 8.20, and
discussed in the next section, to optimize the determination of hit position resolution.

A wide variety of hit-sensing technologies have been developed and are used in modern
particle and nuclear physics experiments.

Characterization of the Performance of Hit-Sensing Detectors
Hit-sensing or position-sensitive devices that do not report the amount of energy deposited
rely on a signal discriminator designed to “fire” and produce a logical pulse indicating the
presence of a particle when the energy deposition in a cell (or module) exceeds a preset
threshold. Detectors of this type do not require analog-to-digital converters (ADCs) and
are thus considerably less expensive than more sophisticated devices that sense both the
position and the amount of energy deposited. Their position resolution σx is, however,
intrinsically limited by the width 1x of the sensing modules. Indeed, the variance of a
uniform distribution (§3.4) across a finite width 1x determines the position resolution:

σx = (Var[x])1/2 = 1x√
12

. (8.124)

The position resolution achievable with such devices is thus strictly limited by the granu-
larity (width) of the modules.

Better performance can be achieved with devices of similar segmentation that also ex-
plicitly measure the energy deposition or charge collected. Improvement in the position
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resolution relies on energy or charge sharing between contiguous detector cells, illustrated
schematically in Figure 8.20.

In gas and solid state detectors, energy deposition leads to the creation of electron–hole
pairs. The number of electrons (or holes) produced may be sizable, ranging from several
hundreds to tens of thousands. The charge diffuses and ends up spreading across several
anode segments with an approximate Gaussian profile. Denoting the cell center positions
as xi and the energy or charge deposited in a given cell as wi, an estimate of the hit position
may be obtained from the distribution centroid

x̄ =
∑

i wixi∑
i wi

, (8.125)

where the sums are taken on contiguous cells forming a cluster of charge (or energy)
deposition.

Considering a particle entering the segmented readout device at position x0, let us as-
sume the energy deposition and charge diffusion processes lead to a Gaussian distribution
centered at the position x and with a width σx. Let 1x represent the width of the segments
and xi the center position. The expectation value of the charge Ni measured in segment i is
thus given by

pi = N
∫ xi+1x/2

xi−1x/2
e

(x−x0 )2

2σ2 dx. (8.126)

For a fixed number of electrons N , the diffusion process leads to charges n⃗ =
(n1, n2, . . . , nm) on the m segments, forming a cluster with

∑
i ni = N . The probability

of observing n⃗ charges is given by a multinomial distribution P(n⃗|N, p⃗). The weights are
wi = ni. The expectation value of the position x̄ is thus

E[x̄] = 1
N

∑

i

xiE[ni] = 1
N

∑

i

xi pi = x0, (8.127)

and its variance given by (see Problem 8.12)

δx̄2 ≡ Var[x̄] = 1
N

∑

i

x2
i pi − x2

0 = 1
N

σ 2
x , (8.128)

where σ 2
x =

∑
i x2

i pi − x2
0 is the variance of the charge distribution. We thus conclude that

the resolution of the charge cluster centroid is

δx̄ = σx√
N

. (8.129)

The segment width 1x should be chosen to be of order of the width σx. The centroid
resolution thus improves in proportion to the square root of the number of electrons N .
This implies that the resolution can be far better than 1x/

√
12 for large values of N . In

practice, however, the presence of electronic noise limits the achievable precision, and the
position resolution may be expressed as

δx̄ = a ⊕ σx√
N

= a ⊕ b√
⟨E⟩

, (8.130)
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where ⟨E⟩ represents the typical energy deposition in a segment and a and b are two con-
stants determined by the level of noise and the average ionization energy of the medium.

Time Projection Chambers (TPCs) achieve position resolutions of the order of 1 mm,
while gas wire chambers routinely achieve position resolutions of the order of 200–1000
µm. Pixel and strip silicon detectors achieve even better resolution still with precision
down to 5 µm.

8.4 Particle Identification

Although particle production models are constrained a great deal by measurements of in-
clusive (unidentified) particle production cross sections and correlation functions, studies
of flavor dependencies of the particle production requires measurements of the cross sec-
tion and correlation functions of precisely identified particle species (e.g., π±, K±, p, p̄,
etc.). While positively charged particles are readily distinguishable from negatively charged
particles on the basis of the sign of their track curvature in a magnetic spectrometer, dis-
criminating among particle species is a far more difficult task. Fortunately, several tech-
niques and associated detector technologies have been developed over the years to achieve
reliable Particle Identification (PID) on a particle-by-particle basis and enable specific mea-
surements of particle-identified spectra and correlation functions.

In this section, we focus our discussion on PID techniques based on differential energy
loss (§8.4.1) and time-of-flight (§8.4.2), whereas particle detection by invariant mass re-
construction of two- and three-body decays is presented in §8.5.1. Introductions to PID
techniques based on Cherenkov radiation and transition radiation may be found in special-
ized texts [33, 21]. Discrimination of electrons against hadrons based on E&M calorimeter
measurements is also possible [165].

8.4.1 PID by Specific Energy Loss

The energy loss of particles traversing thin media may be estimated with the Bethe–Bloch
equation [35] for the specific energy loss dE/dx:

−
〈

dE
dx

〉
= Kz2 Z

A
1
β2

[
1
2

ln
(

2mec2γ 2β2Tmax

I2

)
− β2 − δ

2

]
, (8.131)

where K/A = 4πNAr2
emec2/A = 0.307075 MeVg−1cm2 for A = 1 g mol−1; Z and A are the

(average) atomic number and atomic mass of the absorber material; NA = 6.0221415 ×
1023 mol−1 is the Avogadro number; mec2 = 0.510998 MeV is the mass of the electron
(×c2); z is the charge (in units of the proton charge) of the incoming particle; β is the
ratio of the speed of the incoming particle to the speed of light; γ = (1 − β2)−1/2; I is
the mean excitation of the absorber material (expressed in eV); and δ(βγ ) is a density
effect correction, which is typically small but becomes significant at very low and very
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Fig. 8.21 (a) Specific energy loss of charged particles as a function ofβγ in selected materials. (b) Specific energy loss as
function of particle momenta for pions, kaons, and protons. Arrows indicate minimum ionizing particle (MIP) values of
βγ and momentum. (Adapted with permission from J. Beringer et al. Review of particle physics.Physical
Review D, 86:324–325, 2012.)

high momenta. The maximum energy Tmax that can be transferred to an electron is given
by [35]

Tmax = 2mec2β2γ 2

1 + 2γ me/M + (me/M )2
, (8.132)

where M is the mass of the incident particle. The mean excitation energy, I , is of the or-
der of 10 ± 1 eV ×Z for elements heavier than oxygen but it is recommended to use the
well established values available in the scientific literature [35]. The specific energy loss
predicted by the Bethe–Bloch equation is illustrated in Figure 8.21a as a function of βγ

for selected materials. It was verified experimentally that the formula provides estimates
of the average energy losses that are accurate to within a few percents, for heavy parti-
cles with velocities in the range 0.1 ! βγ ! 1, 000 [35]. For values βγ ! 1, the average
energy loss is dominated by the first term of the Bethe–Bloch equation and thus features
an approximate 1/β2 dependence on the particle’s velocity. In this range, known at the
1/β2 energy loss regime, particles of different masses but equal speed have different mo-
menta. It is thus possible to distinguish them on the basis of a plot of their energy loss
vs. momentum, as illustrated in Figure 8.21b. The average energy loss reaches a minimum
near βγ ≈ 3, commonly referred to as the minimum ionizing particle (MIP). Distin-
guishing particles of same z but different masses in this range is, however, not possible
based on their energy loss because they all feature essentially the same specific energy
loss. For higher momenta, βγ > 5, the energy loss exhibits a slow rise with logarithmic
dependence on βγ . Particle identification based on joint measurements of energy loss and
momentum is thus possible in this logarithmic rise regime. The energy loss eventually
saturates at very high momenta and the technique has therefore only a finite range of
applicability.
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Basic Principle
Identification by energy loss requires joint measurements of the momentum of a particle
and energy loss through one or more energy loss sensitive devices. These two functions
are often accomplished by distinct and dedicated detectors but can also be combined into
a single device, such as a time projection chamber. The principle of the method is sim-
ple: measure the momentum and energy deposition of a particle in one or several detector
layers, compute the average energy loss, and compare it to values expected for different
species at the measured momentum. The species of the particle is that which most closely
matches the measured average energy loss. This strategy works best in the low-momentum
regime where the 1/β2 factor dominates the dependence of the energy loss and creates a
large energy loss differential between particles of different masses. It also works in the log-
arithmic range regime. However, the technique is essentially ineffective for the MIP, that
is, particles of intermediate momentum for which the 1/β2 saturates and the logarithmic
term is not sufficiently large to enable a distinction of species.

Fluctuations and Straggling Functions
The identification of particle species based on their energy loss is complicated by two
sources of noise commonly known as process noise and measurement noise. Process
noise is associated with the physical process used to measure the physical observable at
hand, whereas measurement noise refers to the noise present in the actual measurement,
signal amplification, and readout. While the measurement noise can be minimized by care-
ful design of the readout electronics, the particle energy loss and signal generation pro-
cesses involve large event-by-event fluctuations that cannot be suppressed on an individual
basis because they are largely determined by the physics of the collisions that engender
energy losses.

Fluctuations in the energy deposition can be approximately modeled with the Landau
distribution. Defining ξ as

ξ = 0.1535
z2Z
Aβ2

ρ(x), (8.133)

the Landau distribution may be written

fL(x, ξ ) = φL(λ)
ξ

, (8.134)

where

φL(λ) = 1
2π j

∫ r+ j∞

r− j∞
exp (u ln(u) + λu) du. (8.135)

The variable r is an arbitrary constant and

λ = 1
ξ

(1 − ⟨1⟩) − β2 − ln
(

ξ

Em

)
− 1 + CE, (8.136)
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with CE the Euler constant. The function φL must be evaluated numerically, but is actually
implemented in the ROOT package [59].

The Landau distributions shown in Figure 8.22a, calculated for three arbitrary values
of mean and width, typify the large fluctuations in energy deposition that particles are
subjected to as they pass through relatively thin detector layers. The large high side tail
of the distribution, in particular, implies that the energy loss of low-mass particles (e.g.,
pions) may be mistakenly interpreted as being produced by heavier particles (e.g., kaons
or protons). Since charged pion production typically dominates over kaon and proton pro-
duction, the presence of a high side tail on the pion energy-loss distribution renders the
identification of particles quite challenging, most particularly at the top of the 1/β2 range
where energy-loss distributions produced by different pions, kaons, and protons consider-
ably overlap.

The Landau distribution, derived from the Rutherford cross section, is suitable to illus-
trate the basic principle of particle identification by energy loss, but practical applications
must account for a number of physical and instrumental effects. The energy lost 1E by a
particle in a detector volume is not necessarily entirely deposited within the sensing vol-
ume of the detector component. One must consider the conversion of the energy deposited
D into ionization of the medium (whether gas or solid state). One must also consider the
transport of electrons to the anode and the signal amplification of the proportional counter
used to read out the signal. And finally, effects may arise in the digitization of the analog
signal. Fluctuations in the energy loss and deposition have, however, been demonstrated
to dominate the integrated charge Q measured in thin detector layers [39]. The measured
distribution of energy Q are commonly referred to as straggling functions in the instru-
mentation literature. Bichsel has shown that finite corrections must be made to both the
Bethe-Bloch formula and the Landau distribution to properly account for instrumental ef-
fects, particularly fluctuations in the energy deposition [39]. He published detailed param-
eterizations of the energy deposition and its fluctuations now commonly known as Bichsel
functions. However, given the availability of computing functions for the calculation of
Landau distribution (e.g., in ROOT), we illustrate the PID method based on the Bethe–
Bloch and Landau distribution rather than the more complicated Bischel functions in the
following sections.

Truncated Mean Technique
Particle identification may be accomplished based on a maximum-likelihood fit of the mea-
sured energy sample Qi through the layers i = 1, . . . , m of energy-loss sensing devices.
However, for the sake of simplicity, we here focus on a somewhat easier technique involv-
ing a truncated mean of the samples Qi.

The standard deviation of the energy deposition in thin medium layers is typically rather
large. However, by virtue of the central limit theorem (§2.10.4), the mean of a sample
of m Qi measurements should have a standard deviation of the order of σ/

√
m, where σ

is the width of the parent distribution of energy loss of measured particles. Although the
second moment of the Landau distribution is undefined (because the corresponding integral
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Fig. 8.22 Schematic illustration of the dE/dx truncated mean technique. (a) Probability densities of three particle species (with
arbitrary means). (b) Distribution of the arithmetic means of 100,000 samples, each consisting of 100 values produced
randomly with the distributions shown in (a). (c) Truncated mean distribution obtained with the 60 lowest values of
each sample. Note that while the truncation introduces a bias on the value of the mean (i.e., a downward shift), it
enables a sizable reduction of the dispersion of the mean which permits better separation of particle species shown in
(c) relative to (b).

diverges), it is nonetheless possible to benefit from the 1/m reduction if a truncated mean
of the sample values is used rather than the mean of the full sample. The principle of
the truncated mean technique is simply to reject a suitably well chosen fraction f of the
sampled values with the largest measured energy-loss values. Algorithmically, this is easily
achieved by first sorting the n values of a sample of energy-loss measurements. One can
then identify and eliminate the f × n largest values and calculate the arithmetic mean of
the remaining values.

The rejection of the f × n largest values effectively truncates the high side tail of the
Landau distribution, thereby producing a truncated average that features a nearly Gaussian
distribution, as illustrated in Figure 8.22. The reduced fluctuations then yield dE/dx vs. p
distributions that may provide good discrimination of species up to but excluding the MIP
regime. The optimal fraction f is that which yields a truncated mean with the smallest
standard deviation.
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Fig. 8.23 dE/dx vs. p plot measured with the STAR Time Projection Chamber. One can readily distinguish bands corresponding
to electrons, muons, charged pions and kaons, protons and antiprotons, deuterons and tritons. (Courtesy of Y. Fisyak
and Z. Xu from the STAR Collaboration [83].)

The truncated mean technique is used in conjunction with several modern detectors. It is
particularly useful for energy-loss measurements in gas detectors, such as time projection
chambers, because fluctuations in energy deposition in such detectors can be rather large.
As an example, Figure 8.23 displays an energy loss vs. p plot obtained with the STAR TPC,
which exhibits excellent particle identification at low momenta [83].

Some Technical Considerations
It should be noted that the energy loss is a function of βγ : the measured truncated mean ⟨Q⟩
should thus be plotted as function of the momentum, not the transverse momentum. It is
also important to account for the track geometry. The crossing angle of the track relative to
the energy deposition sensing detector layer must be accounted for to properly calculate the
energy loss per unit length within the sensing volume. For low-momentum tracks, it may
also be necessary to account for the finite track curvature which may effectively increase
the path length of a charged particle 1L through the sensing volume, as illustrated in
Figure 8.24.

8.4.2 Identification by Time-of-Flight

Basic Principle
The momentum of a particle is determined by its mass and velocity:

p = γ mβc, (8.137)
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Fig. 8.24 For purposes of particle identification based on energy loss, the energy deposition measured in a detector volume
must be scaled to account for the actual path length1L through the sensing volume of thickness1x. The angle θ
denotes the angle between the track direction and a normal to the detector plane. It may as such involve a component
outside the bending plane. R and1ϕ represent the radius of the track and the angle subtended by the width of the
module being traversed as measured from the center of the circular trajectory followed by the charged particle.

with β = v/c and γ = (1 − β2)−1/2. One can then use simultaneous or joint measurements
of the momentum and speed of a particle to obtain its mass:

m = p
βγ c

. (8.138)

Such simultaneous measurements could be used to determine the mass of “new” particles
(e.g., search for ultra-heavy nuclei), but in modern particle physics experiments they mostly
serve to identify particle species, that is, to determine whether a given particle is a pion, a
kaon, a proton, and so on. We here focus on such measurements designed to identify the
species of observed charged particles in a magnetic spectrometer.

The momentum (or transverse momentum) is readily obtained from the radius of curva-
ture of the charged particle in the bend plane. One must also obtain a measurement of the
particle’s speed. The most straightforward technique to determine the speed of a particle
relies on a time-of-flight (TOF) measurement along a well-determined trajectory or flight
path d. The trajectory is obtained from tracking, while a TOF measurement requires at
least two timing detectors: one providing a start time tstart and the second a stop tstop. The
TOF of the particle, 1t, is thus nominally given by the difference of the times

1t = tstop − tstart, (8.139)

and the speed is estimated according to

β = d
c1t

. (8.140)

In principle, one can then use Eq. (8.138) to determine the mass of particles. In practice,
various instrumental effects limit the precision to which 1t may be determined and β may
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then exceed unity. It is then preferable to calculate the square of the mass of the particle
according to

m2 = p2
(

1
β2

− 1
)

. (8.141)

Obviously, the technique assumes that negligible energy/momentum losses occur along
the particle’s flight path and thus that the particle’s momentum and speed remain constant
throughout the measurement. In practice, corrections may be required to account for such
effects.

TOF Measurements
In fixed-target experiments based on a magnetic dipole spectrometer, TOF measurements
can be readily accomplished with two or more TOF hodoscopes as schematically illus-
trated in Figure 8.25a. In collider experiments, the need to reduce the thickness of materi-
als along the path of measured particles and cost considerations typically dictate a design
based on a single barrel-shaped array of TOF counters providing stop times and some form
of interaction counter providing a common start for all TOF measurements, as schemati-
cally shown in Figure 8.25b. The flight path d relevant for the speed measurement is deter-
mined based on the geometry of the particles’ trajectory. If two or more TOF hodoscopes
are used, the relevant distance could be the flight path between the start and stop counters.
In a collider geometry, one would typically use the trajectory from the collision primary
vertex and the TOF counter. This requires that the start time, which is derived from inter-
action counters, be adjusted for the vertex position.

TOF measurements are based on the time of passage of a charged particle through tim-
ing detectors. In high-energy experiments, particles of interest have large momenta and
thus speeds amounting to significant fractions of or even very close to the speed of light.
The speed of light amounts to (approximately) 3 × 108 m/s. That corresponds to 30 cm per
nanosecond. Given that typical detectors have sizes ranging from a few meters to several
tens of meters, TOFs are rather short, ranging from several to tens of nanoseconds. Fast
and highly accurate timing sensors are thus required. Diverse technologies may be used to
conduct fast timing measurements, including fast scintillator detectors read out with pho-
tomultipliers (PMTs) or fast avalanche photodiodes (APDs), as well as multigap resistive
plate chambers (MRPCs). The choice of technology is driven by cost and practicality. We
here focus on the concept rather than the technical details of such measurements.

The principle of scintillator and MRPC counters is illustrated in Figures 8.26 and 8.27.
Charged particles passing through a thin slab of scintillator material produce molecular
excitations, which result in rapid photon emission. For an appropriately chosen material
thickness, the number of emitted photons can be rather large and thus usable to establish a
fast timing pulse. Well-designed scintillation counters feature geometry enabling fast light
collection with high photon yield, minimal timing dispersion, coupled with fast and high-
precision light sensors. The leading edge of the signal may then be used to produce a logic
signal corresponding to the time of passage of the particle through the detector, as illus-
trated in Figures 8.26 and 8.27. Similarly, charged particles traversing an MRPC produce
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Fig. 8.25 Particle TOF hodoscopes in (a) fixed-target and (b) collider geometries may consist of sets of contiguous TOF scintillator
modules read out by one or two light sensors (e.g., PMT, or APD). Alternatively, they may be based on multigap
resistive plate chambers (MRPC). In collider geometry, interaction counters are commonly used to provide a TOF start,
while barrel hodoscope counters provide a TOF stop, as schematically shown.

ionization within the gaps separating glass plates. The high voltage across gaps produces
fast charge avalanches read out as image charge on segmented anodes. Low noise amplifi-
cation of these signals produces fast rise time, which can also be utilized to produce logic
signals fed into a time-to-digital converter (TDC) to obtain an actual timing measurement.
A detailed discussion of TDC designs and technologies is beyond the scope of this text but
may be found in several publications [99, 195].

TOF hodoscopes used in large particle and nuclear physics experiments typically involve
from hundreds to thousands of distinct counters read out by fast electronics. They are
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Fig. 8.26 Schematic illustration of the design of dual readout TOF scintillator counter modules.

usually equipped with TDCs featuring a digitization resolution of 25 ps and achieve TOF
resolutions in the 50–100 ps range.

Practical Considerations
Signal collection, amplification, and transmission through cables and electronic compo-
nents add an arbitrary but nominally fixed delay to the logic signals used to start and stop
a TDC. In fact, delay cables often need to be added to electronics to produce start and stop
logic signal inputs that fall within the counting range of TDCs. Changes in environmental
conditions may, however, induce variations in signal propagation speed and must thus be
accounted for in practice. The digitized times produced by TDCs then need to be calibrated
to compensate for arbitrary and slowly varying offsets. This procedure, commonly known
as t0 calibration, is usually carried out based on a well-established reference, consisting
either of identified particles at a precisely known momentum, or very high momentum
particles that can effectively be assumed to travel at the speed of light. This calibration
process must usually be carried out for each TOF counter individually and thus requires a
fair amount of events. Also note that the calibration must be achieved with charged particle
tracks acquired under normal running conditions (i.e., with the nominal magnetic field and
trigger conditions).

Once the offsets are properly calibrated, the raw TOF is then obtained according to

1t = tstop − tstart + t0. (8.142)

Depending on the detector geometry and the type of readout, a number of additional cor-
rections and calibrations may be required.
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Fig. 8.27 Schematic illustration of the design of multigap resistive plate chambers (MRPCs).

In modern detectors, the generation of logic signals used by TDCs for TOF determina-
tion is achieved with leading edge discriminators whose principle of operation is illustrated
in Figure 8.28. Leading edge discriminators use a voltage comparator with a fixed voltage
threshold. The logic signals they produce thus exhibit a dependence on the amplitude of
the incoming analog signal, known as “slewing”: high-amplitude signals fire the discrim-
inator early, whereas small-amplitude signals result in a later signal. Fluctuations in the
energy deposition, charge (MRPC), or light (scintillators) production and collection result
into timing fluctuations known as “jitter.” While the slewing associated with pulse height
dependence of the timing signal can be compensated by applying a correction based on
the amplitude or leading edge slope of the signal, signal jitter is an intrinsic component of
the signal and thus cannot be corrected for. Properly calibrated MRPC signals enable TOF
resolution in the 50–100 ps range whereas scintillator counters achieve TOF resolution in
the 70–100 ps range.

Particle Identification with TOF
Particle identification based on TOF and momentum measurements may be achieved by
direct calculation of m2 according to Eq. (8.141) or with selection criteria in the 1/β vs. p
plane.
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Fig. 8.28 Principle of leading edge discriminators used in the generation of timing signals in TOF measurements. A comparator
issues a fast logic pulse when the input signal crosses a preset threshold. The use of a fixed threshold produces a delay,
known as slewing, which depends on the signal amplitude. This undesirable effect is easily calibrated based on the
signal amplitude and removed, in software, during the data analysis.

At a basic level, if the time-zero calibrations and corrections for hit position, light atten-
uation in scintillator counters, and amplitude dependence (slewing) are properly accounted
for, Eq. (8.141) can be used to estimate m2 and identify particle species. Evidently, the
main technical challenge of such measurements is that high-momentum particles have high
speeds whose accurate determination is largely determined by the TOF resolution and, to a
lesser extent, by the momentum and path length resolution.

The mass resolution σm is simultaneously determined by the momentum resolution, σp,
and the speed resolution, σβ , which in turn depends on the TOF and path length resolution:

σ 2
m ≡ δm2 =

(
∂m
∂ p

)2

σ 2
p +

(
∂m
∂β

)2

σ 2
β +

(
∂m
∂ p

∂m
∂β

)
Cov[p,β], (8.143)

where σp, σβ , and Cov[p,β] are the momentum resolution, the speed resolution, and the
covariance between the momentum and the speed, respectively. Using Eq. (8.138), one
finds

σ 2
m

m2
=

(
σp

p

)2

+ γ 4
(

σβ

β

)2

+ γ 2
(

Cov[p,β]
pβ

)
. (8.144)

Note that Cov[p,β] may be nonzero owing to the fact that the path length d, used in
the calculation of β, depends on the momentum p. Such correlations are small, however,
because the relative path length resolution is typically below 1%. The speed resolution is
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Fig. 8.29 Pion mass resolution obtained by TOF measurements as a function of momentum for selected resolution figures.

determined by the path length resolution and the TOF resolution

σ 2
β

β2
=

σ 2
d

d2
+ σ 2

T

1t2
. (8.145)

Overall, one finds, as illustrated in Figure 8.29, that the mass resolution is dominated by
the momentum resolution for small values of β and γ ≈ 1 and overwhelmingly driven by
the (TOF) resolution for β ≈ 1 and γ ≫ 1.

Figure 8.30 displays the PDF of the mass of charged pions, kaons, and protons in the mo-
mentum range from 0.2 to 4 GeV/c for a flight path of 2 meters and selected momentum
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Fig. 8.30 Simulation of mass spectra obtained by joint measurements of momentum and TOF based on resolution figures shown
for a 2-meter flight path.
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Fig. 8.31 Simulation of mass spectra vs. p obtained by joint measurements of momentum and TOF based on resolution figures
shown.

and TOF resolution figures. The PDFs were generated by Monte Carlo simulations of the
mass reconstruction assuming exponential spectra in momentum, with an average momen-
tum of 0.5 GeV/c. The non-Gaussian profiles of the mass distribution stem from the mo-
mentum dependence of the mass resolution, as illustrated in Figure 8.31, which shows
PDFs of the mass distribution as a function of the particle’s momenta. One observes that
at low momenta the mass resolution is indeed largely dominated by the momentum reso-
lution, whereas at high momenta the saturation of speeds toward c implies that the finite
TOF resolution leads to a significant broadening of the mass distributions.

Various biases in the determination of the particle’s TOF may worsen the mass resolution
embodied by Eqs. (8.143) and (8.145). It is then useful to plot the inverse of the measured
speed, 1/β, as a function of the momentum. In such a plot, particles of different mass pop-
ulate different bands, as illustrated in Figure 8.32. It is thus possible to identify particle
species on the basis of selection criteria in the 1/β vs. p plane. Losses of particles asso-
ciated with these selection criteria or based on the reconstructed mass, Eq. (8.138), may
be determined on the basis of realistic simulations of the detector response (see §14.2), as
well as analyses of matched reconstructed tracks in the TOF counters.
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Fig. 8.32 PID based on plots of 1/β vs. p for selected momentum and TOF resolution figures.

8.4.3 Statistical PID and Semiexclusive Cross Sections

In studies of semiexclusive or species dependent cross sections, it seems natural to first
utilize the information provided by energy-loss or TOF detectors to identify the species
of particles, and subsequently proceed to increment relevant histograms as a function of
the transverse momentum, rapidity, or azimuthal angle. One would then, in principle, ob-
tain differential particle production cross sections that are specific to each particle type of
interest (e.g., pions, kaons, protons, and so on). The problem arises, however, that unam-
biguous identification of particle species, particle-by-particle, is not always possible. As
we saw in previous sections, unambiguous PID is difficult or impossible via dE/dx for
particle momenta in the minimum ionization range or via TOF for particles with velocities
v → c. Measurements of semiexclusive (species dependent) cross sections as a function of
transverse momentum (as well as rapidity and azimuthal angle) are nonetheless possible
provided the dE/dx (or TOF) profiles of distinct species are sufficiently different and well
known. Assuming, indeed, that the energy loss 1E profile of each species k is known and
can be described with a PDF fk (1E|p), which is specific to each particle species being
measured at a particular momentum p, one can then describe the inclusive energy loss
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profile according to

f (1E|p) =
m∑

k=1

µk (p) fk (1E|p), (8.146)

where the parameters µk correspond to the relative contributions (or yield) of species
k = 1, . . . , m of interest at the momentum p. So, rather than attempting identification on a
particle-by-particle basis, it becomes possible to obtain cross sections by measuring a his-
togram of the energy loss as a function of the particle momenta. One then use the extended
maximum likelihood method (§5.1.7) to carry out a fit to determine the coefficients µk , for
each species, as a function of momentum (and other kinematic variables of interest). The
coefficients µk (p) then effectively provide a measurement of the production yield of each
of the species as a function of p or other kinematical variables of interest.

The technique is most straightforwardly applied to measurements of single particle cross
section but can be extended to measurements of two- or multiparticle cross sections also.

8.5 Detection of Short-Lived Particles

While many particles produced in nuclear collisions are sufficiently long-lived to be mea-
surable, for instance with a magnetic spectrometer, many particle species decay too rapidly
to be observed directly. Their existence as collision products can nonetheless be identi-
fied on the basis of their decay particles. Two basic strategies are available to achieve their
identification, each of which are discussed at a conceptual level in some details in the
subsections that follow. The first strategy, known as the invariant mass reconstruction
technique, relies on energy-momentum conservation and utilizes the measured momenta
of decay products to calculate the mass of the decaying or parent particle. The second
strategy relies on the decay topology and the presence of a displaced vertex. It is us-
able when the decaying particle is sufficiently long-lived to travel a measurable distance
from its production location (primary vertex) before it decays (secondary vertex). This
method is known as the displaced vertex technique and alternatively as the decay topology
technique.

8.5.1 Invariant Mass Reconstruction Technique

Consider the two-body decay process illustrated in Figure 8.33. The parent particle has an
unknown four-momentum pp, and the decay products have 4-momenta p1 and p2. Energy-
momentum conservation dictates that the sum of the 4-momenta of the decay products
equals the four-momentum of the parent particle:

pp = p1 + p2 = (E1 + E2, p⃗1 + p⃗2). (8.147)

The square of the 4-momentum pp yields the square of the mass, mp, of the parent par-
ticle. A measurement of the momenta of the decay products and calculation of the square
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Fig. 8.33 Kinematics of two-body decays and invariant mass reconstruction.

of the sum of their 4-momenta thus enables identification of the parent particle species. If
the PIDs of the decay products are known, one can indeed express these particles’ energy
in terms of the measured momenta and known masses:

Ei =
√

| p⃗i|2 + m2
i . (8.148)

However, if the PIDs are not known, one can formulate a specific hypothesis as to what
their masses are and calculate energy estimates according to Eq. (8.148). The mass of the
parent particle is thus given by the square of pp:

m2
p = E2

1 + 2E1E2 + E2
2 − | p⃗1|2 − | p⃗2|2 − 2p⃗1 · p⃗2,

= m2
1 + m2

2 + 2E1E2 − 2p⃗1 · p⃗2, (8.149)

where in the second line we have used m2
i = E2

i − | p⃗i|2. Expressing the energies of the
decay products in terms of their momenta, we get

m2
p = m2

1 + m2
2 + 2| p⃗1|| p⃗2|

⎛

⎝
√

1 +
m2

1

| p⃗1|2

√

1 +
m2

2

| p⃗2|2
− cos θ12

⎞

⎠ ,

where θ12 represents the angle between the momenta p⃗1 and p⃗2. For |pi| ≫ mi, the preced-
ing simplifies to

m2
p = m2

1 + m2
2 + 2| p⃗1|| p⃗2| (1 − cos θ12) , (8.150)

and the mass resolution is then typically limited by the momentum resolution, as illustrated
in Figure 8.34, and to a lesser extent by the precision of the angle θ12.

Combinatorial Background
In principle, the technique described in the previous section enables the identification of
decaying particles of specific mass. In practice, nuclear collisions, particularly those of
relativistic heavy ions, produce a large number of particles, and there is no way (other than
the technique described in §8.5.3) to identify which particle pair was actually produced by
a decaying particle.

Consider, for instance, an event consisting of n particles in which two (and only two)
particles were produced by the decay of a short-lived particle. To find out which two par-
ticles might originate from the decay, one must examine all n(n − 1)/2 particle pairs that
can be formed by combining n particles, and calculate their invariant mass according to
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Fig. 8.34 (Top) Simulations of 100,000 “real events” (solid line) and “mixed events” (dotted lines) invariant mass distributions of
K0s → π+ + π− decays with finite momentum resolution, δp/p = 0.01% (left) and δp/p = 0.05% (right).
Simulated events feature an average of two measurable kaons decays and 50 background pions per event. The
mixed-event distribution is normalized to have equal yield per event as the real distribution atm = 0.6 GeV/c2.
(Bottom) net kaon mass spectrum determined from the subtraction of actual and mixed events distributions, where
the solid line shows a Gaussian+constant background fit to the kaon mass spectrum.

Eq. (8.150). However, particles not produced by a decay have no specific relation: they
can be separated by an arbitrary angle and have arbitrary momenta. Their invariant mass
is not constrained and can then cover a very wide range of values. The n(n − 1)/2 − 1 un-
related pairs thus constitute a combinatorial background to the one true correlated pair
(by decay) that covers a wide range of masses, as illustrated in Figure 8.34. The shape and
spread of the background are largely determined by the steepness of the single particle
spectrum, the kinematical (pT ) range, and the angular range of the acceptance. They may
also be influenced by resolution (smearing) effects associated with the reconstruction of
the particles constituting the event. All in all, distinguishing one particular pair out of a
group of n(n − 1)/2 − 1 unrelated pairs consequently amounts to an impossible challenge
if attempted for a single event. Fortunately, one is generally not interested in detecting a
particular decaying particle but rather in measuring the production yield of such particles
as a function of transverse momentum, production angle, and so on. It is then possible,
at least in principle, to obtain a large sample of decays by examining a large number of
distinct events. There remains the task of determining and subtracting the combinatorial
background in order to determine the production cross section of the short-lived particles.
We describe techniques to achieve this result in the next paragraph. We additionally de-
scribe a technique based on the decay topology, usable for decays with a displaced vertex,
in §8.5.3.
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443 8.5 Detection of Short-Lived Particles

Background Subtraction and Signal Determination
The determination of the decaying particle yield may be achieved by a variety of meth-
ods, including the bin summing method, the fit method, or the combinatorial background
removal method, each discussed in the following.

Bin Summing Method
If the background can be properly subtracted (with either of the methods described in the
text that follows), it may be sufficient to sum the yields observed in invariant mass bins
surrounding the expected mass peak:

Y =
∑

peak

yi, (8.151)

where yi represent the yield in bins surrounding the mass peak after background subtrac-
tion. The statistical error, δY , on the integrated yield Y can then be estimated as the sum,
in quadrature, of the errors in each bin included in the sum:

δY =
√∑

peak

δy2
i . (8.152)

Proper selection of the number of mass bins included in the sum is important and must
reflect the actual (or expected) peak width, including smearing effects. On the one hand,
if the number of bins included in the sum far exceeds the actual width of the signal peak,
the yield may end up being biased by improper background subtraction and the yield un-
certainty is likely to be overestimated. On the other hand, if the number of bins is too
small, only a fraction of the signal can be integrated. This results in an efficiency loss that
can be estimated, and thus corrected for, if the signal shape and its width can be properly
estimated.

Fitting Method
The fitting method relies on a line fit of the signal and (combinatorial) background. In
cases where the signal line shape is dominated by smearing effects, it is often possible to
model the signal peak with a Gaussian distribution and the background with a polynomial,
as illustrated in Figure 8.34:

f (m) =
nmax∑

n=0

anmn + Y√
2πσ

exp
(

− (m − mo)2

2σ 2

)
, (8.153)

where the coefficients an must be adjusted to fit the combinatorial background, while Y rep-
resents the yield of decaying particles, mo is the centroid of the mass peak, and σ its width
determined by the resolution of the mass measurement. If smearing effects are negligible,
the peak line shape can generally be modeled with a Breit–Wigner distribution (Eq. 3.179),
whereas if smearing effects are finite but not dominant, one must fold the Breit–Wigner line
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shape with the detector smearing function (typically a Gaussian):

f (m) =
nmax∑

n=0

anmn + Y√
2π3/2σ

∫
e− (m−m′ )2

2σ2
-/2

-2
/

4 + (m′ − mo)2 dm′. (8.154)

The line shape may optionally have to be adapted to various kinematical conditions.
Given that invariant mass spectra are usually obtained with finite bin width histograms,

fits should be carried out using integrals of the preceding functions across the width of the
mass bins. An option to accomplish fits with such integrals is conveniently provided in the
ROOT fitting package [59]. There are cases where multiple peaks may be present, and one
must then model them accordingly using multiple peak functions.

Combinatorial Background Removal:
When the number of combinatoric pairs, n(n − 1), is very large, a direct fit to the spectral
line shape may become impractical. This is the case, in particular, when the background
shape is complicated and cannot be readily modeled with a simple function (as earlier). It is
then necessary to model the background based on the data itself. This can be accomplished,
for instance, by producing mass spectra obtained from mixed events (§12.4.5). Particles
from mixed events are uncorrelated by construction and should thus not produce a mass
peak. However, they should provide a reasonable model of the combinatorial background.
Since the shape of the combinatorial background may depend on the shape of the particle
spectrum, kinematical selection criteria, and so on, it is important to carry out subtraction
based on mixed events that have similar characteristics (e.g., multiplicity, kinematical, and
quality selection criteria) as the actual events.

Additionally, since the multiplicity of real and mixed events may differ, so will the num-
ber of pairs that can be formed in real and mixed events. It is thus necessary to normalize
the amplitude of the mixed events “combinatorial” background to match the amplitude of
the real background. This can be typically accomplished by arbitrarily scaling the mixed-
event mass spectrum such that its yield at a mass ms several standard deviations away from
the peak of interest equals the yield of the real pair spectrum at the same mass ms. If the
production of mixed events is not possible, another technique involves randomly rotating
tracks in azimuth or reshuffling the particles in pseudorapidity (i.e., randomly setting the
rapidities but keeping the same pT values), or both.

It is important to note that the mixed- and real-event combinatorial background shapes
may differ substantially. The background subtraction shall consequently be imperfect and
constitutes a source of systematic error. One must then typically utilize a parameteriza-
tion of the background to fit and remove the remaining background, as discussed earlier.
Differences may occur owing to a variety of physical and instrumental effects, including
correlations between particles which are present in the final state of collisions because of
(broad) resonance decays, cluster or string decays, jets, or correlated backgrounds. The
latter may be generated in the apparatus by correlated electron–positron pairs produced
by photon conversion, and possibly also event-to-event variations in the acceptance or
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efficiency of the detection system. Such effects can in principle be studied with Monte
Carlo simulations.

Statistical and Systematic Errors on Yields
The statistical uncertainty on yields obtained with the bin summing method is given by Eq.
(8.152). Estimates of the error on the yield obtained with the fit method can in principle be
obtained directly from the fit if the fit includes both the signal and the background. If the
fit does not include the background, one must add the uncertainty on the yield (δY =

√
Y )

and the uncertainty on the background. The background uncertainty may involve a global
uncertainty and bin-to-bin uncertainties.

Systematic errors involved in the determination of short-lived particle yields are di-
verse and may include both physical backgrounds and instrumental effects. Physical back-
grounds include broad underlying resonances and invariant mass structures caused by
particle correlations in the final state; instrumental effects include uncertainties in the eval-
uation of the particle reconstruction efficiencies and acceptance, invariant mass spectrum
structures caused by resolution effects or discretization of the kinematical parameters used
in the invariant mass reconstruction (particularly angles), and instrumental sources of back-
ground such as electron–positron production and generation of tertiary particles within the
detection apparatus. In practice, many of these sources of uncertainties become linked or
correlated within the context of the background subtraction, and it may not be appropriate
to quote them as distinct and independent sources added in quadrature.

Systematic uncertainties associated with the background subtraction may be estimated
by generating several distinct but equally plausible backgrounds and signal line shapes.
The mean and variance of the resulting yields may then be used to estimate the signal
strength and systematic uncertainties associated in its determination. For instance, if fits
of the background with, say, three different models (e.g., first-, second-, or third-order
polynomials) and three different ranges of mass yield similarly acceptable χ2 values, it is
legitimate to carry out a measurement of the yield above background with either of these
models and ranges. One can then use the mean of the yields obtained in each of these
cases as the estimate of the production yield and obtain a systematic error based on their
standard deviation. If the yields obtained with the different backgrounds and fit models are
Gaussian distributed and can be considered uncorrelated, then their standard deviation can
be considered as one σ systematic error with a confidence level of 68%.

8.5.2 Three-Body Decays and the Dalitz Plot

A three-body decay involves the disintegration of a particle of mass M into three lighter
particles of mass mi, i = 1, 2, 3, as illustrated in Figure 8.35a. Unlike two-body decays
where the momenta of the decay products are completely specified by energy-momentum
conservation, three-body decays involve additional degrees of freedom. Different values
of momenta are indeed possible depending on the decay configuration as shown in Figure
8.35b. Dalitz [74, 75] realized that the angular momentum of the parent particle largely
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Fig. 8.35 (a) Kinematics and (b) topologies of three-body decays.

determines its decay configuration. Observations of the relative frequency of different con-
figurations of decay products thus provides insight as to the spin of the decaying particle.

In a two-body decay, the four momenta of the decay products nominally amount to
eight free parameters. However, energy-momentum conservation reduces this number to
four, and the relations between energy and momentum, E2 = p2 + m2, further reduces this
number to only one free parameter, which can be taken as the invariant mass of the decay
particles. In a three-body decay, there are three four momenta and thus twelve parameters.
Momentum conservation reduces this number to eight, and the relation between energy-
momentum further reduces the number to four parameters. In the rest frame of the parent
particle, the three decay products are within a plane of arbitrary orientation. Given that it
takes two angles to determine the orientation of this plane, the number of free parameters
is further reduced to two units: a three-body decay has thus two degrees of freedom. Many
options exist in the selection of two variables for the description of a three-body decay.
Dalitz [74] originally used variables x and y, defined as

x =
√

3
T1 − T2

Q
, (8.155)

y = 2T3 − T1 − T2

Q
, (8.156)

where Ti, i = 1, 2, 3 represent the kinetic energy of the three decay products and Q is the
energy released by the decay:

Q = M − m1 − m2 − m3. (8.157)

However, it is now more common to analyze three-body decays in terms of the square of
invariant masses m12 and m13, defined as

m2
i j = p2

i j =
(
Ei + Ej

)2 −
(
p⃗i + p⃗ j

)2
. (8.158)

One may then represent decays in a Dalitz plot, according to their position in the plane m23

and m12, as schematically illustrated in Figure 8.36. In the rest frame of the parent particle,
the invariant mass of a given pair, say m12, has a minimum value m1 + m2 if particles 1
and 2 are produced at rest relative to each other, and it takes a maximum value M − m3 if
particle 3 is produced at rest relative to the parent. These and similar conditions for m23

define the boundaries shown as dashed lines in Figure 8.36. In between these extremes, a
specific value of m12 limits the energy accessible to the pair 23 and thus defines minimal
and maximal values shown by arrows in the figure.
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447 8.5 Detection of Short-Lived Particles

Fig. 8.36 Schematic illustration of a Dalitz plot used in the study of three-body decays. The dark gray area indicates kinematically
allowed values while the dashed lines delimitating the light gray area define basic kinematic limits achieved when
two daughter particles are emitted at rest relative to each other, or one produced at rest relative to the parent particle.

A Dalitz plot constitutes a ternary plot, that is, a plot involving three variables con-
strained by a condition. Choosing, for instance, m12, m13, and m23, one readily finds (see
Problem 8.9)

m2
12 + m2

13 + m2
23 = M2 + m2

1 + m2
2 + m2

3. (8.159)

One additionally finds

m2
12 = (P − p3)2 = M2 + m2

3 − 2ME3, (8.160)

where E3 is the energy of the third particle in the rest frame of the decaying particle.
In the absence of angular correlations (e.g., parent particle with J = 0), the distribu-

tion of the decay products in m12 vs. m13 is expected to be flat. However, symmetries may
impose various restrictions on the distribution of decay products. Additionally, resonant
decays in which the parent particle first decays into two particles, with one of the decay
products readily decaying into two additional decay products, often dominate three-body
decay processes and are manifested by the presence of peaks around the mass of the res-
onant decay, as shown in Figure 8.37. As such, the Dalitz plot provides a useful tool for
investigating the dynamics of three-body decays. The technique can be adapted to four-
body decays as well [171].

8.5.3 V0 Topological Reconstruction Technique

Several “short-lived” elementary particles (e.g., K0
s , 50, 9, Ds, and their antiparticles) have

lifetimes sufficiently long to be observable based on their decay topology and displaced
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Fig. 8.37 Example of Dalitz plot for D+− → K− + π+ + π+ decays measured by the CLEO Collaboration in e+ + e−

collisions at
√
s = 3.770 GeV. The peaked structure of the plot along them12 axis stems from the fact that D-mesons

may decay into K∗, which subsequently decays into K + π . (Courtesy of G. Bonvicini from the CLEO Collaboration [51].)

vertex. Kaons (K0
s ), lambdas (50), cascades (:0), and omegas (#−) were in fact discovered

in bubble chamber experiments based on their decay topology. For instance, Figure 8.38
displays the first observed # decay, by Barnes et al. [27], with the BNL 80-inch hydrogen
bubble chamber on the basis on its unique sequence of charged-track topologies. In general,
decays of neutral particles produce V -shaped topologies of charged particle tracks and are,
for this reason, commonly called V 0 particles or V 0 decays. The phrase “V0 particle” is

Fig. 8.38 (Left) Photograph of a bubble chamber event showing the first reported− decay [27]. (Right) Analyzed trajectories:
solid lines represent observed charged particles while dashed lines indicate reconstructed trajectories of decayed
neutral particles. The− decays into aπ− and a ⁄ 0, which subsequently decays into a ||0 and two photons (γ1 and
γ2). The ||0 itself decays into a proton (p) and aπ−. (Reproduced with permission from V. E. Barnes, et al.
Observation of a hyperon with strangeness minus three.Physical Review Letters, 12:204–206, 1964.)
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Fig. 8.39 (a) Nominal and (b) actualV0 decay topologies in a uniformmagnetic field with definitions of selection criterion
variables typically used inV0 analyses.

also often used as a generic term that includes all particles decaying with a measurable
displaced vertex, whether neutral or not.

Principle of the V0 Reconstruction Technique
The nominal spatial configuration of a V 0 four decay in a uniform magnetic field is illus-
trated in Figure 8.39 (a). A neutral particle of four-momentum pP produced at the primary
vertex P1 propagates a certain distance L before it decays at the secondary vertex P2 into
a pair of charged particles with four-momenta p+ and p−. By virtue of energy-momentum
conservation, one has pP = p+ + p−, and Eq. (8.150) provides for an estimate of the mass
mP = (pP · pP)1/2 of the neutral particle. For sufficiently large values of L, such decay
topologies are readily visualized in bubble chamber detectors or photo emulsions. They
can also be reconstructed and identified with multilayered tracking detectors, as schemat-
ically illustrated in Figure 8.39b. However, finite position resolution and scattering effects
smear the reconstruction of charged particle trajectories, and one consequently ends up
with tracks that do not feature perfect decay topologies; that is, they do not intersect at the
decay point P2. In a very low track multiplicity environment, even imperfect track topolo-
gies such as the one schematically illustrated in Figure 8.39b may be readily identifiable
as V 0. In practice, uncertainties arise due to finite decay lengths L, combinatorial effects
associated with large track multiplicities, and limited track resolution. The identification
of V 0 must then rely on extensive sets of topological and kinematical selection criteria de-
signed to distinguish true displaced vertex decays from combinatorial decays (also called
fake decays).

We discuss the definition and use of topological selection criterion in the next paragraph,
and consider technical details of their calculations in the following paragraphs.

Topological and Kinematical Selection Criteria
V 0 reconstruction analyses typically involve all or a subset of selection criteria based on
variables introduced in Figure 8.39b.
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DCA b+− of the Daughter Tracks
Tracks produced by a decay must originate from the secondary vertex P2. The trajectories
of these daughter tracks must then intersect or nearly intersect near P2. The distance of
closest approach (DCA) between the two tracks, b+−, as defined in Figure 8.39b charac-
terizes how closely any two tracks intersect. Ideally, this distance should be null for true
daughter tracks. In practice, given smearing effects associated with track reconstruction
resolution, b+− is finite and characterized by a PDF PDCA(b+−) of width σ+− for actual
daughter tracks; in contrast, combinatorial pairs of tracks feature a much wider, nearly
uniform distribution of values. It is thus legitimate to use a selection criterion b+− ≤ bmax

to eliminate combinatorial track pairs. The nominal efficiency of the selection criterion is
then

ε+− =
∫ bmax

0
PDCA(b+−) db+−. (8.161)

The level of contamination leaking through this selection criterion depends on the track
reconstruction resolution, the proximity of the decay point P2 to the primary vertex P1, as
well as the overall track multiplicity of the event. Other selection criteria are thus necessary.

Distance r12 between the Secondary and Primary Vertices
One estimates the position of the secondary vertex P2 as the bisection of a segment joining
points C+ and C− corresponding to the points of closest approach between two tracks.
The variable r12 characterizes the distance between the estimated position of the secondary
vertex and that of the primary vertex. Nominally, for true daughter pairs the distance r12

should exhibit an exponential distribution with a decay constant γ cτ determined by the
lifetime τ and the speed distribution of the parent particle. For sufficiently large values of
r12, the number of combinatorial pairs is null or negligible, but for small values, primary
particles may contribute a sizable background. It is thus useful to require that r12 exceeds
a minimum value r12,min determined largely by the DCA resolution of primary tracks. In
practice, one may also use an upper limit r12,max. The values r12,min and r12,max thus define
the fiducial volume of the measurement. Given that particles decay stochastically with an
exponential distribution, these two criteria produce a loss of decaying particles with an
efficiency of the order of

εr = 1
λ

∫ r12,max

r12,min

exp
(
− r12

λ

)
dr12, (8.162)

where λ = γ̄ cτ corresponds to the effective decay length determined by the (average)
speed and lifetime of the decaying particles.

DCA of the Parent Relative to the Main Vertex
The sum of the momentum vectors of the two daughter tracks nominally adds to the mo-
mentum of the parent particle, P⃗. The momentum vector P⃗ and the point P2 define the
trajectory of the parent particle relative to the primary vertex. If the parent is neutral, this
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trajectory is simply a straight line which should nominally intersect the primary vertex.
However, finite resolution effects in the reconstruction of P⃗ as well as the positions of P1

and P2 imply that the straight line has a finite DCA, bP, relative to the primary vertex.
Real daughter pairs are expected to yield a small bP values with a finite width PDF P(bP),
whereas combinatorial pairs may have arbitrarily large bP values. Applying a maximum
value selection criterion bP ≤ bP,max is thus in principle useful to further suppress combi-
natorial pairs. This selection criterion has an efficiency that is determined by the shape and
width of the PDF P(bP). However, be warned that the impact of this selection criterion may
be highly correlated to the effects of other selection criteria, so it is typically incorrect to
estimate the overall efficiency of the selection criteria as the product of the efficiencies of
each of the selection criteria taken separately.

DCA of the Daughter Tracks Relative to the Main Vertex
In very high track multiplicity environments, particularly in the study of relativistic heavy-
ion collisions, it is usually effective to also use minimal value selection criteria on the DCA
of daughter particles d+ and d− relative to the position of the main vertex to suppress the
number of combinatorial pairs. Note that while symmetric selection criteria may be reason-
able, for instance, for K0

s that decay into a pair π+π−, asymmetric selection criteria may
be better suited for 50 that produce a heavy and a light particle because the heavy parti-
cle typically carries a larger fraction of the momentum of the parent (in the lab reference
frame) and thus tends to point directly at the main vertex.

Other Selection Criteria
Various backgrounds and instrumental effects may hinder measurements of V 0. Analyses
are thus often limited to specific transverse momentum ranges of the daughter particles
and the parent. Various track quality selection criteria may also be applied to the daughter
particles to minimize contamination by primary particles and fake tracks.

Topological Variable Calculations
Calculation of the DCA between a charged particle track and the primary vertex requires
the track be projected near the origin of the track x = 0, corresponding to the region of the
primary vertex. One can then estimate the DCA based on a nonlinear distance minimization
method or use a linear approximation of the track in the vicinity of the primary vertex. Both
techniques are briefly outlined in §9.4.

The calculation of the distance between two tracks produces points C⃗1, C⃗2, and P⃗2. The
points P⃗2 is used in combination with the primary vertex position P⃗1 to estimate the path
length r12 of the parent particle before its decay

r12 =
[
(P⃗2 − P⃗1) · (P⃗2 − P⃗1)

]1/2
, (8.163)
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Fig. 8.40 Two-body decay kinematics in (a) the rest frame of parent particle and (b) the laboratory used in the definition of
Armenteros–Podolansky variables. The parent particle has a massM and the two daughter particles have massesm1

andm2. Note how the momentum components transverse to the line of flight are invariant under a Lorentz boost
between the center of mass and laboratory frames.

whereas the points C1 and C2 are used to project the tracks and obtain the momentum
vectors p⃗1 and p⃗2 at the decay vertex P⃗2. The momentum of the parent particle is thus
simply the sum of these two vectors:

P⃗ = p⃗1 + p⃗2. (8.164)

It is optionally possible to carry out a constrained refit of the tracks assuming a specific
particle decay model (e.g., K0

s → π+π−). Techniques to carry out such fits are documented
in the literature (§9.3.2) [25, 45, 87, 178] . The fit yields an updated vertex position P⃗2 and
moments p⃗1 and p⃗2.

The vector P⃗ determines an estimate of the parent direction before the decay. Using the
position P⃗2 and this vector, one can then next determine the impact parameter (or DCA) of
the parent at the primary vertex (provided it can be assumed the parent in fact originates
from the main vertex of the interaction) using the DCA determination techniques outlined
in §9.4.

The Armenteros–Podolansky Plot
In the rest frame of a two-body decay, the locus of points spanned by the momentum vectors
of the two daughter particles form a sphere of radius pcm (Figure 8.40):

pcm = 1
2
√

s

{[
s − (m1 − m2)2] [

s − (m1 + m2)2]}1/2
. (8.165)
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This sphere becomes an ellipsoid under a boost in the lab frame and must satisfy

E1E2 − p1 p2 cos φ =
√

m2
1m2

2 + M2 p2
cm, (8.166)

where Ei and pi represent the energy and momenta of the two daughter particles in the
lab frame and φ is the relative angle between their momentum vectors. Unfortunately,
the ellipsoidal nature of the decay sphere is not readily apparent from this expression.
However, Armenteros and Podolansky figured out that the ellipsoid can be visualized in
terms of two variables ε and α calculated based solely on the momentum vectors of the
daughter particles. Since the masses of the parent and the two daughter particles determine
the magnitude of p∗, the size and position of the ellipse constitute a unique signature of
decays that can be used to analyze data and distinguish different decay types. The technique
is now known as the Armenteros–Podolansky plot (or often only the Armenteros plot)
[153]. The CM momentum pcm of the daughter particles may be decomposed in terms of
longitudinal and transverse components:

p2
cm = p2

cm,∥ + p2
cm,T. (8.167)

The transverse components are invariant under a boost in the direction of motion of the
parent particle. Let pT = pcm,T = pLab,T. By definition of the polar angles φ1 and φ2 shown
in Figure 8.40, one has

pT = p1 sin φ1 = p2 sin φ2, (8.168)

while conservation of momentum implies the momentum of the parent particle, P, satisfies

P = p1 cos φ1 + p2 cos φ2. (8.169)

Defining φ = φ1 + φ2, and given sin(φ1 + φ2) = sin φ1 cos φ2 + cos φ1 sin φ2, one can use
the preceding two expressions to obtain

pT = p1 p2 sin φ

P
. (8.170)

It is then convenient to define the variable ϵ as

ϵ = 2pT

P
= 2p1 p2 sin φ

P2
= 2 sin φ1 sin φ2

sin φ
. (8.171)

However, pT does not uniquely characterize pcm, and one thus needs a way to estimate
pcm,∥. This can be achieved based on the difference p1,∥ − p2,∥. It is then convenient to
define a variable α according to

α = p1,∥ − p2,∥

p1,∥ + p2,∥
= p1,∥ − p2,∥

P
. (8.172)

Given sin(φ2 − φ1) = sin φ2 cos φ2 − cos φ1 sin φ2, one finds

α = sin(φ2 − φ1)
sin φ

, (8.173)
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454 Basic Measurements

Fig. 8.41 Simulation of an Armenteros–Podolansky plot for selected decays with perfect momentum resolution (solid line) and
3%momentum resolution (shaded scatterplot).

which is uniquely determined by the vectors p⃗1, p⃗2, and the relative angle φ. One can show
that the average value of α, noted ᾱ, is equal to (see Problem 8.13 or ref. [153])

ᾱ = m2
1 − m2

2

M2
(8.174)

and

p2
T + 1

4 (M−2 + P−2)

(
p1,∥ − p2,∥ − m2

2 − m2
2

M2

)2

= p2
cm. (8.175)

This expression may then be rearranged to yield

ϵ2

4 (pcm/P)2 + (α − ᾱ)2

4
[
(pcm/M )2 + (pcm/P)2] = 1, (8.176)

which is the expression of an ellipse in the α vs. ϵ plane centered at α = ᾱ, ϵ = 0, and with
semi-major axes 2

[
(pcm/M )2 + (pcm/P)2]1/2

and 2pcm/P, respectively.
The CM momentum pcm and average ᾱ are determined solely by the masses M , m1, and

m2. Given that α and ϵ are both determined relative to P, the ellipse is completely specified
by and constitutes a unique signature of the decay M → m1 + m2.

Figure 8.41 presents examples of ϵ vs. α distributions for selected decays and clearly
illustrates the fact that the Armenteros plot is a useful analysis tool for identifying different
decaying particles. Indeed, one finds that different decays cover different loci in the ϵ vs. α

space and are as such easily recognizable. It is thus rather tempting to use band selection
criteria in ϵ vs. α space to select specific decays. One must realize, however, that such se-
lection criteria are strictly equivalent to invariant mass selection criteria. More importantly,
such selection criteria cannot distinguish between actual decays and backgrounds caused
by instrumental effects. One must then exercise great care in the use of such selection
criteria or ideally refrain from their use.
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455 8.6 Searches, Discovery, and Production Limits

8.6 Searches, Discovery, and Production Limits

Searches for new particles, rare decays, or new particle production processes are an essen-
tial component of the work of nuclear and particle physicists. Models designed to explain
the structure of matter and fundamental forces, most particularly in searches for physics
beyond the standard model of particle physics, abound and predict a vast array of new
particles, decay processes, or particle production processes. Not all models can be right,
however, and it is in part the role of experimental physicists to test the validity of (credi-
ble) model predictions by seeking experimental evidence for the proposed new particles or
processes.

8.6.1 Searches for New Particles and Processes

It is fair to say that there are usually more incorrect models than correct ones. So, while
many search experiments do identify the particles or processes they seek, many do not. But
lack of discovery should not be construed as the failure of an experiment. It should be the
models that fail, not the experiments. Search experiments are thus typically designed with
great care and attention to detail in order to achieve as high a sensitivity as possible to the
sought after particles or processes. The sensitivity of a search is determined by the num-
ber of “events” it can examine and its capacity to recognize the sought after phenomenon
against background processes. Searches for new particles or low-probability decay modes
are typically based on scattering experiments with high-rate capabilities. The idea is to ob-
serve as many collisions as possible that are susceptible of producing the predicted new
particles or rare decay. This typically requires long data acquisition periods, high beam
intensity and target thickness (or luminosity), high granularity and fast detectors capable
of handling the large particle production rates and detector occupancy. It usually also re-
quires specialized triggers to select potentially interesting processes, as well as robust and
ultrafast data acquisition systems to handle the large throughput of data. Search experi-
ments also usually involve detection redundancy in order to identify and reject background
processes.

In the remainder of this section, we first consider the statistical conditions that may
justify a claim of discovery and publication in scientific journals. We next discuss how to
report the negative findings of experimental searches for new particles or processes.

8.6.2 Discovery: 5σ

Searches for new particles or rare decay processes are largely based on invariant mass
reconstruction methods (involving either particles or jets) and require that a sufficiently
strong signal (e.g., a peak) be observed relative to background processes. In order to quan-
tify the possibility that an observed peak might be caused by an uninteresting statistical
fluctuation, a statistical test must be performed. One formulates the null hypothesis that
the observed peak or signal might correspond to a background fluctuation. The purpose
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of the test is thus to assess the probability of this null hypothesis. This requires the choice
of a statistic (a test), and one must estimate the significance level (p-value) of the ob-
served signal. This corresponds to the probability that given the background rate b from
“known” sources, the observed number of events (e.g., in the mass range of interest) would
fluctuate up to n0 or a larger value. A small value of p shows that the data are not com-
patible with the expected background and suggests that the null hypothesis has an ex-
tremely low probability. The observed signal then provides evidence for a new particle
(or process).

It is customary in particle physics to convert the value of p into a number of standard
deviations σ of a Gaussian distribution, beyond which the one-sided tail has a probability
p. Particle physicists typically consider that a new signal or particle can be reported as
discovered if p is smaller than 3 × 10−7 corresponding to a value of, or in excess of,
5σ (one-sided confidence interval). Note that the correspondence to 5σ is valid only if
the signal/background are Gaussian distributed, which is not always the case in practice.
The 5σ value is nonetheless useful, though somewhat arbitrary, because it is quite easy
to remember. Indeed, no fundamental principle of science or statistics dictates that a 5σ

interval (or p-value of 3 × 10−7) should define a discovery any more than any other “large”
nσ (small p) value. However, a probability of 3 × 10−7 is construed by most scientists as
sufficiently small a value to warrant a claim of discovery, and the “round” number 5 indeed
makes it easy to remember. It has thus become the de facto standard requirement in particle
and nuclear physics for the announcement of new particle (or signal) discoveries.

This said, many a statistician might question the need for as stringent a requirement
as 5σ . Why indeed is 3σ or 4σ not deemed sufficient? As pointed out by Lyons [138],
perhaps the most compelling answer to this question is that a number of exciting and in-
teresting “signals” reported at the 3σ or even 4σ level have been later found to disappear
once more data were collected. It must also be noted that typical particle/nuclear physics
analyses involve many histograms, each with several bins. The chance of one particular
bin showing a 5σ effect is thus not that small, let alone a 4σ or 3σ effect. It is also im-
portant to note another mitigating factor, the fact that physicists tend to subconsciously
make prior assumptions that favor the notion they have discovered something new rather
then being in the presence of some undetected procedural or systematic effect(s). While it
may not be necessarily equitable or fair to expect both large-purpose experiments (such as
the LHC experiments) and smaller, more dedicated experiments to use the same standard,
who is to decide which experiment is to apply what standard? Most physicists and journal
editors thus prefer abiding by the strict and somewhat arbitrary 5σ rule. However, given
that data analyses are often challenged by the use of too small datasets, it is also common
to announce and report new signals of weaker significance (e.g., 4.5σ ) using a carefully
chosen wording (e.g., indication, suggestive evidence, and so on) that properly reflects the
status of an observation. However, purported signals observed at less than the 3σ level are
typically frowned upon.

The calculation of p-values is often complicated by the existence of nuisance parame-
ters such as uncertainties in the estimated background. Various techniques to handle the
calculation of the p-value are discussed in the review article of Lyons [138].
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457 8.6 Searches, Discovery, and Production Limits

8.6.3 Production Upper Limit

If an experiment is properly designed and operated, a lack of discovery is indeed not a
failure, and limits on the production cross section of new particles or branching ratios
of nonobserved decays are worth publishing in scientific journals given that they inform
models and constrain their predictions. In fact, models can often be rejected altogether by
the lack of evidence for the particles or decays they predict.

Negative search results are generally reported in terms of production limits. In the
search for new particles, such production limits are usually expressed in terms of upper
limits on the production cross section of the sought after particle(s), whereas in rare decays,
they are most often formulated in terms of an upper limit on the branching fraction of the
decay process.

Production limits are calculated on the basis of the number of observed events, Nobs, as
a function of the experimental acceptance and efficiency, ε, for the sought after particle
(or process). Determination of the acceptance requires a model of the expected differential
cross section (dσp/dyd pT ). It is convenient to express the cross section (or branching ratio)
of the sought after particle relative to the cross section of a known process, or the number
of collisions susceptible of producing the particle or decay. For instance, if the search is
conducted on the basis of N–N collisions with a known cross section σNN , the expected
number of observed particles, Nex, may be written

Nex = L ftrig fpσNNεp, (8.177)

where L is the integrated luminosity delivered to the experiment; ftrig is the fraction of the
N–N cross section sampled by the experiment due to trigger selection and efficiency, as
well as analysis selection criteria; fp is the fraction of the cross section (upper limit) that
produces the particle of interest; and εp is the detection efficiency (of the particle or decay
process):

εp = 1
σp

∫

#

εp(y, pT )
dσp

dyd pT
, (8.178)

where εp(y, pT ) is the particle detection efficiency expressed as a function of rapidity and
transverse momentum. So, if the number of observed particles Nobs is actually finite, the
particle production cross section σp = fpσNN can be estimated on the basis of

σp = Nobs

L ftrigεp
. (8.179)

For rare decay searches, one replaces L ftrig by the number of decays produced and observ-
able by the experiment.

If the search produces no candidate particles (or rare decays), one might be tempted to
state that the production cross section of the particle vanishes, or that the particle does not
exist. But that would be incorrect. Indeed, even if the search uncovers no candidate, it is
still conceivable that the particle does exist but that its production cross section is too small
to be observable in the experiment. Since the production cross section is at best small, it
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Table 8.1 Poisson upper limits Nup for n observed events

n CL = 90% CL = 95% n CL = 90% CL = 95%
0 2.30 3.00 6 10.53 11.84
1 3.89 4.74 7 11.77 13.15
2 5.32 6.30 8 13.00 14.44
3 6.68 7.75 9 14.21 15.71
4 7.99 9.15 10 15.41 16.96
5 9.27 10.51 11 16.60 18.21

Reproduced from R. M. Barnett, et al. Review of particle physics. Physical
Review D, 54:1–708, 1996.

is legitimate to assume the number of observed particles n can be described by a Poisson
distribution:

fP(n|Nex) = Nn
exe−Nex

n!
, (8.180)

where Nex represents the number of counts that one should expect to find, on average, if
the experiment was repeated several times. Since no candidates were found, one seeks the
largest value Nup compatible with n = 0 at a given confidence level (CL). For instance,
choosing CL= 10%, one gets

fP(n = 0|Nex) = (Nup)0e−Nup

0!
= e−Nup = 0.1, (8.181)

which implies an upper limit Nup = − ln(0.1) = 2.3. This value can then be inserted in Eq.
(8.179), in lieu of Nobs, to determine an upper limit σp for the particle production cross
section (or rare decay branching fraction).

If the number of observed candidates n remaining after all selection criteria is not zero
but relatively small, it is likely that they correspond to background particles (events) that
could not be eliminated by the selection criteria. One must then determine an upper limit
Nup compatible with the observed background n. Choosing CL, one then has

fP(0 ≤ k ≤ n|Nex) =
n∑

k=0

(Nup)ke−Nup

k!
= CL, (8.182)

which must be solved numerically for Nup. Table 8.1 lists upper limits Nup for small values
of n corresponding to the most used confidence levels of 10% and 5%.

Exercises

8.1 Show that in the nonrelativistic limit, v ≈ 0, the rapidity of a particle, y, is equal to
its velocity, β = v/c.
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8.2 Show that the rapidity of particle, defined by Eq. (8.25) transforms according to Eq.
(8.27). Hint: Compound two Lorentz transformations and determine the rapidity of
the particles.

8.3 Show that for E ≫ m, the rapidity of a particle, given by Eq. (8.26), may be approx-
imated by the pseudorapidity defined as η = − ln(tan(θ/2)) (Eq. 8.31).

8.4 Demonstrate Eqs. (8.39) and (8.40) using the definitions of the cosh and sinh func-
tions and the definition (8.26) of the rapidity of a particle.

cosh x = ex + e−x

2

sinh x = ex − e−x

2

8.5 Demonstrate Eqs. (8.41) and (8.42) using the definitions of the cosh and sinh func-
tions (given in the previous problem) and the pseudorapidity of a particle expressed
as

η = 1
2

ln
( | p⃗| + pz

| p⃗| − pz

)
.

8.6 Consider the TOF slat geometry illustrated in Figure 8.26 and obtain expressions for
the velocity of the particle (assuming a flight path L) and its position x along the slat
as defined in the figure.

8.7 Verify the expressions (8.41) and (8.42).
8.8 Derive the expression (8.85) for the limits on t for two-body processes.
8.9 Verify the two expressions below by substitution of the values of mi j defined by Eq.

(8.158):

m2
12 + m2

13 + m2
23 = M2 + m2

1 + m2
2 + m2

3. (8.159)

Additionally demonstrate Eq. (8.160):

m2
12 = (P − p3)2 = M2 + m2

3 − 2ME3, (8.160)

where E3 is the energy of the third particle in the rest frame of the decaying particle.
8.10 Derive the expression (8.67) for the three-body decay rate.
8.11 Show that the radius of a circle is determined by three points and can be expressed

as Eq. (8.108).
8.12 Show that the position resolution achievable with charge sharing between sensors is

given by Eq. (8.128).
8.13 Verify the expression (8.174) for the average value of the Armenteros variable α and

use this result to demonstrate Eqs. (8.175) and (8.176).
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9 Event Reconstruction

Modern nuclear and particle physics detectors are typically very complex and produce
large datasets that must be analyzed offline after an experiment is completed. The analysis
of the experimental data is typically articulated in two main stages known as event re-
construction and physics analysis. Basic elements of physics analyses have already been
discussed in Chapter 8 and advanced techniques, mostly pertaining to measurements of
fluctuations and correlations, will be presented in Chapters 10 and 11. In this chapter, we
focus on key aspects of event reconstruction beginning with a brief overview of basic re-
construction tasks in §9.1, and followed in §9.2, with a discussion of track reconstruction
techniques, including a detailed example of track reconstruction with a Kalman filter, as
well as presentations in §9.3 of various vertex finding and fitting techniques.

9.1 Event Reconstruction Overview

We begin this section with a discussion of the types and structures of data commonly
acquired and handled by large experiments in §9.1.1. We next present a general overview
of typical data analysis workflows in §9.1.2 and conclude with a brief discussion of basic
tasks of detector and signal calibration in §9.1.3.

9.1.1 Types and Structure of Experimental Data

Data produced by large modern experiments typically involve a mix of slow control data
characterizing the operating conditions (e.g., power supply settings, magnetic field, cur-
rents, time, etc.) and performance of the detector, as well as physics data produced by
the many sensors and detector components of the experiment, as schematically illustrated
in Figure 9.1. Physics data include sensor readout in the form of digitized information
produced by analog-to-digital converters (ADCs) and a variety of geographical data
indicating the components that produce and report signals. Sensor data may be read out
as single values, time sequences, or arrays of various types. They may be sparsified, that
is, zero suppressed, or read out in their entirety. Speed is usually of the essence and data
are assembled by one or several processors (known as event builders) into data buffers of
various complexities and then dispatched for storage and possibly online analysis. Event
storage was traditionally accomplished with high-speed magnetic tape drives but is increas-
ingly based on high-performance and high-volume magnetic hard-disk storage systems, as
well as optical disks.

460
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461 9.1 Event Reconstruction Overview

Fig. 9.1 Basic components of modern detector data acquisition systems include detector front-end electronics (analog
pipeline, ADC, digital pipelines, sparsification processors), optical readout components, event builder systems,
high-speed/capacity storage systems, as well as slow control systems, trigger systems, and an online analysis farm. In
this and the following figures, detector diagrams are included for illustrative purposes only. This and Figures 7.2, 7.3,
and 7.4 are meant to illustrate the basic concepts rather than actual implementations of the detectors shown.

9.1.2 Data Analysis Workflow

Data produced by large experiments are typically rather complex and usually require multi-
ple stages of analysis, as schematically illustrated in Figure 9.2. There are essentially three
basic stages involved in the data analysis of large experiments: (1) event reconstruction,

Fig. 9.2 Basic stages of data reconstruction and analysis of large modern experiments.
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462 Event Reconstruction

Fig. 9.3 Large-scale modern experiments use multitier grid-based computing architecture to reconstruct and analyze data.
Shown here is a schematic layout of grid organization into multiple tiers and stages. Tier 0 and 1 proceed to data
calibration and data reconstruction and produce reconstructed events that are then reproduced, archived, and
migrated to several Tier 2 centers, where the data are then available for retrieval and analysis by physicists working at
their home institution. Different variants of the design shown are used by experiments. Modern large experiments also
make increasing use of commercial cloud computing, storage, and data migration.

(2) calibration, and (3) physics analyses. These three stages may be computed at a single
facility, or carried out on a multitier computing grid infrastructure, as schematically illus-
trated in Figure 9.3. Grid computing is now an essential component of large experiments
and involves the development and deployment of grid distributed analysis software; Grid
management and monitoring; as well as end user tasks that include job submission, mon-
itoring, and result retrieval. A discussion of these concepts and tools lies far beyond the
scope of this text. Note, however, that most large experiments have ample documentation
describing their specific grid toolset and analysis protocols.

Event reconstruction is usually a time-consuming and resource-intensive task carried
out by a dedicated group of scientists (involving physicists and software engineers) on be-
half of their collaboration. The main components of the event reconstruction process are
schematically illustrated in Figure 9.4, and the object model they are based upon is shown
in Figure 9.5. Event reconstruction typically involves the unpacking of the raw data pro-
duced by the detector; application of sensor and detector calibrations to obtain physical
signals; and various stages of pattern recognition to reconstruct hits, tracks, collision, and
decay vertices, as well as other constructs such as V 0 or jets. It may also involve the cal-
culation of various observables deemed representative of the collisions of interest and that
are used by most physicists analyzing the experiment’s data. The hits, tracks, vertices, and
other data entities produced are then assembled into reconstructed events, filtered, and
stored in easily retrievable data formats (Figure 9.5).
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463 9.1 Event Reconstruction Overview

Fig. 9.4 Typical event reconstruction workflow used in modern particle physics experiments.

Fig. 9.5 Physics object model and structures commonly used in event reconstruction and physics analyses. Lines and numbers
indicate the relation among components of the data model. An n indicates several instances of the given type that may
be associated with the connected object instance, while 0,1 indicate that at most one instance (one or none) may be
involved in the relation. For instance, several tracks, but not necessarily all of them, may be associated with a given
vertex. Note that some event reconstruction schemes allowmany-to-many, or n to n, object relations: for example, a
point might be allowed to belong to several tracks concurrently, or a track might be associated with several vertices.
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Although the responsibility for event reconstruction is typically reserved for a few ex-
perts in each collaboration, it is important to be familiar with the different components and
stages of event reconstruction at a conceptual level in order to understand the “features”
and limitations of data produced by one’s detector.

The tasks of determining the basic kinematic parameters of charged particles at their
point of production as well as the location of these production points are commonly called
track reconstruction and vertex reconstruction, respectively. Both these reconstruction
tasks may be carried online, especially in the high-level trigger, where for the sake of
speed, applications frequently use simplified reconstruction methods. However, our dis-
cussion will concentrate on methods usually employed in offline analyses, where precision
and quality are the major goals, while speed is rarely a decisive factor. Track and vertex
reconstruction components are arguably the most important, and we consequently dedicate
two sections of this chapter to these tasks. It should be understood, at the outset, that our
discussion of these topics is meant to be illustrative of the methods and computations in-
volved only, and as such cannot cover the vast array of methods and techniques that have
been developed in the subfield of nuclear and particle physics. Readers particularly inter-
ested in these reconstructions should consult the recent literature on these topics, and most
particularly recent advances by the CMS Collaboration on the particle flow algorithm [34].

The calibration stage typically involves a plurality of tasks that operate either on raw
unpacked data or physical variables derived from them. Virtually all signals produced by
a detector must be calibrated in some fashion. Calibration tasks indeed range from gain
calibration of charge, light, or energy sensors, calibration of timing signals, as well as
geometry and detector alignment. Some of the basic calibration tasks involved in modern
experiments are presented in §9.1.3. Here again, we emphasize that it is impossible to cover
all types of calibration procedures used in experimental measurements. We thus limit our
discussion in §9.1.3 to a few illustrative examples only.

The physics analysis stages involves a wide variety of computing tasks that are often
segregated in different groups based either on the data employed or the analysis techniques
used to extract physics results. Groups often produce sub-datasets consisting of a fraction
of events or distilled events that store only a subset of observables. This enables faster and
more efficient analysis of the data of interest. This said, at this stage speed and computing
efficiency, although important, are usually not a decisive factor, and analyses may be re-
peated numerous times with various tweaks of control parameter values to extract physical
observables of interest and study systematic errors (discussed in detail in §12.5).

9.1.3 Signal Calibration

Particle detectors measure a wide variety of physical observables, ranging from energy de-
position in calorimeters, gas cells, or pads, or solid-state devices, currents, and voltages,
timing signals including those of time-of-flight detectors and clocks, various types of reg-
isters and hit arrays, and so on. All detector analog signals are digitized and recorded for
future analyses. A vast number of techniques and technologies have been developed for
signal amplification, filtering, analog storage (pipeline), digitization, sparsification, event
building and packing, and data storage. A discussion of such topics is beyond the scope
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of this text but may be found in various other publications. We here restrict our discussion
to the main types of digital signal processing required to extract physically meaningful
information out of digitized data.

Analog-to-Digital Conversion
An analog-to-digital converter, or ADC, is a device that converts a physical signal, such
as a voltage or an integrated charge, to a digital number that represents the quantity’s size
or amplitude. Conversion of signals into digital numbers involves quantization and digital
representation of the signals with finitely many bits. The number of bits used in analog-to-
digital conversion is determined by the needs and specificities of the physical signals being
handled. For instance, a single bit, 0 or 1, is sufficient to indicate that a signal has crossed a
minimal threshold, but several bits are needed to provide meaningful resolution in the dig-
itization of energy deposition or timing signals. The conversion from a continuous-time or
continuous-amplitude analog signal thus results in a sequence of discrete-time or discrete-
amplitude digital signals that feature a finite granularity. Quantization thus involves loss
of information and the introduction of quantization errors. Such errors may, however, be
rendered negligible by judicious choices of dynamic range and number of bits used in the
conversion.

ADCs can fulfill a wide variety of purposes and thus have a wide range of design and
performance characteristics:

1. Bandwidth: The bandwidth of an ADC corresponds to the range of signal frequencies it
can measure.

2. Number of bits: The number of bits used in the analog-to-digital conversion.
3. Signal-to-noise ratio: How accurately an ADC can measure a signal relative to the noise

and information loss it introduces.
4. Sampling rate: The speed at which an ADC can carry out conversions.
5. Aliasing: How an ADC handles the errors introduced by digitization.
6. Dynamic range: Ratio between the largest and smallest possible values an ADC can

convert.
7. Linearity: The degree to which there is a linear relation between the analog and digitized

signals.
8. Accuracy: The degree to which quantization levels match the true analog signal.
9. Effective number of bits (ENOB).

The bandwidth of an ADC is determined primarily by its sampling rate, and to a lesser
extent by how it handles errors such as aliasing, whereas the dynamic range is largely
determined by its resolution, that is, the number of “levels” it can convert a signal to, its
linearity, and its accuracy. The dynamic range is often summarized in terms of an effective
number of bits (ENOB), the number of bits produced that are on average not noise. An
ideal ADC has an ENOB equal to its resolution.

The design of ADCs is usually constrained by the desire to match the bandwidth of
the signal and the required signal-to-noise ratio as well as engineering (e.g., size, power
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Fig. 9.6 Schematic illustration of the stages involved in detector signal read out and digitization.

required, etc.) and cost considerations. An ADC operating at a sampling rate greater than
twice the bandwidth of the signal can in principle achieve perfect signal reconstruction, but
the presence of quantization error limits the dynamic range of even an ideal ADC. This said,
if the dynamic range of an ADC exceeds that of its input signal, the effective quantization
error may be negligible, thereby resulting in an essentially perfect digital representation of
the input signal.

The input of an ADC may consist of a single signal to be digitized once a trigger is
received, or involve a continuous signal stream to be sampled and processed uninterrupt-
edly. Signals may also be received and processed from multiple interleaved streams or from
switched capacitor arrays used to hold analog signals from one or several signal streams
until a trigger is received (see Figure 9.6). Consequently, the digitized output may consist
of a single number or a stream of numbers to be stored directly into some computer mem-
ory or held momentarily onto a digital pipeline device. Digital pipeline devices are used,
in particular, toward the sparsification of data, that is, the elimination of null or vanishing
signals as well as triggering purposes, thereby considerably reducing the volume of data
produced collision by collision.

ADCs can be used to convert voltage amplitude, integrated charge (charge-to-digital
conversion, often called QDC), as well as timing signals consisting of start and stop logical
pulses (time-to-digital conversion, or TDC). Many ADC designs and implementations have
been developed over the years that match the wide range of scientific, engineering, and
commercial applications in use today [90, 134, 186].

Basic Digital Signal Analysis
Pedestal Determination and Removal

No matter what technology is used to build them, ADCs are usually designed to produce a
non-null number, called a pedestal, even in the presence of a vanishing signal (see Figure
9.7). This enables the identification of slightly negative signals as well as determination of
the noise characteristics of the detector signals being converted. Effectively, the production
of a pedestal is achieved by leaking a finite amount of charge or current at the input. In the
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467 9.1 Event Reconstruction Overview

Fig. 9.7 Illustration of the notion of ADC pedestal: A small but finite current is fed into an ADC’s input in order to produce a
digital output with constant nonzero offset known as a pedestal. The RMS width of the pedestal peak is determined
primarily by the noise characteristics of the readout chain.

presence of a truly vanishing and noise-free signal, this should ideally produce a pedestal
value consisting of a single number. In practice, ADC pedestals may have a finite width,
which is usually characterized in terms of a root mean square number of bins (levels), as
schematically illustrated in Figure 9.7. Obviously, the incoming signal has a small quies-
cent current and noise of its own, which usually broadens the width of the pedestal and
may also change its position.

The determination of the centroid and width of ADC pedestals is thus the most basic and
elementary operation to be conducted on measured signals. The evaluation of pedestals
requires data be accumulated and recorded in the absence of beams (collisions) and with
veto against spurious events such as cosmic ray detection. Given a sample consisting of n
signals si produced by a single ADC, it is usually sufficient to obtain the expectation value,
s0, and standard deviation, sstd of these signals to fully characterize a given ADC channel:

s0 = 1
n

n∑

i=1

si, (9.1)

sstd =

√√√√ 1
(n − 1)

n∑

i=1

(si − so)2. (9.2)

The average pedestal value so is used in the determination of calibrated signals discussed
in the text that follows, whereas sstd serves as a basic characterization of the resolution that
can be achieved with the given signal.

The performance of ADCs is known to “drift” over time. While their gains are typically
quite stable, pedestals are usually observed to shift by few ADC channels over periods
ranging from several hours to few days. It is thus necessary to recalibrate ADC pedestals
on a regular basis, over a period commensurate with the rate at which they are observed
to drift in practice. It is also important to note that AC couplings may lead to 60 Hz (or
other frequencies such as the frequency of power supplies) leakage resulting in correspond-
ingly low frequency variations of the pedestal values. Such variations can in principle be
eliminated or suppressed by proper grounding of the electronics. However, one can also use
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an empty ADC slot to monitor the AC couplings in real time and effect a correction based
on the phase of the signal measured by the empty ADC slot. More sophisticated techniques
are also possible when couplings involve a large number of ADC signal streams (see, e.g.,
[152]).

Large modern experiments typically make use of dedicated electronic components (e.g.,
ASICs) mounted directly onboard with the amplification + ADC electronics to accomplish
semi-automated pedestal determination and storage. They often also employ a variety of
sparsification techniques to eliminate null data. Physicists carrying out analyses of data
produced by large modern experiments thus typically do not handle the tasks of pedestal
determination and monitoring.

Gain Calibration
The voltage signals produced by detectors are typically very weak and thus require ampli-
fication, which may take place within the detection device itself (e.g., gas amplification)
or “external” components involving typically two steps (preamplifier and an amplifier).
One way or another, the signals si produced by ADCs typically have a somewhat arbitrary
amplitude which must be calibrated before they can be of any use in physics analyses. Pro-
cedures for gain calibration are as varied as the devices used in modern experiments. It
is thus not possible in the context of this textbook to offer a full and comprehensive dis-
cussion of all techniques used toward gain calibration. However, it can be pointed out that
calibration can in general be achieved by measuring a precalibrated signal, that is, a signal
of known strength or value. For calorimeters or other types of energy-sensing devices, this
can be done by exposing detector modules to beam particles of specific and known energy,
cosmic rays, or through the use of radioactive sources of precisely known activity. Various
calibration techniques are also based on prior knowledge of the mass of short-lived parti-
cles. It is indeed possible to use the known mass of narrow resonances (e.g., φ-meson) to
obtain energy or momentum calibrations. Techniques to accomplish such calibrations are
abundantly documented in the scientific literature (see, e.g., [24, 76, 79, 190]).

Calibrations can be determined either in absolute terms (and units) or relative to con-
venient references easily obtained or replicated in an experimental environment using, for
instance, calibrate laser signals or physics data.

Given a raw ADC signal, si, the calibrated signal, Ei (e.g., an energy signal) produced
by a specific data channel (i.e., corresponding to a specific detector module or component)
is obtained according to the expression

Ei = gi × (si − so) Linear response (9.3)

where so is the average pedestal value of the given module i.
This simple linear relation assumes the detection, amplification, and digitization pro-

cesses are all linear. If either of these components fails to be perfectly linear, a detailed
study of the response of the “faulty” component(s) is required, and one must apply a gain
correction that is channel- and signal-strength specific:

Ei = gi(si) × (si − s0) Nonlinear response. (9.4)
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It should be noted that large (voltage) signals fed into an ADC might exceed its dynamic
range. This may be indicated either by a special bit being set to one (1) or as a specific sat-
uration value. The preceding calibration equation fails for inputs exceeding the saturation
threshold of an ADC, and therefore, one must be cognizant of the mechanism used by a
specific type of ADC to indicate its signal saturation and handle such signals accordingly.
Additionally, note that some ADCs are designed to have dual gain functions: a voltage
comparator is first used to evaluate the amplitude of the incoming signal and decide which
of two gain settings should be used in the digitization of the signal. This produces ADCs
with a large effective number of digitization bits, but usually at much lower cost. Obviously,
in the calibration and analysis, one must check which of the low- or high-gain modes was
used to digitize a specific signal so the appropriate gain gi may be used to produce the
calibrated signal Ei.

Timing Signal Calibration
A time-to-digital converter (TDC), is an ADC designed to convert a time interval into a
digital binary output. The time interval to be converted is usually specified by two events
(or signals) in the form of logical pulses. TDC devices, much like regular ADCs, usually
incorporate several channels and typically operate either on the basis of a common start
or common stop (Figure 9.8). In common start mode, a signal produced by a dedicated
trigger is used to start the TDC clock. Each channel input into a TDC module then supplies
a stop time corresponding to the time elapsed between the trigger and the detection of a
signal (above a preset threshold) in a certain detector module. Alternatively, in common
stop mode, detector modules each produce their own start signal and the time-to-digital
conversion stops when a common stop signal is received by the TDC. In common stop
mode, an arming signal may have to be supplied to ready the TPC for conversion before
individual starts are received. Whether in common start or common stop mode, the lack of
an input signal (stop or start) is indicated by a time-out or saturation bit.

Basic TDC implementations use a high-frequency counter (oscillator) to increment clock
cycles. Counting is initiated and stopped when receiving start and stop signals, respectively.
An analog method using a voltage ramp and comparator is used for very short time intervals
for which a high-frequency counter cannot be used. Either way, one must realize that the
measured time interval may not exactly correspond to the time interval between events
of interest (e.g., a particle traversing start and stop counters) because the cabling used to
carry both the start and stop signals to the TDC has, in general, arbitrary lengths, which
add delays to the instantiation of both the start and stop signals. These arbitrary delays
must consequently be calibrated out.

Calibrations in common start or common stop modes are essentially carried out in the
same way. In essence, one needs to identify either an external time reference that provides
an absolute time calibration (e.g., using calibrated laser pulses) or a data-based indicator
(e.g., particles traveling nearly at the speed of light on a known flight path) which en-
ables the determination of what is effectively a time pedestal, t0, but is commonly called
“time zero offset” or simply “time zero.” The start-to-stop time, which might correspond
to a particle’s time-of-flight (TOF) between two specific detector components, may then be
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Fig. 9.8 Illustration of timing measurements and the notion of time zero offset.

written

t = tstop − tstart + t0. (9.5)

Few remarks are in order. First, note that the precision (resolution) δt achieved on t depends
on the resolution of both the start and top signals:

δt =
√

δt2
start + δt2

stop. (9.6)

However, the accuracy of the result, that is, whether there is a bias, also depends on the
value of t0. Indeed, if t0 is not properly calibrated, t will, on average, be either over- or
underestimated. All quantities derived from t, such as particle speeds and masses, will thus
also be biased.

TOF resolutions required and achieved in modern high-energy experiments range be-
tween 50 and 100 ps. Such performances are typically achieved with TOF detectors based
on MRPCs or ultrafast scintillator materials (see §8.4.2). The resolution achieved depends
on the design and quality of the MRPC or scintillation materials: the stability of amplifi-
cation, discriminators, and cabling components used in the generation and propagation of
timing signals; as well as the resolution and stability of the TDC used for time-to-digital
conversion (see Figure 9.8). Much like ADC pedestals, the time calibration t0 is often ob-
served to slowly drift over time owing to changes in sensor or amplifier gain or due to slight
temperature variations. Timing delays produced by cabling or electronic components may
indeed change over periods of several hours as a result of temperature variations, for in-
stance. They thus produce slowly varying timing signal drifts that must be compensated for
by recalibrating the value of the t0 of the TOF components on a time scale commensurate
with the time scales over which such variations take place.
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Position Calibration
The determination of hit positions, that is, the locations where particles produce energy
deposition in detector components used in the reconstruction of trajectories, often rely on
weighted sums such as

xhit =
∑

i Eα
i xi∑

i Eα
i

, (9.7)

where the sums are taken over the same range of module or components, with xi and Ei

representing the nominal positions and energy read out by these components, respectively.
The position xhit is commonly referred to as centroid of the energy deposition. An ex-
ponent value α = 1 is typically appropriate for segmented readout detectors with a small
dynamic range (e.g., position sensitive detectors such as silicon strip detectors) but non-
linear weights (α ̸= 1) are typically more appropriate for segmented calorimeter read-outs.
The precision and accuracy achieved in the reconstruction of hit positions depend on proper
measurements of both the energies Ei and the position xi of the components as well as op-
timum selection of the exponent α (either derived from detailed simulations or data driven
analysis of the detector response). These measurements consequently depend on the ac-
curate calibration of signal pedestals and gains, discussed earlier in this section, proper
determination of the position of the components (geometrical calibration), as well as pre-
cise modeling (studies) of the energy response of the detector modules.

While the design and construction of detector components should in principle dictate
their positions relative to one another and relative to the beam axis, target, or interaction
region, deviations from the nominal design may occur in practice because of a variety of
circumstances including, improper detector placements, shifts in positions due to temper-
ature variations, or intense magnetic fields. It is thus important to properly “calibrate” the
position of the detector components before attempting precise data analyses.

Precise determination of detector component positions involves a variety of techniques,
including in situ component surveys, laser-based measurements, as well as a host of
detector alignment techniques based on physics data. Detector alignment techniques
based on data rely on the fact that charged particles, in particular, travel on average on well-
defined trajectories that can be modeled with precision. Analysis of systematic deviations
of layer positions relative to measured particle trajectories thus enables fine adjustments of
the component’s positions and proper detector alignment. A discussion of techniques used
in detector alignment is beyond the scope of this textbook but may be found in various
publications [47, 111, 179].

9.2 Track Reconstruction Techniques

Charged particle tracks produced by particle detectors are the basis of much of the analy-
ses carried out in modern nuclear and particle physics. Given that trajectories of charged
particles may be significantly altered by the media they traverse largely as the result of
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multiple coulomb scattering, it is important to use detector technologies that are as thin as
possible. Quite a few such technologies have been developed over the years, and very high
momentum resolution detectors are now routinely used in the study of particles produced
by elementary nuclear collisions. However, there remains the task of identifying these tra-
jectories (hereafter called tracks) based on recorded data in order to obtain the kinematic
parameters of the particles that produced them. This is the domain of the subfield known
as track reconstruction, traditionally divided into two stages called track finding and
track-fitting. Track finding involves processes of pattern recognition and classifications,
while track-fitting aims at extracting the kinematic parameters of tracks at their point of
origin with as much precision as permitted by recorded data and the hardware technologies
on which they are based.

A large number of mathematical techniques and algorithms have been developed for
both the finding and fitting stages of track reconstruction. There are even techniques that
gracefully integrate the two tasks in a single process. We discuss track finding and pattern
recognition commonly used with large detectors in §9.2.1 and elaborate on high-efficiency
and precision track-fitting techniques in §9.2.2. The underlying theory of how charged
particles interact with matter and the basic detection principles used in modern experiments
are described in several publications [20, 50, 135] and are not covered here.

9.2.1 Track-Finding Techniques

Track finding is a pattern recognition process that consists of associating recorded hits pro-
duced by particles traversing a detection system into groups or classes believed to originate
from a common particle. Associated hits form a track candidate, which must then be fit-
ted and tested in order to determine whether it constitutes a genuine track or a fake track
resulting from incorrect associations of actual or fake hits. Track finders are usually de-
signed to be rather conservative and thus tend to produce and keep a large number of track
candidates: eliminating track candidates after the fitting stage is relatively straightforward,
while a track candidate discarded at an early stage is not recoverable at the fitting stage.
This said, many finders use an iterative procedure involving several track-finding passes
either with a single or several distinct algorithms.

Unambiguous track reconstruction and identification is readily achievable when the dis-
tance between tracking planes is considerably smaller than the typical distance between hits
on a given detection plane. Tracking in a high hit density environment where this condition
is not verified may be nonetheless possible if the origin and overall topology of tracks is
known, as schematically shown in Figure 9.9.

Track-finding techniques are broadly divided into two classes commonly referred to as
global and local methods. Global methods process all hits “simultaneously,” whereas local
methods proceed through lists of hits sequentially and build tracks iteratively. Conformal
mapping, Hough transforms, and Legendre transforms, presented in the following para-
graphs, are examples of global methods, whereas track road and track-following methods,
discussed later in this section, are local methods. Additionally, some finding techniques
require a track model and prior knowledge of the propagation of particles within the detec-
tion system. Others use combinatorial or hit proximity criteria. The use of simplified track
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Fig. 9.9 Problematic of pattern recognition and track reconstruction. (a) Track identification is readily achievable when the
distance between tracking planes is considerably smaller than the typical distance between hits on a given detection
plane. (b) Ambiguities arise in the reverse situation but may be in some cases avoided if the origin or other external
constraints exist on the shape and momentum of the track.

models and fast-tracking methods are important in online applications, particularly those
where track finding is an integral part of the event-triggering process. We will not consider
such applications and refer the reader to specialized publications on this topic. We here
focus on techniques used in offline analysis.

A track may be fitted after all its hits have been identified (global track fit) or iteratively
as successive hits are added to the track. The Kalman filter and adaptive techniques in-
troduced in §9.2.3 constitute the basis for the best and most robust track reconstruction
techniques available to date. Given their mathematical complexity and the fact they are
computationally rather intensive, simpler techniques are often used in practice to effect a
rapid reconstruction of events. Global track reconstruction techniques such as conformal
mapping, Hough transforms, and track templates may be considerably faster and easier to
implement. However, they typically require vast amounts of computer memory and fare
poorly for secondary tracks.

It is important to note that proper reconstruction of tracks and their kinematic param-
eters require the tracking device be accurately calibrated. This means that their physical
positions and the procedures used to extract hit positions must be accurately determined.
An important component of the calibration of hit-sensing devices is a procedure known as
detector alignment. A discussion of detector alignment techniques is beyond the scope of
this textbook but may be found in the relatively recent review of Strandlie and Frühwirth
[178].

Adaptive fit methods incorporate competition between several (track) hypotheses, such
that the outcome of the competition depends on the current observations. They also fea-
ture the possibility of making soft decisions and of combining hypotheses according to
their posterior weights. Some adaptive methods have a strong Bayesian character, reflected
for example in the presence of posterior probabilities or weights attached to the different
hypotheses. In general, weight values change after the inclusion of additional information
from the data. Methods can also exhibit different degrees of adaptivity, depending on the
level of prior assumptions inherent to the actual approach. Good adaptive methods achieve
maximum flexibility and robustness with as few assumptions about the data as possible.
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Fig. 9.10 Track finding by conformal mapping (x, y) → (u, v).

Conformal Mapping
The track-finding and fitting conformal mapping method [102] is based on the notion that
circles going through the origin of a two-dimensional x–y coordinate system map onto
straight lines in a u–v coordinate system defined by the conformal transformation:

u = x
x2 + y2

(9.8)

v = y
x2 + y2

(9.9)

where the circles are defined by

(x − a)2 + (y − b)2 = r2 = a2 + b2 (9.10)

One can verify (see Problem 9.2) that straight lines in the u–v planes may be written as

v = 1
2b

− a
b

u (9.11)

As illustrated in Figure 9.10, for large-momentum tracks (i.e., large values of the radius r)
the conformal mapping yields straight lines passing relatively near the origin of the u–v

coordinate system, which can be easily identified. Fits to straight lines in u–v space are fast
and yield parameters a and b which, when combined according to Eq. (9.10), provide the
radius of a trajectory and its center.

Hough and Legendre Transforms
Conformal mapping, presented in the previous section, is useful when the experimental in-
terest is focused on large momentum particles but becomes less practical for low-momenta
tracks which yield straight lines not passing through, or near, the origin of the u–v plane.
The Hough transform [109] provides a useful remedy to this problem.
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Fig. 9.11 Example of the Hough transform used in the reconstruction of tracks. (a) Hits from charged particles in the bending
plane (x–y). (b) Conformal mapping of the hits onto u–v space. (c) Hough transform onto c–d space. Hits belonging
to given tracks yield peaks, here represented as solid dots.

The Hough transform is based on a simple mapping of the equation of a straight line in
the u–v plane, written v = cu + d to another straight line in the c–d plane, d = −uc + v.
This means that points along a line in the c–d plane correspond to all possible lines passing
through the point (u, v) in the u–v plane. Points located on a straight line in the u–v plane
thus tend to create peaks in the c–d plane, which cross at the point that specify the actual
parameters of the line in the u–v plane. One can then discretize the c–d plane and increment
a histogram for each hit value (x, y). Peaks in this space therefore identify curves in the x–
y space. As illustrated in Figure 9.11, one gets a two-dimensional histogram that can be
quickly scanned for peaks, which correspond to circular tracks in the x–y plane.

The Hough transform can be adapted to track finding with drift tubes using Legendre
transforms [18]. It has also been extended to a variety of pattern recognition problems.

Road Finders
Road finders, also called track template finders, are an example of a global finder tech-
nique based on specific track models. The idea is to map each measured point or hit onto
all of the track roads (or track templates) to which they could belong. Once all hits of an
event have been processed, one then counts how many hits each track template gets. Track
candidates are then those templates that have a required minimum number of entries, as
illustrated in Figure 9.12. The track candidates must next be fitted to obtain precise kine-
matic parameters and test their quality.

The road finder technique is quite useful and efficient for finding primary tracks with
a specific vertex point. However, it becomes computationally onerous for searching sec-
ondary tracks because the number of roads to be considered is likely to be extremely
large. In very large track multiplicity environments with a high yield of secondaries, track-
following techniques are then more likely to be effective.

Track-Following Technique
The track-following technique is a rather generic track-finding method that can be applied
with or without track models. Its use in the absence of a track model is possible in a low
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Fig. 9.12 Schematic illustration of the road finder technique. All hits in all detector planes are scanned. For each hit, one
increments all bins corresponding to the road they cross. Tracks are those roads with the largest number of hits.

hit density environment and requires the distance between tracking planes be much smaller
that the typical distance between hits on a given plane. However, the use of track models
enables track reconstruction in much higher density environments.

Track following starts with a track seed and proceeds iteratively to the extension of
the track, as illustrated in Figure 9.13. Seeds can be formed in the inner region of the
tracking detector (e.g., close to the interaction region) if high precision hit measurements
are available and the hit density is sufficiently modest. The finder is then described as an
inside-out finder. Alternatively, the seed may be first constructed in the outer region of the
detector, where hit and track densities are usually much lower. Track extension proceeds
in three steps: extrapolation to the next layer, search for matching hits, and choice of best

Fig. 9.13 Schematic illustration of the track-following technique. (a) Formation of track seeds in the outermost layers of the
detection system. (b) Linear extrapolation in field free regions. (c) Circular extrapolations in finite field regions.
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matching hit if multiple matching hits are found. If no hit is found on a particular layer,
the extrapolation is carried to the next layer. The extension procedure is iterated until the
number of layers with a missing hit exceeds a preset threshold or until the boundary of the
detection system is reached.

9.2.2 Track-Fitting Techniques

The track-fitting stage is subject to challenging constraints. It should be as computationally
fast as possible, particularly in the study of relativistic heavy-ion collisions that produce
thousands of tracks,1 but it should not sacrifice the quality of reconstruction. It should be
robust against mistakes (e.g., inappropriate hit association and missed hits) made during the
track-finding procedure; it should be numerically stable and as accurate as possible based
on the precision of the hits supplied by the tracking detectors. It should also be possible to
explicitly test whether a track candidate is a valid track. The detection and addition of hits
to a track are stochastic processes. Track finding and fitting are thus bound to have limited
efficiency and accuracy and may be hampered by the inclusion of hits that do not actually
belong to the track.

The testing of tracks can be accomplished, for instance, on the basis of the χ2 obtained
during the fit. The χ2 is determined by the sum of the squared standardized differences
between the measured positions of the track candidate and the estimated positions of the
track at the points of intersection of the detector devices. If the χ2 is very large (given the
number of degrees of freedom), the set of associated hits is not statistically compatible with
the hypothesis of having been produced by a single particle. The incompatibility may arise
from a number of circumstances: for example, extraneous hits might have been wrongly
added to the track candidate or a totally illegitimate candidate was built from a random
set of hits produced by several distinct particles. Sometimes, the incompatibility results
from detector noise or background (e.g., ghost tracks). An outlier hit removal stage and
track refit are typically included in track-fitting algorithms. Other track selection criteria
are often applied (see §8.3.1). The covariance matrix obtained from the fit additionally
provides an estimate of the uncertainty of the track kinematic parameters.

A few elementary considerations are in order, including the choice of a track parameter-
ization, track propagation model, error propagation, effect of detector materials, and track
seed finding. These are discussed in following paragraphs of this section.

Track Parameterization
While the goal of track reconstruction consists in the determination of kinematic param-
eters p⃗ = ( p⃗T ,φ, pz) of a particle at its point of production (i.e., a primary or secondary
vertex), the reconstruction process and association of a track to its proper production vertex
(see §9.3.1 for a discussion of vertex finding and track association to vertices) require accu-
rate determination of its actual trajectory through the detection apparatus, which involves
finding all hits belonging to a track.

1 Or in the context of LHC run 3 expected to deliver unprecedented data volumes.
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The trajectory of a charged particle in a static magnetic field B⃗(⃗r) is determined by the
Lorentz force:

d p⃗
dt

= d(mγ v⃗)
dt

= kqv⃗(t ) × B⃗(⃗r), (9.12)

where v⃗ is the velocity of the particle, q its charge in units of elementary charge, and k
a constant whose value depends on the units used to express the magnetic field and the
particle momentum p⃗. The constant k equals 0.3 if the field and momenta are expressed
in Tesla and GeV/c, respectively. Given the magnitude of the velocity v is a constant, the
Lorentz factor γ = (1 − v2/c2)−1/2 is also a constant, and Eq. (9.12) may be rewritten

d2r⃗
d2l

= kq
p

dr⃗
dl

× B⃗(⃗r(l )), (9.13)

where l is the path length of the track and dl/dt = v. Choosing B⃗ to be parallel to the
z-axis, a solution of this equation for uniform B⃗ corresponds to a helicoidal trajectory with
an axis parallel to z:

x = x0 + R
[

cos
(

&0 + hl sin '

R

)
− cos &0

]
,

y = y0 + R
[

sin
(

&0 + hl sin '

R

)
− sin &0

]
, (9.14)

z = z0 + l cos ',

where r⃗0 = (x0, y0, z0) is the starting point of the helix at l = 0, and ' = arcsin (∂z/∂l )
determines the pitch of the helix. The radius of the helix is R = p sin '/|kqB| while h =
−sign(qBz) determines the direction of rotation of the helix in the transverse plane. The
angle &0 corresponds to the azimuth angle of the starting point in cylindrical coordinates
with respect to the axis of the helix, as illustrated in Figure 9.14. The helix trajectory is
thus completely specified by only five parameters: x0, y0, z0, R, and &0. This choice is
not unique. Many other combinations of five parameters may also be used to uniquely
define a helix. For instance, one could have alternatively chosen the center of the helix in
the transverse plane (xc = x0 − R cos &0, yc = y0 − R sin &0), the radius R, and the helix
pitch λ. Other choices are also possible.

There indeed is much freedom in the choice of the five track parameters used to express
the state of particle s⃗ at a given detection surface. In practice, the choice of a specific set of
parameters is usually determined by convenience and the geometry of the tracking detector.
The product of the track radius and azimuthal angle of hits, R&, is a convenient parameter
choice for cylindrical detector layers, but Cartesian coordinates are more frequently used
because most tracking devices involve a multilayered planar detector geometry. The pre-
ceding parameterization, Eq. (9.14), while convenient for tracking in a uniform magnetic
field is somewhat cumbersome for experiments where the field varies through the appara-
tus. A more detailed discussion of track parameterizations may be found in the book by
Frühwirth et al. [89].
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Fig. 9.14 Schematic illustration of a basic helicoidal track parameterization: R and (x0, y0, z0) are the radius and first point
measured on the helix; (x, y, z) represents an arbitrary point along the helix. (xp, yp, zp) and (xc, yc) are the primary
vertex and the geometrical center of the helix in the transverse plane⊥, respectively.

Track Propagation Model
As illustrated in Figure 9.15, a track propagation model or simply track model f⃗ j|i(s⃗i) is
required to describe how the track parameters, s⃗, or state vector, can be propagated from
one detector surface i to a different surface j.

s⃗ j = f⃗ j|i(s⃗i) (9.15)

An analytical track model can usually be formulated for simple detection surfaces (e.g.,
planar and cylindrical surfaces) operated in a vanishing (straight lines) or homogeneous
magnetic field (helicoidal trajectories). However, propagation of trajectories in inhomoge-
neous magnetic fields and nonelementary surfaces requires the use of numerical methods
such as Runge–Kutta integration techniques.

Fig. 9.15 Schematic illustration of a track propagation models for (a) B⃗ = 0 and (b) finite+ uniform field.
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Error Propagation
Propagation of the track parameter covariance matrix, Si, along with its state s⃗i, is required
in Kalman fit and adaptive fit methods. This can be usually accomplished using linear error
propagation techniques (see §2.11). For instance, given the error covariance matrix at the
detection surface i, one may extrapolate the state of the track to surface j with Eq. (9.15),
and the extrapolated covariance matrix can then be written

S j|i = F j|iSi(F j|i)T (9.16)

where the transformation matrix F j|i is defined according to

F j|i =
∂ s⃗ j

∂ s⃗i
(9.17)

The functions F j|i are analytical for analytical track models, but numerical techniques or
semianalytical techniques must be used when propagation through inhomogeneous fields
is involved [60].

Effect of Detector Materials
Charged particles propagating through a detector undergo interactions with materials
present along their path. Such interactions are typically dominated by ionization energy
loss and multiple Coulomb scattering. Energy loss by emission of Bremsstrahlung radi-
ation also plays an important role for light particles such as electrons. In well-designed
detectors, fluctuations in energy loss are relatively small and can be treated as determin-
istic corrections to the state vector. Fluctuations associated with Bremsstrahlung radiation
are typically large and thus affect both the state vector and its covariance matrix. Multiple
coulomb scattering is an elastic and stochastic process. With thin or low density scatterers,
it only disturbs the direction of motion of charged particles, but with thick scatters one
must also account for a change in position in the plane of scattering materials. However,
since the expectation value of the scattering process is null, only the covariance matrix of
the state vector needs updating. An example of treatment of such effects is presented in
§9.2.3.

Measurement Model
The measurement model, denoted h⃗(s⃗), expresses the functional dependence of a measure-
ment vector, m⃗k , in a specific detector layer k on the state vector s⃗k of a particle in that
same layer:

m⃗k = h⃗(s⃗k ) (9.18)

Much flexibility is available in the definition of measurement vector m⃗. While position
measurements (yk, zk ) in the detection plane k are most commonly used, other choices are
possible that may involve measurements of direction or even the momentum of the particle.
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It is convenient to define a projection matrix Pk as

Pk = ∂m⃗k

∂ s⃗k
. (9.19)

This projection matrix is typically needed for state and covariance matrix propagation
which account for measurement errors. The follow-your-nose algorithm uses the track pa-
rameters at layer k to carry out a projection to layer k − 1 (or other inner layers) to obtain
an estimate of the position (xk−1, yk−1, zk−1) of the “next” hit. A search is thus conducted
for matching hits in the vicinity of this point with a maximum search radius rk−1. The
search radius may be kept constant throughout the extension (i.e., for all layers) or may be
tailored to progressively shrink as the length of the track increases. This is most naturally
accomplished in the context of a Kalman filter algorithm, which provides layer-by-layer,
estimates of the track parameter covariance matrix. If two or more matching hits are found
within the search radius, one may elect to use the closest, or attempt track extensions with
all matching candidates and choose the one that eventually leads to the longest and highest
quality track. The extension of a track stops once no more hits can be found or when the
inner-most layer is reached. The track can be optionally extended outward toward other
detectors, if any. It is eventually saved/stored if it meets required minimal quality criteria.
The track reconstruction then switches to seed finding for a new track. Once all hits have
been used or no more tracks are found, one can optionally initiate a second pass with looser
search criteria.

Once track reconstruction is completed, one can then proceed to combine all tracks
and identify the position of the primary vertex. When the collision vertex is identified, an
additional pass is typically performed on all tracks to attempt a projection to this vertex and
carry out a track refit that includes the vertex. Since the primary vertex is the origin of many
tracks, particularly in heavy-ion collisions, it is possible to achieve very high precision in
the determination of its position. A track refit including this very precise position thus
enables an improved determination of the momentum and direction of primary tracks. It is
also possible to carry out a refit that excludes outlier hits based on some preset maximum
fit residue *r.

A fit of the track and projection at the primary vertex yields its (transverse) momen-
tum and direction at the point of point of production. In collider geometries, the direction
is usually specified in terms of an azimuthal angle and a pitch angle or pseudorapidity.
The use of polar angles measured to the beam axis tends to be reserved for fixed-target
experiments or forward-going particles in collider geometries.

Track Seed Finding
The principle of seed finding algorithms is shown in Figure 9.16, where we use the variable
x to express the position of tracking planes, and the variables y (and z) to identify the
position of hits in a given plane.

Track reconstruction is often initiated in a region of low hit density, typically the detec-
tion planes farthest from the production vertex, and proceeds “inward” toward regions of
higher hit and track density. The algorithm proceeds iteratively: a seed is identified, and
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Fig. 9.16 Illustration of the linear seed-finding technique.

it is progressively extended using the method described in the text that follows. Once the
innermost track layer is reached or preset number of tracking planes are traversed without
successful addition of hits, the track may be fitted and stored if it meets minimal quality
criteria or otherwise simply abandoned and deleted. Most tracking algorithms limit the use
of hits to one track per hit, that is, they do not allow hit sharing between tracks. Hits as-
sociated with a track are thus flagged as “taken” and removed from the pool of hits to be
associated with tracks. However, track reconstruction with hit sharing is also possible.

Track seeds are formed by associating hits from two to five (rarely more) contiguous
outer tracking layers, as illustrated in Figure 9.13. Beginning, say, on the outermost layer,
k = n (where n is the number of tracking planes), one selects a hit and search on layer k − 1
for matching hits. In order to limit random associations, hits belonging to neighboring
layers are usually required to be within a preset maximal distance along the y- and z-axes.
One may also begin the search with nearly “vertical” tracks by setting the y–z ranges to
be very narrow, and recursively increase the search radius up to its maximum preset value.
Once a second hit is found, one proceeds to calculate the parameters of straight lines in the
x–y and x–z planes formed by these two hits according to

a1,y = yk − yk−1

xk − xk−1
a0,y = yk − a1,yxk,

a1,z = zk − zk−1

xk − xk−1
a0,z = zk − a1,zxk

. (9.20)

The track parameters are used to extrapolate the tracklet to layer k − 2 according to

yk−2 = a0,y + a1,yxk−2, (9.21)

zk−2 = a0,z + a1,zxk−2. (9.22)

Then, one searches for hits in the vicinity of the point (yk−2, zk−2) within a preset maximum
search radius. If the search is not successful, one may optionally attempt to find matching
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hits on layer k − 3 or k − 4. If a matching hit found, it is added to the tracklet. The search
can be optionally extended to additional inner layers. If the tracking planes used to form
the seed are located in a field-free region, one proceeds with a simple linear fit to obtain
straight line parameters in the x–y and x–z planes. If the planes are within a finite magnetic
field, one carries a fit using a helicoidal track model. Either way, one gets an initial estimate
of the track parameters. The tracklet may then be passed to the main tracking routine for
an extended search through the rest of the detector.

9.2.3 Kalman Filter Track Finding and Fitting

Most track-fitting techniques are based on linear least-squares methods. The linear, global
least-square method is optimal [178] if the track model itself is linear, that is, if the prop-
agation function defined by Eq. (9.15) is a linear function of the state vector s⃗. In cases
where the functions f⃗ (s⃗) are nonlinear, the linear least-squares method remains the opti-
mal linear estimator but may lack robustness [166]. Least-squares track-fitting methods are
discussed in a generic context in ref. [178]. Here, we focus our discussion on an example
of the Kalman filter method largely developed for track and vertex finding by Billoir [42]
and Frühwirth [86].2 The principle and properties of Kalman filters (KFs) were already
discussed in §5.6, where we showed, in particular, that KFs are strictly equivalent to least-
squares methods. KF methods also present the advantage, particularly in the context of
track finding and fitting, that only small number of matrix inversions are required to carry
out track fits, while global fit methods may require repeated inversion of large matrices
[178].

As an example of application of the Kalman filter, we consider the reconstruction of
charged particle tracks within a uniform solenoid magnetic field spectrometer, as schemat-
ically illustrated in Figure 8.15. The detection system consists of ns identical azimuthal
sectors each divided into np measurement planes. Collisions take place near the origin of
the coordinate system and produce particles streaming out at high momentum. Charged
particles are deflected by the magnetic Lorentz force and follow helicoidal trajectories one
describes according to Eq. (9.14).

The coordinates xc, yc represent the center of the circle formed by projecting the heli-
coidal trajectory in the x–y plane traverse to the beam–beam collision axis, which defines
the z-axis. R, ϕ, and λ are the radius, the phase angle, and the pitch of the helix, as de-
fined in Figure 9.14. We arbitrarily choose the x-axis to be local to each sector and along
a radius normal to the measurement planes. The y-axis is chosen along the measurement
planes and perpendicular to the beam direction. In this context, the position of the de-
tection planes along the x-axis constitutes a natural choice for the independent variable
t. Helicoidal trajectories (9.14) involve nine variables and three independent equations.
Choosing x as the independent variable leaves (9 − 3 − 1) = 5 independent track state pa-
rameters. The choice of these five parameters is somewhat arbitrary. Given that position
measurements in each detection plane are performed in the y–z plane, it is natural to use

2 The example presented is based on the software developed by the author for the STAR experiment at the Rela-
tivistic Heavy-Ion Collider.
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these two coordinates as part of the Kalman state. The measurement vector is set to be

m⃗k =
[

yk

zk

]
, (9.23)

where yk and zk are the coordinates of track hits on measurement plane k = 1, . . . , np.
We similarly choose those two coordinates to be the first two elements of the Kalman
state vector. This leaves us with only three more parameters to define or identify. Many
choices are still possible. For illustrative purposes, we choose variables η, C, and ξ . C is
the curvature defined as the multiplicative inverse of the radius R of the track,

C ≡ 1
R

. (9.24)

The variable ξ is defined as the tangent of the pitch angle of the track which yields

ξ = tan λ = pz

pT
, (9.25)

where pT and pz are the transverse and longitudinal momentum of the charged particle that
produced the track, respectively. Defining the azimuthal angle ϕ of the track as

tan ϕ =
py

px
, (9.26)

one calculates η according to

η = Cx − sin ϕ. (9.27)

The track Kalman momentum state on plane k, denoted s⃗k , is thus

s⃗k =

⎡

⎢⎢⎢⎢⎢⎣

yk

zk

ηk

Ck

ξk

⎤

⎥⎥⎥⎥⎥⎦
. (9.28)

With the preceding choices for m⃗k and s⃗k , the measurement matrix, Hk , is reduced to a
trivial form:

Hk =
[

1 0 0 0 0
0 1 0 0 0

]
. (9.29)

Inserting this specific form for Hk in Eq. (5.164), we get

Kk = Sk|k−1 (Hk )T (9.30)

×
(

Vk +
[

1 0 0 0 0
0 1 0 0 0

])−1

⎡

⎢⎢⎢⎢⎢⎣

C11 C12 C13 C14 C15

C21 C22 C23 C24 C25

C31 C32 C33 C34 C35

C41 C42 C43 C44 C45

C51 C52 C53 C54 C55

⎤

⎥⎥⎥⎥⎥⎦

k|k−1

⎡

⎢⎢⎢⎢⎢⎣

1 0
0 1
0 0
0 0
0 0

⎤

⎥⎥⎥⎥⎥⎦
.

The propagation (projection) of the state from plane k to k + 1 is accomplished by in-
crementing the independent variable x from xk to xk+1 = xk + *xk,k+1, where *xk,k+1 is
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the distance between the two detector planes. The projected state vector is written

s⃗k+1 = F (s⃗k ) . (9.31)

Since the state projection involves a displacement of the position of the track in a uniform
longitudinal magnetic field, the parameters η, C, and ξ remain unchanged:

ηk+1 = ηk, (9.32)

Ck+1 = Ck, (9.33)

ξk+1 = ξk . (9.34)

Only the positions y and z need updating. Using the geometry illustrated in Figure 9.14,
one finds after some simple algebra

yk+1 = f1(s⃗k ) = yk + sin ϕk + sin ϕk+1

cos ϕk + cos ϕk+1
, (9.35)

zk+1 = f2(s⃗k ) = zk + ξk (ϕk+1 − ϕk ) /Ck, (9.36)

= mk + ξk

Ck
sin−1

(
(sin ϕk+1 − sin ϕk ) (sin ϕk+1 + sin ϕk )

sin(ϕk + ϕk+1)

)
,

where the sine functions can be expressed in terms of η according to Eq. (9.27).
The propagation of the state error matrix is accomplished with

Sk|k−1 = FkSk−1|k−1(Fk )T + Wk, (9.37)

where Sk−1|k−1 ≡ Sk−1 is the state error matrix obtained after the (k − 1)th step of Kalman
filtering. The propagation of s⃗ determined by Eq. (9.31) is nonlinear and makes the propa-
gation of the error matrix rather cumbersome. Fortunately, since the propagation of errors
does not have to be as precise as the propagation of the state itself, one can then use a
linearization of Eq. (9.31) to obtain the projection matrix Fk required in Eq. 9.37. Consider
the error at step k is of order *s⃗k . The error at step k + 1 may then be written

*s⃗k+1 = F (s⃗k + *s⃗k ) − F (s⃗k ) . (9.38)

Using a truncated Taylor expansion of the first term on the right-hand side, one gets

*s⃗k+1, j =
5∑

j=1

*s⃗k, j
∂ f j(s⃗k )

∂s j
. (9.39)

The covariance matrix Sk+1 is defined as the expectation value of ⟨*s⃗k+1,i*s⃗k+1, j⟩ over an
ensemble of measurements at step k + 1. This can be written

⟨*s⃗k+1,i*s⃗k+1, j⟩ =
5∑

m,n=1

∂ fi(s⃗k )
∂sm

∂ f j(s⃗k )
∂sn

⟨*s⃗k,i*s⃗k, j⟩. (9.40)

We thus obtain the matrix F as

(Fk )i,m = ∂ fi(s⃗k )
∂sm

. (9.41)
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In order to calculate the preceding derivatives, we first note

∂ sin ϕ

∂η
= ∂ (Cx − η)

∂η
= −1, (9.42)

∂ cos ϕ

∂η
= tan ϕ, (9.43)

∂ sin ϕ

∂C
= x, (9.44)

∂ cos ϕ

∂C
= −x tan ϕ. (9.45)

We next define u = sin ϕk+1 cos ϕk − cos ϕk+1 sin ϕk and compute the following deriva-
tives:

∂zk+1

∂u
= ξ

C
√

1 − u2
, (9.46)

∂zk+1

∂ sin ϕk+1
= ξ

C
√

1 − u2
cos ϕk, (9.47)

∂zk+1

∂ sin ϕk
= − ξ

C
√

1 − u2
cos ϕk+1, (9.48)

∂zk+1

∂ cos ϕk
= ξ

C
√

1 − u2
sin ϕk+1, (9.49)

∂zk+1

∂ cos ϕk+1
= − ξ

C
√

1 − u2
sin ϕk . (9.50)

Derivatives of zk+1 with η and C can then be written

∂zk+1

∂η
= ξ

C
√

1 − u2
(ξ sin ϕk+1 − ξ sin ϕk (9.51)

+ ξ cos ϕk+1 − ξ cos ϕk ) ,

∂zk+1

∂C
= ξ

C
√

1 − u2
× (−x1ξ sin ϕk+1 + x2ξ sin ϕk (9.52)

− x1ξ cos ϕk+1 + x2ξ cos ϕk ) .

Based on these, we can next calculate the elements of the matrix F. All diagonal elements
Fii are equal to unity. Other non-null elements are as follows:

F13 = *xk+1,k
−2 (cos ϕk + cos ϕk+1) − (sin ϕk + sin ϕk+1) (tan ϕk + tan ϕk+1)

(cos ϕk + cos ϕk+1)2 ,

F14 = *xk+1,k
(xk + xk+1) (cos ϕk + cos ϕk+1) + (sin ϕk + sin ϕk+1) (tan ϕk + tan ϕk+1)

(cos ϕk + cos ϕk+1)2 ,

F23 = ξ

C
√

1 − u2
(ξ sin ϕk+1 − ξ sin ϕk + cos ϕk+1 − cos ϕk ),

F24 = ξ

C
√

1 − u2
(−xkξ sin ϕk+1 + xk+1ξ sin ϕk − xk cos ϕk+1 + xk+1 cos ϕk ),

F25 = *xk+1,k
sin ϕk + sin ϕk+1

sin(ϕk + ϕk+1)
.
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An energy loss correction may also be included in the propagation of the tracks through
the different detection planes. Propagating tracks inward, that is, toward the production
vertex, one must add the average loss of tracks traversing the detection plane. The energy
of the track is calculated according to

Ek+1 = Ek + *Ek,k+1 = Ek + *xk,k+1 |dE/dx| , (9.53)

where dE/dx is calculated with the Bethe–Bloch formula, Eq. (8.131). The added energy
implies an increase in momentum, which translates into a change of curvature:

Ck+1(Ek+1) = Ck (Ek ) + *Ek,k+1
dC
dE

∣∣∣∣
Ek

. (9.54)

The radius of curvature of the track, R = 1/C, is proportional to its momentum. One gets

dC
dE

= −C

√
p2c2 + m2c4

p2
, (9.55)

which yields the following correction for the curvature

Ck+1(Ek+1) ≈ Ck (Ek )

[

1 −
√

p2c2 + m2c4

p2
*E

]

. (9.56)

Given the explicit dependence on the (unknown) mass of the particle, one must carry
the correction with an arbitrary choice of particle identification, for instance, the mass
of the pion, which is abundantly produced in high-energy collisions. However, the choice
of mass used in Eq. (9.56) has typically a relatively small impact on the reconstruction of
the charged particle tracks with very high momenta.

Multiple coulomb scattering through various material layers of the detector contributes a
process noise to the propagation of the state covariance matrix (§9.5). In the local reference
frame of a track, the scatterings cause tracks to be deflected vertically and horizontally by
angles we label as γ1 and γ2, as illustrated in Figure 9.17.

For a thin scatterer, the noise process covariance matrix can then be estimated with the
expression

W =
〈
γ 2〉

(
∂ (η,C, tan λ)

∂ (γ1, γ2)

) [
1 0
0 1

](
∂ (η,C, tan λ)

∂ (γ1, γ2)

)T

, (9.57)

which after considerable algebra reduces to

Wk =
〈
γ 2〉

⎡

⎣
x2C2ξ 2 + (1 + ξ 2)cos2ϕ x2C2ξ 2 xCξ (1 + ξ 2)

xC2ξ 2 C2ξ 2 Cξ (1 + ξ 2)
xCξ (1 + ξ 2) Cξ (1 + ξ 2) (1 + ξ 2)

⎤

⎦, (9.58)

with

⟨γ 2⟩ =
(

14.1
pβ

)2 X
Xo

, (9.59)

where X and Xo stand for the thickness and the radiation length of the scatterer, respectively.
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488 Event Reconstruction

Fig. 9.17 Track geometry and multiple coulomb scattering. The scattering angles γ1 and γ2 have been exaggerated for the sake
of clarity.

9.2.4 Removal of Hit Outliers and Competition for Hits

Track candidates produced by a track-finder can involve one or more spurious hits that
belong to another track or are the result of detector noise. Given that such hits may steer
or distort a track, it is appropriate to consider a third track reconstruction stage, known as
outlier removal, where one proceeds to eliminate outlier hits, that is, hits that appear to lie
too far from the track obtained by a fit.

Rejection of hit outliers is in principle readily accomplished using a χ2 cut. Indeed, if
the hit errors are known and well calibrated, the χ2 of a fit including an outlier point is
expected to be large. One can, for instance, compare the χ2 obtained with and without a
hit under consideration. If the χ2 that includes the hit exceeds a preset value (relative to
the one that excludes it), the point is simply removed from the track. One may equivalently
consider the normalized fit residue of the hit based on a fit that excludes it. However, the
presence of several outliers may bias or skew a track so much that they render either of
these procedures completely inadequate.

An alternative approach is to increase the robustness of the fit, thereby reducing the
influence of potential outliers. This can be accomplished using adaptive estimation tech-
niques, discussed in the next section, which automatically reduce the weight of outlying
observations. Yet another technique involves the use of Tukey’s bi-square function (see.
e.g., [95, 101]).

Another common issue arising in track finding and fitting is that two tracks may have
one or more hits in common. This is particularly the case in track pairs produced by the
Hanbury-Brown and Twiss (HBT) effect: two particles of same charge sign may be emit-
ted with nearly the same momenta and angles and thus propagate near one another through
the detector. Finite hit resolution may then cause two tracks to share one or several hits.
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489 9.2 Track Reconstruction Techniques

Fig. 9.18 Example of progressive track recognition with a Kalman filter algorithm. A seed formed in the outer layers of the
detector is extended inwards through a recursive process involving projection of the track to the next inner layer and
use of a matching point to update the track parameters.

Such tracks may be considered incompatible or at the very least biased, since shared hits
are likely to be merged hits with suboptimal accuracy because the actual two hits they
correspond to cannot be resolved. A technique based on graphs in which every track cor-
responds to a node is presented in Das [77]. Such technique may result in the production
of several solutions of the same size (i.e., number of tracks). It may then be desirable to
choose tracks also based on their quality. This is accomplished most generally by assigning
each track with a quality index (based on its χ2, length, distance of closest approach to the
primary vertex, etc.) The best node is the one that maximizes the sum of quality indices.
A technique to find the best node based on Hopfield networks is discussed in [178] and
references therein.

9.2.5 Hybrid Track Finding and Fitting Techniques

The Kalman filter method can conveniently be used to achieve track finding and track-
fitting concurrently [40, 43] with the algorithm illustrated in Figure 9.18. The process starts
with a track seed obtained from hits located in contiguous layers. The seed is extended
iteratively to adjacent layers based on the track parameters determined by the Kalman fit.
A track candidate is abandoned if too few compatible hits are found and added to the track.

The χ2 of the residual r⃗k|k−1 of the measurement m⃗k with respect to the predicted state
can be used as an indicator of the compatibility of a given hit to a track:

χ2
k,+ = r⃗T

k|k−1V−1
k|k−1r⃗k|k−1, (9.60)
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where

r⃗k|k−1 = m⃗k − h⃗k (s⃗k|k−1), (9.61)

and the covariance matrix of the residuals is

Vk|k−1 = Vk + HkSk|k−1HT
k . (9.62)

In cases where several hits on a given detector layer might be compatible with a track
projection, one should choose the one that yields the lowest χ2, given by Eq. (9.60), add
it to the track candidate, update the Kalman state, and use it to extend (predict) the track
further.

A generalized Kalman filter technique, known as combinatorial Kalman filter, may
be used to deal with high track density environments or a high density of noisy measure-
ments [139]. Global/local hybrid track finding techniques based on cellular automata have
also been developed to cope with such situations [94, 127]. A generic Kalman finder/fitter
named GenFit is reported in [108].

9.3 Primary Vertex Reconstruction Techniques

A vertex consists of a point where particles are produced either as a result of a collision
between beam and target particles, by the decay of a particle, or by an interaction of a
particle with the material of the detector. The vertex corresponding to a beam + target
leads to the production of primary particles and is known as a primary vertex, whereas
vertices corresponding to decays are known as secondary vertices. While there are many
commonalities between the identification of primary and secondary vertices, we focus in
this section on the reconstruction of primary vertices.

The primary vertex of a collision corresponds to the point (location) where the collision
between the beam and target particles took place. In fixed-target experiments, the position
of primary vertices is largely constrained by the transverse cross section of the beam and
the physical thickness of the target. By contrast, in collider experiments the position of the
vertex may vary considerably from collision to collision owing to the longitudinal exten-
sion of the colliding beam bunches. The volume spanned by collisions is commonly known
as the collision diamond. The longitudinal and transverse sizes of the collision diamond
are determined by the beam crossing angle and the bunches’ size, two parameters essen-
tially fixed by the design of a collider. While the transverse size of the diamond is typically
rather small (e.g., few hundred microns to few millimeters), the longitudinal extension of
the diamond may be rather long. For instance, at RHIC the Au – Au diamond initially had
an root mean square of approximately 30 cm. This implies one cannot rely on the colli-
sion longitudinal diamond geometry, and one must determine the primary vertex position
collision by collision (event by event). Knowledge of the position of the primary vertex
of a collision is required first and foremost in order to be able to distinguish primary, sec-
ondary, and tertiary particles. It is also useful to establish cuts that suppress pile-up events
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(i.e., corresponding to two or multiple overlapping collisions), useful particularly in high-
luminosity environments such as the LHC proton–proton running. The primary vertex is
typically also used in the refit of primary tracks, given that, as we shall see in the text that
follows, the precision of the position of the primary vertex usually far exceeds that of hits
on tracks and thus enables a very precise constraint in the determination of the curvature
of tracks. Precise knowledge of the primary vertex also enables, once secondary vertices
are found, the measurement of decay length of short-lived particles.

Similarly to track reconstruction, the task of vertex reconstruction nominally involves
two stages known as vertex finding and vertex fitting. Vertex finding typically begins with
all valid tracks produced by the track reconstruction, supplied as a list of track parameter
vectors. We discuss the basic algorithms and methods used for vertex finding in §9.3.1,
which by and large all yield the same outcome consisting of a list of vertex candidates
with their associated tracks. These candidates are then fed to a vertex fitter, which attempts
to use all associated tracks to obtain an optimal vertex position. Selected vertex-fitting
techniques are discussed in §9.3.2.

9.3.1 Vertex Finding

Vertex finding is a task involving the association and classification of reconstructed tracks
of an event into one or several vertex candidates. Three types of vertices are nominally
found. A primary vertex corresponds to the point of interaction between two beam par-
ticles (in a collider geometry) or a beam and a target (in a fixed-target geometry), while
particles produced by the decay of an unstable particle (e.g., /0 → p + π−) are said to
originate from a secondary vertex. A secondary vertex (rarely called tertiary vertex) may
also correspond to the point of production of background particles via the interaction of
primary or secondary particles with the material of the detector.

Primary vertices are usually straightforward to find, particularly in heavy-ion collisions
where they are associated with tens to thousands of particles. Exceptions arise in electron-
positron colliders, for instance, for collisions that produce two short-lived neutral particles
(e.g., ϒ(4S) → B0B̄0). Secondary vertices are usually limited to two or three particles and
are thus more challenging to identify, particularly if they are produced in close proximity
to a primary vertex in central heavy-ion collisions.

A large number of techniques have been devised and implemented in experiments to
determine the position of vertices and their associated tracks. We present few illustrative
examples of such methods and refer the reader to a recent comprehensive review by Stran-
dlie for additional methods and details [178].

Track Clustering Methods
Clustering methods use the distance or proximity between objects (e.g., tracks) or measures
of similarity to classify objects into clusters or groups. A cluster consists of a group of
objects located within a small distance from one another (or with many shared features),
but at a larger distance (or dissimilar features) relative to members of other clusters. There
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are a number of techniques to form clusters, but given the relative nature of the notion of
proximity, it is useful to think in terms of hierarchical clustering or a tree of clusters. Each
object is a leaf on the tree. Objects that are closest together form a small branch, and objects
of two small branches that are close to one another are associated into a bigger branch,
and so on. Clustering methods that begin with the leaves are said to be agglomerative or
associative, whereas those that start at the root, that is, with all the objects, are known as
divisive methods.

In high-luminosity experiments (e.g., in p–p collisions at the LHC), recorded events may
involve a plurality of primary vertices. In some instances, it may be possible to record and
analyze all vertices and their associated tracks, but in general, selection criteria are applied
to choose which vertex is actually of interest. In proton–proton collisions, this could for
instance be the interaction vertex with the largest number of high transverse momentum
tracks (determined based on a sum of the pT of all the tracks associated with a vertex),
while in heavy-ion experiments, one is typically interested in the collision with the largest
multiplicity of associated tracks.

However, note that in TPC-based experiments such as STAR or ALICE, the long drift
and readout time of the TPC may lead to the pile-up of many collisions, and the collision
that triggers the recording of an event is not necessarily the one featuring the largest mul-
tiplicity. Additionally, note that at very high luminosity, there is a finite probability that
two distinct collisions may have primary vertices located so close to one another as to be
virtually indistinguishable.

Various hierarchical and nonhierarchical clustering methods have been evaluated and
documented in the literature (see [187] and references therein). In hierarchical agglomera-
tive clustering, each track starts out as a single cluster. Clusters are then merged iteratively
on the basis of a distance measure. It is important to realize that if two tracks a and b
are close, and tracks b and c are also close, this does not imply that tracks a and c are
necessarily close to one another. The distance between two clusters of tracks must there-
fore be defined as the maximum of the individual pairwise distances, known as complete
linkage in the clustering literature. In contrast, divisive clustering starts out with a sin-
gle cluster containing all tracks. This and subsequent clusters are iteratively divided based
on some maximum distance criterion identifying the presence of outliers. Outliers are re-
moved from a cluster and become the seed of one or several new clusters. The procedure is
iterated until all produced clusters are smaller than a certain preset size and have no outlier
tracks.

The histogramming method (also known as the mapping method) is an agglomerative
technique based on hits from (pixel) detector layers located in close proximity to the beam
axis (or nominal interaction region). It was implemented by the CMS experiment [71] and
various other prior experiments but is otherwise little discussed in the literature, perhaps
because of its intrinsic simplicity of design and implementation.

The technique consists in histogramming the point of intersection of tracklets, mip,
(track consisting of three hits) with the nominal beam axis. Empty bins are discarded and
nonempty bins are scanned. A cluster is defined as a contiguous set of bins separated by
a distance smaller than a preset upper limit *mmax. Clusters are ranked according to their
number of associated tracklets, and only clusters with a number of tracklets exceeding a

1::79�  .�2��80 ������� 
�	���	���
����������291/.����2�/�� ���4�82.0/���2�/892: �8/99

https://doi.org/10.1017/9781108241922.011


493 9.3 Primary Vertex Reconstruction Techniques

10

x

8

6

4

2

0

n
Tr

ac
kl

et
s

30

20

10

0
−20 −2 −1 0 1 2

z
0 20

z

Fig. 9.19 Illustration of the principle of the vertex histogramming method. Fifty tracks were generated by Monte Carlo to
originate from a vertex position at z = 1 cm and to produce hits on four detector layers as shown on the left. To find
this vertex, one scanned the z-axis in small steps, as explained in the text, to find the position that yields the largest
number of tracklets, as shown on the right, where one recovers the actual position of the vertex as a peak in the
number of tracklets reconstructed at z = 1.

preset threshold are considered. Their positions and estimated errors are calculated based
on a weighted average.

A variant of the technique, shown in Figure 9.19, consists in scanning the z-vertex axis
in small steps. For each step, one determines the pitch angle, λ = tan−1(z/x), of the hits
and fills a histogram with these angles. High pT tracks produce hits with similar pitch
angle in the detector layers near the beam axis. One then counts the number of bins with
more than three hits and fills a histogram with the number of tracklets with three or more
hits. Primary vertices are those positions with a number of tracklets exceeding a preset
threshold. This variant presents the advantage of being extremely fast since the number of
operations scales as the number of hits while the first histogramming technique discussed
earlier scales roughly as the number of hits to the 3rd (or 4th) power for 3 (4) hit tracklets.

Other approaches are also possible. For instance, a divisive clusterizer based on the in-
tersection of tracklets, min, with the z-axis has been implemented by the CMS experiment
[71]. Tracks are sorted by increasing value of min and the ordered list is scanned. Clus-
ters are initiated and terminated when the gap between two consecutive track intersections
exceeds a nominal threshold. For each initial cluster, an iterative procedure is applied to
remove incompatible tracks. The discarded tracks are recovered to form a new cluster,
and the same procedure is applied iteratively until there are fewer than two remaining
tracks.

Linear Finders
Linear finders use charged particle track extrapolations near the beam axis (collider geom-
etry) and local linear approximations. Rather than seeking a position P that minimizes the
(average) distance of closest approach to all primary charged tracks, it is simpler and much

1::79�  .�2��80 ������� 
�	���	���
����������291/.����2�/�� ���4�82.0/���2�/892: �8/99

https://doi.org/10.1017/9781108241922.011
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Fig. 9.20 Determination of the primary vertex position based on track pair DCAs. The vertex position is obtained as the
three-dimensional average of all track pair DCA midpoint positions. Only a handful of tracks and pair midpoints are
shown for the sake of clarity.

faster to calculate the mean position of the DCA midpoint of all primary track pairs, as
illustrated in Figure 9.20.

The DCA midpoint, r⃗i j of a pair of tracks (i and j), corresponds to the bisection point of
a segment *r⃗ joining points at closest approach. A technique to calculate the position of
the DCA midpoint is presented in §9.4. The position of the primary vertex S⃗v is estimated
as an average of the DCA midpoint position of all pairs of charged tracks:

Ŝv = 2
n(n − 1)

n∑

i, j=1

r⃗i j, (9.63)

where n is the number of tracks considered in the estimation of the vertex position. Given
an event typically contains a combination of primary, secondary, and tertiary tracks, and
possibly several vertices, one must ensure that the position determined with all tracks is not
arbitrarily pulled toward specific secondary or tertiary particles. This can be accomplished
in part by effecting a maximum DCA cut on the pairs included in the sum. One can also
use an iterative procedure to eliminate outlier tracks from the sample used to evaluate the
primary vertex position. Once an estimate of the primary vertex position is obtained, one
calculates the DCA of all tracks of the sample (using the track-to-point DCA technique
described in §9.4) to eliminate tracks that feature a DCA to the primary vertex in excess
of a selected cut value. The vertex position can then be recalculated using the estimator,
Eq. (9.63), using only tracks that satisfy the DCA cut. The procedure can be iterated until
no further tracks are removed or too few tracks are left in the sample. This method is found
to produce usable and reliable primary vertices when the number of tracks exceeds three.
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Topological Vertex Finders
A general topological vertex finder method, known as ZVTOP, was introduced by Jackson
[112]. It is related to the Radon transform, which is a continuous version of the Hough
transform used for track finding (§9.2.1). The method and its recent developments are
discussed in [178].

9.3.2 Vertex Fitting

Vertex fitting methods commonly used in particle and nuclear physics experiments include
least-squares fitters, notably the Billoir vertex fitter [45], Kalman filter based fitters, as
well as Kalman filters extended into adaptive vertex fitters. The Billoir vertex fitter uses
all tracks associated to the vertex at once and estimates the vertex position by means of a
global least-squares fit. By contrast, Kalman vertex fitters use a seed and proceed iteratively
to add tracks to the vertex. Adaptive vertex fitters are an extension of the Kalman filter
method and assign tracks incrementally to a vertex according to their compatibility with
the vertex. A detailed description of Kalman filter vertex fitters and adaptive vertex fitters
is well beyond the scope of this textbook, but the reader is referred to the review by [178]
for details on these methods. For illustrative purposes, we here describe the Billoir vertex
fitter following the original development of the method by its authors [45].

The Billoir vertex fitting method is based on a local parameterization of tracks in the
vicinity of the vertex point. For convenience, one defines two different coordinate systems:
a global coordinate system defined as the interaction point, and a local coordinate system
in the neighborhood of the vertex point. After the vertex fit, this origin moves to the vertex
point. The goal is to estimate the vertex position in the global reference frame and use
it to recalculate the parameters of tracks in the local (vertex) frame. We demonstrate the
applicability of the method for a uniform magnetic field of intensity |B⃗| and the helix
model stated in Eq. (9.14) as a starting point. The basic idea of the method is to project the
helix trajectories near the local origin of the coordinate system. One may then use a first-
order approximation to describe the local curvature of the tracks and employ all tracks to
obtain an estimate of the vertex position by minimizing a χ2 function. In so doing, one will
obtain an “optimal” vertex position and updated track states and momentum vectors p⃗i. The
parameters relevant for the determination of the DCA to the z-axis are illustrated in Figure
9.21, in which d0 is the transverse impact parameter of the projected helix. It corresponds
to the DCA, or perigee, of the helix to the z-axis. m0 is defined as the longitudinal impact
parameter of the helix and corresponds to the z position of the particle at perigee. φ0 is
the azimuth angle of the momentum vector at the perigee. It is by convention measured
in the range [−π ,π ]; θ is the polar angle, measured in the range [0,π ]; and q/p the
ratio of the charge to the momentum of the particle. The distance d0 is signed according
to the convention illustrated in Figure 9.21. It is defined as positive if φ − φ0 > 0 and
negative otherwise. In the vicinity of a vertex, the trajectory r⃗ of the particle may be locally
expressed as

r⃗(l ) ≈ r⃗(l0) + (l − l0)
dr⃗
dl

∣∣∣∣
l0

+ (l − l0)2

2
d2r⃗
dl2

∣∣∣∣
l0

(9.64)
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Fig. 9.21 Track perigee parameters used in the determination of production vertices with the Billoir vertex fitting method [45].

The parameters d0, m0, φ, θ , and q/p of the point of closest approach to the local z-axis are
shown in Appendix §9.4.3. One finds

d0 = R0 + L2

2hR
, (9.65)

z0 = zP − L cot θP, (9.66)

φ = φP − L
hR

, (9.67)

θ = θP, (9.68)
q
p

= q
pP

. (9.69)

Given prior estimates of the vertex position V⃗0, measured track states s⃗i,0 and momenta p⃗i,0,
we wish to find new momenta p⃗i = p⃗i,0 + δ p⃗i that correspond to the “real” vertex position
V⃗ = V⃗0 + δV⃗ . We then seek to minimize a χ2 function defined as

χ2 =
n∑

i=1

*s⃗ T
i Wi*s⃗i, (9.70)

where n is the number of tracks nominally associated with the vertex and *s⃗i = s⃗i,0 −
F⃗ (V⃗ , s⃗i). The function F⃗ determines the state a track should have given a vertex position V⃗
and momentum vector p⃗. By minimizing the preceding χ2 function, one finds the changes
δV⃗ and δs⃗i that are most compatible with the measured states s⃗i,0. In principle, the function
F⃗ has a nonlinear dependency on both δV⃗ and δs⃗i. However, if the initial estimate V⃗0 is
reasonably close to the real value V⃗ , it is sufficient to use a linear approximation of the
function F⃗ , and one writes

F⃗
(
V⃗ , s⃗i

)
≃ F⃗

(
V⃗0, s⃗i,0

)
+ DiδV⃗ + Eiδs⃗i, (9.71)
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where the coefficients Di and Ei are derivatives of F (V⃗ , s⃗i) with respect to V⃗ and s⃗i eval-
uated at V⃗0 and s⃗i,0. Substituting the preceding expression in Eq. (9.70), one gets the
quadratic function

χ2 ≃
n∑

i=1

(
δs⃗i − DiδV⃗ − Eiδ p⃗i

)T Wi
(
δs⃗i − DiδV⃗ − Eiδ p⃗i

)
, (9.72)

where δs⃗i = s⃗i,0 − F⃗ (V⃗0, s⃗i,0). Minimization of the χ2 must be accomplished simultane-
ously relative to V⃗ and all p⃗i. Setting derivatives with respect to these quantities equal to
zero, one gets

0 =
n∑

i=1

(
DT

i WiDiδV⃗ + DT
i WiEiδ p⃗i − DT

i Wiδs⃗i
)
, (9.73)

0 = ET
i WiDiδV⃗ + ET

i WiEiδ p⃗i − ET
i Wiδs⃗i. (9.74)

For convenience, in order to solve for δV⃗ and δ p⃗i, let us define the following coefficients
and vectors

A =
∑

i

DT
i WiDi, (9.75)

Bi = DT
i WiEi, (9.76)

Ci = ET
i WiEi, (9.77)

T⃗ =
∑

i

DT
i Wiδs⃗i, (9.78)

U⃗i = ET
i Wiδs⃗i, (9.79)

where the sums are taken over particles i = 1, . . . , n. Equations (9.73) and (9.74) may then
be written

0 = AδV⃗ +
∑

i

Biδ p⃗i − T⃗ , (9.80)

0 = BT
i δV⃗ + Ciδ p⃗i − U⃗i. (9.81)

Solving for δV⃗ and δ p⃗i, one obtains the updated vertex and momenta according to

V⃗ = V⃗0 + δV⃗

= V⃗0 +
(

A −
∑

i

BiC−1
i BT

i

)−1 [

T⃗ −
∑

i

BiC−1
i U⃗i

]

, (9.82)

p⃗i = p⃗i,0 + δ p⃗i

= p⃗i,0 + C−1
i

(
U⃗i − BT

i δV⃗
)

. (9.83)

Covariance matrices Cov[V⃗ , V⃗ ], Cov[ p⃗i, p⃗i], and Cov[V⃗ , p⃗i] are provided in [45].
Equations (9.82,9.83) together constitute a (3n + 3) × (3n + 3) matrix equation that

may be rather tedious solve, particularly if the number of tracks n is very large. How-
ever, Billoir and Qian developed a perigee parameterization that alleviates the inversion of
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such a large matrix and uses only small matrices. Discussions of this and more advanced
techniques based on Kalman and adaptive Kalman filter methods are beyond the scope of
this work but may be found in the recent literature [44, 45, 71, 88, 112, 178, 187].

9.3.3 Performance Characterization

A primary vertex finder can be characterized on the basis of its efficiency, the associated
track multiplicity, and the position resolution of the vertices it produces.

The vertex-finding efficiency, ϵV , is defined as the ratio of the number of vertices actually
found, nfound, divided by the actual number of vertices, nproduced.

ϵV = nfound

nproduced
(9.84)

The vertex-finding efficiency typically depends on a wide variety of experimental factors,
including the experimental trigger, the track reconstruction efficiency and resolution, as
well as the specific technique used to reconstruct vertices. While the reconstruction effi-
ciency may be roughly estimated based on the data, it is generally obtained via careful
Monte Carlo modeling (simulations) of the experimental apparatus and its performance.

The number of tracks associated with a particular vertex, or track multiplicity, provides a
basic selection criterion of the quality of reconstructed vertices. It can be used to rank mul-
tiple primary vertices found in events recorded in very high luminosity environments such
as the proton–proton beams at the LHC. It can additionally provide a selection criterion for
reaction types of interest. A maximum multiplicity can be applied, for instance, to iden-
tify quasi diffractive collisions in proton–proton collisions or grazing heavy-ion collisions
involving a single or multiple photon exchanges.

The vertex position resolution improves as the number of pairs included in a measure-
ment of the vertex position increases. Let δri j represent the resolution of the midpoint
positions r⃗i j. Assuming the track sample consists of n primary tracks exclusively, and ne-
glecting correlations in measurements of the positions, one estimates the resolution on
Ŝv as

δSv =

√√√√ 2
n(n − 1)

n∑

i, j=1

δr2
i j. (9.85)

9.4 Appendix 1: DCA Calculations

9.4.1 DCA Straight Line to Fixed Point

The DCA between a straight line l1 and a fixed point P2 can be obtained using the geomet-
rical construction illustrated in Figure 9.22a.
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499 9.4 Appendix 1: DCA Calculations

Fig. 9.22 Calculation of the DCAs between (a) a line l1 and a fixed point S1 and between (b) two lines l1 and l2.

The line l1 is determined by a point P⃗1 and a direction v̂1 (with v̂1 · v̂1 = 1) and can thus
be parameterized as

l⃗1 = P⃗1 + tv̂1, (9.86)

where t ∈ R. The DCA is achieved for a point P⃗3 which belongs to l1 and lies along a line
l2 determined by

l⃗2 = P⃗2 + sv̂2, (9.87)

with s ∈ R, v̂1 · v̂2 = 0 and v̂2 · v̂2 = 1. One thus seeks the values t and s such that l⃗1 = l⃗2:

P⃗1 + tv̂1 = P⃗2 + sv̂2. (9.88)

Multiplying both sides of this equation by v̂1, one gets

P⃗1 · v̂1 + t = P⃗2 · v̂1, (9.89)

where we used the fact that v̂1 is a unit vector by construction perpendicular to v̂2. Solving
for t, we get

t =
(
P⃗2 − P⃗1

)
· v̂1, (9.90)

which uniquely determines the position of the point P⃗3 of l1 closest to P2.

P⃗3 = P⃗1 +
[(

P⃗2 − P⃗1
)
· v̂1

]
v̂1. (9.91)

The DCA is then

DCA =
[(

P⃗3 − P⃗2
)
·
(
P⃗3 − P⃗2

)]1/2
(9.92)

9.4.2 DCA between Two Straight Lines

We calculate the DCA between two straight line l1 and l2 using the geometrical construction
illustrated in Figure 9.22b. The two lines are determined by the points P1 and P2 as well
as the unit vectors v̂1 and v̂2. The points P3 and P4 corresponding to the DCA between the
two lines may be written

P⃗3 = P⃗1 + t1v̂1 (9.93)

P⃗4 = P⃗2 + t2v̂2, (9.94)
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500 Event Reconstruction

where t1, t2 ∈ R. The segment joining these two points is expressed as

P⃗3 − P⃗4 = d*v̂, (9.95)

where d ∈ R is the DCA between the two lines and *v̂ is a unit vector. Substituting the
expressions (9.93) for P⃗3 and (9.94) for P⃗4, we get

P⃗1 + t1v̂1 − P⃗2 − t2v̂2 = d*v̂, (9.96)

which we in turn multiply by v̂1 and v̂2:

P⃗1 · v̂1 + t1 − P⃗2 · v̂1 − t2v̂1 · v̂2 = 0, (9.97)

P⃗1 · v̂2 + t1v̂1 · v̂2 − P⃗2 · v̂2 − t2 = 0, (9.98)

where we have use the fact that *v̂ is by construction perpendicular to both v̂1 and v̂2. A
solution for t1 and t2 may be written

[
t1
t2

]
=

[
1 −v̂1 · v̂2

v̂1 · v̂2 −1

]−1 [
(P⃗1 − P⃗2) · v̂1

(P⃗1 − P⃗2) · v̂2

]
, (9.99)

which determines the position of P⃗3 and P⃗4. The DCA is then

DCA =
[(

P⃗3 − P⃗4
)
·
(
P⃗3 − P⃗4

)]1/2
. (9.100)

9.4.3 DCA between a Helix and the Local z-Axis

Based on Figure 9.21, the position of the perigee may be written

x ≃ −d0 sin φP + (l sin θP) cos φP + l2sin2θP

2hR
sin φP, (9.101)

y ≃ −d0 cos φP + (l sin θP) sin φP + l2sin2θP

2hR
cos φP, (9.102)

z ≃ zP + l cos θP. (9.103)

It is convenient to define L = l sin θP, which can also be written as

L = x cos φ + y sin φ. (9.104)

Writing the radius R of the helix as

R0 = y cos φP − x sin φP, (9.105)

one obtains

R0 = d0 − L2

2hR
. (9.106)
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The parameters of the perigee may then be written

d0 = R0 + L2

2hR
, (9.107)

z0 = zP − L cot θP, (9.108)

φ = φP − L
hR

, (9.109)

θ = θP, (9.110)
q
p

= q
pP

, (9.111)

where d0 and m0 correspond to the DCA of the track relative to the estimated vertex.

9.5 Appendix 2: Multiple Coulomb Scattering

Charged particles passing through a detector medium undergo multiple coulomb scatter-
ing and are thus very likely to change direction. For sufficiently thick media (but not too
thick), the scattering angle θ has a probability density that can be well approximated with
a Gaussian distribution with an RMS angle θ rms

plane given [35] by

θ rms
plane = θ0 = 13.6MeV

βcp
z
√

x
X0

[
1 + 0.038 ln

(
x

X0

)]
, (9.112)

where x is the thickness of the material and X0 is the radiation length of the material. The
radiation lengths of selected materials often used in the construction of detectors are listed
in [35].

A well-designed detector should be thick enough to produce a signal that can be de-
tected with high efficiency but thin enough to limit multiple coulomb scattering effects.
Optimization of the detector is contingent on many factors and depends, in particular, on
the signal-to-noise ratio.

Exercises

9.1 Show that the expression (5.213) simplifies to I.
9.2 Show that the conformal mapping defined by Eqs. (9.8) and (9.9) yields a straight

line (9.11) for circular trajectories given by Eq. (9.10).

1::79�  .�2��80 ������� 
�	���	���
����������291/.����2�/�� ���4�82.0/���2�/892: �8/99

https://doi.org/10.1017/9781108241922.011


10 Correlation Functions

Correlation observables constitute an essential component of the toolset used by re-
searchers in the study of the dynamics of elementary and nuclear collisions, and for mea-
surements of the properties of the matter produced in these collisions. As such, correlation
functions span a wide variety of forms and provide sensitivity to a broad range of phenom-
ena and nuclear matter properties. Although they seemingly take many different forms,
correlation functions all share a core definition and have common properties.

We introduce and motivate the notion of correlation function as an extension of the
concept of covariance between two random variables in §10.1. The concept of correlation
function is, however, not limited to two variables (or fields) and can be readily developed
for an arbitrary number of random variables in the form of cumulant functions, discussed
in §10.2. Cumulants play a very important role, in particular, in studies of collective proper-
ties, such as flow, of the medium produced in high-energy collisions. They are also essential
for proper studies of multiparticle correlations.

Correlation functions can be broadly divided into differential and integral correlation
functions. Differential correlations can be studied as a function of selected kinematical
variables of two or more particles. They may be averaged over all interactions measured
for a given type of collision or studied as a function of global event observables, such
as the total transverse energy or the charged particle multiplicity measured in a specific
kinematic range. The basic definition of inclusive correlation functions, that is, correla-
tion averaged over all events, is introduced in §10.2. Semi-inclusive correlations, measured
as a function of global observables, are discussed in §10.3. (Specific examples involv-
ing correlation measurements as a function of the relative emission angle and rapidity
are discussed in §11.1.1.) The concept of differential correlation functions is extended,
in §10.8, to include correlation functions weighted by particle properties. An example of
such weighted correlation functions involving transverse momentum deviates is presented
in §11.1.5.

Integral correlation functions are introduced in §10.4 in the form of factorial cumu-
lants. They are useful, in particular, for the study of fluctuations of particle multiplicity,
net charge, transverse momentum, or the relative yield of production of different particle
species, discussed in Chapter 11. Measurements of correlation functions also play a cen-
tral role in studies of collective flow, particularly in heavy-ion collisions. Flow constitutes
a subfield of study of its own that encompasses a wide variety of techniques, introduced
here in §11.4.

Correlation functions are subject, like any other observables, to instrumental effects
that must be properly accounted for to extract meaningful physics results. Techniques to

502
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503 10.1 Extension of the Notion of Covariance
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Fig. 10.1 Illustration of the notion of covariance between the particle production yields measured at two points (η1 and η2) in
momentum space with a simple Gaussian correlation model. The left-hand plot shows the pair yield vs. the
pseudorapidities of the particles, average over a large number of events. The right-hand plot displays the number of
particles in the wide rapidity bins shown on the left with dashed lines. It reveals that the particle yields in bins η1 and
η2 are tightly correlated.

account for the finite acceptance of measurements, particle detection efficiency, and vari-
ous other instrumental effects are discussed in §12.4.

10.1 Extension of the Notion of Covariance

We introduce the notion of correlation function on the basis of the covariance of the
number of particles detected event-by-event at two distinct points p⃗1 and p⃗2 in momentum
space, as illustrated in Figure 10.1.

Let Ni represent the number of particles produced in the volumes "i, i = 1, 2, defined
by the ranges pmin

T,i ≤ pT,i < pmax
T,i , ηmin

i ≤ ηi < ηmax
i , and φmin

i ≤ φi < φmax
i centered at p⃗i.

Given the stochastic nature of particle production, the yields Ni are expected to fluctuate
event-by-event. For a given type of particle (and a specific projectile, target, collision en-
ergy, and possibly several other collision system parameters), the yields will have average
values ⟨Ni⟩ that depend on the cross section of the process considered:

⟨Ni⟩ =
∫

"i

d3Ni

d pT dφdη
d pT dφ dη. (10.1)

Fluctuations about each of these means ⟨Ni⟩ are characterized by the variances

Var[Ni] = ⟨N2
i ⟩ − ⟨Ni⟩2. (10.2)

However, it is usually more informative to study the covariance of these two yields:

Cov[N1, N2] = ⟨N1N2⟩ − ⟨N1⟩⟨N2⟩ (10.3)
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504 Correlation Functions

The covariance Cov[N1, N2] is quite obviously a function of the size of the bins $1 and $2

used to measure the yields N1 and N2, respectively, as well as of the coordinates p⃗1 and p⃗2

at which the particle emission is considered. It is thus natural to introduce the notion of
correlation function

C( p⃗1, p⃗2) = 1
"1"2

{⟨N ( p⃗1)N ( p⃗2)⟩ − ⟨N ( p⃗1)⟩⟨N p⃗2)⟩} , (10.4)

defined in the limit in which the bin sizes "1 and "2 vanish. For finite bin sizes, the ratios
⟨N ( p⃗i)⟩/$i provide estimates ρ̂1( p⃗i) of the single particle density ρ1( p⃗i), defined as

ρ1( p⃗i) = d3Ni

pT d pT dφdη
( p⃗i). (10.5)

The term ⟨N ( p⃗1)N p⃗2)⟩ represents the average number of particle pairs detected jointly,
that is, in the same event, at momenta p⃗1 and p⃗2, in bins of size $1 and $2, respectively.
The ratio ⟨N ( p⃗1)N p⃗2)⟩/($1$2) thus provides an estimate ρ̂2( p⃗1, p⃗2) of the two-particle
density, ρ2( p⃗1, p⃗2), defined as

ρ2( p⃗1, p⃗2) = d6Npairs

d pT,1dφ1dη1d pT,2dφ2dη2
( p⃗1, p⃗2). (10.6)

In the limit $1,$2 → 0, one thus gets

C( p⃗1, p⃗2) = ρ2( p⃗1, p⃗2) − ρ1( p⃗1)ρ1( p⃗2). (10.7)

In its most general form, the two-particle correlation function C( p⃗1, p⃗2) is defined as a
function of six coordinates, that is, three momentum coordinates for each particle. How-
ever, a measurement of correlation function can obviously be reduced to a smaller number
of coordinates of interest by integrating (marginalization) over variables that are not of
interest. For instance, it is common to study the correlation functions of produced parti-
cles as a function of the relative angle $φ = φ1 − φ2, or the difference in pseudorapidity
$η = η1 − η2, or both, for specific types of particles (e.g., all charge hadrons, positive
particles only, or only pions, etc.), and within a specific range of transverse momentum,
and for events (i.e., collisions) satisfying specific conditions. We will discuss examples of
such correlation functions in §§11.1 and 11.2. However, it is appropriate to first define cor-
relation functions formally without specific recourse to the notion of covariance, and we
do so in §10.2.

It is important to realize that while particle yields are by definition nonnegative (i.e.,
positive or null), the function C( p⃗1, p⃗2) may be positive, null, or even negative. As for
covariances, a positive value indicates that a rise of the particle yield at p⃗1 is, on average,
accompanied by a rise of the yield at p⃗2, whereas a negative value corresponds to anti-
correlation, so that the rise of the yield at one momentum is accompanied by a decline at
the other momentum point. A null value, of course, implies that the two yields, at the given
momenta p⃗1 and p⃗2, are seemingly independent.
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505 10.2 Correlation Function Cumulants

10.2 Correlation Function Cumulants

10.2.1 Multiparticle Densities and Factorial Moments

Let us consider the distribution of particles produced by a beam a and a target b at a
specific collisional energy

√
s in a specific subvolume " of the total phase space "tot.

For convenience, and without loss of generality, we will here denote all particle kinematic
variables (e.g., px, pT , η, φ, etc.) of a given particle with a single variable y, which we shall
use to identify its position in ". For simplicity’s sake, we will first treat all particles as if
they were of the same type or species, and the kinematic variables of different particles
will be denoted y1, y2, and so on. We will further assume that the probability of finding m
particles at specific values y1, y2, . . . , ym, can be described with an exclusive continuous
probability density function Pm(y1, y2, . . . , ym). Since the particles are assumed to be of
the same species, the PDF Pm(y1, y2, . . . , ym) will be taken to be fully symmetric in the
coordinates y1, y2, . . . , ym. This means that the value of the probability should remain
invariant under exchange of any two variables, for instance:

Pm(y1, y3, y2, . . . , ym) = Pm(y1, y2, y3, . . . , ym). (10.8)

The next step is to connect the joint-probabilities Pm(y1, y3, y2, . . . , ym) to particle den-
sities or invariant cross sections. By construction, inclusive number densities ρn yield a
sequence of inclusive differential functions:

1
σinel

dσ = ρ1(y) dy, (10.9)

1
σinel

d2σ = ρ2(y1, y2) dy1 dy2,

and so on.
Let us first consider the lowest order n = 1. Clearly, the single particle density can be

factorized in terms of the average number of particles emitted, ⟨N⟩, and the probability of
finding a given particle at a specific point y (recall that y here stands for (y,φ, pT ). One
can then write

ρ1(y) = ⟨N⟩P1(y). (10.10)

The pair density can be likewise factorized into the average number of pairs and the proba-
bility of finding particles at y1 and y2 (see §10.3 for alternative derivation of the preceding
and following relations):

ρ2(y1, y2) = ⟨N (N − 1)⟩P2(y1, y2). (10.11)

Similarly, for higher-order densities, one can write

ρn(y1, . . . , yn) = ⟨N (N − 1) · · · (N − n + 1)⟩Pn(y1, . . . , yn). (10.12)
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506 Correlation Functions

Integration of densities over the momentum volume " thus yields the following important
relations:

∫

"

ρ1(y) dy = ⟨N⟩ (10.13)
∫

"

∫

"

ρ2(y1, y2) dy1 dy2 = ⟨N (N − 1)⟩ (10.14)

· · · (10.15)
∫

· · ·
∫

"

ρn(y1, . . . , yn) dy1 · · · dyn = ⟨N (N − 1) · · · (N − n + 1)⟩ (10.16)

which provide the average number of particles, the average number of pairs of particles,
and the average number of n-tuplets of particles produced in the volume ", respectively.
The averages ⟨N (N − 1) · · · (N − n + 1)⟩ are commonly known as factorial moments of
order n.

10.2.2 Definition of Cumulants

In general, inclusive n-particle densities ρn(y1, . . . , yn) are the result of a superposition of
several subprocesses. Indeed, although the n particles might be produced by a single and
specific subprocess, it is also quite possible that they originate from two or more distinct
subprocesses. It is in fact possible that the n particles originate from n distinct and uncorre-
lated subprocesses. The measured n-tuplets of particles may then feature a broad variety of
correlation sources associated with a plurality of dynamic processes. It is thus a common
goal of multiparticle production measurements to identify and study these correlated emis-
sion as distinct (sub)processes. This is best accomplished by invoking correlation functions
known as (factorial) cumulant functions, expressed either in terms of integral correlators or
as differential functions of one or more particle coordinates. Cumulants of order m, here-
after noted Cm, are defined as m-particle densities representing the emission (production)
of m correlated particles originating from a common production process. The emission
of n particles, with n > m, can thus be regarded as a superposition (sum) of several pro-
cesses that together concur to produce a total of n particles. There are obviously several
ways to cluster n particles. An n-particle density can then be expressed as a sum of several
terms yielding n particles, but each with its own cluster decomposition into products of
m-cumulants, as illustrated schematically in Figure 10.2.

Particle densities of the two lowest orders can be expressed in terms of correlation func-
tions cumulants as follows:

ρ1(1) = C1(1) (10.17)

ρ2(1, 2) = C1(1)C1(2) + C2(1, 2). (10.18)

For orders 3 and 4, one gets the much lengthier expressions:

ρ3(1, 2, 3) = C1(1)C1(2)C1(3) + C1(1)C2(2, 3) (10.19)

+ C1(2)C2(1, 3) + C1(3)C2(1, 2) + C3(1, 2, 3)
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Fig. 10.2 Diagrammatic expression of n-particle densities in terms of cumulants. n-particle densities are represented as squares,
while cumulants are denoted by circles and ovals.

ρ4(1, 2, 3, 4) = C1(1)C1(2)C1(3)C1(4) (10.20)

+ C2(1, 2)C1(3)C1(4) + C2(1, 3)C1(2)C1(4)

+ C2(1, 4)C1(2)C1(3) + C2(2, 3)C1(1)C1(4)

+ C2(2, 4)C1(1)C1(3) + C2(3, 4)C1(1)C1(2)

+ C2(1, 2)C2(3, 4) + C2(1, 3)C2(2, 4)

+ C2(1, 4)C2(2, 3) + C3(1, 2, 3)C1(4)

+ C3(1, 2, 4)C1(3) + C3(1, 3, 4)C1(2)

+ C3(2, 3, 4)C1(1) + C4(1, 2, 3, 4),

where we used a shorthand notation indicating the index of the particles rather than kine-
matical variables yi. Higher-order densities may be obtained based on the following ex-
pression:

ρm (1, . . . , m) = Cm (1, . . . , m) +
∑

perm

C1(1)Cm−1(2, . . . , m) (10.21)

+
∑

perm

C1(1)C1(2)Cm−2(3, . . . , m)

+
∑

perm

C2(1, 2)Cm−2(3, . . . , m) + · · · +
m∏

i=1

C1(i)

where “perm” indicates permutations of all particle indexes yielding distinct terms. The-
oretically, cumulants naturally arise as a byproduct of calculations of the cross section of
specific processes yielding specific particle multiplicities. They can be calculated, in partic-
ular, on the basis of cumulant generating functions, such as those introduced in §2.13 and
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discussed in more details in §10.4 (see also [56] and references therein). Experimentally,
the extraction of cumulants is not as direct. They are not readily available experimentally
as raw measurements but must be derived from (efficiency corrected) measurements of
n-particle densities. One finds cumulants of order n must be recursively calculated from
lower order cumulants and densities. For instance, from Eqs. (10.17) and (10.18), one gets

C2(1, 2) = ρ2(1, 2) − ρ1(1)ρ1(2), (10.22)

where, once again, we used a shorthand notation indicating the index of the particles rather
than kinematical variables yi. Inserting the preceding expression for C2 into Eq. (10.19),
and accounting for particle indices, one gets

C3(1, 2, 3) = ρ3(1, 2, 3) −
∑

(3)

ρ1(1)ρ2(2, 3) + 2ρ1(1)ρ1(2)ρ1(3). (10.23)

The symbol (3) is used to indicate that the sum is carried over three permutations of the
indices.1 The fourth-order cumulant is obtained by substitution of second- and third-order
cumulants into Eq. (10.20). One gets

C4(1, 2, 3, 4) = ρ4(1, 2, 3, 4) −
∑

(4)

ρ1(1)ρ3(2, 3, 4) (10.24)

−
∑

(3)

ρ2(1, 2)ρ2(3, 4) + 2
∑

(6)

ρ1(1)ρ1(2)ρ2(3, 4)

− 6ρ1(1)ρ1(2)ρ1(3)ρ1(4),

where the symbols (q) indicate the number of indices permutations over which the sums are
taken. The preceding expressions for cumulants C2, C3, and C4 are illustrated diagrammat-
ically in Figure 10.3. Expressions for higher-order cumulants can be obtained recursively
or from generic relations such as those provided in ref. [123].

In closing this section, it is important to reiterate that cumulants may be negative as
well as positive, or null. Indeed, while the n-densities ρn(1, . . . , n) are by definition either
positive or null, their combinations into cumulants may yield negative values as well as
positive or null values. As for covariances, positive values indicate the yields at coordinates
y1, . . . , ym are correlated, that is, collectively grow or decrease together, while negative
values imply that upward fluctuations of the yields at some coordinate yi are on average
accompanied by downward fluctuations at other points y j ̸=i.

10.2.3 Cumulants Scaling with Source Multiplicity

The cumulants Cn(y1, . . . , yn) feature a simple scaling property for collision systems con-
sisting of a superposition of ms independent (but otherwise identical) subsystems. To
demonstrate this property, consider, for instance, a collision of two large nuclei (A–A col-
lisions) at a specific energy, and let us assume that it can be reduced, to first-order approx-
imation, to a superposition of ms proton-proton (p–p) interactions, which each produce
clusters consisting of n correlated particles. Let us further assume that the production of

1 Permutations are ρ1(1)ρ2(2, 3), ρ1(2)ρ2(1, 3), and ρ1(3)ρ2(1, 2).
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509 10.2 Correlation Function Cumulants

Fig. 10.3 Diagrammatic expression of cumulants in terms of particle densities. Cumulants are denoted by circles and ovals, and
densities by squares. Sub-labels indicate particle indices.

such clusters in p–p may be described by cumulants Cpp
n . At a given impact parameter, A–A

collisions should involve an average of ⟨ms⟩ p–p interactions. This number ms is obviously
anticipated to fluctuate collision by collision, but for a given value of ms, one expects that
the number of clusters of correlated particles of size n should be, on average, ms times
larger than in p–p collisions. The n-cumulant for A–A collisions, at fixed ms, may thus be
written

CAA
n (y1, . . . , yn|ms) = msCpp

n (y1, . . . , yn) (10.25)

Given that ms fluctuates event by event, averaging over all A–A collisions consequently
yields

CAA
n (y1, . . . , yn) = ⟨ms⟩Cpp

n (y1, . . . , yn) (10.26)

for A–A collisions consisting of a superposition of independent and unmodified p–p colli-
sions, and such that produced particles do not interact with one another.

The total multiplicity of particles produced in A–A collisions consisting of ms indepen-
dent and unmodified p–p collisions also features the same simple scaling with ms. Indeed,
if the ms p–p collisions are independent and unmodified, the average multiplicity obtained
in A–A for a given (fixed) value of ms should simply be the product of ms by the average
particle multiplicity produced in p–p, which we can thus write

ρAA
1 (y) = msρ

pp
1 (y) (10.27)

and

⟨n⟩AA = ms⟨n⟩pp. (10.28)
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510 Correlation Functions

This simple property arises because ρ1(y) = C1(y) and the scaling of the first cumulant
CAA

1 (y1) = msC
pp
1 (y1) is trivial. The treatment of pairs, triplets, and higher n-tuplets is,

however, more complicated because higher-order densities, ρn, involve sums of several
terms with varied products of cumulants.

Let us first consider pairs of particles. In an A–A collision consisting of ms independent
p–p interactions, one can form ms times the pairs from individual p–p collisions. But one
can also mix particles from different p–p interactions. Since there are ms(ms − 1) ways of
doing that, one can write

ρAA
2 (y1, y2) = msρ

pp
2 (y1, y2) + ms(ms − 1)ρpp

1 (y1)ρpp
1 (y2). (10.29)

Note that one can obtain the same result using the cumulant decomposition shown in
Eq. (10.22), as follows:

ρAA
2 (y1, y2) = CAA

1 (y1)CAA
1 (y2) + CAA

2 (y1, y2) (10.30)

= m2
sC

pp
1 (y1)Cpp

1 (y2) + msC
pp
2 (y1, y2)

= m2
s ρ

pp
1 (y1)ρpp

1 (y2) + ms
[
ρ

pp
2 (y1, y2) − ρ

pp
1 (y1)ρpp

1 (y2)
]

= ms(ms − 1)ρpp
1 (y1)ρpp

1 (y2) + msρ
pp
2 (y1, y2).

At fixed value of ms, integration over y1 and y2 yields

⟨n(n − 1)⟩AA = ms⟨n(n − 1)⟩pp + ms(ms − 1)⟨n⟩2
pp. (10.31)

For large ms, the scaling of the number of pairs produced in A–A is thus dominated by
the term in ms(ms − 1), which involves uncorrelated, combinatorial pairs from particles
produced by different p–p collisions.

Based on the assumption that A–A collisions consist of ms independent p–p interaction,
it might be tempting to seek a measure of particle correlation in A–A by writing

ZAA
2 (y1, y2) = ρAA

2 (y1, y2) − kρ
pp
1 (y1)ρpp

1 (y2), (10.32)

where the constant k is adjusted so the maximum of the product ρ
pp
1 (y1)ρpp

1 (y2) matches the
minimum of ρAA

2 (y1, y2). A particular application of this approach is known, in the recent
literature, as zero yield at minimum (ZYAM) approximation [16]. However, it should be
clear from the preceding discussion that although Z2(y1, y2), and in particular the ZYAM
approximation, do provide a technique to assess whether ρAA

2 (y1, y2) differs from what is
expected from a trivial scaling, it does NOT constitute a logically consistent measure of
two particle correlations in A–A collisions. Only CAA

2 (y1, y2) defined by Eq. (10.22) does,
although there are several different ways of expressing and measuring C2, which we discuss
in the next section.

Let us next consider the scaling of triplets. We use the decomposition (10.19) and our
shorthand notation to write

ρAA
3 (1, 2, 3) = CAA

1 (1)CAA
1 (2)CAA

1 (3) (10.33)

+ CAA
1 (1)CAA

2 (1, 2) + CAA
1 (2)CAA

2 (1, 3)

+ CAA
1 (3)CAA

2 (2, 3) + CAA
3 (1, 2, 3).
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511 10.2 Correlation Function Cumulants

We next apply the scaling property (10.25) and the expressions (10.22) and (10.23) to get

ρAA
3 (1, 2, 3) = m3

sC
pp
1 (1)Cpp

1 (2)Cpp
1 (3) (10.34)

+ m2
s

∑

perms

Cpp
1 (1)Cpp

2 (2, 3) + msC
pp
3 (1, 2, 3)

=
(
m3

s − m2
s + 2ms

)
ρ

pp
1 (1)ρpp

1 (2)ρpp
1 (3)

+
(
m2

s − ms
) ∑

perms

ρ
pp
1 (1)ρpp

2 (2, 3) + msρ
pp
3 ,

where the sums are carried over distinct permutations of the three particle coordinates.
Integration over the coordinates y1, y2, and y3 yields

⟨n(n − 1)(n − 2)⟩AA =
(
m3

s − m2
s + 2ms

)
⟨n⟩pp (10.35)

+ 3
(
m2

s − ms
)
⟨n(n − 1)⟩pp⟨n⟩pp

+ ms⟨n(n − 1)(n − 2)⟩pp

The average number of triplets in A–A collisions is thus determined mostly by combina-
torics and essentially scales as m3

s ⟨n⟩3
pp, while the role of correlated triplets (from individual

p–p collisions) is suppressed by m2
s . By extension, we conclude that the average number

of n-tuplets in A–A collisions scales as the nth power of ms times the average multiplicity
measured in p–p interactions, and the influence of truly correlated n-tuplets is suppressed
by a factor mn−1

s .

10.2.4 Normalized Cumulants and Normalized Factorial Moments

It is convenient to divide the densities ρn and cumulants Cn by products of one-particle
densities. This leads to the definition of normalized inclusive densities and normalized
cumulants as follows:

rn(y1, . . . , yn) = ρn(y1, . . . , yn)
ρ1(y1) · · · ρ1(yn)

(10.36)

Rn(y1, . . . , yn) = Cn(y1, . . . , yn)
ρ1(y1) · · · ρ1(yn)

(10.37)

The use of ratios of factorial moments ⟨N (N − 1) · · · (N − n + 1)⟩ to the nth power of the
average particle multiplicity ⟨N⟩ is also common:

fn =
⟨N (N − 1) · · · (N − n + 1)⟩

⟨N⟩n
(10.38)

Unfortunately, there is no universally agreed upon notation for either of these quantities.
Indeed, while the quantities are unique and well defined, the labels or notations used to
describe them typically vary from one author to the next. The functions rn and Rn are
often referred to as reduced densities and reduced cumulants, respectively. Likewise, the
normalized factorial moments are often called reduced factorial moments. In this text,
we will use normalized as the qualifier.

It is interesting to consider the scaling behavior of the normalized cumulants
Rn(y1, . . . , yn) for systems consisting of a superposition of m identical subprocesses. Based
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512 Correlation Functions

on the scaling property (10.25), one gets

R(m)
n (y1, . . . , yn) = C(m)

n (y1, . . . , yn)

ρ
(m)
1 (y1) · · · ρ (m)

1 (yn)
= 1

mn−1
R(1)

n (y1, . . . , yn). (10.39)

The normalized n-cumulant of a composite system consisting of m (identical) subsystems
scales inversely as the power m(n−1) times the n-cumulant of the subsystems. The nor-
malized cumulants R(m)

n are consequently said to be diluted by a power mn−1 relative to the
subsystems’ normalized cumulants R(1)

n . This dilution stems from the fact that the cumulant
of order n scales as the number of distinct sources or subsystems while the denominator
is proportional to mn. For instance, the strength of a two-particle cumulant measured in
A–A collisions consisting of m sources is m times the strength of the two-particle cumu-
lant of each of these sources while the total number of pairs scales as m2. The ratio of C2

by ρ1 ⊗ ρ1 thus scales as 1/m. This implies that, in general, measurements of correlation
functions in large colliding systems require a level of statistical precision commensurate
with this dilution effect. Obviously, the impact of combinatorial terms increases as powers
of m. Measurements of higher-order cumulants thus require very large datasets.

It is also interesting to consider the scaling behavior of the normalized factorial moments
fn defined by Eq. (10.38). The scaling of the number of n-tuplets involves a combination
of several terms. We have seen, however, from Eqs. (10.31) and (10.35) that the scaling is
dominated by combinatorial effects that scale as mn. The normalized factorial moments fn

are thus expected to converge toward unity for increasing values of the number of subsys-
tems m contributing to an A–A collision.

We will show in §12.4 that the normalized densities rn, the normalized cumulants Rn,
and the normalized factorial moments all share the property of being robust under par-
ticle losses associated with particle detection efficiencies. We thus recommend their use,
experimentally, against other observables.

It is useful to also note that a simple relationship exists between the normalized densities
rn and the normalized Rn. Indeed, based on the definitions of the normalized densities and
normalized cumulants, one finds

r2(1, 2) = 1 + R2(1, 2) (10.40)

r3(1, 2, 3) = 1 +
∑

(3)

R2(1, 2) + R3(1, 2, 3) (10.41)

r4(1, 2, 3, 4) = 1 +
∑

(6)

R2(1, 2) +
∑

(3)

R2(1, 2)R2(3, 4) (10.42)

+
∑

(3)

R3(1, 2, 3) + R4(1, 2, 3, 4)

r5(1, 2, 3, 4, 5) = 1 +
∑

(10)

R2(1, 2) +
∑

(15)

R2(1, 2)R2(3, 4) (10.43)

+
∑

(10)

R3(1, 2, 3)R2(4, 5) +
∑

(10)

R3(1, 2, 3)

+
∑

(5)

R4(1, 2, 3, 4) + R5(1, 2, 3, 4, 5),
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513 10.3 Semi-inclusive Correlation Functions

with similar expressions for higher-order densities. Sums are to be carried on the indicated
number, (m), of permutations of the particle indices.

10.2.5 Particle Probability Densities

The integration (10.13) of particle densities ρn(y1, . . . , yn) over the momentum volume "

provides a natural and convenient normalization to define particle probability densities:

Pn(y1, . . . , yn) = ρn(y1, . . . , yn)
⟨N (N − 1) · · · (N − n + 1)⟩

, (10.44)

which expresses the probability (per unit volume) of finding n particles jointly, or simul-
taneously, at coordinates y1, . . . , yn. It is also interesting to consider the normalization of
these probability densities by products of single particle probability densities P1(y), as
follows:

qn(y1, . . . , yn) = Pn(y1, . . . , yn)
P1(y1) · · · P1(yn)

. (10.45)

The functions qn(y1, . . . , yn) equal unity if the production of particles 1 to n is statisti-
cally independent, that is, if the probability densities Pn(y1, . . . , yn) factorize into products
P1(y1) · · · P1(yn). Substituting the expression (10.44) for n-particles and single particle den-
sities into the expression of normalized densities, one gets

rn(y1, . . . , yn) =
⟨N (N − 1) · · · (N − n + 1)⟩

⟨N⟩n
qn(y1, . . . , yn), (10.46)

which tells us that correlated particle production occurs in part because of genuine correla-
tions, that is, for qn(y1, . . . , yn) ̸= 1 and in part because of simple multiplicity fluctuations,
that is, for ⟨N (N − 1) · · · (N − n + 1)⟩ /⟨N⟩n ̸= 1. Evidently, qn ̸= 1 is required, no matter
what, to yield nonvanishing normalized cumulants Rn. As an example, consider that the
normalized two-particle cumulant may be written

R2(y1, y2) =
⟨N (N − 1)⟩

⟨N⟩2
q2(y1, y2) − 1. (10.47)

The strength of two-particle correlations is thus determined both by the function q2(y1, y2)
and the amplitude of multiplicity fluctuations, which yield ⟨N (N − 1)⟩/⟨N⟩2 ̸= 1.

10.3 Semi-inclusive Correlation Functions

Elementary hadron collision processes are typically rather complex and lead to stochastic
fluctuations of the produced particle multiplicity, m. The probability Pm of encountering an
event with a specific value of multiplicity m depends on the cross section of the process
that produces the m particles relative to processes that lead to other values of multiplicity:

Pm = σm/
∑

m′

σm′ . (10.48)
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514 Correlation Functions

Given the laws of momentum and energy conservation, charge conservation, and other
quantum numbers, it is reasonable to expect that the n-particle densities associated with
collisions that produce different multiplicities, m, might be quite different. It is thus of in-
terest to consider n-particle densities for collisions that produce multiplicities m explicitly
for “all” values of m. This leads to the notion of semi-inclusive n-densities and n-cumulants
measured for specific values of m. For simplicity’s sake, we restrict our discussion to single-
and two-particle densities only, but the notions introduced here can be extended straight-
forwardly to all orders n.

As in prior sections, we use the symbol yi to represent all momentum coordinates of a
particle (i.e., transverse momentum, rapidity, and azimuthal angle) in aggregate. But, again
for simplicity’s sake and without loss of generality, one may also regard the variables yi as
representing rapidity variables exclusively.

Single- and two-particle density distribution, expressed as a function of yi, may be
written

ρ
(m)
1 (y) = 1

σm

dσm

dy
(10.49)

ρ
(m)
2 (y1, y2) = 1

σm

d2σm

dy1dy2
.

The inclusive single- and two-particle densities are averages of the semi-inclusive distribu-
tions determined by the relative probabilities of these processes:

ρ1(y) =
∑

m

Pmρ
(m)
1 (y) (10.50)

ρ2(y1, y2) =
∑

m

Pmρ
(m)
2 (y1, y2).

The two-cumulants of the semi-inclusive processes of multiplicity m are by definition

C(m)
2 (y1, y2) = ρ

(m)
2 (y1, y2) − ρ

(m)
1 (y1)ρ (m)

1 (y2). (10.51)

It is convenient to define density deviates $ρ (m)(yi) = ρ
(m)
1 (yi) − ρ1(yi), and introduce two

new functions, noted CS (y1, y2) and CL(y1, y2), defined as

CS (y1, y2) =
∑

m

PmC(m)
2 (y1, y2) (10.52)

CL(y1, y2) =
∑

m

Pm$ρ (m)(y1)$ρ (m)(y2). (10.53)

It is then straightforward to verify (see Problem 10.2) that the inclusive two-cumulant
C2(y1, y2) may be written

C2(y1, y2) = CS (y1, y2) + CL(y1, y2). (10.54)

The function CS (y1, y2) corresponds to the average of the semi-inclusive two-cumulants
and as such is quite sensitive to the actual collision dynamics, while the term CL(y1, y2)
arises from the mixing of different event topologies (multiplicity) in the two-cumulant
calculation and has consequently little to do with actual particle correlations. The label S
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515 10.4 Factorial and Cumulant Moment-Generating Functions

and L have a historical origin and are often misleadingly referred to as “short-” and “long-”
range correlation terms.

Given the expression (10.52), a normalized form of CS may be defined as

RS (y1, y2) = CS (y1, y2)
∑

m Pmρ
(m)
1 (y1)ρ (m)

1 (y2)
(10.55)

=
∑

m Pmρ
(m)
2 (y1, y2)

∑
m Pmρ

(m)
1 (y1)ρ (m)

1 (y2)
− 1.

Analogous expressions may be derived for three- or more particle correlations [128].

10.4 Factorial and Cumulant Moment-Generating Functions

We saw in §2.10 that it is useful to introduce the notions of moment-generating function and
characteristic function to facilitate the calculation of the moments of probability density
functions. Indeed, recall that the moment-generating function

Mx(t ) = E
[
etx] =

∫ ∞

−∞
etx f (x) dx, t ∈ R (10.56)

yields moments of the function f (x) at all orders:

µ′
k = dk

dtk
E

[
etx]

∣∣∣∣
t=0

= dk

dtk
Mx(t )

∣∣∣∣
t=0

. (10.57)

It is also convenient to introduce generating functions for factorial moments and for cu-
mulant moments. We derive expressions for these moments in the following paragraphs.
Examples of application are discussed later in this section.

The probability Pm of a semi-inclusive process yielding m particles is determined by its
cross-section σm relative to the total inelastic cross section

Pm ≡ σm∑
m σm

= σm

σinel
. (10.58)

Inclusive densities of order n may consequently be written

ρn(y1, . . . , yn) =
∑

m

Pmρ (m)
n (y1, . . . , yn) (10.59)

where the functions ρ
(m)
n (y1, . . . , yn) are n-particle densities for processes that produce

exactly m particles (m ≥ n). Integration of the single density ρ
(m)
1 (y) over the fiducial range

y is by construction equal to the multiplicity m:
∫

"

ρ
(m)
1 (y) dy = m. (10.60)

Integration of the inclusive density over the range " consequently yields
∫

"

ρ1(y) dy =
∑

m

Pm

∫

"

ρ
(m)
1 (y) dy =

∑

m

Pmm = ⟨m⟩. (10.61)
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516 Correlation Functions

Likewise, integration of two-particle densities ρ
(m)
2 (y1, y2) yields m(m − 1), which is the

number of particle pairs one can form with m particles. And for higher-order densities, one
gets

∫

"

ρ (m)
n (y1, . . . , yn) dy1 · · · dyn = m(m − 1) · · · (m − n + 1). (10.62)

Integration of inclusive functions consequently yield the averages

F̃n ≡
∫

"

ρn(y1, . . . , yn) dy1 · · · dyn (10.63)

=
∑

m

Pm

∫

"

ρ (m)
n (y1, . . . , yn) dy1 · · · dyn (10.64)

=
∑

m

Pmm(m − 1) · · · (m − n + 1) (10.65)

= ⟨m(m − 1) · · · (m − n + 1)⟩ (10.66)

≡ ⟨m[n]⟩, (10.67)

where we have introduced the alternative notation ⟨m[n]⟩ for (nonnormalized) factorial mo-
ments. The aforementioned development suggests the introduction of a moment-generating
function as follows:

G(z) = 1 +
∞∑

n=1

zn

n!
F̃n (10.68)

= 1 +
∞∑

n=1

zn

n!

∫

"

ρn(y1, . . . , yn) dy1 · · · dyn (10.69)

Given a generating function G(z), the moments F̃n may then be obtained from (see Problem
10.4)

F̃n = dnG(z)
dzn

∣∣∣∣
z=0

(10.70)

We next use Eq. (10.65) to derive expressions for the probabilities Pn. Assuming there is a
value n = N beyond which all probabilities Pn vanishes, one can write

PN = F̃N

N!
(10.71)

since terms in Pn<N cannot contribute to F̃N and by hypothesis, there are no terms with
n > N . The (N − 1)th factorial moment may be written

F̃N−1 = PN−1(N − 1)! + PN
N!
1!

(10.72)

from which we find

PN−1 = 1
(N − 1)!

{
F̃N−1 − F̃N

1!

}
(10.73)
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517 10.4 Factorial and Cumulant Moment-Generating Functions

Proceeding recursively, one finds

Pn = 1
n!

N−n∑

k=0

(−1)k F̃k+n

k!
for n = 0, 1, . . . , N. (10.74)

Introducing factorial cumulants

fn =
∫

"

dy1 · · ·
∫

"

dynCn(y1, . . . , yn) (10.75)

where Cn(y1, . . . , yn) are cumulants of order n, one can show that that factorial moments
F̃n of order n ≤ 5 may be written

F̃1 = f1 (10.76)

F̃2 = f2 + f 2
1

F̃3 = f3 + 3 f2 f1 + f 3
1

F̃4 = f4 + 4 f3 f1 + 3 f 2
2 + 6 f2 f 2

1 + f 4
1

F̃5 = f5 + 5 f4 f1 + 10 f3 f2 + 10 f3 f 2
1 + 15 f 2

2 f1 + 10 f2 f 3
1 + f 5

1

and for higher moments,

F̃n = n!
∑

{li}n

n∏

j=1

(
f j

j!

)l j 1
l j!

(10.77)

where the summation is done for permutations satisfying
∑q

l=1 ili = q.
Factorial cumulant generating functions can be introduced similarly to the generating

functions of basic cumulants discussed in §2.13.1. One writes

ln G(z) = ⟨n⟩ z +
∞∑

k=2

zk

k!
fk (10.78)

and consequently,

fn = dn ln G(z)
dzn

∣∣∣∣
z=0

(10.79)

The preceding equations are useful if the generating function G(z) can be calculated
directly. For instance, for a Poisson distribution [128],

Pn = e−⟨n⟩ ⟨n⟩n

n!
, (10.80)

the generating function is

G(z) =
∞∑

n=0

Pn(1 + z)n = e−⟨n⟩
∞∑

n=0

⟨n⟩n

n!
(1 + z)n (10.81)

= exp (⟨n⟩ z) . (10.82)
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518 Correlation Functions

Equation (10.70) then yields

F̃m = ⟨n⟩m. (10.83)

One can also verify from (10.79) that f1 = ⟨n⟩ and that for m > 1, one gets fm ≡ 0, as
expected, since Poisson statistics implies the production of uncorrelated particles and cu-
mulants of order m ≥ 2 must vanish.

10.5 Multivariate Factorial Moments

The factorial moments F̃n and cumulant moments fn characterize multiplicity fluctuations
in a single phase-space region or cell ". Short of considering fully differential correlation
functions such as those presented in §10.2, one can also consider multivariate factorial
moments based on the multiplicities measured in two or more phase space regions. For
nonoverlapping regions "m and "m′ , one may thus define twofold factorial moments, or
correlators, as

F̃pq =
〈
n[p]

m n[q]
m′

〉
, (10.84)

where nm and nm′ are the number of particles in region m and m′, respectively. Normalized
correlators are defined according to

f̃ pq =

〈
n[p]

m n[q]
m′

〉

F̃pF̃q
. (10.85)

Extensions to higher-order correlators are also possible.
Multifold correlators of this type find applications in high-energy physics for the study

of self-similar particle production behavior (intermittency), in radio- and radar-physics as
well as in quantum optics. They are discussed in more detail in ref. [128].

10.6 Correlation Functions of Nonidentical Particles

We have so far considered correlation cumulants, factorial moments, and normalized cu-
mulants for the study of correlation of identical or indistinguishable particles. However,
these functions may also be used for the study of correlations of nonidentical particles. In
the context of data analyses, nonidentical particles could be particles of different species,
different charges, or those belonging to distinct kinematical ranges. For instance, one may
be interested in studying correlations between pions and kaons, or correlations between
positively and negatively charged particles, or even correlations between low pT and high
pT particles.

Multiparticle densities are once again denoted ρn(y1, . . . , yn), but it is now understood
that the coordinates y1, . . . , yn apply to distinguishable particles, either because of their
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519 10.6 Correlation Functions of Nonidentical Particles

species type or because of their kinematical variable attribute or range.2 As such, the den-
sities ρn(y1, . . . , yn) are no longer symmetric under interchange or permutation of the coor-
dinates of the y1, . . . , yn. One must in particular recognize the functions ρ1(y1) and ρ1(y2)
as distinct single particle densities. Their integration over fiducial volumes "1 and "2

yields the average number of particles of type 1 and type 2, respectively,

∫

"1

ρ1(y1) dy1 = ⟨N1⟩ (10.86)

∫

"2

ρ1(y2) dy2 = ⟨N2⟩.

Similarly, integration of the two-particle density ρ2(y1, y2) yields the average number of
pairs

∫

"1

dy1

∫

"2

dy2ρ2(y1, y2) = ⟨N1N2⟩ (10.87)

produced within the acceptance "1 ⊗ "2. Likewise, integration of higher-order densities
ρn(y1, . . . , yn) yield the average number of n-tuplets. For triplets, one has

∫

"1

dy1

∫

"2

dy2

∫

"3

dy3ρ3(y1, y2, y3) = ⟨N1N2N3⟩, (10.88)

where N1, N2, and N3 represent the number of particles of type 1, 2, and 3 measured event
by event. Note, however, that it may often be of interest to mix distinguishable and indis-
tinguishable particles. For instance, one might wish to study the correlation function of
particle triplets involving one high pT particle, emitted above a specific minimum thresh-
old, and two low pT particles. The integration of ρ3(y1, y2, y3) would then yield

∫

"1

dy1

∫

"2

dy2

∫

"2

dy3ρ3(y1, y2, y3) = ⟨N1N2(N2 − 1)⟩, (10.89)

where N1 and N2(N2 − 1) represent the number of high pT particles and the number of
low pT particle pairs measured event by event, respectively. Similar considerations apply
to higher-order densities.

Correlation cumulants for distinguishable particles of all orders may be defined similarly
to those of indistinguishable particles. Second-order cumulants are written

C2(y1, y2) = ρ2(y1, y2) − ρ1(y1)ρ1(y2), (10.90)

where it is now understood that the variables y1 and y2 apply to particles of different
species, different types (e.g., positive and negative charges), or different kinematic ranges
(e.g., forward and backward production, or high and low transverse momentum).

2 Once again in this section, and unless otherwise noted, yi is meant to represent all kinematical variables of
particles, such as pT , η, and φ.
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520 Correlation Functions

Normalized densities and cumulants are defined as for distinguishable particles as fol-
lows:

rn(y1, . . . , yn) = ρn(y1, . . . , yn)
ρ1(y1) · · · ρ1(yn)

(10.91)

Rn(y1, . . . , yn) = Cn(y1, . . . , yn)
ρ1(y1) · · · ρ1(yn)

.

Given their identical structure, the functions Cn(y1, . . . , yn) and Rn(y1, . . . , yn) obey the
same scaling relations with the number of sources as for distinguishable particles:

C(m)
n (y1, . . . , yn) = mC(1)

n (y1, . . . , yn) (10.92)

R(m)
n (y1, . . . , yn) = 1

mn−1
R(1)

n (y1, . . . , yn),

where m stands for the number of identical sources producing correlated n-tuplets.
All in all, correlation functions of indistinguishable particles have very similar properties

and behaviors as those constructed for distinguishable particles. However, there is also
a common practice of defining so-called “per trigger” correlation functions. These are
usually obtained by counting the number of particles in a given low pT range associated
with a “trigger” particle found in a higher pT range as a function of some relative kinematic
variable such as $φ, which is the difference between the azimuthal angle of the particles, or
$η, corresponding to the difference between their pseudorapidities. A measurement of per
trigger correlation thus amounts to a number of trigger–associate pairs, Npairs, normalized
by the number of trigger particles, NT . This can be done in two ways. The event-by-event
(ebye) method consists in calculating the number of pairs per trigger on an event-by-event
basis:

CT,ebye =
〈

Npairs

NT

〉
. (10.93)

By contrast, the inclusive method involves a ratio of averages.

CT,inc =
〈
Npairs

〉

⟨NT ⟩ . (10.94)

While the event-by-event method seems more intuitive, it hides and complicates the fact
that not all particle pairs are correlated. The inclusive method, on the other hand, readily
translates into simple integrals of the single- and two-particle cross sections. For instance,

CT,inc(yT , yA) =
∫
"T

dxT
∫
"A

dxAρ2(xT , yT , xA, yA)
∫
"T

dxT dyT ρ1(xT , yT )
(10.95)

is a per trigger measure of the average number of pairs of trigger (T) and associate (A)
particles per trigger, expressed as a function of the coordinates yT and yA. The number
of pairs is integrated over kinematic variables xT and xA, and the number of triggers is
obtained by integration over both yT and xT . In a practical case, y could stand for the
pseudorapidity and x for both pT and azimuthal angle φ of the particles.
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521 10.7 Charge-Dependent and Charge-Independent Correlation Functions

The inclusive method has the additional advantage of being trivially related to simple
integrals of single- and two-particle density functions defined earlier in this section. For
instance, the per trigger function (10.95) may be written

CT,inc(yT , yA) = ρ2(yT , yA)
⟨NT ⟩

(10.96)

CT,inc(yT , yA) = ρ1(yT )ρ1(yA)rn(yT , yA)
⟨NT ⟩

.

It is to be noted, however, that neither CT,inc nor CT,ebye are actual correlation functions since
they are not based on cumulants, and as such do not account for nor remove combinatorial
contributions to the pair production cross section. In other words, both functions could be
nonvanishing even in the absence of actual correlations. Additionally, note that the common
practice of subtracting the minimal value of CT,inc(yT , yA) from the function to seek an
estimate of the “true” correlation is not logically consistent, since it may actually over- or
undersubtract the combinatorial contributions. A better and logically consistent estimate of
the number of correlated associates is obtained by using cumulants. One can, for instance,
define the per trigger cumulant

KT,inc(yT , yA) = C2(yT , yA)
⟨NT ⟩

(10.97)

where the cumulant C2(yT , yA) is obtained according to Eq. (10.90). Note, however, that
since C2(yT , yA) is not necessarily positive definite, KT,inc(yT , yA) may also end up being
negative for selected ranges of the variables yT and yA. That simply reflects the fact that
the notion of per trigger correlated associates is not a very well defined quantity in general,
although it may apply in the context of two-component particle production models.

The notion of per trigger correlation function may be generalized to higher-order densi-
ties or cumulants:

Kn(y1, y2, . . . , yn) = Cn(y1, y2, . . . , yn)
⟨N1⟩

(10.98)

where, for instance, particle 1 is assumed to be the trigger and particles 2 to n are the
associates.

10.7 Charge-Dependent and Charge-Independent
Correlation Functions

Conservation laws play a central role in shaping and constraining particle production.
Charge conservation, in particular, dictates that the production (or destruction) of a neg-
ative particle must necessarily be accompanied by the production (or destruction) of a
positive particle. It applies both locally, where particles are created in space, as well as
globally (i.e., for an entire collision). While the dynamics of collisions (momentum trans-
fer, pressure, and so on) largely drive the transverse momenta, rapidity, and angle at which
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particles are produced, they cannot erase the common origin of positive and negative parti-
cle pairs. It is thus interesting to define charge-independent (CI) and charge-dependent
(CD) correlation functions cumulants. In the study of two-particle correlations, one may
separate the pairs according to their (electric) charge, and measure two-particle densities
and cumulants for (+,+), (−,−), and (+,−) separately. The CI and CD cumulants are
thus defined as follows:

CCI(y1, y2) = 1
4

{C+−(y1, y2) + C−+(y1, y2) (10.99)

+ C++(y1, y2) + C−−(y1, y2)}

CCD(y1, y2) = 1
4

{C+−(y1, y2) + C−+(y1, y2)

− C++(y1, y2) − C−−(y1, y2)} .

One may likewise define CI and CD normalized cumulants as follows:

RCI(y1, y2) = 1
4

{R+−(y1, y2) + R−+(y1, y2) (10.100)

+ R++(y1, y2) + R−−(y1, y2)}

RCD(y1, y2) = 1
4

{R+−(y1, y2) + R−+(y1, y2)

− R++(y1, y2) − R−−(y1, y2)}

In very high-energy collisions, particle production at mid-rapidities (y ≈ 0) yields ap-
proximately equal numbers of positive and negative particles, ρ+(y) ≈ ρ−(y). Defining
ρ1(y) = ρ+(y) + ρ−(y), one expects

RCI(y1, y2) ≈ 1
ρ1(y1)ρ1(y2)

{C+−(y1, y2) + C−+(y1, y2) (10.101)

+ C++(y1, y2) + C−−(y1, y2)}

= C2(y1, y2)
ρ1(y1)ρ1(y2)

= R2(y1, y2).

where C2 is obtained by summing over all pairs, i.e., (+,+), (+,−), (−,+), and (−,−).
This relationship is, however, not strictly valid at “low” energy or in regions of momentum
space where the yields of positive and negative particles differ appreciably.

The functions CCI and CCD have properties and scaling behaviors similar to those of the
more basic functions C2. In particular, their amplitude is expected to be proportional to
the number of sources m in a system consisting of independent sources. Consequently, the
functions RCI and RCD are expected to scale as 1/m, similarly to the generic normalized
cumulant R2 functions.

It is also of common practice to study balance functions to determine how the pro-
duction of positively charged particles is balanced by the production of negatively charged
particles. Balance functions are typically defined and integrated in a fixed kinematic range
(e.g., the pseudorapidity η). Steffen et al. [30], for instance defined a balance function as

B($η) = 1
2

{ ⟨N+−($η)⟩ − ⟨N++($η)⟩
⟨N+⟩

+ ⟨N−+($η)⟩ − ⟨N−−($η)⟩
⟨N−⟩

}
, (10.102)
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523 10.8 Generalized (Weighted) Correlation Functions

where ⟨Nαβ ($η)⟩ is the number of particle pairs of type (α, β ) measured at a given pseudo-
rapidity interval $η, while ⟨N+⟩ and ⟨N−⟩ are the average number of positive and negative
particles produced in that same interval, respectively. The balance function B($η) can be
expressed in terms of the normalized cumulant RCD(y1, y2) (see Problem 10.1). A more
detailed discussion of the balance function is presented in §11.1.3.

While the correlation functions CCD and RCD and the balance function B were first in-
troduced for the study of charged particles, their use can be narrowed to specific particle
species, that is, π+ relative to π−, or K+ vs. K−. They can also be extended to any con-
served quantities, for instance, the net strangeness or the net baryon number. For baryons,
one could, for instance, write

RNet−B(y1, y2) = 1
4

{
RBB(y1, y2) + RBB(y1, y2) − RBB(y1, y2) − RBB(y1, y2)

}
(10.103)

RNet−B(y1, y2) quantifies the correlation between produced baryons (e.g., protons) and anti-
baryons (e.g., anti-protons). As such, it provides an invaluable tool to study both the pro-
duction and transport of baryons in nuclear collisions.

10.8 Generalized (Weighted) Correlation Functions

Just as it is possible and meaningful to study the expectation value of a function g(x) of a
continuous random variable x determined by a PDF f (x)

E[g(x)] =
∫

g(x) f (x) dx, (10.104)

one can also study generalized correlation functions that involve functions g(x1, . . . , xn) of
the particle coordinates x1, x2, . . . , xn. Effectively, such generalized correlation functions
are a measure of the average of the function g(x1, . . . , xn). Since it is not necessary to
integrate all particle coordinates, we label coordinates to be integrated over as x1, . . . , xn,
and those not to be integrated over as y1, . . . , yn. By strict definition of an average, one can
consequently define weighted densities functions as follows:

⟨g(y1, . . . , yn)⟩ =
∫
"

g(x1, . . . , xn)ρn(x1, y1, . . . , xn, yn)
∏n

i dxi∫
"

ρn(x1, y1, . . . , xn, yn)
∏n

i dxi
. (10.105)

If the integration is taken over all particle coordinates, that is, for both the xi and yi co-
ordinates, the preceding function become an integral correlator defined over the fiducial
volume ":

⟨g⟩n =
∫
"

g(x1, . . . , xn)ρn(x1, y1, . . . , xn, yn)
∏n

i dxidyi

⟨N (N − 1) · · · (N − n + 1)⟩
. (10.106)

As a practical example of a generalized correlation function, consider a two-particle aver-
age of the product $x1$x2, in other words, with

g(x1, x2) = $x1$x2, (10.107)
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where $xi = xi − ⟨x⟩(y1, y2), and ⟨xi⟩(y1, y2) stands for the average value of x evaluated as

⟨xi⟩(y1, y2) =
∫
"

xiρ2(x1, y1, x2, y2) dx1 dx2∫
"

ρ2(x1, y1, x2, y2) dx1 dx2
. (10.108)

Additionally, defining ⟨x1x2⟩(y1, y2) as

⟨x1x2⟩(y1, y2) =
∫
"

x1x2ρ2(x1, y1, x2, y2) dx1 dx2∫
"

ρ2(x1, y1, x2, y2) dx1 dx2
, (10.109)

one finds that Eq. (10.105) may be written, for n = 2, and g(x1, x2) = $x1$x2,

⟨$x1$x2⟩(y1, y2) = ⟨x1x2⟩(y1, y2) − ⟨x1⟩(y1, y2)⟨x2⟩(y1, y2), (10.110)

which defines the covariance of variables x1 and x2 evaluated as a function of the parti-
cle coordinates y1 and y2. Integration over y1 and y2 yields the system wide covariance
⟨$x1$x2⟩. Practical implementations of differential and integral correlation function, with
x ≡ pT , are discussed in §§11.1.5 and 11.3.5.

10.9 Autocorrelations and Time-Based Correlation Functions

Autocorrelation and time-based correlation functions are commonly used for the study
of signals that vary with time and to identify repetitive behaviors, time ordering, and/or
dependencies.

An autocorrelation is usually defined as the cross-correlation between a signal and itself
at prior time. Consider a random process X that may be measured repeatedly in several
“runs” indexed by an integer i. Further assume the process is measured as a function of
time and yields a signal xi(t ), where the time t may be expressed either in discrete steps
or as a continuous variable. Let µ(t ) and σ (t ) represent the expectation value and the
standard deviation of the signal X at a given time t (or in a given time step), respectively.
The autocorrelation of the signal between two times t1 and t2 is defined as

Rx(t1, t2) = E [(x(t2) − µ(t2)) (x(t1) − µ(t1))]
σ (t1)σ (t2)

. (10.111)

Obviously, this definition is meaningful provided the variances σ (t1) and σ (t2) are finite.
Variants of this definition includes applications where the means are not subtracted, and no
division by the standard deviations is carried out. If the signal is stable, the strength of the
correlation becomes exclusively a function of the time difference .

A time-based correlation function between two signals X (t ) and Y (t ) is similarly defined
as

Rxy(t1, t2) =
E

[
(x(t2) − µx(t2))

(
y(t1) − µy(t1)

)]

σxσy
, (10.112)

where µx(t ) and µy(t ) are the expectation values of the signals x and y, respectively.
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525 Exercises

Exercises

10.1 Express the balance function B($η) given by Eq. (10.102) in terms of the normalized
cumulant RCD(y1, y2) given by Eq. 10.101), and single particle densities ρ1(yi), or
their integrals.

10.2 Derive the expression of the inclusive two-cumulant, Eq. (10.54), in terms of the
functions CS and CL defined by Eqs. (10.52) and (10.53).

10.3 Derive an expression for the inclusive three-cumulant.
10.4 Verify that the expression (10.68) yields the factorial moments F̃n by explicitly cal-

culating the lowest four-order moments.

1::79�  .�2��80 ������� 
�	���	���
����������291/.����2�/�� ���4�82.0/���2�/892: �8/99

https://doi.org/10.1017/9781108241922.012


11 The Multiple Facets of Correlation Functions

The notion of correlation function, defined in Chapter 10, can be extended and adapted
toward the study of a wide range of observables designed to investigate specific aspects
of nuclear collision dynamics or properties of the matter produced in elementary particle
and nuclear collisions. Figure 11.1 displays an overview of the many correlation functions
and fluctuation measures commonly used by particle and nuclear physics in their study of
nuclear collisions.

In this chapter, we examine several types of correlation functions in detail, beginning
with a discussion of two-particle differential correlation functions in §11.1 and a cursory
look at three-particle correlations in §11.2. Several integral correlators commonly used
in high-energy nuclear for measurements of event-by-event fluctuations are presented in
§11.3. The chapter ends with a comprehensive discussion of flow measurement techniques.

11.1 Two-Particle Correlation Functions

Two-particle correlation functions play an important role in the study of collision dynam-
ics in nucleus-nucleus collisions as well as in elementary particle interactions (e.g., pp, p̄p,
e+e−, ep, and so on). Azimuthal correlations, in particular, have been instrumental in the
discovery of jet quenching by the opaque and dense medium (QGP) formed in central A–A
collisions studied at the Relativistic Heavy-Ion Collider (BNL) and the Large Hadron Col-
lider (CERN) [11]. Such correlations may be studied between indistinguishable particles
in identical kinematic ranges, or with particles of different types, species, or belonging to
distinct kinematic ranges.

We begin with a description of two-particle azimuthal correlations in §11.1.1 and extend
the discussion to joint azimuthal and rapidity correlations in §11.1.2.

11.1.1 Two-Particle Azimuthal Correlation Functions

Momentum and energy conservation impart a specific relation between particles produced
by elementary processes. For instance, a ρ0-meson decaying at rest in the laboratory is ex-
pected to produce a pair of π+ and π− that fly back-to-back in this frame of reference. This
means the two pions should be emitted with an angle of 180◦ relative to one another, as
illustrated in Figure 11.2a. However, if the ρ-meson is in slow motion, the pions will not be
seen exactly back-to-back but with a slightly smaller angle than 180◦. And if the ρ0 travels
at high velocity in the lab frame, the pions will appear to be focused in nearly the same
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527 11.1 Two-Particle Correlation Functions

Fig. 11.1 The multiple facets of correlation functions. Differential and integral correlations have a common basis in terms of
cumulants, and enable the definition of several types of correlation observables, many of which are shown in this
figure and discussed in this chapter.

direction and will thus be observed with a very small relative angle. Two-particle decays of
other resonances produce qualitatively similar results. Three-particle decays at rest might
produce Mercedes topologies, termed this because of their similarity to the Mercedes-Benz
logo, as shown in Figure 11.2d, while parton fragmentation yields collimated particle pro-
duction in the forms of jets consisting of several particles emitted in relatively narrow cone,

Fig. 11.2 Momentum vectors ofπ -mesons produced byρ-meson decays (a) at rest, (b) at small velocity, and (c) at very large
velocity (near speed of light). (d) 3-prong resonance decay at rest. (e) Jet: emission of several hadrons in a narrow cone
surrounding the direction of a fragmenting parton.

2��8:�  /73�791 ������	 �	
���
�������������.43:20/�7�43�0�.!���.93/10���3 09:3�!��90::

https://doi.org/10.1017/9781108241922.013


528 The Multiple Facets of Correlation Functions

as illustrated in Figure 11.2e. Of course, a typical elementary collision might involve a ran-
dom selection or/and superposition of several of these and other processes. Two-particle
distributions in relative angle may thus become arbitrarily complex. Still, understanding
the specific mechanisms that lead to particle production may be possible if one can identify
specific correlation features. This said, since the number of particles produced in elemen-
tary processes (and even more so in nucleus–nucleus collisions) can be rather large, and
given that not all particle pairs may be correlated (i.e., result from a common process), it is
useful to consider the use of two-particle cumulants to identify the strength of two particle
correlations. Recall from §10.2 that while two-particle densities ρ2(y1, y2) are sensitive to
the number of particle pairs produced, they do not readily provide an unambiguous indi-
cation of the degree of correlation of these pairs. Different reaction mechanisms may lead
to different correlation topologies (e.g., in terms of relative azimuthal angle), and thus it
is indeed necessary to use cumulants to properly gauge the degree of correlation between
measured pairs.

Observable Definition: Two-Particle Cumulant
We begin our discussion for pairs of “identical” particles measured in the same kinematic
range. In §10.2, we defined generic two-particle cumulant C2 in terms of kinematic vari-
ables y1 and y2 as

C2(y1, y2) = ρ2(y1, y2) − ρ1(y1)ρ1(y2), (11.1)

where ρ1(yi) and ρ2(y1, y2) represent single and pair densities expressed as function of
kinematical variables y1 and y2, respectively. We also introduced normalized cumulants
R2,

R2(y1, y2) = ρ2(y1, y2)
ρ1(y1)ρ1(y2)

− 1, (11.2)

which effectively carry the same information about the correlations between produced par-
ticles. We here restrict the two variables y1 and y2 to specifically represent the azimuthal
production angles φ1 and φ2 of the two particles of interest, and write

C2(φ1,φ2) = ρ2(φ1,φ2) − ρ1(φ1)ρ1(φ2) (11.3)

R2(φ1,φ2) = ρ2(φ1,φ2)
ρ1(φ1)ρ1(φ2)

− 1, (11.4)

where the densities ρ1(φi) and ρ2(φ1,φ2) are measured/calculated for specific ranges
pT,min ≤ pT < pT,max and ηT,min ≤ ηT < ηT,max. From a theoretical standpoint, in the ab-
sence of polarization or other discriminating direction or axis, one expects the single par-
ticle yield should have no dependence on φ,

ρ1(φ1) = ρ1(φ2) ≡ ρ̄1, (11.5)

while the strength of the correlation function C2 should depend only on the relative an-
gle %φ = φ1 − φ2. It is thus of interest to recast the correlation function in terms of %φ

exclusively. Toward that end, consider the change of variable

φ1,φ2 → %φ = φ1 − φ2, φ̄ = (φ1 + φ2)/2 (11.6)
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529 11.1 Two-Particle Correlation Functions

with the Jacobian J =
∣∣∂

(
%φ, φ̄

)
/∂ (φ1,φ2)

∣∣ = 1. This yields a correlation function C2

that can in principle depend on both %φ and φ̄. But given the collision system is not polar-
ized and the reaction plane of the colliding particles (nuclei) is not explicitly determined,
particle production must be invariant under rotation in φ̄. It is thus legitimate to average out
(marginalize) this coordinate. One consequently gets a correlation function C2 that depends
exclusively on the relative angle %φ of the particles:

C2(%φ) = ρ2(%φ) − 1
2π

∫ 2π

0
ρ̄2

1 dφ̄, (11.7)

= ρ2(%φ) − ρ̄2
1 ,

where, in the second line, we used the fact that ρ2
1 is a constant and can be taken out of the

integral. Given R2 is a ratio, one can consider two distinct approaches to average out the φ̄

coordinate. The first involves a ratio of averages while the second consists of the average
of a ratio. In general, one can in fact use two approaches for the determination of C2 and
R2. Indeed, one can first proceed to estimate these correlation functions in terms of both
φ1 and φ2, with a subsequent average over φ̄ to obtain functions of %φ only. Alternatively,
one can seek estimates of either function directly in terms of %φ. The latter approach is
more common and is therefore referred as Method 1 (M1) in the following:

Method 1 (M1)

C(M1)
2 (%φ) = ρ2(%φ) − ρ1 ⊗ ρ1(%φ) (11.8)

R(M1)
2 (%φ) = ρ2(%φ)

ρ1 ⊗ ρ1(%φ)
− 1, (11.9)

where the term ρ1 ⊗ ρ1(%φ) may be evaluated either through an event-mixing technique
or by averaging the product ρ1(φ1)ρ1(φ2) over φ̄.

Method 2 (M2) first requires the determination of both the single and pair densities in
terms of φ1 and φ2 explicitly. The two functions are subsequently obtained as averages
over φ̄:

Method 2 (M2)

C(M2)
2 (%φ) =

∫∫∫ 2π

0
{ρ2(φ1,φ2) − ρ1(φ1)ρ1(φ2)} (11.10)

× δ(%φ − φ1 + φ2)δ(φ̄ − (φ1 + φ2)/2) dφ1dφ2dφ̄

R(M2)
2 (%φ) =

∫∫∫ 2π

0
R2(φ1,φ2) (11.11)

× δ(%φ − φ1 + φ2)δ(φ̄ − (φ1 + φ2)/2) dφ1dφ2dφ̄.

where

R2(φ1,φ2) = C2(φ1,φ2)
ρ1(φ1)ρ1(φ2)

(11.12)

= ρ2(φ1,φ2)
ρ1(φ1)ρ1(φ2)

− 1
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Fig. 11.3 Correlation function C2 ofρ0-meson decaying (a, b) near rest, (c) at very large velocity in the laboratory reference
frame, and (d) over a “realistic” range of velocities spanning values from zero up to nearly the speed of light. In (a), the
number ofρ0 was fixed to one per event, while in (b–d), it is set to fluctuate randomly from five to tenρ0 per event.
Distributions have been “shifted” in%φ for purely esthetic reasons. Dashed lines are drawn at%φ = 0 and
%φ = 0 to guide the eye.

For angles φ1 and φ2 in the range [0, 2π ], one obtains a difference %φ = φ1 − φ2 in the
range [−2π , 2π ]. However, by virtue of the system’s symmetry, this range may be re-
duced to [0,π ] and other components of the [−2π , 2π ] range are redundant and usually
shifted onto [0,π ]. It should thus be understood that the preceding integrals over φ1 and
φ2 are evaluated onto 0 ≤ %φ ≤ π , and often symmetrized about π and plotted in the
range [0, 2π ], or shifted and plotted in [−π , 3π/2] for ease of visualization. From a the-
oretical standpoint, it is easy to show that the two methods yield identical results for %φ

correlations, since the single particle yield is invariant under azimuthal rotation, that is,
ρ1(φ1) = ρ1(φ2) ≡ ρ̄1. We will see in §12.4, where we discuss methods to account for
instrumental effects, that both M1 and M2 yield robust1 measurements of R2(%φ). Mea-
surements of C2, however, require efficiency corrections in either method. Additionally,
while M2 may be subject to aliasing because of the finite size of the bins used to obtain
estimates of the densities ρ1 and ρ2, we will also show in §12.4 that M1 is not strictly ro-
bust when measurements are extended to involve dependencies on other coordinates such
as the rapidity of the particles, or their differences.

Example 1: Resonance Decays
A great variety of dynamical processes such as jet production, resonance decays, and col-
lective flow can shape azimuthal correlation functions. Figure 11.3 presents examples
of correlation functions, C2(%φ), obtained with Monte Carlo simulations of collisions

1 Unaffected by instrumental effects, most particularly detection efficiencies.
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531 11.1 Two-Particle Correlation Functions

producing charged pion pairs (π+ + π−) by decays of ρ0-mesons. Figure 11.3a displays
the correlation function of events involving a single ρ0 decaying near rest in the lab frame
yield. One observes a prominent away-side peak centered at %φ = π , which corresponds
to pion pairs being emitted essentially back-to-back. Emission from ρ0 at rest would pro-
duce a narrow peak at %φ = π exactly, but moving ρ0s produce pairs that are not strictly
back-to-back and consequently lead to a finite width peak centered at %φ = π . Also note
that because the number of ρ0 is fixed, so is the number of pions because no efficiency
losses or acceptance cuts were accounted for in the generation of this plot. A fixed num-
ber of particles effectively produces a multinomial behavior. The total multiplicity is fixed,
and the pions can fall in a wide variety of bins. The covariance of the yields for %φ val-
ues outside the peak thus tend to be negative. This effect disappears if the ρ0 multiplicity
fluctuates, as illustrated in Figure 11.3b, which was computed with a uniformly distributed
random number of ρ0 in the range 5–10. However, as illustrated in Figure 11.3c, the cor-
relation peak shifts to the origin (i.e., %φ = 0) if the ρ0-decays take place at very large
momentum in the lab frame. In practice, resonances such as the ρ0 are produced over a
large range of momenta, one then observes a more complicated correlation function, as
shown in Figure 11.3d, which combines peaks at both the origin and at %φ = π .

Example 2: Correlations from Anisotropic Flow
Two-particle correlations are also very much influenced by collective effects. For instance,
collisions of heavy nuclei at finite impact parameter, illustrated in Figure 11.4, may lead to
the production of a very dense but inhomogeneous and anisotropic medium or system. The
expansion of this medium, through pressure or momentum transfer gradients, is understood
to lead to collective motion and anisotropic emission of low to medium pT particles in the
plane transverse to the beam axis. High-energy partons produced within this medium are
also believed to be subject to differential energy loss according to the pathlength they tra-
verse to exit the medium, thereby leading to complementary high pT anisotropic emission
patterns. Both effects are commonly known as anisotropic flow. While general techniques
to measure flow are discussed in §11.4, we demonstrate, in the remainder of this section,
that collective particle motion may readily be identified with simple two-particle cumulants
C2(%φ) and/or normalized cumulants R2(%φ).

On general grounds, let us assume that nucleus–nucleus collisions produce, on an event-
by-event basis, systems that are inhomogeneous and anisotropic, as illustrated in Fig-
ure 11.4a. One can model the system (energy density) spatial anisotropy in terms of a
simple Fourier decomposition relative to the origin O:

ρ(φ, r) = f (r)

(

1 +
∞∑

n=1

ϵn cos(nφ)

)

. (11.13)

The dynamics of the collisions leads to system expansion and particle emission that reflect
the magnitude of the spatial anisotropy coefficients ϵn. One can then model the collective
motion of particles produced by the system as a Fourier expansion in momentum space,
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532 The Multiple Facets of Correlation Functions

Fig. 11.4 Schematic illustration of the transverse profile of the participant matter produced in high-energy heavy-ion collisions.
The participant region features pressure gradients which propel particle outward anisotropically in the transverse
plane.

relative to the collision impact parameter vector, b⃗:

ρ(φi|ψ ) = ρ̄

{

1 + 2
∞∑

n=1

vn cos(n(φi − ψ ))

}

, (11.14)

where ρ̄ is the average particle density, φ is the angle of emission of the particles, and ψ is
the orientation angle of the reaction plane in the laboratory frame of reference. Since the
impact parameter is not readily observed, one must average over all possible orientations
of the reaction plane to get the observed single particle density:

ρ1(φi) =
∫ 2π

0
dψρ1(φi|ψ )P(ψ ) = ρ̄. (11.15)

The orientation of the reaction plane, ψ , is assumed to vary collision by collision uniformly
in the range [0, 2π ] and is given a probability P(ψ ) = (2π )−1. The integration in (11.15)
thus indeed yields ρ̄, the average particle density. The density of particle pairs has a less
trivial behavior, however. At fixed ψ , we model the two-particle density as

ρ2(φ1,φ2|ψ ) = ρ̄2

{

1 + 2
∞∑

n=1

vn cos(n(φ1 − ψ ))

}

(11.16)

×
{

1 + 2
∞∑

n=1

vn cos(n(φ2 − ψ ))

}

.

Given ψ is not explicitly measured, the two-particle density must be averaged over all
equally probable values of this angle. One finds

ρ2(φ1,φ2) = (2π )−1
∫ 2π

0
ρ2(φ1,φ2|ψ ) dψ (11.17)

= ρ̄2

{

1 + 2
∞∑

n=1

(vn)2 cos(n(φ1 − φ2))

}

and concludes that the spatial anisotropy of the collisions may lead to observable
anisotropies in momentum space. The harmonic coefficients vn are commonly known as
flow coefficients. Their magnitudes have been measured in a variety of collision systems
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Fig. 11.5 Simulations of R2(%φ) correlation functions determined by anisotropic flow. (a) Simulated elliptic flow with
v2 = 0.04. (b) Simulated triangular flow with v3 = 0.04, (c) combination of elliptic and triangular flow with
v2 = v3 = 0.04, which produces an away-side dip at%φ = π similar to those observed in central Heavy-Ion
collisions by several RHIC and LHC experiments [1]. The dashed and solid lines display the Fourier components used in
the simulation and their sum, respectively.

at several beam energies. In high-energy nucleus-nucleus the v2 coefficients are typically
the largest. The v3 are also found to be significant, even in symmetric collision systems
(e.g., Au–Au, or Pb–Pb), most likely the result of fluctuations in the initial spatial configu-
rations of the colliding nuclei. Higher-order coefficients, vn≥4, are typically much smaller
than either v2 or v3 coefficients [182].

Figure 11.5 displays simulated R2(%φ) correlation functions obtained for selected val-
ues of flow coefficients v2 and v3. Note how the particular combination of coefficients
v2 = v3 = 0.04, shown in panel (c), produces an away-side “dip” featured in many ob-
served distributions measured in central A–A collisions at RHIC and LHC energies [1].

Semi-inclusive and Species Dependent Correlation Functions
As we saw earlier, resonance production and flow lead to varied correlation shapes in
azimuth. To further complicate the interpretation of correlation functions, consider that
jet fragmentation and other particle production processes such as “string fragmentation”
have their own signatures also in two-particle azimuthal correlations. The fragmentation
of a single jet in particular produces a strong and broad peak centered at %φ = 0, while
the production of di-jets features both a near-side peak (%φ = 0) and an away-side peak
(%φ = π ). The strength, shape, and width of these peaks are known to depend on the jet
transverse momentum and particle multiplicity (number of particles composing the jet).
All in all, the structure of correlation functions measured in p–p collisions are typically the
result of a random superposition of several production processes that depend on the colli-
sion energy, as well as the number and species of particles produced. Correlation functions
produced in heavy-ion collisions are further “enriched” by collective processes, such as
the anisotropic flow discussed earlier, and radial (or outward) flow effects discussed in
[181]. Inclusive measurements of two-particle azimuthal correlation functions are conse-
quently insufficient, typically, to fully pinpoint the collision dynamics. Researchers have
thus sought to study more exclusive correlation functions (e.g., azimuthal correlation as
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534 The Multiple Facets of Correlation Functions

a function of particle multiplicity), for specific particle species or by adding additional
kinematic constraints. One may also gain further insight into the nature of the particle
production processes by studying correlations as a function of the particle momenta and
rapidity (pseudorapidity).

Correlation functions of distinguishable particle types or species are readily defined on
the basis of Eq. (11.3), and both M1 and M2 may be used to carry out measurements of
these functions. The correlation measurements discussed earlier in this section can thus be
straightforwardly extended to correlation studies of particles of different charge or species
(e.g., π+ vs. π−, or π vs. K, and so on), or for particles in different momentum (or rapidity)
ranges, discussed in the next subsection.

Triggered Correlation Functions
Correlation functions involving one high- and one low-pT particle are particularly useful
to study and characterize the production of jets in both p–p and A–A collisions without
actually resorting to a full-fledged jet-finding analysis. Correlation studies of this type are
commonly known as triggered correlation functions, even though no actual trigger is ac-
tually involved in such studies. Triggered correlation functions have been instrumental in
unravelling the existence of jet quenching in Au–Au collisions at RHIC [11].

The study of triggered correlation functions typically requires the trigger particle to be
at much higher pT than the second particle, known as the associate. The production of
the trigger particle may consequently be rare. It is thus legitimate to count the number
of associates found in a given event, relative to the trigger particle. Labeling the trigger
particle as T and the associates as A, one may define a triggered correlation as

CT,A(%φ) = ρ2(%φ)
⟨NT ⟩

, (11.18)

where

ρ2(%φ) =
∫

*T

∫

*A

ρ2(ηT ,φT , p⊥,T , ηA,φA, p⊥,A) (11.19)

× δ(%φ − φT + φA) dηT dφT d p⊥,T dηAdφAd p⊥,A

⟨NT ⟩ =
∫

*

ρT (ηT ,φT , p⊥,T ) dηT , dφT , d p⊥,T , (11.20)

The integration is taken over the volumes *i, i = T, A, that specify the kinematic range in
which the trigger and associates are measured. The numerator ρ2(%η) corresponds to the
average number of trigger–associate pairs detected as a function of the relative azimuthal
angle %φ, while the denominator ⟨NT ⟩ corresponds to the average number of trigger parti-
cles altogether detected, in a given dataset, or under some specific event selection criteria.
Effectively, CT,A(%φ) provides the average number of associates, vs. %φ, per trigger par-
ticle. A measurement of CT,A(%φ) may be implemented by taking the ratio of the average
number of trigger–associate pairs per event by the average number of trigger particles
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per event:

CT,A(%φ) =
∑N ′

ev
α=1 NT,A(%η)
∑N ′

ev
α=1 NT,α

(11.21)

where the sums are computed only for events containing a trigger particle. Triggered cor-
relations are typically of greatest interest for jet-like trigger particles. Those have a low
production cross section and only a small fraction of the events are thus expected to con-
tain a trigger particle. If there is at most one trigger particle per event, one may write

CT,A(%φ) = 1
N ′

ev

N ′
ev∑

α=1

NT,A(%η) (11.22)

where the sum is taken over events containing one trigger particle. For kinematical condi-
tions such that there is typically more than one trigger particle per event, there is a common
practice that consists in defining CT,A(%φ) as

Cebye
T,A (%φ) = 1

N ′
ev

N ′
ev∑

α=1

NT,A(%η)
NT

(11.23)

where NT stands for the number of trigger particle measured in each event (the sum being
carried out only on events with at least one trigger particle). In general, this formulation
is expected to yield values in qualitative agreement to those obtained with Eq. (11.21).
Quantitative difference of several percent may, however, occur. And while this latter for-
mulation of the correlation function may seem more natural, it does not lend itself to a
simple definition in terms of single- and two-particle densities such as Eq. (11.21). The
inclusive formulation, though seemingly less intuitive, is thus usually preferred.

It is also important to realize that CT,A(%φ) is not a correlation function in the strict sense
of the word, since it does not involve subtraction of purely combinatorial contributions.
This is not a serious problem, however, as long as the trigger particle rate is small and the
kinematic range considered for associates actually involves mostly true associates. This
condition is easily satisfied in p–p collisions but is typically violated in high-energy A–A
collisions, unless trigger particles are selected in a very high pT ranges.

Correlation Function Scaling
By construction as a two-particle cumulant, the correlation function C2(%φ) is expected to
scale in proportion to the number of “sources,” while R2(%φ) should be inversely propor-
tional to this number. For a collision system consisting of m independent identical sources,
one should consequently get

C(m)
2 (%φ) = mC(1)

2 (%φ) (11.24)

R(m)
2 (%φ) = 1

m
R(1)

2 (%φ). (11.25)

The triggered correlation CT,A has yet a different scaling property. If the number of trigger
and associate particles are truly rare, both the numerator and the denominator of CT,A are
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expected to scale in proportion to the number of particle sources, and their ratio should con-
sequently be invariant under variations of this number. In practice, particularly in heavy-ion
collisions, both the number of trigger and associates can become rather large in central col-
lisions, and this simple scaling is therefore violated. However, many researchers attempt
to recover this property by removing combinatorial and collective correlation backgrounds
using a technique known as zero yield at minimum (ZYAM) [16]. This technique assumes
a two-component (two sources) particle production model, which may be approximately
valid in the study of jets, provided the coupling (correlation) between the jet and the under-
lying background is small. This hypothesis may, however, be difficult to justify in analyses
seeking to study the influence of the medium (bulk of produced particles) on the produced
jets. It is thus preferable and logically consistent to define triggered correlation functions
on the basis of C2(%φ) rather than ρ2(%φ) (see Problem 11.11).

11.1.2 Two-Particle%η Correlation Functions

Correlation functions measured in terms of the pseudorapidity difference of produced par-
ticles provide another powerful tool to explore the collision dynamics of both elementary
particle and nuclear collisions. They have been used extensively, in particular, to study
hadron production in p–p collisions and jet production in heavy-ion collisions.

As for the azimuthal correlations discussed in the previous section, we proceed to define
two-particle correlation functions vs. %η in terms of two-particle cumulants and normal-
ized cumulants, as defined by Eq. (10.22),

C2(η1, η2) = ρ2(η1, η2) − ρ1(η1)ρ1(η2) (11.26)

R2(η1, η2) = ρ2(η1, η2)
ρ1(η1)ρ1(η2)

− 1. (11.27)

The η1 vs. η2 dependence of these functions cannot, however, be readily reduced to a
single variable %η, such as in the case of azimuthal correlations. Indeed, it is quite possible
that the correlation dynamics may be an arbitrary function of both η1 and η2. In fact,
measurements conducted in p–p collisions at the ISR and in p–p̄ collisions at the Tevatron
have shown that correlation functions may have a rather intricate dependence on both η1

and η2, particularly when the particles have rapidities approaching the beam rapidity [85,
193]. However, in collider experiments with a focus on central rapidities (η ≈ 0), one may
expect the correlations to depend primarily on the rapidity difference of the two particles
considered, it is thus reasonable to recast the C2 and R2 correlation functions in terms of
variables %η = η1 − η2 and η̄ = (η1 + η2)/2, average out the dependence on η̄, and obtain
correlation functions in terms of %η exclusively. One must, however, properly account for
the finite acceptance of the detector.

As an example, let us assume, as illustrated in Figure 11.6, that both particle 1 and
2 are measured in the same range −η0 ≤ η < η0, and let us calculate the two-particle
cumulant C2(%η) assuming the cumulant C2(η1, η2) is known. Averaging out over η̄ may
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537 11.1 Two-Particle Correlation Functions

Fig. 11.6 Illustration of the rapidity acceptance of two-particle correlation measurements.

be accomplished as follows:

C2(%η) = 1
*(%η)

∫∫∫

*

C2(η1, η2) (11.28)

× δ(%η − η1 + η2)δ(η̄ − (η1 + η2)/2) dη1dη2dη̄,

where the factor *(%η) accounts for the width of the η̄ acceptance at a given value of %η.
For the square and symmetric acceptance illustrated in Figure 11.6, one gets

*(%η) = 2ηo − %η. (11.29)

This factor accounts for the fact that, with a square acceptance |ηi| < η0, it is far less likely
to observe pairs with a rapidity difference |%η| ≈ 2η0 than with %η ≈ 0. Failure to account
for this simple geometric effect results in an apparently strong triangular correlation shape.
The division by *(%η) is thus commonly known as the triangle acceptance correction.
This is an unfortunate misnomer, however, because the division by *(%η) is not strictly
speaking a correction of the data but a factor born out of the acceptance averaging over η̄.

As for measurements of C2(%φ), two basic techniques, hereafter referred to as Method
1 (M1) and Method 2 (M2), may be used to obtain an estimator of C2(%η).

M1 involves the determination of the two particle density ρ2(%η) directly using a 1D
pair histogram, H2, binned and filled at %η = η1 − η2 for all relevant pairs:

ρ̂2(%η) = 1
*(%η)

k
(Nev − 1)%%η

H2(%η). (11.30)

The histogram H2 must be filled over all Nev events satisfying relevant event cuts and all
particle pairs satisfying track quality cuts and kinematic selection criteria of interest. The
factor %%η represents the bin width used to define and fill the histogram H2. The factor
k is unity for nonidentical particle pairs (e.g., kaons vs. pions, or particles in different pT

ranges), and equal to 2 for identical particles analyzed with two nested loops i < j over
all particles (i.e., with 1 ≤ i ≤ nparts and i + 1 < j ≤ nparts). The factor *(%η) must be
determined numerically and accounts for the finite acceptance in η̄.

The second term of the correlation function may be obtained by numerical integration
of the product ρ̂1(η1)ρ̂1(η2), where ρ̂1(ηi) is an estimator of the single particle density as a
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538 The Multiple Facets of Correlation Functions

function of η:

ρ̂1(η) = 1
(Nev )%η

H1(η). (11.31)

The factor %η represents the bin width used to fill the histogram H1. Two distinct his-
tograms H (1)

1 (η) and H (2)
1 (η) (and corresponding single particle densities) must obviously

be used if the analysis is carried out on distinguishable particles. Numerical techniques to
carry out the numerical integration of ρ̂1(η1)ρ̂1(η2) to obtain a function ρ̂1 ⊗ ρ̂1(%η) are
discussed in §11.5. An estimator of Ĉ2(%φ) of the correlation function may thus be written

Ĉ2(%φ) = ρ̂2(%η) − ρ̂1 ⊗ ρ̂1(%η). (11.32)

One may alternatively estimate the second term ρ1 ⊗ ρ1(%η) of the correlation function
on the basis of mixed events rather than a product of single particle densities. This is
accomplished by filling 1D histogram H (Mixed)

2 from pairs of particles obtained from mixed
events. One then gets a mixed event density ρ̂

(Mixed)
2 (%η)

ρ̂
(Mixed)
2 (%η) = 1

*(%η)
k

(Nev − 1)%%η

H (Mixed)
2 (%η), (11.33)

which should provide a legitimate estimate of the density product, ρ1 ⊗ ρ1(%η), since
particles produced in different collisions (events) should be physically uncorrelated. An
estimator of Ĉ2(%φ) of the correlation function may thus also be obtained with

Ĉ2(%η) = ρ̂2(%η) − ρ̂
(Mixed)
2 (%η). (11.34)

Another approach, hereafter known as Method 2 (M2), consists of obtaining C2(%η)
as an integral of C2(η1, η2). That is, one first obtains an estimate Ĉ2(η1, η2) based on his-
tograms H2(η1, η2) and H1(ηi) accumulated over all relevant pairs of particles (tracks) and
single particles, respectively, and estimate C2 as

Ĉ2(η1, η2) = ρ̂2(η1, η2) − ρ̂1(η1)ρ̂1(η2) (11.35)

with

ρ̂1(ηi) = 1
Nev%η

H1(ηi), (11.36)

ρ̂2(η1, η2) = 1
(Nev − 1)%2

η

H2(η1, η2), (11.37)

where %η is the bin size used to define and fill histograms H1 and H2. The estimator Ĉ2(%η)
is subsequently obtained by numerical integration of Ĉ2(η1, η2)

Ĉ2(%η) = 1
*(%η)

∑

η1,η2,η̄

Ĉ2(η1, η2) (11.38)

× δ(%η − η1 + η2)δ(η̄ − (η1 − η2)/2).

Alternatively, the term ρ̂1(η1)ρ̂1(η2) may be determined with pairs from mixed events:

ρ̂1(η1)ρ̂1(η2) = 1
(Nev − 1)%2

η

H (Mixed)
2 (η1, η2), (11.39)
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539 11.1 Two-Particle Correlation Functions

Note that the use of finite width bins leads to a smearing of the correlation across the
width of the %η bin. Indeed, a specific bin in %η obtained from two specific bins in η1

and η2 corresponds to an actual range η1 − η2 which is larger than the width of the bin
and effectively smears the correlation signal across bins.2 This effect, often referred to as
aliasing, can be reduced by oversampling the ρ1(ηi) and ρ2(η1, η2) distributions, in other
words, by using bins in η that are two or more times smaller than the width %η.

As for C2, the normalized cumulant R2(%η) may in principle be determined with either
M1 or M2. M1 estimates R2(%η) as the ratio

R̂(M1)
2 (%η) = Ĉ2(%η)

ρ̂1 ⊗ ρ̂1(%η)
(11.40)

while M2 requires an average of R̂2(η1, η2) over η̄:

R̂(M2)
2 (%η) = 1

*(%η)

∑

η1,η2,η̄

R̂2(η1, η2) (11.41)

× δ(%η − η1 + η2)δ(η̄ − (η1 + η2)/2).

Unfortunately, the two methods may yield substantially different results. Indeed, unlike the
case of azimuthal correlations, for which the single densities ρ1(φ) are invariant under ro-
tation in φ, the single densities ρ1(ηi) are arbitrary functions of ηi, that is, they may exhibit
substantial variations throughout the acceptance of the measurement. This is a problem be-
cause the integral of the ratio of functions is in general not equal to the ratio of the integrals
of these functions:

∫

*

ρ2(%η, η̄)
ρ1 ⊗ ρ1(%η, η̄)

dη̄ ̸=
∫
*

ρ2(%η, η̄) dη̄∫
*

ρ1 ⊗ ρ1(%η, η̄) dη̄
(11.42)

The issue may be exacerbated by detection inefficiencies that strongly depend on the coor-
dinates η1 and η2. This is discussed in detail in §12.4.3, where we argue that although less
intuitive and direct from an experimental standpoint, R(M2)

2 (%η) constitutes a more robust
and meaningful measure of the normalized cumulant. In practice, at collider experiments,
both the single particle ρ1 and pair densities ρ2 appear to have only rather modest depen-
dence on rapidity in fiducial ranges measured. Constants can, of course, be factorized out
of the preceding integrals and the two methods consequently yield very similar results in
symmetric A–A collisions. Rapidity dependencies may, however, be larger in asymmetric
collisions such as p–A collisions.

By construction as cumulants, the functions C2 and R2 exhibit the scaling properties
embodied in Eqs. (10.25) and (10.39) discussed for generic cumulants in §10.2.4 and for
azimuthal correlation functions in §11.1.1.

Triggered correlation functions CTA(%η) may be defined similarly to the functions
CTA(%φ) introduced §11.1.1. Caveats discussed for CTA(%φ) apply to CTA(%η) also

2 For instance, combining yields from bins 0.9 < η1 ≤ 1.1 and 0.9 < η2 ≤ 1.1 corresponds to a range of −0.2 ≤
η1 − η2 ≤ 0.2 being projected onto a %η bin of width 0.2.
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540 The Multiple Facets of Correlation Functions

and are further complicated by issues associated with Method 1 discussed earlier. Pre-
cision measurements should be conducted exclusively with cumulants calculated based on
Method 2.

The R2(%η) correlation function introduced in this section and the R2(%φ) function
introduced earlier can be trivially combined to obtain correlation functions with joint de-
pendencies on %η and %φ. Measurements with Method 2 yield

R(M2)
2 (%η,%φ) = 1

*(%η)

∫

*

R2(η1,φ1, η2,φ2) (11.43)

× δ(%η − η1 + η2)δ(η̄ − (η1 + η2)/2) dη1dη2dη̄,

× δ(%φ − φ1 + φ2)δ(φ̄ − (φ1 + φ2)/2) dφ1dφ2dφ̄,

where

R2(η1,φ1, η2,φ2) = ρ̂2(η1,φ1, η2,φ2)
ρ̂1(η1,φ1)ρ̂1(η2,φ2)

− 1, (11.44)

and the densities are obtained from multidimensional histograms filled by processing all
relevant events and particles:

ρ̂1(ηi,φi) = 1
Nev%η%φ

H1(ηi,φi), (11.45)

ρ̂2(η1,φ1, η2,φ2) = k
(Nev − 1)%2

η%
2
φ

H2(η1,φ1, η2,φ2), (11.46)

where, as in the preceding, k is unity for distinguishable particles and equal to 2 for indis-
tinguishable particles analyzed with two-particle nested loops with an i < j condition.

11.1.3 Balance Functions

The production of particles in elementary particles is constrained by energy/momentum
conservation and several other conservation laws, such as charge conservation, baryon
number conservation, and so on. A charge balance function provides a tool to emphasize
effects associated with charge conservation on the charge particle production. For instance,
in the case of pion production, one can assume that energy–momentum considerations af-
fect the production of negative and positive pions in essentially the same way. However, one
expects on general grounds that correlations between unlike-sign pions should be stronger
than those between like-sign pions because charge conservation dictates that particles must
be created in unlike-sign pairs. The charge balance function is designed to isolate the corre-
lation strength associated with charge conservation specifically by measuring the number
of unlike-sign pairs relative to the number of like-sign pairs in a given momentum vol-
ume. In heavy-ion collision studies, the charge balance function was also proposed by Bass
et al. [31, 155] as a tool to identify the presence of a qualitative change in charged parti-
cle production versus collision centrality. The production of a long lived phase of quark
gluon plasma, in particular, is expected to lead to delayed hadronization manifested by a
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541 11.1 Two-Particle Correlation Functions

narrowing of the balance function measured as a function of the rapidity (or pseudorapid-
ity) difference between produced particles [155].

The balance function introduced in ref. [31] is written

B(%η) = ⟨N−N+⟩(%η)
⟨N−⟩

+ ⟨N+N−⟩(%η)
⟨N+⟩

(11.47)

−⟨N+(N+ − 1)⟩(%η)
⟨N+⟩

− ⟨N−(N− − 1)⟩(%η)
⟨N−⟩

,

where ⟨N−N+⟩(%η), ⟨N+(N+ − 1)⟩(%η), and ⟨N−(N− − 1)⟩(%η) represent the number of
(+−), (++), and (−−) pairs observed in a fixed range of pseudorapidity %η, while ⟨N+⟩
and ⟨N−⟩ are the average numbers of positively and negatively charged particles detected
in the measurement acceptance, respectively. Introducing normalized two-particle densities
rα,β (%η), defined as

rα,β (%η) = ⟨NαNβ⟩(%η)
⟨Nα⟩⟨Nβ⟩

for α ̸= β (11.48)

= ⟨Nα (Nα − 1)⟩(%η)
⟨Nα⟩2

for α = β,

where the indices α and β represent charges + and −, one may write the balance function
as

B(%η) = ⟨N+⟩r−+(%η) + ⟨N−⟩r+−(%η) (11.49)

− ⟨N+⟩r++(%η) − ⟨N−⟩r−−(%η).

At high collisional energy, one expects ⟨N+⟩ ≈ ⟨N−⟩ and r++(%η) ≈ r−−(%η) at central
rapidities. Additionally, for a symmetric collision system (e.g., Pb + Pb), one also expects
r−+(%η) = r+−(%η). The balance function may then be expressed in terms of the charge-
dependent correlation function, RCD, defined in §10.7 (see also Problem 11.13).

B(%η) = ⟨Nch⟩RCD(%η) (11.50)

where Nch = N+ + N−. Use of this expression for a measurement of the balance function,
rather than Eq. (11.47), has two obvious advantages: (1) the observable RCD is by construc-
tion robust against particle losses associated with detection efficiencies, and (2) the charge
particle multiplicity has a simple dependency on detection efficiency that is usually simple
to correct.

Pratt et al. have shown that the balance function is sensitive to radial flow effects that are
independent and distinct from delayed hadronization effects. Radial flow effects may be
modeled using a variety of techniques. The balance function thus constitutes an excellent
observable to investigate the relative effects associated with charge transport (flow) and
delayed hadronization [64]. The balance function (and related correlation functions) may
be adapted to studies of net baryon number or net strangeness transport by substituting the
number of baryons (strange particles) and anti-baryons (anti-strange) for the number of
positively and negatively charged particles, respectively.
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542 The Multiple Facets of Correlation Functions

11.1.4 Forward–Backward Correlations

The production of particles in elementary collisions at very high energy spans a very large
range of rapidity. In order to understand the mechanisms that yield particles over such large
range, researchers have sought to measure the correlation level between particles emitted
forward and backward with a large rapidity gap. This type of correlation measurement is
commonly known as forward–backward correlation. We first describe the technique in
some detail, and next discuss its merits and limitations.

The forward–backward correlation technique essentially consists of a linear regression
between the number of particles produced at forward rapidities, within a narrow range δη

centered at +η, and the number of particles emitted at backward rapidities, −η, within
an equivalent narrow range δη. Given fixed values of η and δη, one determines and plots
the average number of particles produced forward, ⟨nF ⟩, for a given value (binned) of the
number produced backward, nB. One then fits the measured (nB, ⟨nF ⟩) data points using a
simple linear parameterization (i.e., a linear regression):

⟨nF (nB)⟩ = a + b × nB. (11.51)

The measurement is repeated, and the coefficients a and b determined, for several values of
the rapidity gap 2η. The coefficient b, which describes the strength of the linear regression
(i.e., the forward–backward correlation) may then be plotted as a function of the rapidity
gap 2η. While conceptually simple, the aforementioned measurement recipe is tedious of
execution, and thus an alternative, more straightforward method is commonly used. This
method relies on the hypothesis of a linear relationship between the particle yield emitted
forward and backward. One writes

nF − ⟨nF ⟩ = b × (nB − ⟨nB⟩) + r, (11.52)

where b is the correlation strength to be determined, while r represents a random variable
uncorrelated to the value of nB, and with a vanishing expectation value, ⟨r⟩ = 0. One may
then calculate the expectation value of the product nF nB as follows:

⟨nF nB⟩ = b
(
⟨n2

B⟩ − ⟨nB⟩2) + ⟨nF ⟩⟨nB⟩ + ⟨rnB⟩. (11.53)

Given r is assumed to be uncorrelated to nB, the last term on the right vanishes, since
⟨rnB⟩ = ⟨r⟩⟨nB⟩ and ⟨r⟩ = 0. The slope coefficient b may consequently be written

b = ⟨nF nB⟩ − ⟨nF ⟩⟨nB⟩
⟨n2

B⟩ − ⟨nB⟩2
, (11.54)

which provides a simple and rapid method to determine the coefficient b in terms of the
covariance, Cov[nF , nB] = ⟨nF nB⟩ − ⟨nF ⟩⟨nB⟩, and the variance, Var[nB] = ⟨n2

B⟩ − ⟨nB⟩2.
Although the implementation of Eq. (11.54) is seemingly simple, accounting for detector

effects, most particularly particle losses, is not. We will see in §12.4.2 that for measure-
ments with limited efficiency, ϵ, the variance of the particle multiplicity, n, detected in
a given kinematical range scales as ϵ2Var[n] + ϵn. The ratio b expressed by Eq. (11.54)
consequently does not constitute a robust observable, and its correction to account for de-
tection efficiencies, which may differ at forward and backward rapidity, is therefore not
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543 11.1 Two-Particle Correlation Functions

trivial. However, since the information being sought lies within the strength of the co-
variance ⟨nF nB⟩ − ⟨nF ⟩⟨nB⟩, a measurement of forward-backward correlation may then be
obtained with a normalized two-particle cumulant:

CBF = ⟨nF nB⟩ − ⟨nF ⟩⟨nB⟩
⟨nF ⟩⟨nB⟩

(11.55)

which is, by construction, robust under particle losses associated with detection efficien-
cies.

11.1.5 Differential Transverse Momentum Correlations

Measurements of two- and multiple-particle correlations constitute powerful tools to study
heavy-ion collision dynamics and enable the identification in nucleus–nucleus collisions of
new correlation features not found in proton–proton interactions. These tools can be fur-
ther enhanced by inserting weights dependent on the kinematical properties of the particles
into the correlation function definition. We consider, as an example, the definition of two-
particle differential transverse momentum correlation functions. As for integral transverse
momentum fluctuation correlations (see §11.3.5), there is a certain latitude in the definition
of such correlation functions. Indeed, as for integral correlations, one can use both inclu-
sive and event-wise definitions [173]. One can also consider dynamical fluctuations as the
difference between measured fluctuations and statistical fluctuations, that is, fluctuations
expected for a purely Poisson system. Extension of the fluctuation variable -pT [92, 146]
is also possible. In this section, we use the notations introduced in prior sections and focus
our discussion only on an inclusive definition. Extensions to event-wise and other differ-
ential fluctuation measures are also possible [173].

The ⟨%pT %pT ⟩ correlation function is defined as a pair-averaged product of deviates
%pT %pT ,

⟨%pT %pT ⟩(%η, δφ) = 1
*

∫

*

ρ
(%pT %pT )
2 (η1,φ1, η2,φ2)

ρ2(η1,φ1, η2,φ2)
(11.56)

× δ(%η − η1 + η2)δ(η̄ − (η1 + η2)/2)

× δ(%φ − φ1 + φ2)δ(φ̄ − (φ1 + φ2)/2)

× dφ1dη1dφ2dη2dη̄dφ̄

where

ρ
(%pT %pT )
2 (η1,φ1, η2,φ2) =

∫

*

ρ2( p⃗1, p⃗2) (11.57)

×%pT,1%pT,2d pT,1d pT,2,

ρ2(η1,φ1, η2,φ2) =
∫

*

ρ2( p⃗1, p⃗2)d pT,1d pT,2,

The function ρ2( p⃗1, p⃗2) is the pair density expressed with respect to the particles’ rapidity,
azimuth, and transverse momentum; %pT,i = pT,i − ⟨pT,i⟩ and ⟨pT,i⟩ represents the inclu-
sive average of the particle momenta in the fiducial acceptance of the measurement.
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544 The Multiple Facets of Correlation Functions

Given its explicit dependence on the product of deviates %pT,1%pT,2, the ⟨%pT %pT ⟩
correlation function provides a qualitatively different measure of particle correlations (rel-
ative to R2) that is sensitive to the particle momenta. Indeed, consider that a given pair
of particles may involve two particles below the average momentum ⟨pT,i⟩, two above, or
one above and one below. The product %pT,1%pT,2 may consequently be either positive or
negative. A correlated particle pair involving two particles below (or above) the mean mo-
mentum will have a positive contribution to the correlation average, while correlated pairs
consisting of one particle above and one particle below the momentum average should
have a negative contribution to the correlation average. The ⟨%pT %pT ⟩ correlator thus
provides a different way to probe particle production processes. For instance, processes
such as Bose–Einstein condensation yield correlated pairs in close momentum proximity
and should have a strong positive contribution to the ⟨%pT %pT ⟩ correlation function. On
the other hand, particle decays that lead to the production of one slow particle and one high-
momentum particle should have a negative contribution to ⟨%pT %pT ⟩. The study of this
correlation function thus provides an additional tool to probe and understand the particle
production dynamics in elementary and nuclear collisions.

A measurement of ⟨%pT %pT ⟩ can be straightforwardly implemented using Method 2
discussed in §11.1.2. The average momentum should be obtained as an inclusive average
over all particles of interest:

⟨pT,i⟩ = 1
Npart

∑

parts

pT,i (11.58)

Estimates of the density ρ2 and weighted density ρ
(%pT %pT )
2 may be obtained using four

dimension histograms:

ρ̂2(η1,φ1, η2,φ2) = 1
Nev

1
%2

η%
2
φ

H2(η1,φ1, η2,φ2) (11.59)

ρ̂
(%pT %pT )
2 (η1,φ1, η2,φ2) = 1

Nev

1
%2

η%
2
φ

H (%p%p)
2 (η1,φ1, η2,φ2), (11.60)

where H2(η1,φ1, η2,φ2) is incremented by 1 at η1,φ1, η2,φ2 for each pair measured while
H (%p%p)

2 (η1,φ1, η2,φ2) is incremented by the product %pT,1%pT,2.

11.2 Three-Particle Differential Correlation Functions

Two-particle correlations enable a rather extensive study of particle correlations and have
been instrumental in the study of jet production, flow, and several other phenomena en-
countered in both elementary and nuclear collisions at high-energy. At times, however,
the interpretation of two-particle correlations may be somewhat ambiguous. For instance,
in 2004, the PHENIX and STAR experiments reported two-particle correlation func-
tions, with asymmetric pT ranges (one high- and one low-pT particle), that indicated the
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Fig. 11.7 Back-to-back suppression in like-sign (LS) and unlike-sign (UL) two-particle correlations measured in central (0–10%)
Au + Au collisions relative to correlations measured in minimum-bias (Min Bias) Au+Au and in p–p collisions. Data
from STAR collaboration. (Adapted from C. Adler, et al. Disappearance of back-to-back high pT hadron correlations in
central Au+Au collisions at

√
SNN = 200-GeV. Physical Review Letters, 90:082302, 2003.)

presence of a depletion in back-to-back emission at top RHIC energies, as illustrated in
Figure 11.7 [11].

Theoretical analyses of these correlation functions suggested that several distinct pro-
duction mechanisms might explain the suppressed and flattened away-side emission struc-
ture revealed by the two experiments. Unfortunately, the two-particle correlation measure-
ments could not readily distinguish whether the broadening of the away-side was due to
medium induced deflection of the leading partons with no actual broadening of the jet, or
due to the interactions and dispersion of jet fragments by the medium, or due to a new phe-
nomenon known as Mach cone emission, or perhaps another mechanism as yet unknown.
Measurements of three-particle correlations were then conceived to attempt a resolution of
this ambiguity.

If the jet structure is unchanged except for initial scattering of the leading jet parton,
then the width of the away-side particles remains unchanged between p–p and Au + Au
collisions. If, on the other hand, the jet fragments are dispersed (scattered) by the medium,
then the width of the away-side should indeed increase, as schematically illustrated in Fig-
ure 11.8b. Three-particle azimuthal correlations could also be useful for identifying Mach
cone emission or Cerenkov radiation. In the case of the predicted Mach cone emission, the
propagation of the away-side parton in the dense medium formed by the A–A collisions
was expected to lead to the production of a wake at an angle determined by the ratio of
parton speed and sound velocity in the medium. There were predictions of a sound veloc-
ity of the order of 0.33c, whereas the parton speed is near c. This might then have led to
particle emission at 60–70◦ from the away-side direction, as illustrated in Figure 11.8d, e.
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546 The Multiple Facets of Correlation Functions

Fig. 11.8 Searching for Mach cone emission with three-particle correlations. Schematic illustration of three-particle azimuthal
correlation patterns expected for (a) back-to-back jets; (b) medium induced broadening of the away-side jet;
(c) deflected jets; (d) transverse plane emission of Mach cone; and (e) 3-D Mach cone.

Mach cone emission was then anticipated to yield four-side structures at 60–70◦ from
the away-side direction, as schematically illustrated in Figure 11.8. In contrast, parton de-
flection (scattering) should have instead led to an elongation along the diagonal of the
away-side jet peak (Fig. 11.8c). Measurements of three-particles were subsequently car-
ried out by various groups to seek evidence for either of the correlated emission struc-
tures described earlier. Measurements by the STAR collaboration, in particular, involved
a medium to high-pT particle, hereafter labeled as particle 1, and two lower pT particles,
labeled 2 and 3. Measurements were done in terms of the relative angles %φ12 = φ1 − φ2

and %φ13 = φ1 − φ3 between the particles.
Recall from §10.2 that measured n-particle densities involve combinatorial contri-

butions from uncorrelated particle emission as well as correlated emission. It is thus
strongly advisable to carry out an analysis based on normalized three-particle cumulants,
R3(%φ12,%φ13) [158], which eliminate, by construction, combinatorial and uncorrelated
triplets of the form ρ1ρ1ρ1 and ρ2ρ1. Normalized cumulants R3 also naturally lend them-
selves to particle-yield corrections required to account for instrumental effects, discussed
in §12.4. In the context of the %φ12 vs. %φ13 three-particle correlation described earlier,
the normalized cumulant R3 may be written:

R3(%φ12,%φ13) = C3(%φ12,%φ13)
ρ1 ⊗ ρ1 ⊗ ρ1(%φ12,%φ13)

. (11.61)

As for measurements of second-order normalized cumulants, R2, one has the option of
measuring R3 as function of %φ12 vs. %φ13 directly, using for instance a mixed-event tech-
nique, or via averages of R3 measured as functions of the three angles φ1, φ2, and φ3

explicitly. In this latter case, the cumulant C3 may be written

C3(φ1,φ2,φ3) = ρ3(φ1,φ2,φ3) − ρ2(φ1,φ2)ρ1(φ3) (11.62)

− ρ2(φ1,φ3)ρ1(φ2) − ρ2(φ2,φ3)ρ1(φ1)

+ 2ρ1(φ1)ρ1(φ2)ρ1(φ3).
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547 11.3 Integral Correlators

In practice, the determination of ρ3(φ1,φ2,φ3) requires three dimensional histograms, and
thus may be rendered difficult by the size of the dataset, or by computational and storage
issues. One may therefore opt to determine the three-particle density directly in terms of the
relative angles %φ12 and %φ13. The determination of C3 then involves the computation of
three terms ρ2 ⊗ ρ1(%φ12,%φ13) and ρ1 ⊗ ρ1 ⊗ ρ1(%φ12,%φ13). Numerical techniques
to estimate these terms on the basis of histograms with finitely many bins are discussed
in §11.5. Direct estimations of ρ3(%φ12,%φ13) and terms of the form ρ2(%φi j ) with 2D
and 1D histograms, respectively, proceed with the same techniques as discussed in prior
sections.

Three-particle correlation studies in pseudorapidities can be done, similarly, by substi-
tuting rapidities ηi to azimuthal angle φi and differences %ηi j to %φi j in Eq. (11.62). Note,
however, that for correlation studies in rapidity (or pseudorapidity), no periodic boundary
applies, and one must consequently consider the integration and averaging of the correla-
tion functions over ranges ηi,min − η j,max ≤ %ηi j < ηi,max − η j,min. Numerical integration
and averaging techniques are discussed in §11.5.

The interpretation of three-particle cumulants measured in heavy-ion collisions as func-
tions %φ12 and %φ13 is greatly complicated by the presence of collective flow effects. Flow
indeed contributes irreducible terms of the form ⟨vp(1)vm(2)vn(3)⟩δp,m+ncos(pφ1 − mφ2 −
nφ3) to the cumulant that are functions of the product of three flow coefficients known to
be dependent on the particle momentum and subject to fluctuations as well as correlations.
A discussion of these terms is beyond the scope of this textbook but may be found in
ref. [160].

11.3 Integral Correlators

11.3.1 Introduction

Measurements of fluctuations in the relative production yields of two specific particle
species are commonly performed to study the underlying particle production mechanisms
and to investigate the nature of the system produced in elementary particle or nucleus–
nucleus collisions. For example, it was predicted that event-by-event fluctuations of the
ratio of the number of positively and negatively charged particles would be suppressed if
a quark gluon plasma, as opposed to a hadron gas, were produced in high-energy nucleus-
nucleus collisions. Similarly, fluctuations of the ratio of the yield of kaons to the yield of
pions were also expected to be modified if the nuclear matter produced in collisions lies
near a phase boundary or the critical point of nuclear matter. There also have been predic-
tions and expectations for fluctuations of other types of particles or particle species.

While a measurement of event-by-event fluctuations of the ratio, R, of the yields of
two particle types α and β observed in a specific fiducial momentum range, hereafter de-
noted Nα and Nβ , may sound straightforward, complications may occur that make such
measurements nontrivial. For instance, if the particle yields are small, there is a finite prob-
ability that the yield Nβ may vanish in a given event, thereby leading to a divergent ratio
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R = Nα/Nβ . Additionally, since particle detection efficiencies are typically functions of
several kinematical and collision parameters, correcting the measured ratios for such fluc-
tuations may become a rather complex task. Fortunately, a measurement of fluctuations
of the ratio R may be replaced by an essentially equivalent measurement of two-particle
integral correlators. Measurements of integral correlators are usually preferred relative to
measurements of event-by-event fluctuations of particle yield ratios because they are not
subject to divergences and can usually be corrected for detection efficiencies relatively
easily. Integral correlators also present the advantage of being theoretically well defined
and directly calculable. Their use for studies of relative yield fluctuations is consequently
recommended over measurements of ratios.

11.3.2 Equivalence between Particle Yield Ratio Fluctuations and Integral Correlators

Let us first demonstrate the equivalence between measurements of ratio fluctuations and
that of integral correlation functions. Let Nα and Nβ be the yields of two particle types
(e.g., positively and negatively charged particles) measured in a given event within a fidu-
cial momentum range. We are interested in measuring the variance ⟨%R2⟩ of the ratio
R = Nα/Nβ of these two yields. Let ⟨Nα⟩ and ⟨Nβ⟩ represent event averages, that is, the
expectation values of the yields Nα and Nβ . Let us further denote as %Nα and %Nβ the
deviations of Nα and Nβ from their respective means, and define ⟨R⟩ as the ratio of these
averages. The ratio R may thus be written

R = ⟨Nα⟩ + %Nα

⟨Nβ⟩ + %Nβ

(11.63)

= ⟨R⟩
(

1 + %Nα/⟨Nα⟩
1 + %Nβ/⟨Nβ⟩

)
.

If the magnitude of the fluctuations %Ni are small relative to the means ⟨Ni⟩, one can write

R = ⟨R⟩
(

1 + %Nα

⟨Nα⟩
− %Nβ

⟨Nβ⟩
+ O(1/N2)

)
. (11.64)

The variance of the ratio normalized to the mean is thus

⟨%R2⟩
⟨R⟩2

= ⟨%N2
α ⟩

⟨Nα⟩2
+

⟨%N2
β ⟩

⟨Nβ⟩2
− 2

⟨%Nα%Nβ⟩
⟨Nα⟩⟨Nβ⟩

. (11.65)

The preceding quantity is commonly denoted ν in the literature [161]. It may also be written

ν ≡ ⟨%R2⟩
⟨R⟩2

=
〈(

Nα

⟨Nα⟩
− Nβ

⟨Nβ⟩

)2
〉

. (11.66)

In the limit of independent particle production (Poisson statistics), one expects that
⟨%N2

i ⟩ = ⟨Ni⟩ and the correlator ⟨%Nα%Nβ⟩ vanishes. The so-called statistical limit of
ν, more aptly called the independent particle production limit, may thus be written

νstat = 1
⟨Nα⟩

+ 1
⟨Nβ⟩

, (11.67)
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549 11.3 Integral Correlators

from which we find that the variance of the ratio fluctuations, ⟨%R2⟩, becomes

⟨%R2⟩stat = νstat⟨R⟩2. (11.68)

Such statistical fluctuations are typically of limited interest because they are predominantly
determined by the magnitude of the yields ⟨Nα⟩ and ⟨Nβ⟩. Of greater interest is the devia-
tion of ν from the statistical limit νstat. One consequently introduces the difference ν − νstat,
known in the recent literature as a measure of dynamical fluctuations, noted νdyn. It is
straightforward (Problem 11.1) to verify that

νdyn = ⟨Nα (Nα − 1)⟩
⟨Nα⟩2

+ ⟨Nβ (Nβ − 1)⟩
⟨Nβ⟩2

− 2
⟨NαNβ⟩

⟨Nα⟩⟨Nβ⟩
. (11.69)

This measure of fluctuations is of particular interest because the three terms it comprises
are related to integral correlators Rαβ , as follows:

Rαα = ⟨Nα (Nα − 1)⟩
⟨Nα⟩2

− 1, (11.70)

Rαβ = ⟨NαNβ⟩
⟨Nα⟩⟨Nβ⟩

− 1.

The number of particle pairs ⟨Nα (Nα − 1)⟩ and ⟨NαNβ⟩ are given by integrals of the particle
production cross sections

⟨Nα (Nα − 1)⟩ =
∫

*

ραα dη1dφ1d pT,1dη2dφ2d pT,2, (11.71)

⟨NαNβ⟩ =
∫

*

ραβ dηαdφαd pT,αdηβdφβd pT,β , (11.72)

and the average single particle yields are given by

⟨Nα⟩ =
∫

*

ρα dηαdφαd pT,α. (11.73)

The quantities ρα and ραβ are single- and two-particle densities, respectively:

ρα (ηα,φα, pT,α ) = d3N
dηαdφαd pT,α

, (11.74)

ραβ (ηα,φα, pT,α, ηβ ,φβ , pT,β ) = d6N
dηαdφαd pT,αdηβdφβd pT,β

. (11.75)

The integrals may be taken over the entire acceptance of the detector or across specific
narrow ranges in rapidity, production azimuth, and transverse momentum deemed suitable
for the study of specific particle production mechanisms (e.g., emphasis on low- or high-pT

particles).
Clearly, the integral correlators, Rαβ , are in all ways similar to the differential correlation

functions introduced earlier in this chapter, and consequently sharing the same attributes
and properties. They scale as the inverse of the multiplicities Nα , and particle production
by m distinct and independent sources (or mechanisms) should satisfy

R(m)
αβ = 1

m
R(1)

αβ , (11.76)
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550 The Multiple Facets of Correlation Functions

where R(1)
αβ and R(m)

αβ are the correlators for a single process and a superposition of m iden-
tical such processes, respectively (see Problem 11.2). Integral correlators are also robust
observables, i.e., observables independent of detection and measurement efficiencies – at
least to first-order approximation, as we shall discuss in detail in §12.4. This implies, by
construction, that the observable νdyn also shares these characteristics. One expects in par-
ticular that νdyn should scale as 1/m for nuclear collisions consisting of superpositions of
m independent proton-proton (or perhaps parton–parton) processes (see Problem 11.3):

ν
(m)
dyn = 1

m
ν

(1)
dyn. (11.77)

Note, on the other hand, that the observable ν = ⟨%R2⟩/⟨R⟩2 is not a robust observable
given its explicit dependence on ⟨Nα⟩ and ⟨Nβ⟩ in the independent-particle production limit.
Measurements of yield fluctuations are thus best conducted in terms of the robust variable
νdyn, which provides a simple and explicit connection to two-particle densities and is as
such easily interpreted.

Obviously, Eq. (11.64) is an approximation strictly valid only for small deviations %Ni

relative to the averages ⟨Nα⟩. The correlator method discussed earlier is thus not an exact
substitute for measurements of fluctuations of the ratios of particle species yields. Nonethe-
less, it remains the preferred observable given that (1) it does not suffer from the patho-
logical behavior (divergence) associated with a ratio of numbers that may vanish, and (2)
its interpretation in terms of integral correlators provides a strong and clear foundation for
the interpretation of data.

In the following subsections, we discuss specific implementations of the νdyn observable
for the study of net charge fluctuations, and fluctuations of particle production.

11.3.3 Net Charge Fluctuations

Although electric charge is a conserved quantity, particle production in elementary particle
and nuclear collisions is subject to net charge fluctuations. The net charge of particles pro-
duced in a given region of momentum space is expected to fluctuate collision by collision.
The size of the fluctuations should be in part determined by the magnitude of the charge
of the produced particles. In a quark gluon plasma (QGP), the charge carriers, the quarks,
have fractional charges (±1/3, ±2/3), and therefore fluctuations of net charge should be
suppressed relative to particle production in a hadron gas where charge carriers have inte-
ger charges (±1). Several theoretical works published in the 1990s in fact predicted that
a signature of the production of QGP phase in relativistic heavy-ion collisions could be
a substantial reduction of net charge fluctuations relative to that observed in lower energy
collisions systems where no QGP is expected to be formed [46, 120, 121]. Subsequently, in
the mid-2000s, several measurements were undertaken to find evidence for the predicted
suppression of net charge fluctuations by SPS and RHIC experiments. Measurements of
net charge fluctuations have also been conducted more recently at the LHC. While the
results were somewhat inconclusive, the correlation functions developed to carry out the
measurements have merits that extend beyond the search for explicit manifestation of
the quark gluon plasma, and as such remain of general interest for the study of particle
production dynamics in high-energy nuclear collisions.
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551 11.3 Integral Correlators

The question arises as to what constitutes a reliable and significant measure of fluctu-
ations of the net charge, Q = N+ − N− (for a review, see [157]). Clearly, the size of the
fluctuations must depend on the actual produced particle multiplicity, the magnitude of the
individual charges, as well as the efficiency of the counting and detection processes. A
measurement of the variance of the produced multiplicity would therefore be incomplete
and inconclusive. A measurement of the ratio N+/N−, however, would obviously be sensi-
tive to fluctuations of the net charge. Alternatively, one might also consider the variance of
Q relative to the average total number of charge particles ⟨Nch⟩ = ⟨N+⟩ + ⟨N−⟩:

ωQ ≡ ⟨%Q2⟩
⟨N+⟩ + ⟨N−⟩

= ⟨Q2⟩ − ⟨Q⟩2

⟨Nch⟩
. (11.78)

It is straightforward (see Problem 11.4) to show that one expects ωQ = 1, for a strictly Pois-
sonian system. Particle production is, however, not a perfect Poisson process. For instance,
Koch et al.[120] estimated that the production of resonances, such as the ρ-meson, in a
hadron gas would reduce the fluctuations to ωQ = 0.8. They further predicted that a dras-
tic reduction to ωQ = 0.2 would take place in the presence of a quickly expanding QGP
[46, 121].

Inspection of the expressions for ωQ reveals that this observable depends linearly on
the efficiency, ϵ, of the detection and particle counting process. Because the efficiency
may depend on the particle species considered as well as various other factors such as
the detector occupancy, environmental features, defective detector components, and so on,
the normalized variance constitutes a nonrobust observable, that is, one which requires a
detailed calculation of the detection efficiency involving the various characteristics (flaws)
and cuts used in the analysis. It is thus of interest to seek observables that are sensitive to net
charge fluctuations but remain robust under practical experimental conditions. An obvious
choice is the dynamic fluctuation observable, νdyn, introduced in the previous section. Let
Nα = N+ and Nβ = N−, one gets

ν+−,dyn = ⟨N+(N+ − 1)⟩
⟨N+⟩2

+ ⟨N−(N− − 1)⟩
⟨N−⟩2

− 2
⟨N+N−⟩

⟨N+⟩⟨N−⟩
. (11.79)

The quantities ⟨N+(N+ − 1)⟩, ⟨N−(N− − 1)⟩, and ⟨N+N−⟩ are the average number of pos-
itively charged, negatively charged, and unlike-sign pairs, respectively, measured within a
fiducial momentum volume over an ensemble of events. ⟨N+⟩ and ⟨N−⟩ are the average
yields of positive and negative particles averaged over the same fiducial volume and event
ensemble. ν+−,dyn shares all attributes and properties of νdyn correlation functions. It is de-
termined by the integral correlators R++, R−−, and R+− and is as such a robust observable.

ν+−,dyn may be measured as a function of global event observables such as the total
transverse energy or the charged particle multiplicity produced in a selected part of the
experimental acceptance. However, care must be taken to correct for finite bin width effects
as discussed in §12.4.3.

Measurements of correlation functions in elementary particle collisions at the ISR, the
Tevatron (FNAL), the SPS (CERN), and RHIC (BNL) have shown that R++ ≈ R−− <

R+−/2 [85, 193]. The dynamic fluctuations ν+−,dyn are consequently found to be negative
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in such elementary processes. They are also found to be negative in nucleus–nucleus colli-
sions, where ν+−,dyn roughly scales inversely as the produced particle multiplicity [3, 159].

Charge conservation fixes the total charge produced in an elementary particle (or nu-
clear) collision. A measurement encompassing all particles produced by a collision (i.e.,
over 4π acceptance and perfect detection efficiency) would thus not be subject to net charge
fluctuations. Particle production at SPS, RHIC, and LHC, however, spans several units of
rapidity, and it is typically not possible to measure the full range of produced particles. Net
charge fluctuations do take place on the scale of few units of rapidity. The strength of such
fluctuations should in fact be sensitive to the degrees of freedom (i.e., hadronic vs. par-
tonic) of the matter produced in high-energy collisions. Charge conservation does impact
the measured fluctuations. One finds [157] that charge conservation yields a contribution
to ν+−,dyn on the order of

νcc
+−,dyn = − 4

⟨N⟩4π

, (11.80)

where the superscript cc indicates the “charge conservation” limit, and ⟨N⟩4π is the av-
erage total charged particle multiplicity produced by a collision system at a given impact
parameter in nucleus–nucleus collisions (see also [46]).

Several other fluctuation observables have been proposed and used to measure net charge
fluctuations. Of particular note is the -q observable, specifically designed to identify
dynamic fluctuations of the net charge [92] produced in nucleus–nucleus collisions. By
construction, -q yields a constant value for nucleus–nucleus collisions that could be re-
duced to a superposition of independent proton–proton interactions. It thus enables, at least
in principle, identification of not only dynamic fluctuations, but fluctuations that might
vary nontrivially as a function of collision system size, or collision centrality relative to
proton–proton interactions. However, one can show that -q can be expressed in terms of
ν+−,dyn [157], as follows:

-q ≈ ⟨N+⟩3/2⟨N−⟩3/2

⟨N⟩2
ν+−,dyn. (11.81)

Given its explicit dependence on particle multiplicities, one concludes this observable is
nonrobust against particle detection efficiencies. Use of the observable ν+−,dyn is conse-
quently recommended for practical measurements of net charge fluctuations. Changes in
the collision dynamics may then be identified by scaling ν+−,dyn with the produced charged
particle multiplicity (corrected for detection efficiencies and charge conservation effects).

11.3.4 Kaon vs. Pion Yield Fluctuations

Anomalous fluctuations in the yield of kaons, relative to the yield of (charged) pions, were
suggested as a potential signature of the formation of a quark gluon plasma in high-energy
heavy-ion collisions [49]. Several measurements of such fluctuations have been conducted
at the SPS (CERN) in terms of the variance, %R2, of the ratio of the yield of charged kaons
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and charged pions measured in fixed rapidity and momentum ranges,

R = NK

Nπ

, (11.82)

relative to the mean ratio

⟨R⟩ = ⟨NK⟩
⟨Nπ ⟩

. (11.83)

Given that %R2 is sensitive to trivial statistical fluctuations, as well as actual correlations in
the particle production of kaons and pions, measurements in terms of this variable typically
rely on a comparison of the variance measured in actual events (siblings) relative to those
found in mixed events. Such a comparison is complicated, however, by various detector
effects, and most particularly, by detection efficiencies.

In light of the discussion in §11.3.2, which establishes an equivalence between the dy-
namical fluctuations measured with νdyn and deviations of the measured variance %R2 from
the independent particle limit, it is advisable to carry measurements of relative kaon and
pion yields in terms of νdyn, which is by construction a robust quantity. Such measurements
have been conducted at RHIC [4] in terms of the νKπ ,dyn observable, defined as:

νKπ ,dyn = ⟨NK (NK − 1)⟩
⟨NK⟩2

+ ⟨Nπ (Nπ − 1)⟩
⟨Nπ ⟩2

− 2
⟨NKNπ ⟩

⟨NK⟩⟨Nπ ⟩
, (11.84)

where ⟨NK (NK − 1)⟩ and ⟨Nπ (Nπ − 1)⟩ are second-order factorial moments of the pro-
duced kaon and pion yields, respectively, ⟨NKNπ ⟩ represents the average number of kaon
+ pion pairs observed event-by-event in the fiducial acceptance, whereas ⟨NK⟩ and ⟨Nπ ⟩
are the mean kaon and pion yields, respectively. This observable is by construction robust
against particle loses associated with detection efficiencies. It is thus suitable to measure
the rather small dynamical fluctuations observed in large multiplicity A–A collisions.

11.3.5 Transverse Momentum Fluctuations

Introduction
Studies of event-by-event average transverse momentum fluctuations in heavy-ion colli-
sions were initially undertaken to search for evidence of critical phenomena predicted to
take place near the hadron–parton phase boundary and identify the formation of a quark
gluon plasma [8, 9]. Although no conclusive evidence for the formation of a quark gluon
plasma arose from early studies in Au–Au collisions, it was clear that transverse mo-
mentum fluctuations constituted a useful technique to study the collective dynamics of
nucleus–nucleus collisions, most particularly radial flow effects. Studies were thus car-
ried out by several groups for multiple colliding systems and at several colliding energies
[6, 9, 12, 22, 104].

The event-wise mean transverse momentum is often defined as

⟨pT ⟩ ≡ 1
N

N∑

i=1

pT,i, (11.85)
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Fig. 11.9 Distribution of ⟨pT ⟩ per event (solid squares) measured for 5%most central Au+Au collision at
√
sNN = 200 GeV,

compared to a mixed event average pT distribution (open squares). Data from STAR collaboration. (Adapted from
J. Adams et al. Incident energy dependence of pt correlations at RHIC. Physical Review C 72:044902, 2005.)

where N is the total number of particles per event detected in the kinematical range of
interest and pT,i represents their transverse momenta. The kinematical range may be se-
lected in rapidity, azimuthal angle, and transverse momentum. The sum can in principle
be carried on all detected particles, neutral or charged particles only, or some specific set
of particle species. Figure 11.9 displays a measurement of the event-wise mean transverse
momentum (Black squares) measured by the STAR collaboration in Au–Au collisions at√

SNN = 200 GeV [9], compared to a mean pT distribution (open squares) obtained with
mixed events. Mixed events, defined in §12.4.5, are obtained by mixing particles from dif-
ferent events and thus carry no intrinsic particle–particle correlation. They thus constitute
a sensible reference to establish whether particles produced in a given event do exhibit cor-
relations. One finds that the mean pT distribution of actual events is slightly wider than the
reference histogram, which means that dynamic mean pT fluctuations take place in Au–Au
collisions, that is, fluctuations exceed the statistical fluctuations expected for a stochastic
system consisting of independently produced particles.

An intuitive and quantitative measure of dynamical fluctuations is the excess variance,
δp2

t , of the data relative to the reference:

δp2
t = σ 2

data − σ 2
ref (11.86)

where σ 2
data and σ 2

ref are the variance of the real and reference mean pT distributions, re-
spectively. However, in view of limited particle detection efficiencies, the measured mean
pT distributions (real and mixed events) may be subject to artificial broadening associ-
ated with purely instrumental effects. The δp2

t observable also obscures the origins of the
dynamical fluctuations, which are found in two- and multiparticle correlations. It is thus
of greater interest to use observables that render this connection more explicit. Unfortu-
nately, there exists several distinct ways to define and measure mean pT observables that
make this connection more explicit. Although qualitatively similar, the results obtained
with these different definitions are found to be quantitatively distinct.
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⟨%pT %pT ⟩ Correlation Functions
In this section, we introduce the so-called event-wise (EW) and inclusive (I) %pT %pT

observables. We show in the next section, that these observables can be both approximately
related to the excess pT variance defined by Eq. (11.86).

The event-wise average pT per event is defined as

⟨⟨pT ⟩⟩EW = 1
Nev

Nev∑

α=1

SpT
α

Nα

, (11.87)

where

SpT
α =

Nα∑

k=1

pT,k, (11.88)

which is the sum of the transverse momenta of the Nα particles in event α, and Nev is the
number of events considered.

The inclusive average pT is obtained by taking the event averages of SpT
α and Nα sepa-

rately:

⟨⟨pT ⟩⟩I =
1

Nev

∑Nev
α=1 SpT

α

1
Nev

∑Nev
α=1 Nα

=
∑Nev

α=1 SpT
α∑Nev

α=1 Nα

≡ ⟨SpT ⟩
⟨N⟩

. (11.89)

While the definition of ⟨⟨pT ⟩⟩EW may seem more “intuitive,” the inclusive definition has
the advantage of being directly related to the particle production cross section, and is thus
recommended. Noting that

∑
SpT

α is the sum of transverse momenta of all the particles
measured in the data sample of interest, and that

∑
Nα is the total number of such particles,

one can write

⟨⟨pT ⟩⟩I =
∑

all pT

Nparticles
. (11.90)

This expression is indeed just the average pT of all the particles measured, and it can be
written in terms of the inclusive single-particle cross section:

⟨⟨pT ⟩⟩I =
∫
*

ρ1(η,φ, pT )p2
T dηdφd pT∫

*
ρ1(η,φ, pT )pT dηdφd pT

, (11.91)

where the integration is taken over a selected subset * of the detector’s acceptance, and

ρ1 = d3N
pT dηdφd pT

. (11.92)

Writing a similar formula for ⟨⟨pT ⟩⟩EW is possible but yields a rather complicated ex-
pression in terms of conditional cross-sections (see, e.g., [173] and Problem 11.6). One
however expects that the two definitions converge in the large N particle production limit.

The event-wise and inclusive ⟨%pT %pT ⟩ observables are defined as covariances relative
to mean pT averages, respectively. The event-wise ⟨%pT %pT ⟩EW is given by

⟨%pT %pT ⟩EW = 1
Nev

Nev∑

α=1

S%pT %pT
α

Nα (Nα − 1)
(11.93)
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with

S%pT %pT
α =

Nα∑

i=1

Nα∑

j=1, j ̸=i

(pT,i − ⟨⟨pT ⟩⟩EW ) (pT,i − ⟨⟨pT ⟩⟩EW ) . (11.94)

The inclusive ⟨%pT %pT ⟩I is similarly given by

⟨%pT %pT ⟩I =
∑Nev

α=1 S′%pT %pT
α∑Nev

α=1 Nα (Nα − 1)
= ⟨S′%pT %pT ⟩

⟨N (N − 1)⟩
(11.95)

with

S′%pT %pT
α =

Nα∑

i=1

Nα∑

j=1, j ̸=i

(pT,i − ⟨⟨pT ⟩⟩I )
(
pT, j − ⟨⟨pT ⟩⟩I

)
. (11.96)

As for ⟨pT ⟩EW , the covariance ⟨%pT %pT ⟩EW may seem more intuitive because it involves
an average of S%pT %pT

α calculated per pair of particles. The covariance ⟨%pT %pT ⟩I is, how-
ever, of greater interest because it can be expressed easily as an integral of the two-particle
cross section:

⟨%pT %pT ⟩I =
∫

accept ρ2%pT,i%pT, j dη1dφ1 pT,1d pT,1dη2 pT,2dφ2d pT,2∫
accept ρ2 dη1dφ1 pT,1d pT,1dη2dφ2 pT,2d pT,2

, (11.97)

with

%pT,i = pT,i − ⟨⟨pT ⟩⟩I , (11.98)

and

ρ2 = d6N
pT,1 pT,2 dη1dφ1d pT,1dη2dφ2d pT,2

(11.99)

Defined as a covariance, ⟨%pT %pT ⟩I features the same properties as regular correlation
functions. It is a robust variable against particle losses due to detection efficiencies and it
scales inversely as the produced particle multiplicity as well as the number of independent
particle sources (see Problem 11.8).

Relation between ⟨%pT %pT ⟩ and δp2
t

We show that the excess variance, δp2
t , defined by Eq. (11.86) can be expressed in terms

of the correlator ⟨%pT %pT ⟩ by calculating the first and second moments of the sum SpT

defined by Eq. (11.88).
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For events with a fixed number of particles N , one can write

⟨SpT ⟩N = 1
N

〈
N∑

i=1

pT,i

〉

= 1
N

N∑

i=1

⟨pT,i⟩ = ⟨pT ⟩ (11.100)

⟨SpT ⟩2
N = 1

N2

N∑

i=1

⟨pT,i⟩2 + 1
N2

N∑

i ̸= j=1

⟨pT,i⟩⟨pT, j⟩

⟨(SpT )2⟩N = 1
N2

〈(
N∑

i=1

pT,i

) ⎛

⎝
N∑

j=1

pT, j

⎞

⎠
〉

= 1
N2

N∑

i=1

⟨p2
T ⟩ + 1

N2

N∑

i ̸= j=1

⟨pT,i pT, j⟩.

The variance of SpT , for fixed N , is thus

Var [SpT ] = ⟨(SpT )2⟩N − ⟨SpT ⟩2
N (11.101)

= 1
N

(
⟨p2

T ⟩ − ⟨pT ⟩2) + 1
N2

⟨S′%pT %pT
α ⟩.

First, note that the difference ⟨p2
T ⟩ − ⟨pT ⟩2 corresponds to the variance σ 2

pT
of the inclusive

pT distribution, in other words, that obtained by plotting a histogram of all measured par-
ticles pT values. Second, note that Var [SpT ] is actually the variance σ 2

data of the histogram
(data) of SpT discussed in §11.3.5. Clearly, the variance of an histogram of SpT accumulated
with mixed events should have the same exact structure except for the fact that none of the
particles composing a mixed-event are correlated. This implies that the quantity ⟨S′%pT %pT

α ⟩
should be null for mixed events. The variance Var [SpT ] of the mixed event spectrum is thus
simply equal to σ 2

pT
. We conclude that the excess variance δp2

t representing the difference

between the same and mixed-event variance is equal to 1
N2 ⟨S′%pT %pT

α ⟩. One thus obtains the
result

δp2
t = ⟨N (N − 1)⟩

N2
⟨%pT %pT ⟩I , (11.102)

which tells us that the excess variance is approximately equal to the integral correlator
⟨%pT %pT ⟩I . It should be noted, however, that while the quantity ⟨%pT %pT ⟩I is by con-
struction robust against particle loss due to detector inefficiencies, the quantities δp2

t and
σ 2

pT
are not. It is consequently recommended to conduct pT fluctuations studies on the

basis of ⟨%pT %pT ⟩I rather than using a mixed-event technique and a combination of the
observables Var [SpT ], and δp2

t and σ 2
pT

. The use of ⟨%pT %pT ⟩I rather than ⟨%pT %pT ⟩EW

is also deemed preferable because ⟨%pT %pT ⟩I maps straightforwardly onto the well-
defined correlation integral (11.97), while ⟨%pT %pT ⟩EW yields a more convoluted ex-
pression in terms of conditional cross sections, expressed for fixed values of the event
multiplicity.
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11.4 FlowMeasurements

Measurements of the momentum anisotropy of the particles produced in heavy-ion colli-
sions constitute a central component of the RHIC and LHC heavy-ion programs because
they provide tremendous insight into the nature and properties of the matter formed in
these collisions. Theoretical studies indicate that the momentum anisotropy of produced
particles finds its origin in the initial asymmetry of the geometry of the matter produced
in heavy-ion collisions. The development of collective motion, or flow, results in part from
anisotropic pressure gradients, momentum transport, and differential particle energy loss
through the medium. From a practical standpoint, it is convenient to distinguish the ra-
dial and azimuthal components of the collective motion. The radial component, known as
radial flow, may be estimated based of momentum spectra and momentum correlations,
while measurements of the azimuthal component, known as anisotropic flow or simply
flow, are achieved via two- and multiparticle azimuthal correlation functions. Since the
spatial anisotropies vanish rapidly as collision systems expand and evolve, anisotropic flow
is generally considered to be self-quenching and thus expected to originate mostly from
the early phases of collisions, essentially during the first few fm/c (i.e., ∼ 3 × 10−24) of
heavy-ion collisions. Flow measurements are thus particularly sensitive to the early phases
of collisions and the nature of the high-temperature and high-density matter produced in
relativistic heavy-ion collisions. Flow measurements are also increasingly carried out on
simpler colliding systems, such as p–Pb or even p–p to find out whether the energy densi-
ties and gradients produced in these systems are sufficient to produce radial and anisotropic
flow.

11.4.1 Definition of Flow and Nonflow

Since the development of anisotropic flow is dependent on the initial geometry of collision
systems, it is particularly important to clearly define the geometry and coordinates used to
quantify measurements of flow.

Figure 11.10 presents a schematic illustration of the transverse profile of colliding nu-
clei and the participant region created by p–p interactions (which can be viewed as parton–
parton or proton–proton interactions). Note that the use of a classical description (i.e.,
classical particle trajectories) of the nuclei profile is justified by the very high momentum
of the colliding particles, which endows them with very short De Broglie wavelengths. The
reaction plane is defined by the beam direction and the impact parameter vector consist-
ing of a line joining the geometrical centers of the colliding nuclei. Particularly relevant
for flow measurements is the azimuthal angle, 1RP, of the reaction plane relative to some
laboratory reference direction (not shown in the figure). The angle 1RP cannot be dialed
macroscopically nor observed directly and must consequently be inferred from the distri-
bution of produced particles. All values of 1RP are a priori equally probable; the proba-
bility of measuring a given value of 1RP can thus be described as a uniform PDF in the
range [0, 2π ]. The initial anisotropic spatial geometry of the system causes anisotropic
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559 11.4 Flow Measurements

Fig. 11.10 The beam axis (extending out of page) and a line passing through the nuclei centers (xRP) define the nominal
reaction plane (RP). Event-by-event fluctuations in the location of p–p (i.e., nucleon–nucleon or parton–parton)
interactions define the participant region with axes of symmetry xPP and yPP. The beam and xPP axes define the
participant plane (PP).

pressure gradients and differential energy losses. As illustrated in Figure 11.6, the energy
and pressure gradient are maximum along the x-axis, and one thus expects the largest par-
ticle production of low momentum particles subjected to flow gradients along this axis.
High-pT particles produced during the earliest stages of a collision might not be driven by
pressure gradients, but must nonetheless penetrate through the spatially anisotropic slower
medium produced by the intersecting nuclei. Interactions with the medium are expected to
produce energy losses. And since path lengths are shorter along the x-axis than along the
y-axis, high-pT particles are expected to suffer differential energy losses. They too should
exhibit azimuthal anisotropies. The particle production cross section is thus expected to
depend on the azimuthal angle φ relative to the orientation of the reaction plane 1. One
may express this cross-section as a Fourier series:

E
d3N
d p3

= 1
2π

d2N
pT d pT dy

{

1 + 2
∞∑

n=1

vn cos [n (φ − 1RP)]

}

, (11.103)

where the coefficients, vn, are known as flow coefficients or simply as harmonic coeffi-
cients. The introduction of a factor of 2 in the preceding decomposition will be justified in
the discussion that follows.

As in prior sections, it is convenient to define shorthand notations ρ1(φ, y, pT ) and
ρ1(y, pT ) for the single particle density,

ρ1(φ, y, pT ) = 1
2π

ρ1(y, pT )

{

1 + 2
∞∑

n=1

vn cos [n (φ − 1RP)]

}

(11.104)

The flow coefficients, vn, may be obtained as the expectation value of cos [n (φ − 1RP)],

vn ≡ ⟨cos [n (φ − 1RP)]⟩ (11.105)

=
∫ 2π

0 ρ1(φ, y, pT ) cos [n (φ − 1RP)] dφ
∫ 2π

0 ρ1(φ, y, pT ) dφ
. (11.106)

The integral in the denominator of Eq. (11.106) yields ρ1(y, pT ). To carry out the integral
in the numerator, with ρ1(φ, y, pT ) given by Eq. (11.104), recall the orthogonality relations
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of cosine and sine functions,

∫ 2π

0
cos(nφ) cos(mφ) dφ = πδnm, (11.107)

∫ 2π

0
sin(nφ) cos(mφ) dφ = 0, (11.108)

defined for integer values of n, m > 0, and with the Kronecker delta function δnm = 1
for n = m, and null otherwise. One can thus verify easily that the integral in the nu-
merator yields vn × ρ(y, pT ). Note that the factor of 2 originally inserted in the defi-
nition of the Fourier decomposition multiplies the factor π obtained from the integral∫ 2π

0 cos(nφ) cos(mφ) dφ. This consequently yields a factor 2π that cancels the 2π nor-
malization factor of the invariant cross section. One concludes that the expectation value
⟨cos [n (φ − 1RP)]⟩ indeed yields the flow coefficients vn. Further note that Eq. (11.105)
produces flow coefficients, known as differential flow coefficients, that are dependent on
the rapidity, y, and transverse momentum, pT , of the particles. Integrated flow coeffi-
cients, also known as average flow coefficients, may be obtained by further integrating
the particle density over the fiducial rapidity and transverse momentum acceptance of the
measurements. Flow coefficients vanish at null pT and grow approximately linearly at low
pT while the density ρ1(y, pT ) is a steeply decreasing function at large pT . Systematic er-
rors associated with an integrated vn measurement based on a finite pT range can thus be
controlled relatively easily.

Experimentally, the integrals in Eq. (11.105) are replaced by sums over all (or selected)
particles measured in the fiducial acceptance. Given an estimate of the reaction plane angle,
1̂RP, one obtains flow coefficients with

vn =

〈∑Np

i=1 cos[n(φi − 1̂RP)]
〉

⟨Np⟩
, (11.109)

where φi, i = 1, Np, are the azimuthal angles of measured particles and the sum runs over
all Np measured particles in any given event, and the brackets stand for an average over
events. The vn may be obtained in bins of pT and y or integrated over the entire fiducial
range of the measurement.

The Fourier decomposition used in Eq. (11.103) is obviously incomplete. Sine terms
were omitted because, on average, there should be an equal number of particles produced
below and above the reaction plane. Sine terms being odd in φ − 1RP are thus expected
to vanish, on average, and are consequently not required for a description of the averaged
particle emission relative to the reaction plane. Fluctuations in the number of particles,
however, take place on an event-by-event basis. One might thus be tempted to introduce
sine terms in the Fourier decomposition (11.103). It is, however, usually deemed more
convenient and physically meaningful to describe collisions on event-by-event using the
notion of participant plane illustrated in Figure 11.10.

The first four harmonic coefficients, v1, v2, v3, and v4 are commonly known as directed
flow, elliptic flow, triangular flow, and quadrangular flow, respectively, given their
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561 11.4 Flow Measurements

Fig. 11.11 Illustration of the geometrical interpretation of flow coefficients; the sizes of the radial profiles are plotted with
rn(φ) = kn(1 + 2vn cos(nφ)), for given vn values. The scaling coefficients kn are set arbitrarily to facilitate the
visualization of the different flow terms. The thick solid line represents a sum of the four terms.

obvious geometrical interpretation (Figure 11.11). Appellations in terms of dipole,
quadrupole, and so on, should be frowned on since these names are usually reserved for the
multipole expansion of three-dimensional charge or mass distributions, not the harmonic
decomposition in azimuth of a flow field.

The reaction plane angle 1RP is not readily accessible macroscopically but may be esti-
mated based on the distribution of produced particles. Several of the techniques commonly
used to estimate this angle and measure the flow coefficients based on two- and multipar-
ticle correlation functions will be described in following sections and their relative merits
discussed in §11.4.3. At this stage, it is important to point out that contributions to these
correlation functions involving two- or n-particle correlations, resulting, for instance, from
resonance decays or the production of jets, and having nothing to do with collective flow,
may enter in the determination of flow coefficients. These contributions are commonly re-
ferred to as nonflow. They are noted δn and can in principle be estimated from two-particle
correlations based on the following expression:

⟨cos[n(φi − φ j )]⟩ =
〈
v2

n

〉
+ δn. (11.110)

Measurements of flow coefficients are further complicated by fluctuations of the magni-
tude of the flow on an event-by-event basis, all other collision properties being equal. The
variations are known as flow fluctuations, σ 2

vn, and formally defined as the variance of the
flow coefficients:

σ 2
vn =

〈
v2

n

〉
− ⟨vn⟩2. (11.111)

From Eqs. (11.110) and (11.111), one gets:

⟨cos[n(φi − φ j )]⟩ = ⟨vn⟩2 + σ 2
vn + δn, (11.112)
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which implies that measurements of ⟨cos[n(φi − φ j )]⟩ are determined by the square of the
magnitude of the (average) flow, the variance of the flow, as well as nonflow effects. It
initially appeared that flow fluctuations might be inextricably linked to nonflow effects.
Recent developments, however, suggest flow fluctuations may largely be determined by
fluctuations in the overlapping nuclei geometry, known as the participant nucleons region.
Theoretical considerations further suggest that the principal axes of the participant region
may in fact deviate substantially from the nominal average overlap region, as schematically
illustrated in Figure 11.10. The flow coefficients measured according to the participant
plane are always larger than those obtained relative to the nominal reaction plane. This
leads to important contributions to the flow fluctuations.

11.4.2 Measurement Methods

In this section, we describe some of the many techniques developed over the years to es-
timate the flow coefficients vn. These techniques vary in applicability based on the size of
the data sample, ease of use, and their capacity to suppress or control nonflow effects.

Standard Event Plane Method
The standard event plane method, also known simply as event plane (EP) method, is the
most basic of all techniques used to determine flow coefficients. Defined by Eq. (11.105),
it requires the estimation of the reaction plane angle, 1RP, from the event plane computed
on the basis of selected, or all, measured particles. The event plane determination proceeds
on the basis of a 2D vector, denoted Q⃗n, and known as the event plane vector of order
n. It is calculated in the transverse plane, event-by-event, on the basis of the following
expressions:

Q⃗n,x =
Np∑

i=1

wi cos (nφi) (11.113)

Q⃗n,y =
Np∑

i=1

wi sin (nφi) . (11.114)

The sums run over the Np measured particles. The φi, with i = 1, Np, are the azimuthal
angles of the measured particles in the laboratory reference frame. The coefficients wi are
weights assigned to each particle and designed to yield an optimal estimation of the event
plane vector Q⃗n, discussed in the text that follows. The event-plane angle, 1n, and the
modulus of Q⃗n are obtained with

1̂n = 1
n

arctan (Qn, y/Qn, x) (11.115)

|Q̂n| =
√

Qn, x2 + Qn, y2. (11.116)

The weights, wi, are positive definite for even values of n, but must satisfy wi(−y) =
−wi(y) for odd harmonics. An optimal determination of the angle 1n is achieved if the
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weights are set equal to the flow coefficients, wi = vn(pT , y) [182]. This is rather inconve-
nient because the vn are not known a priori. It is, however, common and legitimate practice
to use the pT of the particles as weight, since the flow coefficients are typically proportional
to the transverse momentum of the particles at low pT . Estimates of the flow coefficients,
noted vobs

n , are obtained by replacing 1̂RP by 1̂n in Eq. (11.109),

vobs
n =

〈
1

Np

Np∑

i=1

cos[n(φi − 1̂n)]

〉

. (11.117)

Note that the orientation of the Q⃗ vector is obviously influenced by the direction of all
particles included in its calculation. As an extreme case, consider that if Q⃗ was determined
on the basis of a single particle, this particle’s momentum vector would be perfectly aligned
with it. This leads to an autocorrelation effect that tends to skew the Q⃗ vector along the
direction of high-pT particles (most particularly if a weight proportional to pT is used),
and as a result inappropriately increases the value of the flow coefficients. To avoid this
auto-correlation bias, one must recalculate the vector Q⃗, for each particle included in the
vn calculation, to exclude the contribution of this particle to the flow vector. This may be
written

vobs
n =

〈
1

Np

Np∑

i=1

cos[n(φi − 1̂ ′
n)]

〉

, (11.118)

where 1̂ ′
n is obtained, for each particle, from

1̂ ′
n = 1

n
arctan(Q′

n,y/Q′
n,x), (11.119)

with

Q⃗′
n,x = Qn,x − wi cos (nφi) (11.120)

Q⃗′
n,y = Qn,y − wi sin (nφi) . (11.121)

It is important to notice that for v2, the definition (11.117) does not specify whether
the anisotropy is in- or out-of-plane. Additional information, such as a measurement of
the spectator plane using forward detectors, was required in practice to establish that the
elliptic flow observed in heavy-ion collisions at RHIC and LHC energies is actually in-
plane. It also worth noting that, mathematically, there is no intrinsic or a priori relationship
between the different angles 1n. However, the geometry and dynamics of nuclei–nuclei
collisions may impart a finite degree of correlation between these angles. Measurements
of their covariance Cov[1m,1n] or average cos(1m − 1n) are thus of interest and provide
valuable insight about the collision geometry and dynamics.

While the aforementioned procedure corrects for autocorrelation effects, it does not ac-
count for fluctuations associated with the finite number of particles. Indeed, one can show
that Eq. (11.118) produces a biased estimator of the flow coefficient vn because the event
plane vector, Q̂n, randomly deviates from the actual reaction vector due to the finite particle
multiplicity. For large multiplicities, the fluctuations of Q̂n can be shown to be Gaussian in
the Qx–Qy plane, and thus the measured and true Fourier coefficients may be related by the
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following expression: [151]

vobs
n ≡ ⟨cos [n (φ − 1RP)]⟩ (11.122)

= ⟨cos [n (φ − 1n)]⟩ × ⟨cos [n (1n − 1RP)]⟩ (11.123)

= vn × ⟨cos [n (1n − 1RP)]⟩ , (11.124)

from which we conclude that a correction for event plane resolution may be achieved with

vn = vobs
n

Rn
, (11.125)

where the event plane resolution Rn is defined by

Rn = ⟨cos [n (1n − 1RP)]⟩ . (11.126)

The event plane resolution coefficients Rn must be calculated for each harmonic n and
obtained as an average taken over a large ensemble of events. Their magnitude depends
on the strength of the flow vn and the particle multiplicity M . They may be evaluated
analytically if the Q̂n fluctuations are Gaussian according to [151]

Rn(χ ) =
√

π

2
χe−χ2/2 [

I(n−1)/2(χ2/2) + I(n+1)/2(χ2/2)
]
, (11.127)

where χ = vn
√

M , and Ik are modified Bessel functions of order k. The functions Rn(χ )
are plotted in Figure 11.12 for k = 1, k = 2, and so on. Eq. (11.127) is useful to model the
behavior of the event plane resolution relative to the strength of the flow coefficients and
the particle multiplicity, but, it is not readily sufficient for the experimental determination
of the event plane resolution.

The event plane resolution can be estimated directly from the data using the subevent
method, which consists of randomly subdividing the particles of each measured event into
two subevents A and B of (approximately) equal size M/2. One may then calculate the flow
vectors Q̂A

n and Q̂B
n of the two subevents and determine the correlation ⟨cos[n(1̂A

n − 1̂B
n )]⟩.

For Gaussian fluctuations and sufficiently large multiplicities, the two angles 1̂A
n and 1̂A

n

are statistically independent, and one may consequently write
〈
cos

[
n
(
1̂A

n − 1̂B
n )

]〉
=

〈
cos

[
n
(
1̂A

n − 1̂RP
)]〉

×
〈
cos

[
n
(
1̂B

n − 1̂RP
)]〉

(11.128)

=
〈
cos

[
n
(
1̂A

n − 1̂RP
)]〉2

.

The event plane resolution of subevents A (or B) is thus

Rn,sub =
√〈

cos
[
n
(
1̂A

n − 1̂B
n

)]〉
. (11.129)

The resolution for a full event may then be estimated from

Rn,full = Rn(
√

2χsub). (11.130)

The use of subevents is a powerful technique that enables a wide range of studies. One
can produce subevents by random selection of particles of actual events, or on the basis of

2��8:�  /73�791 ������	 �	
���
�������������.43:20/�7�43�0�.!���.93/10���3 09:3�!��90::

https://doi.org/10.1017/9781108241922.013


565 11.4 Flow Measurements

1/2 M
m

 = vχ
0 1 2 3 4 5

)χ(
n

R
0

0.2

0.4

0.6

0.8

1

k = 1
k = 2

Fig. 11.12 Event plane resolution, Rn, as a function ofχ = vn
√
M, where vn is actual flow, andM is the number of particles

involved in the estimation of the event plane resolution. The harmonic number of the correlation n is an integer k
times the harmonic numberm of the event plane.

the (pseudo)rapidity, charge, or any combination of these criteria. The use of a pseudora-
pidity gap, in particular, constitutes a straightforward method for suppressing short-range
correlations and consequently suppressing nonflow effects.

Three techniques, known as φ weighting, recentering, and shifting, are commonly used
to correct for detector artifacts in the evaluation of the event plane angle 1n. They are
described in §12.4.4.

Two and Multiparticle Correlation Methods
As discussed in §11.1.2, two-particle densities measured as function of the relative az-
imuthal angle between two produced particles are sensitive to collective flow. One indeed
finds

dNpairs

d%φ
∝ 1 +

∞∑

n=1

2v2
n cos (n%φ) , (11.131)

where all pairs of a particular momentum and rapidity range are selected for the calculation
of this pair spectrum. It is therefore possible to obtain the square of the flow coefficients,
vn, from fits of pair azimuthal distributions. This technique is known as the pairwise corre-
lation method. Experimentally, this can be readily accomplished by taking measurements
of the normalized two-particle density r2(%φ) or the normalized cumulant R2(%φ) since,
by construction, these observables yield measurements that are corrected for detection ef-
ficiencies. The properly normalized pair spectrum is thus

dNpairs

d%φ
= ⟨n⟩2

⟨n(n − 1)⟩
r2(%φ), (11.132)

where ⟨n⟩ and ⟨n(n − 1)⟩ are the average number of particles and average number of pairs
detected in the nominal momentum and rapidity range of the measurement of r2(%φ),

2��8:�  /73�791 ������	 �	
���
�������������.43:20/�7�43�0�.!���.93/10���3 09:3�!��90::

https://doi.org/10.1017/9781108241922.013


566 The Multiple Facets of Correlation Functions

respectively. The factor ⟨n⟩2/⟨n(n − 1)⟩ is introduced to account for the fact that the nu-
merator of r2(%φ) is proportional to the number of measured pairs while its denominator
has an n2 dependence on the number of particles.

The two-particle cumulant method is conceptually identical to the pairwise correlation
method. However, instead of carrying out a fit of measured pair spectrum, one evaluates
the average of the square of the flow coefficients directly by a measurement of ⟨cos[n(φ1 −
φ2)]⟩. Coefficients obtained with this method are denoted

vn{2}2 ≡ ⟨cos[n(φ1 − φ2)]⟩, (11.133)

where the average is calculated for all (selected) pairs of all (selected) events. It is important
to realize that the coefficients vn{2}2 are actually a measure of the average of the square of
the flow coefficient ⟨v2

n⟩. They are thus sensitive to fluctuations as well as the magnitude of
the flow coefficients and nonflow effects, as per Eq. (11.112).

It is useful and convenient to introduce the particle unit flow vector un,i, defined in the
complex plane as

un,i ≡ einφi = cos nφi + i sin nφi, (11.134)

where φi, as in prior sections, denotes the azimuthal angle of particle i. Considering that
the number of particles produced below and above the reaction are equal on average, one
may write (see Problem 11.10)3:

⟨un,1u∗
n,2⟩ = ⟨cos nφ1 cos nφ2⟩ = v2{2}2 (11.135)

The unit vector un,i consequently provides for an elegant technique to study differential
flow (i.e., the flow dependence on transverse momentum and rapidity), known as the scalar
product method:

vn(pT , y) =
⟨Q′

n,iu
∗
n,i(pT , y)⟩

2
√

Qa
nQb

n

, (11.136)

where the average ⟨Q′
n,iu

∗
n,i(pT , y)⟩ is calculated for all particles of interest and averaged

over all events. The event plane vector, hereafter expressed in the complex plane, is calcu-
lated as

Q′
n,i =

∑

j ̸=i

w jun, j, (11.137)

where the coefficients wi are weights chosen to optimize the event plane determina-
tion. The sum over all particles j excludes particle i in order to avoid autocorrelations.
Computationally, one can avoid the recalculation of Q′

n,i for all particles by first com-
puting Qn =

∑
j w jun, j and using Q′

n,i = Qn − un,i. The factor 2
√

Qa
nQb

n, in the denom-
inator of Eq. (11.136), corrects for the event plane resolution and can be obtained as
⟨cos[n(1a − 1b)]⟩.

3 The product un,1u∗
n,2 yields a term proportional to sin nφ1 sin nφ2, which is strictly null only in the absence of

nonflow correlations.
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567 11.4 Flow Measurements

The scalar method is shown in [10] to yield statistical errors that are slightly smaller than
those achieved with the standard event plane method. Indeed, given that the event plane
vector Qn is in principle based on an arbitrary selection of particles, it can be obtained
from single particles. The scalar product then reduces to the event plane method, but with
poorer resolution. Additionally, note that division by the event resolution corrects the mean
vn values obtained but not their statistical fluctuations.

The two-particle correlators defined by Eqs. (11.125,11.133,11.136) are sensitive to col-
lective flow as well as two- and few-particle correlations commonly known as nonflow.
They thus tend to overestimate the flow coefficients vn. To suppress nonflow contributions,
it is thus desirable to utilize correlation functions that are by construction insensitive, or
suppress the effects of two-, or few-particle correlations. We saw in §10.2 that cumulants of
order n, noted Cn, are by construction insensitive to correlations of order m < n. Suppres-
sion of nonflow, dominated by two-particle correlations, in the determination of flow can
thus be accomplished with higher order cumulants. However, note that since the correlators
are obtained by averaging over azimuthal angles in the range [0, 2π [, odd order cumulants
vanish by construction and are thus of little interest in the context of flow measurements.
Measurements of flow, with suppressed nonflow, are thereby achieved with even-order cu-
mulants exclusively. We here restrict our discussion to fourth-order cumulants, but exten-
sions to higher orders are possible and well documented in the literature [182].

The fourth-order cumulant C4 was first introduced in §10.2.2 in the context of generic
particle correlation functions. In the context of azimuthal correlations, it may be written

C4(1, 2, 3, 4) = ρ4(1, 2, 3, 4) −
∑

(4)

ρ1(1)ρ3(2, 3, 4) (11.138)

−
∑

(3)

ρ2(1, 2)ρ2(3, 4) + 2
∑

(6)

ρ1(1)ρ1(2)ρ2(3, 4)

− 6ρ1(1)ρ1(2)ρ1(3)ρ1(4).

The indices 1, 2, 3, and 4 are here used as shorthand notations for the azimuthal angle
φi, i = 1, 2, 3, 4, and the sums are carried over terms consisting of permutations of these
indices. For flow measurements involving a sum over all 4-tuplets of particles, terms that
contain odd-order densities must vanish when calculated for a large event ensemble since
the average cosine of unpaired angles vanishes when average over [0, 2π ]. The averaged
four-cumulant consequently reduces two terms: one involving the four-particle density
ρ4(1, 2, 3, 4) and the other dependent on the product ρ2(1, 2)ρ2(3, 4). Here again, it is
convenient to use particle flow vectors un,i defined in the complex plane. The fourth-order
cumulant may thus be written

⟨⟨un,1un,2u∗
n,3u∗

n,4⟩⟩ = ⟨un,1un,2u∗
n,3u∗

n,4⟩ − 2⟨un,1u∗
n,2⟩⟨un,3u∗

n,4⟩ (11.139)

where the double brackets ⟨⟨⟩⟩ indicate the correlator is a cumulant. One can verify (see
Problem 11.14) that in the absence of flow fluctuations, the four-cumulant is equal to −v4

n .
One thus defines the fourth-order flow cumulant flow coefficients as

vn{4} =
(
−⟨⟨un,1un,2u∗

n,3u∗
n,4⟩⟩

)(1/4)
. (11.140)
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568 The Multiple Facets of Correlation Functions

The vn{4} notation is universally used to identify flow coefficients determined on the basis
of the fourth-order cumulant (11.139). Flow coefficients obtained based on higher order
cumulants are likewise noted vn{6}, vn{8}, and so forth. However, note that because higher
order cumulants involve the combination (subtraction) of several terms, they may yield
negative values resulting from either fluctuations, or limited statistics. Their interpretation
may consequently be somewhat challenging, and measurements of these quantities typi-
cally require substantially larger data samples to achieve the same statistical significance
as that obtained with second-order cumulants.

Cumulants may be determined with generating functions, as discussed in §§2.13 and
10.2.2, or by direct calculation.

Other multiparticle cumulants are also of interest in the context of mixed harmonic stud-
ies. An important example of such studies involves the measurement of the three-particle
correlator

⟨un,1un,2u∗
2n,3⟩ = v2

nv2n, (11.141)

where the particle flow vectors of particles 1 and 2 are calculated at order n while the flow
vector of the third particle is obtained at order 2n. This correlator was used successfully
at RHIC to suppress nonflow effects in the study of v1 and v4 flow coefficients. Mixed
harmonics are also extremely useful in studies (searches) of the chiral magnetic effect
(CME) [125, 124, 183].

Q-Distribution Method
In previous sections, we showed how the event plane vector Q⃗ may be used to infer the
orientation of the reaction plane of colliding nuclei. But Q⃗ also provides information about
the magnitude of the flow itself. The flow vector Q⃗ may be determined based on a subset of
or all measured particles. Its magnitude and direction are thus effectively determined by a
random walk process, that which consists of the sum of all particle transverse momentum
vectors. In the absence of flow and other forms of particle correlations, the random walk
yields a vector Q⃗ whose magnitude grows in proportion to the square root of the number
of particles M involved in its calculation. But in the presence of flow, that is, for finite
flow coefficients, vn, the magnitude of the vector grows proportionally to Mvn. It is thus
convenient to introduce a normalized flow vector

q⃗n = Q⃗√
M

(11.142)

whose magnitude should be order unity in the absence of flow, and that should scale pro-
portionally to

√
Mvn in the presence of flow. Based on the discussion presented in §2.12.2,

we conclude that |q⃗n| = vm
√

M⟨pT ⟩, where ⟨pT ⟩ is the average transverse momentum of
the particles selected for the calculation of Q⃗ (corresponding to the average step size in the
language of a random walk used in §2.12.2). The magnitude of the flow vector q⃗n then has
the following probability distribution in the large M limit:

1
N

dN
dqn

= qn

σ 2
n

exp
(

−v2
nM + q2

2σ 2
n

)
Io

(
qnvn

√
M

σ 2
n

)

. (11.143)
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Fig. 11.13 Probability density function of the modulus of the normalized flow vector q⃗n for selected values of the flow coefficient
vn and the fluctuation parameterσtot.

where Io is a modified Bessel function, vn are flow coefficients, and σn is a measure of
fluctuations.

σ 2
n = 1

2

(
1 + Mσ 2

tot

)
, (11.144)

where

σ 2
tot = δn + 2σ 2

vn (11.145)

As illustrated in Figure 11.13, the presence of flow shifts the distribution toward larger
qn values, while increased fluctuations, determined by σtot, broaden the distribution. The
Q-distribution method thus consists in estimating vn and σn based on a fit of a measured
qn distribution with Eq. (11.143). The method enables the determination of σtot but cannot
discern the effects of nonflow, δn, and flow fluctuations σvn separately.

Lee–Yang Zeros Method
The Lee–Yang zeros method is based on a technique developed in 1952 by Lee and Yang
to detect a liquid–gas phase transition [2, 38, 53]. The technique involves the second-
harmonic flow vector Q⃗2 projected onto an arbitrary laboratory direction specified by an
angle θ :

Qθ
2 =

M∑

i=1

wi cos [2(φi − θ )] . (11.146)

The sum is carried out over selected or all particles i with azimuthal angle φi and weight
wi. Typically, the projection is evaluated for five arbitrary but equally spaced values of θ in
order to suppress detector acceptance effects. The method then entails finding the zero(s)
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570 The Multiple Facets of Correlation Functions

of a complex generating function of the form

Gθ
2 (ir) =

∣∣∣
〈
eirQθ

2

〉∣∣∣ , (11.147)

where r is variable along the imaginary axis of the complex plane and the average ⟨⟩ is taken
over all events of interest. One uses the square of the modulus to determine the location of
the first minimum, rθ

o , corresponding to an angle θ , determined by the integrated flow

V θ
2 = j01/rθ

o, (11.148)

v2 =
〈
V θ

2

〉
θ
/M, (11.149)

in which j01 = 2.405 is the first root of the Bessel function J0 and M is the multiplicity of
the event. The average ⟨⟩θ is taken over the lab angles θ and yields the flow coefficient v2

relative to the reaction plane axis. For implementation details and variants of the method,
see, e.g., ref. [182] and references therein.

Fourier and Bessel Transforms Method
Let fo(Qx,n) denote the PDF of the x component of the Qn flow vector in the absence of flow
(i.e., vn = 0) but finite nonflow correlations. Assume that the presence of a flow field does
not otherwise influence the nonflow correlations. By virtue of the central limit theorem,
the distribution of Qn in the presence of flow can then be obtained simply by shifting the
argument of fo by an amount that depends on the reaction plane angle 1. Averaging over
all values of this angle, one obtains

f (Qx,n) ≡ 1
N

dN
dQx,n

=
∫

d1

2π
fo(Qx,n − vnM cos(n1)). (11.150)

Next calculate the Fourier transform of this function:

f̃ (k) =
〈
eikQn,x

〉

=
∫

d1

2π

∫
dQx,neikQn,x fo(Qx,n − vnM cos(n1)) (11.151)

Defining t = Qx,n − vnMcos(n1), Eq. (11.151) may then be written

f̃ (k) =
∫

d1

2π
eikvnM cos(n1)

∫
dteikt fo(t ) (11.152)

= J0(kvnM ) f̃o(k),

in which one finds that the flow and nonflow contributions to the Fourier transform f̃ (k) are
factorized: the transform f̃o(k) characterizes the nonflow correlations whereas J0(kvnM )
expresses the dependence on the flow magnitude vn. The zeros of the Fourier transform are
determined by the zeros of the Bessel function J0(kvnM ). One may then get an estimate of
the flow coefficient vn based on the first zero, k1, of the Fourier transform

vn = jo1

k1M
(11.153)
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571 11.4 Flow Measurements

where, as in the previous section, jo1 corresponds to the first zero of the Bessel function
J0(z), and is equal to j01 = 2.405. This technique, called Fourier and Bessel transforms
method, is equivalent to the Lee–Yang zeros method covered in the previous section.

A similar reasoning can be applied to the two-dimensional Fourier transform of
dN/dQn,xdQn,y. One gets (see Problem 11.15)

f̃ (k) =
∫

dQn,xeikxQn,x dQn,yeikyQn,y
d2N

dQn,xdQn,y
(11.154)

= dQnJ0(kQn)
dN
dQn

∼ J0(kvnM ).

The flow contribution is decoupled from all other correlation contributions. The Bessel
transform, Lee–Yang zeros, and Q-distribution methods are thus similar if not totally equiv-
alent. See [182] and references therein for a more in-depth discussion of this and related
topics.

11.4.3 Pros and Cons of the Various FlowMethods

The methods presented in the previous sections may be compared based on their statistical
accuracy (for equal data samples) and in their capacity to suppress or disentangle nonflow
effects from flow. For instance, two-particle correlations obtained in a relatively narrow
pseudorapidity range, with a single harmonic, measures flow in the participant plane, but
the use of mixed harmonics, for instance the first harmonic from spectator neutrons and
second harmonic for particles produced at central rapidities, should provide elliptic flow in
the reaction plane.

Nonflow contributions, noted δn, are defined by Eq. (11.112) as the excess correlation
from two- or few-particle correlations arising from particle production dynamics not re-
lated to collective effects (collective behaviors resulting from pressure gradients or dif-
ferential attenuation determined by the collision geometry) and thus the collectivity of
particles produced. Nonflow contributions should therefore be more or less independent
of the particles’ direction relative to the reaction plane. Sources of nonflow correlations
include hadronization in jets, decays of short-lived particles, short-range correlations such
as the Hanbury-Brown Twiss (HBT) effect, and energy/momentum conservation. Nonflow
correlations tend to be stronger for particles emitted near one another in momentum space,
particularly rapidity. It is thus possible to reduce the effects of nonflow in the evaluation of
flow coefficients by considering particles emitted in distinct and well separated ranges of
rapidity (pseudorapidity) and transverse momentum, or particle pairs with different charge
combinations. The scalar product method, in particular, lends itself well to such measure-
ments with a large η gap.

Nonflow effects are dominated by two-, three-, and few-particle correlations. As such,
δn primarily scales as the inverse of the produced multiplicity (see §10.2.3) and thus lead
to a nearly constant contribution of M⟨u∗⟩ on collision centrality while flow’s contribution
rises and fall from peripheral to central collisions. Note, however, that the contribution of
nonflow effects is likely to exhibit a small dependence on collision centrality, in A +A
collisions, as a result of the changing relative probability of rare or high-pT process with
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collision impact parameter. Be that as it may, nonflow contributions to the correlator ⟨uQ∗⟩
may be subtracted using the so-called AA–pp method given that nonflow contributions to
this correlator should be nearly independent of collision centrality. It is worth noting that
the AA–pp method can be used for any n-particle correlation measurement of harmonic
coefficients.

Another technique commonly used to reduce nonflow effects in the determination of
flow coefficients is the use of multiparticle cumulants, which by construction suppress
by ∼ 1/M for each particle added to a correlator. Indeed, measurements taken at RHIC
indicate that four-particle cumulants remove nonflow effects almost completely [182].

An additional uncertainty in the determination of flow coefficients arises from flow fluc-
tuations. For a given collision system, beam energy, and impact parameter, one expects flow
to reach an expectation value determined largely by the geometry of the collision system.
By the very nature of microscopic systems, fluctuations in the initial geometry or the col-
lision dynamics may occur. One thus expects the flow magnitude to exhibit event-by-event
fluctuations. These fluctuations, however, affect the various flow measurement methods
quite differently. The effects of flow fluctuations can be expressed formally as follows for
two-, four-, and six-particle cumulants:

vn{2} =
√〈

v2
n

〉
=

(〈
vn

〉2 + σ 2
v

)1/2
(11.155)

vn{4} =
(
2
〈
v2

n

〉2 −
〈
v4

n

〉)1/4
(11.156)

vn{6} =
[
(1/4)

(〈
v6

n

〉
− 9

〈
v4

n

〉〈
v2

n

〉
+ 12

〈
v2

n

〉3)]1/6
(11.157)

and so on, for higher-order cumulants. Clearly, while v{2} is directly sensitive to ⟨v⟩ and
σv , higher cumulants require knowledge of higher order moments of the distribution in
v. Models can, however, be invoked to estimate the relations between these moments. For
instance, in the limit of a Gaussian flow distribution, one finds [185]

vn{2} =
(
⟨vn⟩2 + σ 2

v

)1/2 ≈ ⟨vn⟩ + σ 2
v /(2⟨v⟩) (11.158)

vn{4} =
(
⟨vn⟩4 − 2σ 2

v ⟨vn⟩2 − σ 4
v

)1/4 ≈ ⟨vn⟩ − σ 2
v /(2⟨v⟩) (11.159)

vn{6} =
(
⟨vn⟩6 − 3σ 2

v ⟨vn⟩4)1/6 ≈ ⟨vn⟩ − σ 2
v /(2⟨vn⟩) (11.160)

We thus conclude that while flow fluctuations increase the magnitude of the coefficients
estimated from two-particle correlations (v{2}), they reduce by an approximately equal
amount the values obtained with four- and six-particle cumulants. The preceding relations
strictly hold only if σv ≪ ⟨v⟩. However, the flow vector distribution is, as we saw in §11.4.2,
not perfectly Gaussian. Including effects of flow fluctuations, one gets [185]:

1
N

dN
vndvn

= 1
σ 2

n
exp

(

−
v2

n + v2
n,o

2σ 2
n

)

Io

(
vnvn,o

σ 2
n

)
. (11.161)

where vn,o is the nominal value of the flow coefficient (i.e., its expectation value, vn,o =
⟨vn⟩). The v2 cumulants can then be shown to be

v2{2} = v2
2,o + 2σ 2

v , (11.162)

v2{n} = v2,o for n ≥ 4. (11.163)
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Fig. 11.14 Ratio of the elliptical flow coefficients v2 obtained by several methods to those obtained with the event plane method
in the analysis of charged hadrons measured in Au + Au collisions at

√
sNN = 200 GeV [2, 7]. Ratios are shown for the

random subevents, pseudorapidity subevents, scalar product, two-particle cumulants, four-particle cumulants,
Q-distribution, and Lee–Yang zeros sum generating and product generating functions. (Data from STAR
collaboration [182].)

Effects of nonflow on the event plane method are more complicated to evaluate but have
been shown to range from v2{EP} = v2{2} = ⟨v2⟩1/2 to v2{EP} = ⟨v⟩, depending on the re-
action plane resolution [19]. The dependence of fluctuations of the Lee–Yang zeros method
and its derivatives are nonlinear [184]. For Bessel–Gaussian distributions in v, these meth-
ods yield the same results as higher cumulants, namely ⟨v⟩ = vo of the Bessel–Gaussian
distribution. Consequently, if the v2 distribution is Bessel–Gaussian, all multiparticle meth-
ods should yield the same result: ⟨v⟩ = vo = v2,RP [37].

To summarize, we note that the event plane method is a special case with results ranging
between v2{2} and v2{4} depending on the reaction plane resolution. Higher-order cumu-
lants v2{6} and Lee–Yang zeros results, however, tend to agree quantitatively with v2{4},
as illustrated in Figure 11.14.

11.5 Appendix 1: Numerical Techniques Used in the Study of
Correlation Functions

The calculation of products, such as ρ1 ⊗ ρ1(%φ) and ρ1 ⊗ ρ1 ⊗ ρ1(%φ12,%φ12) re-
quired in the measurements of two-particle cumulant C2(%φ) and three-particle cumulant
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574 The Multiple Facets of Correlation Functions

C2(%φ12,%φ12), is in principle based on integrals over coordinates φ1, φ2, and φ3 (see,
e.g., Eq. (11.10)). In practice, the densities ρ1(φi) are estimated on the basis of histograms
with a finite number of bins. One must thus replace the integrals over continuous variables
by sums running over the histograms bins:

ρ1ρ1(%φ12) ≡ ρ1ρ1(m) (11.164)

=
n∑

i, j=1

ρ1(i)ρ1( j)δm, j−i

ρ1ρ1ρ1(%φ12,%φ13) ≡ ρ1ρ1ρ1(m, p)

=
n∑

i, j,k=1

ρ1(i)ρ1( j)ρ1(k)δm, j−iδp,k−i.

The indices i, j, k are used to specify the φ bins of particles 1, 2, and 3, respectively, while
the integer variables m and p correspond to bins in %φ12 and %φ13, respectively. The delta
functions ensure the proper match between %φi j and the difference φi − φ j. This procedure
assumes a one-to-one bin mapping. With nφ bins in φ for each particle, this would require
twice as many bins for the angle difference. However, given the periodicity of the φ and
%φ variable, one may transform the integers m and p according to

if m = i − j < 0 then, replace m by m + nφ . (11.165)

and similarly for p. The number of bins in %φ, is consequently n%φ = nφ . The afore-
mentioned technique may similarly be applied to the determination of the terms ρ2 ⊗
ρ1(%φi j,%φik ) of the C3 cumulant. One gets

ρ2ρ1(m, p)123 =
n∑

i, j,k=1

ρ2(i1, j2)ρ1(k3)δm,i1+ j2δp,i1+k3 (11.166)

ρ2ρ1(m, p)231 =
n∑

i, j,k=1

ρ2(i2, j3)ρ1(k1)δm,i1+ j2δp,i1+k3

ρ2ρ1(m, p)132 =
n∑

i, j,k=1

ρ2(i1, j2)ρ1(k3)δm,i1+ j2δp,i1+k3 ,

where the indices il , jl , and jl refer to bins in φ for particles l and the variables m and p
correspond to bins in %φi j and %φik , respectively, as specified by the delta functions, and
meant to satisfy the periodic boundary condition expressed by Eq. (11.165).

The aforementioned numerical technique is defined for finite width bins in φ and %φ.
This implies a given bin in %φ spans a range wider than its nominal width 2π/n%φ . For
instance, for i = j = 0 one has φi and φ j span the range 2π/nφ . The difference φi − φ j con-
sequently spans the range [−2π/nφ, 2π/nφ] which is obviously wider than [0, 2π/n%φ] for
n%φ = nφ . The signal from a specific %φ bin is thus effectively smeared across three bins
in the numerical integrations of Eqs. (11.164) and (11.166). This effect, commonly known
as bin aliasing, cannot be avoided but may be suppressed by use of a rebinning technique:
first, calculate the integrals with n%φ = nφ , and subsequently rebin the integrated signals to

2��8:�  /73�791 ������	 �	
���
�������������.43:20/�7�43�0�.!���.93/10���3 09:3�!��90::

https://doi.org/10.1017/9781108241922.013


575 Exercises

have n%φ/m bins using m as an integer multiple of 2. A value of m ≫ 2 will greatly reduce
the effects of the bin sharing. However, this may demand a large amount of statistics if the
rebinning is applied on R2 or R3 to account for instrumental or detection inefficiencies.

The integration techniques expressed in Eqs. (11.164) and (11.166) can readily be ap-
plied to studies of correlations in %η rather than %φ. However, note that since no periodic
boundary can be assumed in %η, one must map the differences η1 − η2 obtained from nη

bins onto n%η = 2nη − 1 bins in %η. This leads to the mapping

m = i − j replaced by m + n%η + 1, (11.167)

where i, j are in the range [1, nη], and m lies in the range [1, n%η], with n%η = 2nη − 1. As
for integrations (11.164) and (11.166), this mapping leads to smearing of the signals across
bins. This effect can be suppressed by rebinding, as for measurements in %φ, but since
n%η is an odd number by construction one must effect a rebinning by an integer multiple
of 3. Averaging in η̄ over a square range of η1, η2 values yields %η values with different
probabilities. One can simply count the relative probabilities of values of m by looping
on all values of i and j and filling a relative probability histogram Hm(m), one can use
to obtain the integrals ρ1 ⊗ ρ1(%η12), ρ1 ⊗ ρ1 ⊗ ρ1(%η12,%η13), or ρ2 ⊗ ρ1(%ηi j,%ηik ).
For instance, for ρ1 ⊗ ρ1(%η12), one gets

ρ1 ⊗ ρ1(m) = 1
Hm(m)

n∑

i, j=1

ρ1(i)ρ1( j)δ(m − i + j + n%η + 1) (11.168)

and with similar expressions for ρ1 ⊗ ρ1 ⊗ ρ1(m, p) or ρ2 ⊗ ρ1(m, p) (see Problem 11.9).

Exercises

11.1 Verify that the difference ν − νstat yields Eq. (11.69).
11.2 Verify the scaling property expressed by Eq. (11.76).
11.3 Verify the scaling property expressed by Eq. (11.77).
11.4 Show that the quantity ωQ defined by Eq. (11.78) tends to unity in the independent

particle production limit.
11.5 Derive the equations (11.80) for the charge conservation limit in elementary or nu-

clear collisions that produce particles over a range of rapidity spanning several units.
11.6 Find an expression similar to Eq. (11.91) for the event-wise average ⟨pT ⟩ defined

by Eq. (11.89). Hint: Express ρ1(η,φ, pT ) as a sum of conditional cross sections
ρ1(η,φ, pT |m), defined for a fixed event multiplicity m and each with probability
P(m), i.e. ρ1(η,φ, pT ) =

∑
m P(m)ρ1(η,φ, pT |m).

11.7 Find an expression similar to Eq. (11.97) for the event-wise average ⟨%pT %pT ⟩ de-
fined by Eq. (11.93). Hint: Decompose ρ2(η1,φ1, pT,1, η2,φ2, pT,2) as a sum of con-
ditional cross sections ρ2(η1,φ1, pT,1, η2,φ2, pT,2|m) similar to the decomposition
of ρ1(η,φ, pT ) used in Problem 11.6.
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576 The Multiple Facets of Correlation Functions

11.8 Show that the correlation ⟨%pT %pT ⟩(m)
I applied to a colliding consisting of a

superposition of m independent but identical processes, each with covariance
⟨%pT %pT ⟩(1)

I , scales as

⟨%pT %pT ⟩(m)
I = 1

m
⟨%pT %pT ⟩(1)

I . (11.169)

11.9 Find expressions equivalent to Eq. (11.168) for the averages ρ1 ⊗ ρ1 ⊗
ρ1(%η12,%η13) and ρ2 ⊗ ρ1(%ηi j,%ηik ).

11.10 Verify that the product ⟨un,1u∗
n,2⟩ averaged over an ensemble events has a vanishing

contribution from sine terms sin nφ1 sin nφ2.
11.11 Define a “triggered” correlation function KT (%φ) in terms of a two-particle cumulant

C2.
11.12 One expects the strength of the ν+−,dyn correlation function to be largely determined

by the charge production mechanism. For instance, the production and decay of neu-
tral resonances, such as the ρ-meson, should have a large impact on net charge fluc-
tuation measured values of ν+−,dyn. This can be illustrated with a simple model that
includes the production of three particle types, π+, π−, and ρo. Assume the three
species are produced independently and with relative fractions p1, p2, and p3 re-
spectively. Ignore effects associated with Bose statistics and assume the probabil-
ity of producing n1 π+, n2 π−, and n3 ρo may be expressed with a multinomial
distribution:

P(n1, n2, n3; N ) = N!
n1!n2!n3!

pn1
1 pn2

2 pn3
3 . (11.170)

Further assume that all ρos decay into a pair π+ and π− and calculate the magnitude
of dynamic fluctuations ν+−,dyn.

11.13 Verify that Eq. (11.50) is correct in cases where ⟨N+⟩ = ⟨N−⟩.
11.14 Verify Eq. (11.139) and show that the fourth-order cumulant equals −v4

n in the ab-
sence of flow fluctuations.

11.15 Demonstrate Eq. (11.154).
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12 Data Correction Methods

No measurement is ever perfect. Measurement errors and uncertainties are indeed an in-
trinsic part of the scientific process. Skilled scientists, however, can devise techniques to
minimize errors and correct for biases. In this chapter, we discuss the notions of accuracy,
precision, and biases, and examine various sources and types of errors in §12.1. We then
present, in §12.2, a discussion of specific sources of uncertainties arising in the nuclear
sciences. Techniques to unfold detection efficiencies and resolution effects in the mea-
surement of spectra and elementary cross sections are presented in §12.3 while correction
techniques relevant for correlation and fluctuation observables are discussed in §12.4.

12.1 Experimental Errors

An experimental error may be defined as the difference between a measured (observed)
value and the true value. This of course assumes the observable of interest is meaningfully
defined and in fact has a true value. It should be clear, however, that there can be difficul-
ties with this idea. Certain physical quantities such as temperature are defined only in the
context of a large number limit. Indeed, while it is meaningful to speak of the temperature
of gas consisting of a very large number of molecules, the notion of temperature becomes
meaningless in the presence of only one or two particles. Limitations may also arise be-
cause of the quantum nature of phenomena. For instance, there is an intrinsic limitation
in simultaneously measuring the instantaneous position and momentum of an elementary
particle, although it is perfectly sensible to consider the expectation values (i.e., average)
of these two observables.

The true value of a physics observable is, of course, unknown a priori otherwise there
would be no reason to conduct an experiment. Knowing the error of a measurement is
obviously also impossible, and one must then use the language of probability and statistics
to estimate both the true value and the error. Properly conducted measurements, with a
sound statistical analysis, are thus expected to yield values close to the true value but
without guarantee of ever reaching it with infinite precision or accuracy.

The methods of probability and statistics covered in Part I of this book provide mean-
ingful ways to estimate both the true value and error of any measurement. Most modern
physical observables of interest, however, are quantities derived from measurements of one
or several observable elementary quantities and calculations. Modern experiments (e.g.,
experiments at the Large Hadron Collider) are rather complex, and the estimation of errors
may at first seem a daunting task. Fortunately, here again, the methods of statistics, and
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578 Data Correction Methods

methods for the propagation of errors covered in Part I enable an estimate of the true val-
ues as well as errors on the derived quantities. It is thus useful to examine the various types
of errors that can arise in an experiment, identify errors that can be reduced or suppressed
by careful design of a measurement, and isolate those that are irreducible or depend on the
amount of statistics gathered by an experiment.

Measurement errors and uncertainties can occur for a wide variety of reasons including
simple mistakes, calculation errors, instrumentation reading error, instrumental or back-
ground processes or process noise that interfere with the measurement, as well as the basic
stochastic nature of the measurement process. Improper “reading” of a gauge or the output
of a measuring device can be greatly reduced by taking humans out of the measurement
process and replacing them with robust and reliable sensors whose measurements are read
out by automated computing systems. Errors and uncertainties remain nonetheless an in-
trinsic part of the experimental process. Indeed, even if human error can be avoided, there
remain intrinsic uncertainties associated with physical processes and sensor technologies
used to carry out measurements.

Consider, for instance, the identification of particle species in a magnetic spectrometer
based on the energy loss (and momentum loss) particles undergo as they traverse sensing
devices (see §8.3.3). By its very nature, the collisional processes that leads to energy de-
position in a finite thickness sensor is stochastic. Measurement of position and energy loss
(and deposition) consequently yield random values according to some PDF determined by
the physics of the process (e.g., collisions) and the sensing device. As another example,
consider measurements of particle time-of-flight with photosensitive devices, as described
in §8.4.2. Particles passing through a material collide with electrons of the material and
produce random molecular excitations that result in fluorescence. Timing measurements
are obtained when the light collected produces an electronic signal that exceeds a “firing”
threshold. The stochastic nature of the photon production and collection processes lead
to irreducible fluctuations of the time when the firing threshold is reached and thus re-
sult in intrinsic timing uncertainties. The collection of finitely many ions or electrons in
energy-sensing devices (such as calorimeters, pad chambers, and so on) similarly result
in intrinsic uncertainties. In essence, all techniques relying on the counting of electrons,
photons, or other types of particles are fraught with intrinsic uncertainties associated with
the stochastic nature of the counting process. Such uncertainties may be mitigated by care-
ful optimization of the detector design to yield a large number of counted particles, better
collection, low noise amplification, and so forth, but they can never be eliminated. These
sources of stochastic noise are commonly known as measurement noise.

Additional uncertainties also arise due to the physics of the detection or measurement
process. For instance, measurements of particle momenta in a spectrometer rely on a pre-
cise determination of the radius of curvature of charged particle trajectories. The curvature
may, however, be stochastically modified when particles pass through the various measur-
ing devices used to establish their trajectory through the spectrometer. Limitations may
also occur due to the dual nature of particles and light. The angular resolution of a tele-
scope is, for instance, intrinsically limited by the diffraction of light and the counting of
photons in the telescope’s focal plane. Although diffraction effects can be suppressed by
building increasingly large mirrors, they can never be completely eliminated. Likewise, the
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579 12.1 Experimental Errors

number of photons emitted by a star is finite, and ever increasing aperture sizes can reduce,
but never eliminate, the stochastic noise of the photon collection process. In essence, the
process used to measure a physical observable also limits the precision and accuracy that
can be achieved in any given experiment. Uncertainties associated with the measurement
process are usually referred to as process noise.

While measurement and process noises cannot be eliminated, careful experimental de-
sign can suppress their impact on the outcome of measurements and their uncertainties. It
is also possible to handle series of measurements to partially filter out noise effects and
obtain optimal treatment of process and measurement noises using the technique known as
Kalman filter, already introduced in §5.6.

While measurement errors can be associated with a wide variety of causes and find an
irreducible origin in measurement and process noises, one can in general categorize errors
and uncertainties into two distinct classes. Errors associated with the randomness of the
physical and measurement process are known as statistical errors, while those associated
with uncertainties in the measurement protocol or method are referred to as systematic
errors.

Statistical errors refer to the notion that repeated measurements of a given physical quan-
tity yield different values with a “seemingly” random pattern. The randomness arises from
the stochastic nature of the measurement and process noise discussed earlier. The random
character of the measurement process can usually be described with a probability den-
sity function expressing the likelihood of measuring specific values or range of values.
Statistical errors can be evaluated, characterized, and reported using the statistical meth-
ods discussed in Part I of this book. It is usually safe to assume that measured values are
distributed with Poisson or Gaussian probability distributions about their true value, but
important deviations from these distributions are also known to occur. Indeed, in practice,
errors may “not” alway be perfectly Gaussian.

Systematic errors refer to the notion that a measurement may deviate from the true value
because of the measurement method or protocol used to carry out the measurement or the
statistical estimator used to in the determination of the observable. The error arises from
the system or structure of the measurement technique or apparatus and is thus said to be
systematic. Systematic errors may arise for various reasons such as instrumentation “read-
ing error,” flawed protocol, incorrect experimental model, improper correction methods, or
a biased estimator.

Since the true value of an observable is not known, one cannot, by definition, determine
the true error. One is thus reduced to estimating error(s) on the basis of our understand-
ing of the measurement (measurement model), prior measurements, fundamental theories
(although strictly speaking, measurements are tests of the theories, not the converse), or
statistical estimates obtained by comparing several distinct measurements. It is useful to
distinguish notions of accuracy and precision. The former is generally used to describe
how close the result of an experiment approaches the true value of an observable, while the
latter is used to ascribe how exact a result is obtained without particular reference to the
unknown true value. A measurement is generally considered precise if repeated instances
of the measurement yield tightly clustered values, that is, values with a small variance. A
precise measurement may, however, suffer from biases and systematically deviate from the
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true value. It is then considered inaccurate. Conversely, a measurement protocol can be
accurate in the sense that it yields results with zero bias but nonetheless remains imprecise
because repeated measurements have a large variance. One thus wishes for measurements
that are both precise and accurate, that is, with minimal variance and zero bias.

Biases can be introduced either by the statistical estimators used in the analysis of data
(defined in §4.3) or from the experimental procedure used to carry out the measurement.
For instance, a raw measurement of cross section is intrinsically biased since particle de-
tection can never be accomplished with perfect efficiency. It is thus necessary to correct
for such inefficiencies. As we shall see in §12.3, while correction methods used to account
for limited detection efficiency may in principle be unbiased, practical considerations of-
ten limit the estimation of biases and errors, and one must estimate systematic uncertain-
ties. It is important to note that estimation of systematic uncertainties is by far the most
challenging component of error estimation. While there is no single or unique method to
estimate systematic uncertainties, it is nonetheless possible to formulate generic principles
and guidelines, which we discuss in §12.5.

It is also useful to distinguish between absolute and relative uncertainties or errors. Ab-
solute error refers to the actual size of errors expressed in the same units as the actual
measurement. For instance, the measurement of the length of a 1-meter rod could have an
absolute uncertainty of 0.001 m. That is, the length is known up to a precision of 0.001
m. Repeated measurements of length are expected to cluster around the expectation value
of 1 m with a standard deviation of 0.001 m. A relative error indicates the size of an error
relative to the magnitude of the observable and is typically expressed as a percent error
obtained by multiplying by 100 the ratio of the uncertainty by the expectation value of the
observable (magnitude). The notion of relative error is particularly useful for the descrip-
tion of elementary particle production cross sections. Indeed, since particle production
cross sections may have very large ranges of values (from femtobarns to barns), stating
the error on a cross section in barns (or any subunits) is thus not particularly informative.
Errors on cross sections are thus often reported in terms of relative errors.

The precision of a measurement is obviously manifest if the error is reported. But it is
also evident in the number of significant figures used to report the measured value. Signif-
icant figures (also called significant digits) are those digits that carry meaning contributing
to the precision of a number. Significant figures exclude all leading zeros or trailing zeros
used as placeholders to indicate the scale of a number, as well as spurious digits introduced,
for example, by calculations carried out to greater precision than that of the original data,
or measurements reported to a greater precision than the equipment supports. By conven-
tion, if there is no digital point, the rightmost nonzero digit is the least significant digit.
However, if there is a decimal point the rightmost digit is considered as the least significant
digit even if zero. All digits between the least and most significant digits are counted as
significant (see examples in Figure 12.1).

Use of the normalized scientific notation is strongly recommended to report all sci-
entific results and avoid ambiguities on the number of significant figures. In the scientific
notation, all numbers are written in the form a × 10b, where the exponent b is an integer
and the coefficient a a real number. The exponent b is chosen so that the absolute value
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Fig. 12.1 All numbers shown have four significant figures.

of a lies in the range 1 ≤ |a| ≤ 10. Thus 15600 is written as 1.56 × 104 while 230000. is
denoted 2.30000 × 105. This form allows easy identification of the number of significant
figures and comparison of numbers, because the exponent b gives the number’s order of
magnitude. The exponent b is negative for a number with absolute value between 0 and
1. For instance, 0.50 should be written as 5.0 × 10−1. The 10 and its exponent are usually
omitted when b = 0.

When quoting results, the number of significant figures should be approximately one
more than that dictated by the experimental precision. This is useful mainly for calculation
purposes, since it avoids illegitimate loss of precision in calculations. Additionally, when
insignificant digits are dropped from a number, the last digit should be rounded off for
best accuracy. One should truncate and treat excess digits as decimal fractions. The least
significant digit should be incremented by one unit if the fraction is greater than 1/2, or if
the fraction equals 1/2 and the least significant digit is odd.

As discussed earlier, statistical and systematic uncertainties have quite different origins
and make different statements about the reliability of a measured value. It is thus com-
mon practice to report the two uncertainties explicitly and separately. For instance, if the
measured cross section of a process is 240 mB with a statistical precision of 24 mB and a
systematic uncertainty of 30 mB, one shall report the measurement as

240 ± 24(stat) ± 30(sys) mB, (12.1)

in which the labels “stat” and “sys,” which stand for statistical and systematic, respectively,
are often omitted. As we already discussed in Part I of this book, the usual practice is to re-
port one sigma (1σ ) statistical uncertainties (whether based on the frequentist or Bayesian
paradigms) but greater significance levels are occasionally used and identified as such.

The aforementioned notation implies the errors are symmetric, in other words, that it is
equally probable that the true value of an observable be found below or above the quoted
value and in the given range. It is often the case, however, that the confidence interval
is in fact not symmetric about the quoted value. This may occur, for instance, when an
observable A is obtained from a one parameter fit to some data. In this case, a 1σ interval
should be determined by the range of the fitted parameter which, relative to the parameter
value a at the minimum χ2

min, yields a χ2 increase of one unit. As schematically illustrated
in Figure 12.2, if the χ2 function, plotted vs. the fit parameter, is not symmetric relative to
its minimum, the low-side range, #a<, and high-side range, #a>, required to produce a
χ2 increase of one unit are not equal. The uncertainty interval is thus asymmetric and is
usually reported according to the low/high notation. One would, for instance, write

240+20
−6 mB. (12.2)
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Fig. 12.2 Schematic illustration of conditions under which asymmetric error intervals are obtained fromLS fits. Theχ 2

function is plotted, for a given dataset, as a function of a model parameter “a.”A one sigma error corresponds to
the range in which theχ 2 increases by one unit relative to its minimum value. Given the dependency ofχ 2

on a is asymmetric, one must quote the ranges#a< and#a> as low- and high-side errors, respectively,
as shown.

Asymmetric error intervals may also occur in multiparameter fits or when the measured
value is close to a physical boundary (see, e.g., §6.1.8). Asymmetric error intervals are
also often reported for systematic errors. Indeed, it is quite possible that the measurement
protocol might have a “one-side” effect on an observable, or that the effect is more promi-
nent on the low- or high-side of the reported value. It is thus common to report low- and
high-side intervals for both statistical and systematic uncertainties as follows

240+20
−6 (stat)+33

−22(sys) mB. (12.3)

There is no universally adopted standard notation or method to report errors in graphs.
However, in physics, most particularly in high-energy physics, it has essentially become
the norm to report statistical and systematic errors independently. Statistical errors are
usually indicated with a simple vertical line (for the error on the dependent variable) pass-
ing through the data point it qualifies and the length of which corresponds to the size of
the confidence interval. Some authors like to terminate the vertical line at both extremities
with a short horizontal segment, but this practice has become rather infrequent in the last
decade or so. Systematic errors are reported using a wide variety of notations and tech-
niques depending on the circumstances and complexity of the data and errors. Some of
these notations are schematically illustrated in Figure 12.3.

12.2 Experimental Considerations

All measurements of physical observables are subjected to limitations, constraints, and
alterations associated with the nature of the measurement process as well as the properties
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Fig. 12.3 Schematic illustration of notations and techniques commonly used for reporting errors in graphs displaying
experimental results. Statistical error bars are shown with solid vertical lines. Error bars with downward pointing
arrows are used to represent one-sided confidence levels with an upper limit. Systematic errors are shown with gray
boxes for set 1, a shaded range for set 2, and brackets for set 3.

of the apparatus or devices used to carry them. These effects can be broadly categorized in
terms of the following:

1. Experimental acceptance
2. Detection efficiency
3. Smearing and resolution
4. Ghost and background signals

Let us briefly discuss each of these effects.

12.2.1 Acceptance

The acceptance of a measurement corresponds to the range in which an observable of in-
terest can be measured. The determination of the acceptance of a measurement is often a
trivial matter, but it can also be rather complicated. At a basic level, the acceptance is deter-
mined by the device carrying out the measurement and the range in which an elementary
observable is acquired. For instance, when measuring the time-of-flight (TOF) of particles,
one is typically limited by the physical scale of the apparatus and the specific time-to-digital
converter (TDC) used to carry out the time-to-digital conversion. The acceptance may also
be determined by the measurement process itself. Consider, for instance, the measurement
of the momentum of charged particles in a magnetic spectrometer. The momentum is pro-
portional to the radius of the charged particle trajectories and the magnetic field. If the
momentum of the particles is too small, their trajectory might not be measurable by
the sensing devices and they will simply be lost, that is, not accepted in the measure-
ment. The acceptance associated with certain measurements can be rather complex and de-
pend both on the physical process involved and the measurement itself. This is particularly
the case when the measurement process involves a cascade of different phenomena. For
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584 Data Correction Methods

instance, the detection of a Higgs boson decaying into jets requires that one detects the
jets, which in turn requires that one detects the charged and neutral particles of these jets.
The acceptance of the Higgs is then dependent on several measurement processes and
devices.

Given the range of conditions that may constrain the acceptance of a specific measure-
ment, the actual determination of the acceptance may become an arduous task that is typ-
ically best carried out by modeling the measurement process and instruments by Monte
Carlo simulations. We will consider selected illustrative examples in Chapter 14.

The acceptance of a measurement effectively defines the range of its applicability. Mea-
sured observables can be genuinely reported only if they are within the acceptance of the
measurement. They thus cannot be corrected, strictly speaking, for unmeasured ranges of
values. However, if there are observables whose behavior can be predicted with good cer-
tainty outside a measurement of interest (e.g., production cross section of particles vanishes
at zero and infinite momentum), it may then be possible to carry out reliable extrapola-
tions of the measurements, sometimes referred as acceptance corrections. It should be
clear that such “corrections” are extrapolations whose validity and accuracy depend on the
specificities of the observables and the measurement itself.

12.2.2 Efficiency

Whether one conducts a measurement of an elementary physical quantity (i.e., the ampli-
tude of a magnetic field) or a more elaborate observable (e.g., the production cross section
of a specific type of particle), one is invariably faced with the fact that some “events" will
be lost either because of the nature of the phenomenon and observable being measured,
that is, the process, or because of the measurement device itself. Consider, for instance,
the detection of charged pions in a magnetic spectrometer. Since charged pions decay with
a mean lifetime of 2.6 × 10−8 s, a substantial fraction may be lost because they decay in
flight through the apparatus and consequently do not produce any or sufficient signals in
sensing devices. Pions may also be lost because of various effects arising in the detec-
tion process such as fluctuations in energy deposition, charge collection, electronic noise,
detector component malfunction, and so on.

The efficiency, ϵ, of a measurement is generically defined as the ratio of the expectation
value of the number of measured “events,” ⟨NM ⟩, by the expectation value of the number
of produced (or true) events, ⟨NT ⟩:

ϵ = ⟨NM ⟩
⟨NT ⟩

. (12.4)

The word event refers to instances or occurrences of a particular phenomenon of inter-
est, such as supernova explosions, proton–proton collisions, or the production of charged
particles.

Methods for efficiency correction of spectra and correlation functions are presented in
§§12.3 and 12.4.3, respectively, whereas techniques to determine the efficiency of measure-
ments are discussed in §§12.4.6 and 14.2.4.
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12.2.3 Signal Smearing, Precision, and Resolution

Strictly speaking, signal smearing refers to the notion that the precision of a measure-
ment of a physical observable is invariably finite, while the term resolution, often called
resolving power, corresponds to the ability of a particular measurement to distinguish or
separate two “close-by” signals, phenomena, or entities, e.g., two peaks in a frequency or
mass spectrum. In practice, the term resolution is often misused to refer to both precision
and separation of close-by signals. As for acceptance and efficiency, both physical pro-
cesses and the properties of a device have an influence on the precision and resolution of
the measurement.

Consider, for instance, the measurement of the momentum of charged particles with a
magnetic spectrometer, where the momentum is determined based on the radius of curva-
ture of the charged particle trajectories. As they traverse detector components, scatterings
with electrons and nuclei of the medium change their momentum and direction randomly.
The radii and directions of the tracks are consequently randomly altered and yield a smear-
ing of the measured momenta, and thus a loss of precision. Signal smearing also arises
from the technique used to extract the radius of curvature. One must be able to sample
hits or points where particles traverse specific components of the apparatus. Devices used
to measure these points have finite granularity and feature finite signal-to-noise charac-
teristics. They thus yield position measurements of finite precision, which in turn produce
smearing, or loss of precision, in the determination of the radius of curvature of the charged
particle tracks. The momentum of measured charged particles is thus limited by both scat-
tering processes and the precision of hit measurements. This is true of all observables in
general.

Process noise and measurement noise also limit the resolving power of a measurement.
Consider once again the measurement of charge particles in a detector. Charged particles
passing through a sensing device lose energy as they scatter with electrons and nuclei of the
material. This lost energy is used to produce a signal and detect the passage of the particle.
But, based on the need to collect the lost energy to produce a signal (often in terms of the
amount of ionization produced by the particle), the sensing device must have a finite area.
There can also be energy or signal sharing between nearby sensing units. This implies that
the signals produced by the passage of two particles through a given detection unit may
not be separable as two distinct signals and that they may then be confused as a single
signal. The term resolution thus typically refers to the minimum signal separation (in the
observable’s units) required to reliably separate two distinct signals.

Process and measurement smearing, or noise, may be described, typically, in terms of
a response function, r(xm|xt ), expressing the probability of obtaining a specific measured
value, xm, given an actual or true value, xt . This response can in principle be expressed in
terms of a well-defined PDF, with unit normalization:

∫

accept
r(xm|xt ) dxm = 1. (12.5)

The accuracy and precision of a measurement can be reported either in terms of its response
function, if it is explicitly known, or in terms of its (estimated) moments. The first and
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second moments of r(xm|xt ) determine the bias and the accuracy of the measurement. The
bias is obtain from the first moment

Bx ≡ ⟨xm⟩ − xt =
∫

accept
(xm − xt ) r(xm|xt ) dxm (12.6)

whereas the accuracy is appraised on the basis of its mean square error (MSE).1

MSE =
(∫

accept
(xm − xt )

2 r(xm|xt ) dxm

)1/2

. (12.7)

As already discussed in §4.4, the MSE depends on the bias Bx and the variance σ 2
x of the

measured value xm (an estimator of xt which in the context of §4.4 would be denoted x̂)
relative to its expectation value, ⟨xm⟩ = E[xm]. The accuracy of the measurement may then
be written

MSE = B2
x + σ 2

x , (12.8)

where σ 2
x = E

[
(xm − E [xm])2]. Effectively, MSE provides an assessment of the overall

accuracy of the measurement influenced in part by the bias Bx and the standard deviation
σx of the measured value one would observe if the same experiment could be repeated
several times.

The response function r(xm|xt ) can often be approximated with a Gaussian distribution.
This is “guaranteed” by the central limit theorem, in particular, when the measurement
outcome is a sum or superposition of several subprocesses. Examples of such processes in-
clude measurements of the energy of elementary particles with calorimeters, measurements
of the curvature of tracks in a magnetic spectrometer, and the determination of particles’
TOF with TOF detectors. However, r(xm|xt ) may also drastically deviate from a Gaussian
distribution and feature long tails or various substructures. This is the case, for instance, of
measurements of the energy loss of charged particles traversing a time projection chamber
where scatterings can lead to large energy losses, or in the detection and measurement of
the energy of jets where loss of particles (because of detection efficiencies) can lead to
large amounts of missing jet energy.

The response r(xm|xt ) may be a rather complex function of intrinsic and extrinsic con-
ditions. For instance, the transverse momentum resolution of a charged particle track typi-
cally depends on the actual momentum of the particle, its angle of emission (production),
and its rapidity. It may also depend on detector-wide or event conditions. For instance, since
the occupancy of a detector may influence the noise generated within the detector and the
pattern recognition involved in finding and obtaining the momentum of tracks, the resolu-
tion or response function may then be dependent on such factors as the beam luminosity,
the data acquisition rate, and so on.

There are a variety of techniques to determine the precision/resolution of measurements
of physical observables. It is often possible to calibrate and measure the resolution of a
device by measurements of well-known standards or calibrated inputs, but measurements
with complex detectors typically rely on detailed simulations of the physical processes

1 Technically, it is the MSE of the estimator of the observable of interest that one reports.
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587 12.3 Signal Correction and Unfolding

involved, as well as the performance of the detector components. Selected techniques used
in the estimation of observable resolution and to account (i.e., correct) for finite resolution
are discussed in §12.3 of this chapter, whereas basic simulation techniques used to simulate
smearing effects are covered in §14.2.

12.2.4 Ghost Signals and Background Processes

Ghost signals refer to noise that may be construed as a signal either because it exceeds a
specific measurement threshold or because it is explicitly reconstructed as such. Electronic
noise and process noise produce signal fluctuations that occasionally have large amplitude
and may thus fake actual signals. This is particularly the case when considering “elemen-
tary” observables measured by basic sensor units or detector components. More elaborate
ghost signals may also occur as a result of such basic noise signal. For instance, fake tracks
may be reconstructed in a spectrometer as a result of noisy electronics, correlated electronic
signals, component malfunctions, or by incorrect association of true particle hits.

Background processes may also impede measurements of a particular observable. For
instance, combinatorial pairs of particles may contribute a strong background in the re-
construction of the mass spectrum of decaying particles, and secondary particles (resulting
from decays within the apparatus) contribute an undesirable background in measurements
of particle production cross section and correlation functions.

Techniques to evaluate signal noise and background processes are as varied as the ob-
servables measured by scientists. A detailed discussion of such techniques is beyond the
scope of this textbook.

12.3 Signal Correction and Unfolding

The problem of unfolding is formally introduced in §12.3.1. Given the intricacies of the un-
folding problem, many scientists opt to compare their data to folded theoretical data rather
than unfolding their measurements for instrumental effects. The relative merits of this al-
ternative approach and unfolding of the detector effects are briefly discussed in §12.3.3.
The correction coefficient method, commonly known as the bin-by-bin technique, and its
limitations, are presented in §12.3.4. Actual unfolding techniques, including regularization,
are described in §§12.3.6, 12.3.7, and 12.3.8.

12.3.1 Problem Definition

As discussed already in §12.2 of this chapter, measurements of physical observables in-
volve a variety of instrumental effects that must be properly accounted for to obtain robust
scientific results. These include effects associated with limited acceptance, detection ef-
ficiency, measurement resolution, possible nonlinearities, and the presence of noise and
backgrounds. While extrapolation outside of the acceptance of a specific measurement is
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not usually warranted, corrections for efficiency, finite resolution, nonlinearities, and back-
ground processes are usually possible to perform in a well-controlled manner. Indeed, if an
experiment and the observable X it measures are well defined, and if the experimental per-
formance is reasonably stable, it is possible to account for efficiency and resolution effects
in a deterministic fashion.

Let us consider a measurement of a specific observable X by a specific apparatus. We
will represent by xt the true value of the observable X , and by xm the value observed with
the apparatus. We will carry out our discussion assuming X is a simple observable (e.g., the
transverse momentum, pT ), but the method discussed in the following is trivially extended
to multidimensional observables (e.g., p⃗ = (pT , η,φ)).

Let us first introduce the PDFs of the true, measured, and background distributions. Let
ft (xt ) represent the probability (density) of observing true values xt , with normalization:

∫

't

ft (xt ) dxt = 1, (12.9)

where the integral is taken over the relevant domain 't of the observable X . Likewise, let
us denote the PDF of the measured distributions by fm(xm), with similar normalization.

∫

'm

fm(xm) dxm = 1. (12.10)

In general, the measured distribution fm may involve a superposition of the true but
smeared signal and some background. We will denote the PDF of this background as fb(xm)
and use the normalization

∫

'm

fb(xm) dxm = 1. (12.11)

We will assume that it is possible, experimentally, to determine both the shape of this
background PDF as well as the relative rate of background events.

If several background processes and sources of noises hamper the measurement, one can
include them by estimating their respective distributions. Let us define pα as the relative
probability of a specific background process α and assume one can describe its distribution
of measured values xm in terms of a PDF, fb,α (xm), which represents the probability of
measuring xm given the background process α. The probability of observing values xm

produced by Nα background processes may then be written

fb(xm) =
Nα∑

α=1

pα fb,α (xm), (12.12)

where we require, by definition,
∫

'm

fb,α (xm) dxm = 1, (12.13)

Nα∑

α=1

pα = 1.
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589 12.3 Signal Correction and Unfolding

We define the experimental response function, noted R(xm|xt ), as the probability (den-
sity) to observe a value xm when the “event” has value xt . This response function has two
components:

R(xm|xt ) = r(xm|xt ) × ϵ(xt ). (12.14)

The coefficient r(xm|xt ) is the smearing function of the measurement. It is determined
by process noises and measurement noises, as briefly discussed in §12.2.4. It is a PDF
representing the probability of finding a value xm when the true value is xt . By construction,
one has the normalization

∫

'm

r(xm|xt ) dxm = 1, (12.15)

where 'm represents, here again, the domain of the measured values xm.
The function ϵ(xt ) represents the efficiency of the measurement and thus corresponds

to the probability of actually observing an “event” with an observable value xt . Similarly
to r(xm|xt ), the efficiency ϵ(xt ) may depend both on properties of the measurement pro-
cess (e.g., decays typically reduce the efficiency of observing particles) and characteristics
or performance of the apparatus. This could be, for instance, the probability of detecting
charged particles within a magnetic spectrometer as a function of their transverse momen-
tum, or the probability of finding and reconstructing a given type of collision at a proton
collider.

In general, the functions r(xm|xt ) and ϵ(xt ) may have dependencies on other variables
such as external or global conditions of the apparatus and collisions being measured. For
example, both the efficiency and the smearing function of charged particle measurement
usually depend on their direction (rapidity, azimuth angle), as well as the complexity of
the events of which they are part of, the detector occupancy, the data acquisition rate,
and so on.

Experimentally, given finite statistics and resolution, it is convenient to discretize the
true, measured, and background distributions using histograms µ⃗ = (µ1, µ2, . . . , µM ),
ν⃗ = (ν1, ν2, . . . , νN ), β⃗ = (β1,β2, . . . ,βN ). In general, the true and measured histograms
may have different number of bins, M and N , as well as different ranges. We will see later
in this section how these differences may impact the determination of the true distribution
in practice.

Let us denote the number of true, measured, and background events observed in a given
experiment by mtot, ntot, and btot, respectively. Their expectation values are

µtot = E [mtot] , (12.16)

νtot = E [ntot] , (12.17)

βtot = E [btot] . (12.18)

We will show in the following that the number of measured events shall be equal to

νtot = ⟨ϵ⟩µtot + βtot, (12.19)

where ⟨ϵ⟩ represents the average efficiency of the measurement. We will assume it is possi-
ble to determine βtot unambiguously, although this may prove to be challenging in practice.
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The probability, p j, of xt being “produced” in bin j is the integral of the PDF ft (xt )
across that bin:

p j =
∫

bin j
dxt ft (xt ). (12.20)

The expectation value of the number of entries in bin j of the true value histogram is thus

µ j = µtot × p j = µtot

∫

bin j
dxt ft (xt ). (12.21)

Likewise, the expectation value of the number of entries in bin i of the measured and
background distributions shall be

νi = νtot

∫

bin i
dxm fm(xm), (12.22)

βi = βtot

∫

bin i
dxm fb(xm). (12.23)

Evidently, the number of entries νi is a superposition of the smeared true signal, includ-
ing the detection efficiency and fake signals from background processes. First ignoring
backgrounds, one can write

νi = µtot × Probability(event in bin i). (12.24)

The probability of having an event in bin i is determined by the product of the smearing
function R(xm|xt ) and the PDF ft (xt ). One can thus write

νi = µtot

∫

't

dxtProb(xm in i|true xt , detected), (12.25)

× Prob(detect xt ) × Prob(produce xt ),

= µtot

∫

bin i
dxm

∫

't

dxtr(xm|xt )ϵ(xt ) ft (xt ). (12.26)

The integral over xt may be partitioned into M bins j by including a sum over all such bins:

νi = µtot

∫

bin i
dxm

M∑

j=1

∫

bin j
dxtr(xm|xt )ϵ(xt ) ft (xt ). (12.27)

We seek to express νi in terms of the true histogram values µ j. Multiplying the argument
of the integral by µ j/µ j = 1 and rearranging, we get

νi =
M∑

j=1

∫

bin i
dxm

∫

bin j
dxt

r(xm|xt )ϵ(xt ) ft (xt )
µ j/µtot

µ j. (12.28)

This may be written

νi =
M∑

j=1

Ri jµ j, (12.29)
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with the introduction of the response matrix Ri j, defined as

Ri j =
∫

bin i dxm
∫

bin j dxtr(xm|xt )ϵ(xt ) ft (xt )∫
bin j dx′

t ft (x′
t )

, (12.30)

where we used Eq. (12.21) to express the ratio µ j/µtot. The numerator of Eq. (12.30)
corresponds to the joint probability of measuring a signal in xm bin i when the true value is
in bin j, while the denominator amounts to the probability of finding the true signal in bin
j. This ratio is thus the conditional probability of getting a measured signal in bin i when
the true signal is in bin j:

Ri j = Prob(observed in bin i|true in bin j). (12.31)

Summing over all observed bins i, one gets

N∑

i=1

Ri j = ϵ j, (12.32)

where ϵ j represent the average detection efficiency in bin j:

ϵ j =
∫

bin j dxtϵ(xt ) ft (xt )∫
bin j dxt ft (xt )

. (12.33)

The expression Eq. (12.29) of the expectation value of the measured signal νi is incom-
plete since we have so far neglected background processes. Assuming the density fb(xm)
and the number of background events can be reliably estimated, one can write

νi =
M∑

j=1

Ri jµ j + βi, (12.34)

where β j represents the expectation value of the background processes obtained with Eq.
(12.23). This expression can be conveniently represented in terms of a matrix equation as
follows:

ν⃗ = Rµ⃗ + β⃗, (12.35)

where ν⃗ and β⃗ represent N × 1 column vectors, µ⃗ is an M × 1 column vector, and R is an
N × M matrix.

The histogram ν⃗ represents the expectation value of the measured distribution. In prac-
tice, an experiment shall obtain a specific histogram, hereafter noted n⃗, exhibiting statistical
deviations from ν⃗. However, repeated measurements of n⃗ should, on average, converge to-
ward ν⃗. Indeed, one should have

E [n⃗] = ν⃗. (12.36)

It thus seems legitimate to replace ν⃗ by n⃗ in Eq. (12.35), and seek an inverse of the matrix
R in order to obtain an estimate of µ⃗ according to

m⃗ ≡ µ̂ = R−1
(

n⃗ − β⃗
)

. (12.37)
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It is relatively straightforward to show that the estimator m⃗ corresponds to the solution of
the least square problem with

χ2(µ⃗) =
N∑

i, j=1

(νi − ni)
(
V −1)

i j (νi − ni) , (12.38)

where νi are treated as functions of fit parameters µ j defined by Eq. (12.34), and the matrix
V −1 is the inverse of the covariance matrix:

Vi j = Cov
[
ni, n j

]
. (12.39)

Assuming the inverse R−1 exists, one finds (see Problem 12.4) that the minimal χ2(µ⃗)
obtained by simultaneously solving

∂χ2(µ⃗)
∂µk

= 0 (12.40)

indeed corresponds to Eq. (12.37). It is also possible to demonstrate that the estimator m⃗,
given by Eq. (12.37), corresponds to the solution obtained by maximization of the log-
likelihood function (see Problem 12.7):

log L(µ) =
N∑

i=1

log (P(ni|νi)) , (12.41)

where P(ni|νi) is a Poisson distribution (or binomial distribution).
The estimator m⃗, defined by Eq. (12.37), is in fact an unbiased estimator of µ⃗:

E
[
mj

]
=

N∑

i=1

(
R−1)

ji (E [ni] − βi) , (12.42)

=
N∑

i=1

(
R−1)

ji (νi − βi) ,

= µ j,

insofar as the noise spectrum β⃗ is properly estimated.
The covariance between distinct bins of the estimator is calculated similarly and amounts

to

Cov
[
mi, mj

]
=

N∑

k,k′=1

(
R−1)

ik

(
R−1)

jk′ Vi j, (12.43)

where Vi j is the covariance matrix defined in Eq. (12.39). Defining matrix elements Ui j =
Cov

[
mi, mj

]
, the preceding may be written in the compact form:

U = R−1V
(
R−1)T

, (12.44)
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where the label T indicates the transpose of the matrix R−1. If the measured ni obey Poisson
statistics, one has Vkk′ = δkk′nk . The expectation of the covariance matrix U is thus

Ui j ≡ Cov
[
mi, mj

]
=

N∑

k=1

(
R−1)

ik

(
R−1)

jk νk, (12.45)

from which we conclude that if R is diagonal or nearly diagonal, so should the matrix U .
One can additionally verify that the variance of each component mj corresponds to the

RCF bound obtained with the maximum log-likelihood log L(µ). The estimator m⃗ defined
by Eq. (12.37) has zero bias and finite covariance. It should thus provide us, in principle,
with a solution to the inverse problem. It should then be possible to correct a measurement
for instrumental effects, provided one can invert the response function R. In practice, life
is a little more complicated. There are, in fact, several issues with this inverse problem,
which we discuss in details in the following section.

12.3.2 Issues with the Inverse Problem...

The first issue encountered with the inverse problem is that the calculation of R requires
knowledge of ft (xt ). This is a problem because this quantity is precisely the answer we
seek with our solution of the inverse problem. Indeed, the calculation of the integrals in
Eq. (12.30) does require knowledge of ft . In practice, however, this is only a minor issue
because one usually carries out a calculation of the response function R(xm|xt ) using a MC
procedure based on a model PDF, fMC , chosen to be a close approximation of the data. One
can then verify by explicit calculations, or by iterative procedures, whether the model fMC

enables a reliable estimation of the response matrix Ri j. Additionally, it is easy to verify
that if ft (xt ) is approximately constant throughout any given bin j, that it can be factorized
out of the integral in xt and thus cancels out:

Ri j ≈
ft (xt, j )

∫
bin i dxm

∫
bin j dxtr(xm|xt )ϵ(xt )

ft (xt, j )
∫

bin j dx′
t

, (12.46)

= 1
#xt, j

∫

bin i
dxm

∫

bin j
dxtr(xm|xt ), ϵ(xt ), (12.47)

where #xt, j represents the width of bin j.
A far more serious issue with our solution to the inverse problem is that it typically pro-

duces wildly oscillating solutions that are not usable in practice. To illustrate this problem,
consider the true signal (thick solid line) in Figure 12.4 and the response/smearing func-
tion plotted in Figure 14.8. Application (folding) of the smearing function produces the
measured expectation value shown in Figure 12.4 as a thin solid line. In an actual experi-
ment, the measured data has finite statistics and exhibit bin-to-bin fluctuations, shown as a
dash-line histogram. Unfolding of this measured histogram with Eq. (12.37) unfortunately
yields a corrected distribution with large oscillations as illustrated in Figure 12.4 by the
solid dots. In spite of all good intents and purposes, this method simply does not work. The
unfolded distribution is totally different from the original distribution.
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Fig. 12.4 Unregularized unfolding is inherently unstable because the procedure attempts to unsmear peaks and consequently
yield spiky structures for spectra with finite statistics.

The failure is no mere numerical instability or coding error. It is an intrinsic feature of the
unfolding procedure. Indeed, consider that the effect of the response function is to smear
a sharp peak into a wider distribution. The inverse problem thence has a tendency to take
wide peaks and transform them into narrow peaks. Statistical fluctuations produce small
peaks, which the inversion transforms into large peaks! The inverse problem is intrinsically
unstable and thus seems doomed to failure.

Fortunately, instabilities can be tamed provided one is willing to introduce somewhat of a
bias in the inversion procedure. This is a general feature of all estimators. The introduction
of external constraints may reduce the variance of an estimator but results in a biased
estimator. The result may nonetheless be acceptable if the bias is kept under control and
reasonably small.

12.3.3 To Fold or Unfold, That Is the Question!

Unfolding of instrumental effects is challenging and prone to many numerical instabilities,
as is painfully obvious from the discussion in the previous section. However, unfolding
of instrumental effects is not always required. It may be sufficient to compare “raw” ex-
perimental data (i.e., not unfolded) with model calculations that account for instrumental
effects. It is in fact much simpler to run model predictions through an experimental filter
than to unfold experimental data. All that is needed is a sufficiently detailed model of
the experimental response. In nuclear and particle physics, this is best accomplished with
the GEANT package and a performance simulator specific to the apparatus. The idea is
to simulate collisions and the production of particles according to the model of interest.
The GEANT package is used to simulate the propagation of produced particles through
the apparatus. It is possible to account for particle interactions within the detector, de-
cays, and other forms of backgrounds as well as a detailed response of the apparatus. It is
even possible to simulate varying or faulty performance of the instruments according to a
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detailed history of the performance of the apparatus. Model data filtered according to such
a detailed simulation of the detector performance can then be meaningfully compared to
experimental data. It is therefore possible to establish whether the model properly account
for the observed data.

Comparisons of filtered theoretical models to experimental data are relatively common
and quite useful in challenging the predictions of such theoretical models. The problem,
however, is that in the absence of unfolded data, all theoretical models need to be propa-
gated through the same experimental filter which accounts for all specificities and idiosyn-
crasies of the experiment. While it is in principle possible to publish a detailed description
of the filter or even a computer code that replicates the filter, it is not always possible,
in practice, because the filter may be too complex, or too fastidious to replicate and use.
The complexity of the problem is further exacerbated if the experimental setup, particu-
larly the trigger, is evolving through time. It must then be made clear which dataset and
results correspond to which filter. It is also the case that the burden of proof, so to speak,
is transferred to all scientists proposing a new model of the experimental data. It makes
the comparison between models far less transparent and more prone to misrepresentations.
How indeed can theorists be sure they are using the right experimental filter? This seems
hardly fair. As a result, scientists tend to think that it is far more appropriate for experi-
menters to correct, that is, unfold their data for instrumental effects. It is also the case that
the filtering of model predictions can grossly suppress features of interest and intuitive or
explicit judgment of the validity of a model can be severely compromised.

Finally, and perhaps most importantly, detectors typically feature drastically different
acceptance, resolution, and overall responses. Their effect on a measured observable may
then be quite different. Any comparisons of uncorrected observables are consequently not
possible or meaningful. Most scientists thus tend to regard the use of experimental filters to
treat theoretical model predictions for comparison with experimental data as a last resort to
be used exclusively when unfolding is too difficult or fraught with too many uncertainties.

12.3.4 Bin-by-Bin Method

The bin-by-bin method is commonly used in particle and nuclear physics to correct mea-
surements of cross section and various other observables. The method is based on the
assumption that bin-to-bin sharing is modest or negligible and that one can obtain a rea-
sonable correction of measured data using a single multiplicative correction factor for each
bin as follows:

µi = Ci (ni − βi) , (12.48)

where βi are background estimates for bin i = 1, . . . , m, and Ci are coefficients designed
to effect an appropriate correction of the measured distribution ni to obtain a corrected
distribution µi.

The coefficients Ci can generally be determined from MC simulations according to

Ci =
µMC

i

νMC
i

, (12.49)

1::79�  .�2��80 ������� 
�	���	���
����������291/.����2�/�� ���4�82.0/���2�/892: �8/99

https://doi.org/10.1017/9781108241922.014


596 Data Correction Methods

where µMC
i represents the true signal generated by the MC model and νMC

i is the simulated
experimental spectrum accounting for all relevant instrumental effects. Given sufficient
computing power and resources, the coefficients Ci can in principle be determined with
arbitrarily small statistical errors. If computing resources are scarce and statistical errors
large, the usual methods of error propagation may be used to determine statistical errors
on the corrected spectrum µi. However, it should be noted that strong correlations exist,
by construction, between µMC

i and νMC
i . Care must thus be exercised in the estimation of

errors on the coefficients Ci. A sensible determination of the errors may be accomplished
with the unified approach discussed in §6.2.2 (frequentist approach) or by calculation of
a credible region (Bayesian approach) based on the posterior probability p(µMC

i |νMC
i ) as

discussed in §7.2.4.
The bin-by-bin method is obviously much simpler in application than the unfolding pro-

cedure outlined in §12.3.1. But is it precise enough or susceptible of skewing the corrected
distribution µi? The answer to this question, of course, depends on the response function
R defined in §12.3.1. If R is essentially diagonal, one can write

Ri j ≈ δi jε j. (12.50)

In this context, the background subtracted signal is simply

ν
signal
i = ni − βi = εiµi. (12.51)

The coefficients Ci are consequently the multiplicative inverse of the efficiencies εi. The
bin-by-bin method thus amounts to an efficiency correction only. But when R is nondiag-
onal, the factors 1/Ci may become arbitrarily large, even larger than unity. The estimator
µ̂i defined by (12.48) may thus be arbitrarily biased. Indeed, the expectation value of µ̂i is
given by

E [µ̂i] = CiE [ni − βi] = Ci (νi − βi) . (12.52)

Inserting the values given by Eq. (12.49) for Ci, one finds

E [µ̂i] =
µMC

i

νMC
i

ν
sig
i (12.53)

=
(

µMC
i

νMC
i

− µi

ν
sig
i

)

ν
sig
i + µi, (12.54)

in which the first term represents the estimator’s bias. The covariance matrix Ui j of the
corrected signals is evaluated in a similar fashion (see Problem 12.5).

Ui j = Cov
[
µ̂i, µ̂ j

]
= C2

i Cov
[
ni, n j

]
, (12.55)

= C2
i ν

sig
i δi j, (12.56)

where, in the second line, we assumed the measured ni are uncorrelated and determined by
Poisson statistics.

The bias term Bi may be written

Bi =
(

1
εMC

i

− 1
εtrue

i

)
ν

sig
i . (12.57)
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It is null only if the detection efficiencies determined by MC simulation, εMC
i , are identi-

cally equal to the true (unknown) efficiency, εtrue
i . However, this may be strictly possible

only if the model properly reproduces the data perfectly and the simulation accounts for
all instrumental effects appropriately. Since the MC model used to simulate the data is un-
likely, in general, to perfectly reproduce the true signal, the estimator is by construction
biased, and the bin-by-bin correction method shall lead to finite systematic errors. To the
extent that the simulation provides a proper account of experimental effects, though, it is
possible to use the bin-by-bin method iteratively to improve the correction coefficients.
First, an arbitrary MC model is used to generate a first-order correction of the measured
data. Then the corrected spectrum is used to produce a new set of MC data and evalu-
ate tuned correction factors C′

i , which can be used to produce a new updated corrected
spectrum. The convergence of this iterative method can be tested with a closure test (see
§12.4.7).

12.3.5 Correcting for Finite Bin Widths

Experimental distributions µi corrected for efficiency are commonly obtained with his-
tograms of finite bin widths and must consequently be also be corrected for averaging
effects through the bins. Recall from §12.3.1 that the values µi correspond to integrals
(12.21) of the true distribution ft (x):

µ j = µtot × p j = µtot

∫

bin j
dxt ft (xt ).

The value of the function ft (x) may thus be simply evaluated in each bin j as

ft (x j ) =
µ j

#x jµtot
, (12.58)

where #x j = xmax, j − xmin, j corresponds to the width of bin j. It might be tempting to
report this function by plotting the values ft (x j ) for each bin center position, xc = (xmax, j +
xmin, j )/2. This would constitute a formally valid plot only if the function ft (x j ) varies
linearly through all bins, however. Indeed, remember from our discussion in §4.6 that one
can write

xmax,i∫

xmin,i

f (x) dx = f (xi) (xmax,i − xmin,i) = f (xo,i)#xi,

where xo,i is a value of x within the interval [xmin,i, xmax,i] but not the center of the bin in
general. It is straightforward to show that the value xo,i corresponds to the center of the bin
i only if the function f (xi) varies linearly though the bin. If f (x) is nonlinear, one must use
the dependence of the function in the vicinity of the bin i to estimate the appropriate value
xo,i. This can be accomplished by fitting a suitable model function fm(x; a⃗) to the spec-
trum to obtain a parameterization a⃗ that enables calculation of the preceding integral for
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each bin:

Ii =
xmax,i∫

xmin,i

fm(x; a⃗) dx = fm(xo,i)#xi.

The values xo,i are then obtained by inversion of the function fm, as follows:

xo,i = f −1
m (Ii/#xi). (12.59)

As an example of application of this method, consider the determination of transverse
momentum values pT,i that should be used to properly represent a transverse momentum
spectrum 1

pT

dN
d pT

. Since transverse momentum spectra measured in high-energy collisions
are typically steeply falling, one can use a power law function

fm(pT ) = A
(

1 + pT

B

)−n
(12.60)

to fit a spectrum 1
pT

dN
d pT

. One writes

dN
d pT

= pT f (m(pT ) (12.61)

Ii =
∫

bin−i

dN
d pT

d pT = f (pT,i)#pi (12.62)

=
∫

bin−i
pT fm(pT ) d pT = ⟨pT ⟩i

∫

bin−i
fm(pT ) d pT (12.63)

where ⟨pT ⟩i is the mean pT in bin i. Once the fit parameters A and B are known, one can
thus get the values pT,i according to

pT,i =
∫

bin−i pT f (pT ) d pT∫
bin,i f (pT ) d pT

. (12.64)

12.3.6 Unfolding with Regularization Methods

As we argued in §12.3.3, it is usually deemed preferable to correct raw data for instrumental
effects rather than apply experimental filters on theoretical predictions to test theoretical
models, and it is essential for proper comparison of results from different experiments.
Since the bin-by-bin method is applicable only when the response matrix Ri j is diagonal
or near diagonal, one is compelled to tackle the unfolding problem directly. Alas, a simple
inversion of the response matrix typically leads to disastrous results: inverted spectra are
numerically unstable and tend to feature wild oscillatory structures.

Meaningful unfolding is nonetheless possible. The general idea is to introduce a small
bias in order to suppress fluctuations in the inverted instrumental response. This is accom-
plished by artificially imposing a smoothness constraint on the inverted solution using a
smoothness function, S(µ⃗), called the regularization function. The concept of regulariza-
tion is rather general and is applied to machine learning and inverse problems. It involves
the addition of possibly ad hoc information in order to solve an ill-posed problem or to
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prevent overfitting. It can be viewed in a Bayesian approach as imposing prior conditions
on model parameters.

The use of a regularization function implies the obtained solution µ⃗ will have a sub-
optimal χ2:

χ2 = χ2
min + #χ2, (12.65)

or likelihood:

log L(µ⃗) ∼ log Lmax − # log L. (12.66)

The key is to decide what deviation from the optimum, #χ2 or # log L, can be meaning-
fully tolerated.

A wide range of regularization techniques and unfolding methods are documented in
the scientific literature and commonly used in data analyses [13, 23, 48, 68, 91, 106].
A discussion of all these methods is well beyond the scope of this text. We focus our
discussion on the singular value decomposition (SVD) method in §12.3.7 and the Bayesian
unfolding method §12.3.8.

12.3.7 SVD Unfolding Method

We begin this section with a short summary of the notion of singular value decomposi-
tion in §12.3.7. An implementation of regularization in the context of the SVD method is
presented in §§12.3.7 and 12.3.7. An example of application is presented in §12.3.7.

SVD of a Matrix
The SVD of a real m × n matrix A amounts to a factorization of the form

A = USVT , (12.67)

where U and V are orthogonal matrices of size m × m and n × n, respectively, while S is an
m × n diagonal matrix with nonnegative diagonal elements. These conditions are expressed
as follows

UUT = UT U = I, (12.68)

VVT = VT V = I, (12.69)

Si j = 0 for i ̸= j, (12.70)

Sii = si ≥ 0, (12.71)

where the si are called singular values of the matrix A, while the columns of U and V are
known as the left and right singular vectors. One can verify that if A is itself orthogonal,
all its singular values are equal to unity (see Problem 12.6), whereas a degenerate matrix
features at least one null singular value.
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As it happens, a singular value decomposition is very useful toward the solution of linear
equation systems of the type encountered in the unfolding problem

Ax⃗ = b⃗, (12.72)

where x⃗ and b⃗ are n × 1 and m × 1 column vectors, respectively. With m ≥ n, the folded
distribution b⃗ has more bins than x⃗ and thus constitutes an over constrained system. For-
mally, the solution of Eq. (12.72) may be written

x⃗ = A−1b⃗ =
(
USVT )−1

b⃗ = VS−1UT b⃗, (12.73)

and is exact provided the matrix A and the measured vector b⃗ have no errors. In practice,
one finds that finite errors imply that diagonal elements si may be small and very imprecise
for values i exceeding some threshold k. Hocker and Kartvelishvili [106] have shown that
these components of the decomposition lead to solutions with fast numerical oscillations
which render the technique ineffective unless a proper regularization technique is applied.
We outline, in the next section, the procedure they developed to apply such a regularization.

SVD with Regularization
The unfolding of the overdetermined linear equation system (12.72) may be viewed as a
solution of the least-squares problem

χ2 =
m∑

i=1

⎛

⎝
n∑

j=1

Ai jx j − bi

⎞

⎠
2

, (12.74)

and is appropriate if the equations are exact or if the errors in b⃗ are all equal. But this is
usually not the case, and it is thus better to consider a weighted least-squares system of
equations

χ2 =
m∑

i=1

(∑n
j=1 Ai jx j − bi

#bi

)2

, (12.75)

where #bi represent errors on bi. With the inclusion of errors #bi, all terms i contribute
more or less equally. If the errors on bi and b j are correlated, one must introduce a covari-
ance matrix Bi j = Cov[bi, b j], and the preceding equation may be written in matrix form
as

χ2 =
(

Ax⃗ − b⃗
)T

B−1
(

Ax⃗ − b⃗
)

. (12.76)

The matrix A represents the probability that events in a bin i might end up in bin j. Since
it is usually generated on the basis of Monte Carlo simulations (see §14.2.3), one typi-
cally ends up with a situation where rare i bins are not strongly populated and the cor-
responding coefficients Ai j may be artificially large (and even equal to unity) and rather
imprecise thereby contributing a source of numerical oscillations. Hocker and Kartvel-
ishvili [106] showed this problem can be partially mitigated by scaling the values Ai j and x j
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according to

Ai j → A′
i j = λ jAi j for i = 1, m, (12.77)

x j → x′
j = x j/λ j,

since these scalings do not formally change Eq. (12.72), but may be chosen to produce
a matrix A′ where statistically strong terms are large and weaker terms are small. This is
achieved by introducing ω j = x j/xmc

j where xmc
j are the MC yields used to generate the

matrix A. One then writes
n∑

j=1

A′
i jω j = bi, (12.78)

which must be solved for ω j. At the end of the unfolding procedure, one shall simply
multiply these by xmc

j to obtain the desired solutions x j.

x j = ω j × xmc
j for j = 1, . . . , n. (12.79)

Typically, experimentalists aim to use MC models that provide a reasonable representation
of the data. The values ω j are thus approximately close to unity and feature only small
fluctuations, thus requiring fewer terms in the SVD decomposition. The use of the scaled
A′

i j also permit the statistics to be better represented with large terms, where statistical
accuracy is large, and smaller terms otherwise. One can then proceed to obtain a formal
solution which includes both scaled A′

i j coefficients and errors on bi.
In general, the covariance matrix B may not be diagonal. But given it should be sym-

metric and positive definite, its SVD may be written

B = QRQT , (12.80)

where R is a strictly diagonal matrix with Rii = r2
i ̸= 0. Its inverse B−1

B−1 = QR−1QT (12.81)

can then be substituted in (12.76) with scaled A′ and ω⃗:

χ2 =
(

A′ω⃗ − b⃗
)T

QR−1QT
(

A′ω⃗ − b⃗
)

. (12.82)

Introducing

Ãi j = 1
ri

∑

m

QimA′
m j, (12.83)

b̃i = 1
ri

∑

m

Qimbm,

one can write

χ2 =
(
Ãω⃗ − b̃

)T (
Ãω⃗ − b̃

)
. (12.84)

Minimization of this χ2 yields
∑

j

Ãi jω j = b̃i, (12.85)
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where b̃i now has a covariance equal to the unit matrix I and all equations i have the
same weight. The problem remains, unfortunately, that an exact solution of this system of
equations still features a rapidly oscillating distribution. But, it is now in a form such that
spurious oscillatory components can be suppressed by a judicious choice of regularization.
This is achieved in practice by writing,

(
Ãω⃗ − b̃

)T (
Ãω⃗ − b̃

)
+ τ (Cω⃗)T (Cω⃗) = min . (12.86)

The matrix C defines the a priori condition on the solution of the equations and enables
the implementation of a suitable regularization controlled by the regularization parameter
τ . Given the solution is expected to be “smooth,” it is reasonable to seek to minimize the
local curvature of the distribution. This may be written

∑

i

[(ωi+1 − ωi) − (ωi − ωi−1)]2 . (12.87)

One then writes C as

C =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 0 · · · 0
1 −2 1 0 · · · 0
0 1 −2 1 · · · 0
0 · · ·
0 · · · 1 −2 1
0 · · · 0 1 −1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

. (12.88)

Minimization of Eq. (12.86) then leads to overdetermined system of equations
[

Ã√
τC

]
ω =

[
b̃
0

]
, (12.89)

which can be solved by SVD. To avoid solving iteratively for several values of τ , Hocker
and Kartvelishvili [106] found Eq. (12.89) may be written

[
ÃC−1
√

τ I

]
Cω =

[
b̃
0

]
, (12.90)

and solved for τ = 0 provided one modifies the matrix C such that its inverse exists. One
also needs to assume that the value si can be sorted in a nonincreasing sequence by ap-
propriately swapping pairs of singular values. This can be accomplished by adding a small
value ξ of order 10−3 or 10−4 to all terms of the diagonal:

C =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

−1 + ξ 1 0 0 · · · 0
1 −2 + ξ 1 0 · · · 0
0 1 −2 + ξ 1 · · · 0
0 · · ·
0 · · · 1 −2 + ξ 1
0 · · · 0 1 −1 + ξ

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

. (12.91)

For τ = 0, a decomposition of ÃC−1 may be expressed as

ÃC−1 = USVT . (12.92)
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Writing d⃗ = UT b̃ and z⃗ = VT Cω⃗, one then has

si × zi = di, for i = 1, . . . , n. (12.93)

The orthogonality of U and the fact that the covariance matrix of b̃ is equal to unity insure
that d⃗ also has unit covariance. Solution of (12.93) yields (for τ = 0):

z(0)
i = di

si
, (12.94)

ω⃗(0) = C−1Vz⃗ (0).

With τ = 0, there is no regularization, so this solution is effectively useless. However,
introducing finite (i.e., nonzero) values of τ , one can show that values di may be obtained
according to

d (τ )
i = di

s2
i

s2
i + τ

, (12.95)

which finally yield the sought for solution

z(τ )
i = disi

s2
i + τ

, (12.96)

ω⃗(τ ) = C−1Vz⃗ (τ ).

A finite value of τ thus avoids numerical instabilities by effectively providing a cutoff of
high-frequency terms (fast oscillations) of the decomposition.

The covariance matrices Z and W are found to be

Z(τ )
ik = s2

i(
s2

i + τ
)2 δik, (12.97)

W(τ ) = W−1VZ(τ )C−1, (12.98)

and the solution of the inverse problem thus become

x(τ )
i = xmc

i ω
(τ )
i , (12.99)

X (τ )
ik = xmc

i W(τ )
ik xmc

k . (12.100)

Choice of the Regularization Parameter τ and Errors
Plotting the values di (or ln |di|) vs. i, one finds, typically, that the coefficients decrease with
increasing i, until a value i = k beyond which they oscillate or remain more or less constant
because they are not statistically well determined. The critical value i = k beyond which
the coefficients di amount to Gaussian noise, can thus be used to set the regularization
parameter

τ = s2
k . (12.101)

The coefficients s2
i /(s2

i + τ ) in (12.95) suppress contributions i > k, and one obtains solu-
tions with only modest fluctuations.

1::79�  .�2��80 ������� 
�	���	���
����������291/.����2�/�� ���4�82.0/���2�/892: �8/99

https://doi.org/10.1017/9781108241922.014


604 Data Correction Methods

10–5

–10 –5 0 5 10
m

SVD Unfolding

Y
ie

ld
U

nf
ol

de
d/

Tr
ue

10–4

10–3

10–2

0.8

1

True
Measured
Unfolded n = 1
Unfolded n = 10
Unfolded n = 15
Unfolded n = 20

1.2

Fig. 12.5 Example of application of the SVD unfolding method. (Bottom panel) Simulated true (Gaussian) and measured
distributions obtained with Gaussian smearing as described in the text; open and closed symbols represent unfolded
distributions obtained after 1, 10, 15, and 20 applications of the SVD unfolding procedures. (Top panel) Ratio of the
unfolded distribution obtained with 15 iterations to the true distribution. (Figure courtesy of S. Prasad.)

An alternative and effective technique to determine the optimal regularization param-
eter τ consists in generating a test spectrum x⃗ test close but statistically distinct from the
spectrum x⃗ mc used to generate the unfolding matrix A. One can then apply the folding and
unfolding procedure onto x⃗ mc and determine which value of τ yields a minimum χ2, that
is, such that the difference between the original test spectrum and its unfolded value best
agree.

Hocker and Kartvelishvili [106] provide a detailed algorithm of the procedure as well
as detailed examples. Functions to calculate SVD are available in a variety of software
packages, including ROOT [59] with the class TDecompSVD.

Example of SVD Unfolding
We present an example of SVD unfolding accomplished with the RooUnfold frame-
work [13] for a measurement of particle multiplicity. The generation of the response ma-
trix Ri j is discussed in §14.2.3. We assume, arbitrarily, that the parent distribution has a
Breit–Wigner shape with a mean of µt = 0.3 and a width 2 = 2.5, while the response is
described with a Gaussian distribution with a mean −2.5 and a standard deviation of 0.2.
The true multiplicity distribution P(mt ), shown with a solid line in Figure 12.5, is based
on 100,000 events sampled from a Gaussian distribution centered at mt = 0 and a standard
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605 12.3 Signal Correction and Unfolding

deviation of 2.0. It was sampled and smeared with the preceding response function to gen-
erate the measured distribution, represented in Figure 12.5 with a dotted curve.

The SVD algorithm was used iteratively on the measured distribution, with the simu-
lated response curve, to obtain the unfolded distributions shown in Figure 12.5 with open
and closed points. One finds that a simple application of the unfolding method yields a
distribution centered at the proper multiplicity but with a shape heavily reminiscent of
the Breit-Wigner distribution used in the generation of the response matrix. However, the
unfolded distribution obtained with 15 iterations of the procedure reproduces the true dis-
tribution extremely well and yields a ratio of the unfolded to true distribution which is
within statistical errors, consistent with unity (top panel of the figure). In fact, a detailed
study shows that the method yields numerically stable results, with unfolded to true dis-
tribution ratio equal to unity, within statistical errors, from 10 to 20 iterations. The SVD
method is thus producing unfolding distributions that are robust and rather insensitive to
the number of iterations, once convergence is achieved.

12.3.8 Bayesian Unfolding

As discussed in details in Chapter 7, Bayesian inference encompasses a wide range of
techniques to learn about physical quantities (or scientific hypotheses) based on experi-
mental data. Formally, it first requires the construction of deterministic and probabilistic
models of the observable of interest and its dependencies on measurements and other as-
sumed knowledge. In essence, this entails the determination of the probability of an event
A might follow from an event B, noted P(A|B), and the converse P(B|A). In the context of
an unfolding problem, B might represent the true spectrum whereas A would correspond
to the measured data. The task is then to use a model of the measurement P(A|B) based on
some prior hypothesis for B, and rely on Bayes’ theorem to inverse the problem and use
the measured A to determine the true B. The technique is known as Bayesian unfolding, of
which we present a brief outline largely following the seminal work of G. D’Agostini [73].

Inference models may be represented graphically as networks, called Bayesian net-
works, or belief networks [73]. Figure 12.6 illustrates a fit model used to establish the
value of a parameter θ , which determines the relation between a dependent variable y and
an independent variable x. The network explicitly identifies the components of the problem,
their relations, and the assumptions used in the solution. The unfolding problem requires a
slightly more elaborate network we introduce in the next section.

Bayesian Network
A Bayesian network can be regarded as a set of connections between nodes representing
causes and effects. In the context of the unfolding problem, the causes correspond to the
true values µi sought for, whereas the effects are the measured values ni determined by
the measurement protocol, the performance of the instruments (uncertainties and errors),
and the actual values of the observables. A simple cause-and-effect network, sufficient
for the description of the unfolding problem, is illustrated in Figure 12.7. The n nodes Ci

represent the causes µi to be determined by unfolding whereas the m nodes Ej are effect
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Model Parameters

Model Values

Sampled Values

Bayesian network

Deterministic Link

i = 1, …, m

xi yi

µyi

µxi

Probabilistic Link

θ

Fig. 12.6 Belief network used for the formulation of a model and fit of an experimental data distribution. The model parameters
θ⃗ are believed to lead to dependent valuesµyi given independent valuesµxi but the stochastic nature of the
measurement process yields sampled values xi and yi for the independent and dependent values, respectively. One
could enrich the network by including explicit assumptions concerning correlations between the variables and/or the
width and bias of the fluctuations. (Adapted with permission from G. D’Agostini. Fits, and especially linear fits, with
errors on both axes, extra variance of the data points and other complications. ArXiv Physics e-prints, November 2005.)

nodes, corresponding to measured n j. The trash node T is used to represent detection
inefficiencies: a certain fraction of each cause node Ci may remain undetected and ends up
in the trash node.

The goal of unfolding is to find values µ⃗ = (µ1(C1), . . . , µn(Cn)), given a set of mea-
sured effects n⃗ = (n1(E1), . . . , nm(Em)). The cause-to-effect links illustrated in Figure 12.7
have a probabilistic nature. Each cause Ci has a probability P(Ej|Ci) of leading to an effect
Ej. The inverse problem is thus statistical and probabilistic in nature also. Effectively, one
must evaluate the probability P(µ⃗|n⃗, R, I ) of the causes to be given by specific values µ⃗

based on measured values n⃗, a response function R, and possibly some other system infor-
mation I . As in previous sections of this chapter, the quantities nj represent the number of

Fig. 12.7 Cause–effect network. The probabilistic links indicate the probability P(Ei|Ck) a cause Ck may lead to an effect Ei . T is a
trash node corresponding to “unmeasured events.” (Adapted with permission from G. D’Agostini. Improved iterative
Bayesian unfolding. ArXiv e-prints, October 2010.)
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607 12.3 Signal Correction and Unfolding

“events” measured in bin j of the observable of interest xm, while µi stands for the number
of events of type Ci. By construction, R expresses the probability of observing a certain
effect Ej given a specific cause Ci:

Rji ≡ P(Ej|Ci, I ) (12.102)

where I once again represents what is known about the system (measurement protocol, in-
strument, etc.). The conditional probabilities are usually determined from MC simulations
and consequently subjected to finite statistical uncertainties of their own. Given the prob-
abilistic nature of the measurement process, the unfolding process is equally probabilistic,
not deterministic. One can thus argue that the unfolding problem is a priori not amenable to
a deterministic operation such as a matrix inversion, which also fails, as we saw, for purely
technical reasons. This implies the need for a probabilistic solution of the problem instead
of a simple matrix inversion, which effectively corresponds to a deterministic “rotation” in
a space of n-dimensions.

One finds that the inversion “works” in the large number of events limit, such that
stochastic effects are negligible and the observations n⃗ correspond to their expectation
values ν. Indeed, the expectation values of n j given the cause Ci can be written

E
[
n j|µi

]
= P(Ej|Ci, I )µi = Rjiµi. (12.103)

The expectation value of n j given a set of causes µ⃗ is thus

E
[
n j|µ⃗

]
=

n∑

i=1

Rjiµi, (12.104)

or in matrix notation

n⃗ = Rµ⃗, (12.105)

which yields the known inverse problem

E [µ⃗] = R−1E [n⃗] . (12.106)

where we explicitly include expectation values to emphasize that this result holds exclu-
sively in the large number limit, that is, for the expectation values of n⃗, and not necessarily
for a specific instance or measurement. Bayesian purists argue that the idea of inverting R
is logically flawed because it is strictly valid for the expectation value of the measurements
n⃗ not the actual measurements. However, as we saw, if the background is well known, then
the preceding expression does yield, at least in principle, an unbiased estimator of µ⃗.

Practical Considerations
By virtue of Bayes’ theorem (Eq. 2.17) and the law of total probability (Eq. 2.19), one can
write

P(µ⃗|n⃗, R, I ) = P(n⃗|µ⃗, R, I )P(µ⃗|I )∑
µ⃗′

P(n⃗|µ⃗′, R, I )P(µ⃗′|I )
, (12.107)
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where the sum, in the denominator, is taken over all possible sets of events µ⃗′ and essen-
tially amounts to a normalization factor. The interesting components of the theorem reside
in its numerator. The probability P(n⃗|µ⃗, R, I ) is known as the likelihood of n⃗ given µ⃗, the
experimental response, and any other prior information I available about the system. It
expresses the probability of obtaining a specific set of yields n⃗ given a set of values µ⃗.
The probabilities P(µ⃗|I ) and P(µ⃗|n⃗, R, I ) are known as prior, and posterior, respectively
(For a detailed discussion of these concepts, see §§7.2.2 and 7.2.3). The prior expresses the
probability of values µ⃗ before a measurement is conducted (or perhaps based on prior mea-
surements), while the posterior gives the probability of the values µ⃗ after a measurement of
n⃗ has been completed. Effectively, the preceding expression provides updated knowledge
of the probability of a certain set of values µ⃗ given a measurement n⃗. It is important to note
that, nominally, the law of total probability does not yield a specific value µ⃗ but rather the
probability (or density of probability) of a specific set of values µ⃗.

Clearly, the presence of a prior is logically required to obtain a posterior from the prob-
ability inversion provided by the law of total probability. But what prior should one use,
since the choice should affect the outcome of the inversion? An obvious positive aspect
of the notion of prior is that it enables one to insert in the solution of the inverse problem
any knowledge that might be available ab initio about the system before the measurement
is even attempted. That said, prior information is typically rather vague and may have a
negligible impact on the inference process which then ends up being dominated by the
likelihood P(n⃗|µ⃗, R, I ). As we saw in §7.3, vagueness can be expressed by writing

P(µ⃗|I ) = constant. (12.108)

The inference may then be performed according to the likelihood only:

P(µ⃗|n⃗, R, I ) ∝ P(n⃗|µ⃗, R, I ). (12.109)

The most probable spectrum µ⃗ is thus the one that maximizes the likelihood in the ab-
sence of any contradictory information. The Bayesian approach effectively recovers the
maximum likelihood estimators of the frequentist approach discussed in prior sections.

Given a full knowledge of the response function R, one could examine all values of µ⃗,
find their respective probabilities, obtain the most probable (or the expectation value), and
consequently assess the uncertainty of the result. This is, however, not possible in practice
with the usual knowledge one has of the likelihood function P(n⃗|µ⃗, R, I ). To see why this
is the case, consider the distribution of the cause events in bin Ci into all effect bins Ej.
This can be described by a multinomial distribution

P(n⃗|µi, R, I ) = µi!
m+1∏
k=1

nk!

m+1∏

j=1

Rji
n j . (12.110)

The probability P(n⃗|µ⃗, R, I ) is thus a sum of multinomial distributions – for which no
closed formula exists.
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609 12.3 Signal Correction and Unfolding

The elements of R are typically obtained by MC simulations. A large number of “events”
is to be generated for each bin µi and one must count where they end up in n j bins. Intu-
itively, one can write

Rji =
nMC

j

µMC
j

. (12.111)

One should, however, be aware of the fact that finite statistics in the generation of
MC events leads to statistical errors on the coefficients. Bayes’ theorem may be ap-
plied toward the determination of the coefficients Rji. Defining column vectors Ri as
R⃗i = (R1i, R1i, . . . , Rn+1,i), one can write

P(Ri|n⃗ MC, µi, I ) ∝ P(n⃗ MC|µi, Ri, I ) × P(Ri|I ), (12.112)

which provides a technique to improve our knowledge of the coefficient Rji. Since
P(n⃗|µi, R, I ) is a multinomial distribution, it is convenient to choose a prior distribution
in the form of a Dirichlet distribution (defined in §3.8):

P(µ⃗prior|I ) ∝ pα1−1
1 pα2−1

2 · · · pαm−1
m , (12.113)

where the values pi express the probabilities of each cause i and the values αi are specific
values of the actual yield in each cause bin i. The multinomial and Dirichlet distributions
are conjugate distributions (as defined in §7.3.3). Indeed, the product of a multinomial
distribution by a Dirichlet distribution is itself a Dirichlet distribution with new values α′

i .
It is thus possible to recalculate the coefficients based on these new values α′

i . This may
also come in handy when estimating errors on the coefficients.

Basic Algorithm for Bayesian Unfolding
Bayes’ theorem can be applied to the cause-and-effects bins to infer the (unknown) value
of the cause bins. However, instead of using Eq. (12.107), one writes

P(Ci|Ei, I ) =
P(Ej|Ci, I ) × P(Ci|I )

m∑
k=1

P(Ej|Ck, I ) × P(Ck|I )
. (12.114)

The probabilities P(Ej|Ci, I ) = Ri j are the likelihood, given by Eq. (12.102), of causes Ci

yielding events in effect bins Ej, while the probabilities P(Ci|I ) represent the prior knowl-
edge of the probability of the cause bins Ci. The probabilities P(Ci|Ei, I ) thus represent the
posteriors or updated knowledge about the probability of the cause bins Ci. It is convenient
to define coefficients θi j according to

θi j = P(Ci|Ei, I ) =
RjiP(Ci|I )

m∑
k=1

RjkP(Ck|I )
. (12.115)

In this formulation, the coefficients P(Ci|I ) assign a specific (prior) probability to the cause
bins Ci, not the whole set of cause bins µ⃗. If no prior information is available, one can set
all bins to be equally probable. Note that this is different from assuming that all spectra µ⃗
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610 Data Correction Methods

are equally probable. Indeed, assuming a flat spectrum is far more restrictive than assuming
that all spectra are equally probable. In practice, many implementations of the algorithm
use the measured spectrum as the prior.

Given the probabilities θi j, one can share the counts (yields) of the measured bin Ej and
estimate the causes according to

µi|n j
= P(Ci|Ej, I )n j = θi jn j. (12.116)

Summing over all observations, we get

µi|n⃗ =
N∑

j=1

θi jn j. (12.117)

We must also correct for efficiencies

µi|n⃗ = 1
εi

N∑

j=1

θi jn j, (12.118)

where by definition

εi =
N∑

j=1

P(Ej|Ci, I ) =
N∑

j=1

Rji = 1 − RN+1,i, (12.119)

with coefficients Ri j estimated from MC studies with an appropriate simulation of the
measurement according to

Rji ≈
nMC

j

µMC
i

. (12.120)

As already mentioned in the previous section, the accuracy of the coefficients Ri j is
intrinsically limited by the statistical accuracy achieved in the determination of the yields
nMC

j and µMC
i . Since these two yields are correlated a priori by the MC generation process,

it is prudent to avoid using the usual error propagation technique and instead make use of
a sampling method.

By construction, the unfolded spectrum tends to “remember” the prior spectrum, and
thus, it is convenient to iterate the preceding algorithm. Regularization and smoothing may
also be added to the algorithm.

Bayesian Unfolding Example
Figure 12.8 displays an example of the application of Bayesian unfolding obtained with
the response matrix, Figure 14.8, already used in §12.3.7 to illustrate SVD unfolding. Un-
folded distributions are shown with open and closed symbols for 1, 3, 4, and 5 iterations
of the algorithm. The top panel presents ratios of the unfolded distributions to the true
distribution (solid line). One observes that the Bayesian method yields an unfolded distri-
bution in excellent agreement with the true distribution, within statistical errors, and which
is stable when repeated iteratively several times.
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Fig. 12.8 Example of application of the Bayes unfolding method. (Bottom panel) Simulated true (Gaussian) and measured
distributions obtained with Gaussian smearing as described in the text; open and closed symbols represent unfolded
distributions obtained after 1, 3, 4, and 5 applications of the Bayesian unfolding procedures. Top panel: ratio of the
unfolded to true distributions obtained with 4 and 5 iterations. (Figure courtesy of S. Prasad.)

12.4 Correcting Measurements of Correlation Functions

Integral and differential correlation functions are defined in terms of combinations of
single-, two-particle, and more generally multiparticle yields (or cross sections). As such
they are subjected to the same instrumental limitations and distortions as the yields on
which they are based. The impact of instrumental effects may be exacerbated by the fact
that the determination of cumulants involves subtraction of two or more terms of similar
magnitude. So while instrumental effects on cross sections (or production yields) may be
relatively modest, they can have disastrous consequences on correlation functions, most
particularly when correlations are weak because of dilution effects associated with large
numbers of correlation sources. Fortunately, correlation functions expressed in terms of
ratios of cumulants to products of single-particle yields are approximately robust, that is,
independent of detection efficiencies. They thus lend themselves to a variety of simple
correction techniques that are relatively easy to implement.

We begin with a discussion of issues involved in the correction of measurement of
variance, which leads us naturally into a discussion of the robustness of ratios of facto-
rial moments and corrections of differential correlation functions. Irreducible instrumental
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612 Data Correction Methods

effects associated with variations in the instrumental response are discussed in the latter
part of this section.

12.4.1 Correction Of Integrated Yield Measurements

Measurements of integrated particle production yields over a finite kinematic range are of
interest as estimators of collision hardness (e.g., in proton–proton interactions) or collision
centrality (e.g., in heavy-ion collisions) and for measurements of yield fluctuations. Insofar
as the kinematic volume of integration considered is much larger than the resolution of the
kinematical parameters of interest, smearing effects may be neglected and one is chiefly
concerned with correcting for detector efficiencies.

From a theoretical standpoint, the average integrated yield, ⟨N⟩, over a specific kinematic
domain, ', is determined by the particle production cross section (see §10.2):

⟨N⟩ =
∫

'

d3N
d p3

d p3. (12.121)

Experimentally, however, one observes that the produced number of particles fluctuates
collision by collision owing to the stochastic nature of the particle production process.
The fluctuations may be described by a probability function, Pprod(N ), determined by the
dynamics and correlations involved in the particle production process. The average multi-
plicity is thus

⟨N⟩ =
∫ ∞

0
Pprod(N )NdN. (12.122)

Measurements of particle production are usually subject to losses and a variety of other
instrumental effects. For large detectors, one can usually assume that the probability of
detecting one particle is independent of the probability of detecting others. One can then
model the detection of a single-particle with a Bernoulli distribution (defined in §3.1). Let
ε represent the probability to measure any produced particle in the kinematic domain ':

Psingle(n|ε) = 1 − ε probability of not observing, n = 0
= ε probability of observing, n = 1.

(12.123)

As we saw in §3.1, the probability of obtaining n successes out of N trials determined by
the same Bernoulli distribution amounts to a binomial distribution. We can then express
the probability of simultaneously detecting n particles in the domain ' as a binomial dis-
tribution with success probability ε:

Pdet(n|N, ε) = N!
n!(N − n)!

εN (1 − ε)N−n. (12.124)

For fixed N , the distribution has a mean (see Table 3.1)

⟨n⟩N = E[n] =
∫

Pdet(n|N, ε)n dn = εN, (12.125)
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613 12.4 Correcting Measurements of Correlation Functions

and a variance

⟨(n − ⟨n⟩)2⟩N =
∫

Pdet(n|N, ε) (n − ⟨n⟩)2 dn (12.126)

= Nε(1 − ε).

One must account, however, for fluctuations of N according to Pprod(N ). The probability of
observing n particles may then be written

Pmeas(n|ε) =
∫

dNPdet(n|N, ε)Pprod(N ). (12.127)

The mean measured multiplicity ⟨n⟩ can be calculated in terms of ⟨N⟩ even if Pprod(N ) is
unknown:

⟨n⟩ =
∫

dnnPmeas(n|ε), (12.128)

=
∫

dnn
∫

dNPdet(n|N, ε)Pprod(N ). (12.129)

Indeed, changing the order of integration, we get

⟨n⟩ =
∫

dNPprod(N )
∫

dnnPdet(n|N, ε), (12.130)

= ε

∫
dNPprod(N )N, (12.131)

= ε⟨N⟩. (12.132)

We thus formally obtain the intuitively obvious result that one can correct the measured
average multiplicity by simply dividing by the efficiency of the measurement:

⟨N⟩ = ⟨n⟩
ε

. (12.133)

This result is correct even in cases where the efficiency varies over time. To demonstrate
this, let us assume, for simplicity’s sake, that an experiment can be divided into two time
periods featuring particle detection efficiencies ε1 and ε2. Let us also assume that the prob-
ability of observing the events during the two time periods is unmodified by this change,
and let us denote the number of events detected in the two periods as N ev

1 and N ev
2 .

The average multiplicities measured during the two periods are noted ⟨ni⟩ with i = 1, 2.
Given the definition of efficiency and the preceding result, one can write

⟨ni⟩ = εi⟨N⟩. (12.134)

The average efficiency is calculated as a weighted average of the efficiencies of the two
periods

εavg =
N ev

1 ε1 + N ev
2 ε2

N ev
1 + N ev

2

. (12.135)

The multiplicity measured across the two periods is:

⟨n⟩ = εavg⟨N⟩. (12.136)
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Extraction of the true mean multiplicity ⟨N⟩ can thus be obtained for either time periods

⟨N⟩ = ⟨n⟩1

ε1
= ⟨n⟩2

ε2
, (12.137)

or globally from the average of the two periods,

⟨N⟩ = ⟨n⟩
εavg

, (12.138)

since

⟨n⟩avg =
N ev

1 ⟨n⟩1 + N ev
2 ⟨n⟩2

N ev
1 + N ev

2

(12.139)

=
N ev

1 ε1⟨N⟩ + N ev
2 ε2⟨N⟩

N ev
1 + N ev

2

(12.140)

=
N ev

1 ε1 + N ev
2 ε2

N ev
1 + N ev

2

⟨N⟩ (12.141)

= εavg⟨N⟩. (12.142)

This conclusion can clearly be generalized to multiple time periods when the detection effi-
ciency might have taken different values. For measurements of average particle production
yields, it thus does not matter that the experimental response changes over time as long as
one can track these changes and estimate the detection efficiency during each period inde-
pendently or globally for the entire data-taking run. This means that insofar as it possible
to obtain an average efficiency, it is not necessary to carry the analysis of each time period
separately; and one can use Eq. (12.138) to determine the average produced particle yield.
However, we will see in the next section that such simple treatment is not warranted for
measurements of fluctuations and correlation functions.

The detection efficiency is rarely uniform across the acceptance of a measurement. One
must thus also consider whether the average efficiency correction procedure outlined ear-
lier is robust when the detection efficiency is a function of kinematical variables. For sim-
plicity’s sake, let us partition the measurement acceptance into two parts of size '1 and
'2 with respective efficiencies ε1 and ε2. The average multiplicity measured in these two
regions may be written

⟨ni⟩ = εi⟨Ni⟩, (12.143)

where

⟨Ni⟩ =
∫

'i

d3N
d p3

d p3, (12.144)

with the full kinematical range ' corresponding to

' =
2∑

i=1

'i. (12.145)
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615 12.4 Correcting Measurements of Correlation Functions

The average number of produced particles can be properly determined by summing cor-
rected yields in parts 1 and 2 individually:

⟨N⟩ =
2∑

i=1

⟨Ni⟩ =
2∑

i=1

⟨ni⟩
εi

. (12.146)

If the fractions fi = ⟨Ni⟩/⟨N⟩ of the total yield produced in the two parts of the acceptance
are known a priori, one can write an average efficiency (as in the case of the time-varying
efficiency discussed earlier):

εavg = f1ε1 + f2ε2

f1 + f2
= f1ε1 + f2ε2, (12.147)

since f1 + f2 = 1 by definition. Unfortunately, the fractions fi are in general not known a
priori, and it is thus not possible to formally define a model independent average efficiency
across the full acceptance '. However, in cases where the production cross section is nearly
constant within the experimental acceptance, one can write

fi =
∫
'i

d3N
d p3 d p3

∫
'

d3N
d p3 d p3

≈
∫
'i

d p3

∫
'

d p3
= 'i

'
, (12.148)

which satisfies
∑

i fi = 1. The size of the fractions fi is then fixed by the relative sizes
of the 'i, and a model independent average efficiency can be formulated. The efficiency
correction, defined by Eq. (12.138), is thus applicable in spite of the fact the efficiency may
vary through the acceptance of the measurement.

12.4.2 The Unfriendly Variance

Studies of the variance (as well as higher moments) of physical observables are often of
interest to probe the dynamics of physical systems. We have discussed in §11.3.3, for in-
stance, that the study of fluctuations of the net charge of produced particles or ratios of
species integrated yields are particularly useful to probe the collision dynamics of large
nuclei at relativistic energies. Unfortunately, while the variance of an observable is in prin-
ciple a good measure of its fluctuations, correcting a measurement of variance for instru-
mental effects is anything but trivial. For illustrative purposes, let us continue the discus-
sion initiated in the previous section and examine how the detection efficiency affects the
variance of the measured integrated yield within a specific acceptance '.

We use Eq. (12.127) to calculate the variance of the measured multiplicity:

Var[n] = ⟨(n − ⟨n⟩)2⟩ = ⟨n2⟩ − ⟨n⟩2. (12.149)

The mean ⟨n⟩ is known from Eq. (12.130). The calculation of the second moment ⟨n2⟩
proceeds as in (12.130):

⟨n2⟩ =
∫

dNPprod(N )
∫

dnn2Pdet(n|N, ε),

=
∫

dNPprod(N )Nε(1 − ε + Nε), (12.150)

= ε(1 − ε)⟨N⟩ + ε2⟨N2⟩,
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616 Data Correction Methods

where in the second line we used the second moment of the binomial distribution (see Table
3.1) and in the third line the definition of the average ⟨N⟩ and ⟨N2⟩. The variance of the
measured distribution is thus

Var[n] = ε2Var[N] + ε(1 − ε)⟨N⟩. (12.151)

This expression contains terms linear and quadratic in ε. Correcting the measured variance
of the multiplicity thus cannot be achieved by dividing the measured variance by the square
of the efficiency as one might intuitively be inclined to do. Since one is usually interested in
detecting small deviations of the variance from values expected for a Poisson distribution, it
is thus imperative that the efficiency ε be known very accurately. Unfortunately, achieving
the required level of efficiency is often rather challenging, and it may not be possible to
reliably correct the measured variance.

All is not lost, however, since two alternative approaches are possible. The first approach
involves a measurement of factorial moments while the second is based on a comparison
of the measured variance with that obtained with mixed events (defined in §12.4.5). Both
approaches are commonly used in practical applications.

The variance of integrated particle yields is determined by the production dynamics of
the particle and the extent to which the produced particles are correlated. It can thus be
regarded as having a purely “statistical” or Poisson component, σ 2

stat, and a “dynamical”
component, #σ 2

dyn. Instrumental effects may unfortunately modify the size of the variance
and introduce a “shift” #σ 2

inst. The measured variance may thus be written

σ 2
meas = σ 2

stat + #σ 2
dyn + #σ 2

inst. (12.152)

The Poisson component is trivial and of limited interest. Measurements thus typically aim
at the identification of the dynamical component. Unfortunately, this component is often
much smaller than the size of the correction implied by Eq. (12.151). A precise assessment
of the efficiency correction is therefore essential to achieve a meaningful measurement.

Rather than attempting a precise evaluation of the efficiency and other instrumental ef-
fects based on some simulation model of an experiment, it is possible to use the data it-
self to estimate the efficiency based on the mixed-event technique. As its name suggests,
this technique, consists in synthesizing artificial events based on actual data by mixing
particles from different actual events. Particles produced in different events are de facto
noncorrelated by the production process but bear the effects of the instrumentation. The
variance or correlation function of mixed events should thus be determined solely by the
stochastic nature of the production process and instrumental effects. Since particles from
different events are uncorrelated, the variance of integrated yields should be determined
by Poisson statistics as well as correlation induced by detector effects. Under ideal condi-
tions (discussed later in this chapter) one can hypothesize that the instrumental effects are
essentially identical for real and mixed events. One can thus write

σ 2
mixed = σ 2

stat + #σ 2
inst. (12.153)

1::79�  .�2��80 ������� 
�	���	���
����������291/.����2�/�� ���4�82.0/���2�/892: �8/99

https://doi.org/10.1017/9781108241922.014


617 12.4 Correcting Measurements of Correlation Functions

Subtraction of the variance of mixed events from that of real events therefore enables, in
principle, the extraction of the dynamical component of the variance:

#σ 2
dyn = σ 2

meas − σ 2
mixed. (12.154)

It is important to realize that the dynamical correlations may either increase or decrease
the variance of the integrated yield. The dynamical component #σ 2

dyn may be positive
or negative, respectively. For negative values of #σ 2

dyn, it is obviously not meaningful to
extract a square root and quantify dynamical effects as an imaginary value. The fact of the
matter is that the value #σdyn, that is, without the square, is not particularly significant. This
shift is really the result of correlation effects involving two or more particles. It can indeed
be positive, negative, or even null. The temptation to extract a square root is thus simply an
artifact of the poor historical choice of notation used to denote dynamical fluctuations.

Correcting for detector effects and the determination of the dynamical correlation may
also be carried out based on ratios of factorial moments and corrected measurements of
integrated multiplicity. The variance of the measured integrated yield, ⟨(n − ⟨n⟩)2⟩, may be
written

⟨(n − ⟨n⟩)2⟩ = ⟨n2⟩ − ⟨n⟩2. (12.155)

Inserting −⟨n⟩ + ⟨n⟩ yields

⟨(n − ⟨n⟩)2⟩ = ⟨n2⟩ − ⟨n⟩ + ⟨n⟩ − ⟨n⟩2, (12.156)

= ⟨n(n − 1)⟩ + ⟨n⟩ − ⟨n⟩2. (12.157)

We thus find that the variance of n may be expressed in terms of the factorial moment
⟨n(n − 1)⟩ and two terms that depend on the mean multiplicity ⟨n⟩. Recall from §10.2 that
the difference ⟨n(n − 1)⟩ − ⟨n⟩2 corresponds to a factorial cumulant C2, which constitutes
a proper measure of particle correlations. One can thus write

⟨(n − ⟨n⟩)2⟩ = C2 + ⟨n⟩. (12.158)

Since the intent of a measurement of variance is to identify the strength of particle cor-
relations, the preceding expression suggests that rather than measuring the variance of n,
one should measure the cumulant C2 directly. We will see in the next section that while
the cumulant C2 is itself dependent on the detection efficiency, the correlation function R2

obtained by dividing C2 by the square of the integrated average multiplicity is in fact inde-
pendent of detection efficiencies and thus constitutes a robust observable. Measurements
of C2 or R2 should thus be favored over measurements of variances insofar as the intent is
to identify correlations induced by particle production dynamics.

12.4.3 Correcting Differential Correlation Functions and Factorial Cumulants

Robustness of Normalized Cumulants R2

We demonstrated in §10.2 that cumulants and factorial cumulants constitute genuine mea-
sures of particle correlations, while n-particle densities suffer from trivial “combinatorial
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618 Data Correction Methods

backgrounds” and thus do not provide a reliable measure of correlations. We will now pro-
ceed to show that ratio of differential cumulants and factorial cumulants to products of
single-particle yields are robust variables. We begin our demonstration with two-particle
correlation functions and show that the robust ratios can be trivially extended to higher
order cumulants.

Measurements of single- and two-particle differential cross sections (e.g., dN/dη) are
usually carried out using histograms with bins of finite width. Recall from §4.6 that one
can estimate functions by dividing the histogram bin content (already scaled by the number
of integrated events to obtain a per event average) by the width(s) of the bins:

f̂ (xi) = hi

#xi
, (12.159)

f̂ (xi, y j ) =
hi, j

#xi#y j
. (12.160)

Estimates of the single-particle differential cross section, ρ1(x) ≡ dN/dx, and two-particle
differential cross section, ρ2(x1, x2) ≡ dN/dx1dx2 expressed as a function of some kine-
matical variable x (e.g., the transverse momentum, the pseudo-rapidity, etc.) may then be
written

ρ̂1(xi) = ⟨N (xi)⟩
#xi

, (12.161)

ρ̂2(x1,i, x2, j ) =
⟨N (x1,i)N (x2, j )⟩

#x1,i#x2, j
, (12.162)

where ⟨N (xi)⟩ and ⟨N (xi)N (x j )⟩ are the average number of particles in bin i and the average
number of pairs of particles in bins i and j, respectively.

⟨N (xi)⟩ =
∫

bin,i

dN
dx

dx, (12.163)

⟨N (x1,i)N (x2, j )⟩ =
∫

bin,i
dx1

∫

bin,j
dx2

d2N
dx1dx2

. (12.164)

Experimentally, instrumental losses may occur. Ignoring smearing effects, the measured
average number of particles in bin i and pairs of particles in bins i and j are thus

⟨n(xi)⟩ = ε1(xi)⟨N (xi)⟩, (12.165)

⟨n(x1,i)n(x2, j )⟩ = ε2(x1,i, x2, j )⟨N (x1,i)N (x2, j )⟩. (12.166)

One can then define estimators of the observed single-particle density and two-particle
densities as follows:

ν̂1(xi) = ⟨n(xi)⟩/#xi, (12.167)

ν̂2(x1,i, x2, j ) = ⟨n(x1,i)n(x2, j )⟩/#xi#x j. (12.168)

Based on the preceding expressions, we can write

ν̂1(xi) = ε1(xi)ρ̂(xi), (12.169)

ν̂2(x1,i, x2, j ) = ε2(x1,i, x2, j )ρ̂2(x1,i, x2, j ), (12.170)
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619 12.4 Correcting Measurements of Correlation Functions

where ε1(xi) is the efficiency for detecting particles in bin xi and ε2(x1,i, x2, j ) is the joint
efficiency corresponding to the probability of simultaneously observing particles in bins
x1,i and x2, j.

In general, for particles emitted at different momenta and directions, it is reasonable
to assume that ε2(x1,i, x2, j ) may be expressed as a simple product of the single-particle
efficiencies, that is the efficiencies for independently observing each particle in bins xi

and x j:

ε2(x1,i, x2, j ) = ε1(x1,i)ε1(x2, j ). (12.171)

One can then readily verify that the ratio r2 and the correlation function R2 defined in
§11.1.1 by Eqs. (10.36) and (10.37) are robust variables. Indeed, calculating r2 in terms of
measured densities ν̂1(xi) and ν̂2(x1,i, x2, j ), we have

r̂meas
2 (x1,i, x2, j ) =

ν̂2(x1,i, x2, j )
ν̂1(x1,i)ν̂1(x2, j )

. (12.172)

Inserting the expressions (12.170) and (12.169) for ν̂2 and ν̂1, respectively, we get

r̂meas
2 (x1,i, x2, j ) =

ε1(x1,i)ε1(x2, j )ρ̂2(x1,i, x2, j )
ε1(x1,i)ρ̂1(x1,i)ε1(x2, j )ρ̂1(x2, j )

, (12.173)

=
ρ̂2(x1,i, x2, j )

ρ̂1(x1,i)ρ̂1(x2, j )
, (12.174)

= r̂prod
2 , (12.175)

which is the definition of the normalized cross section r2 expressed in terms of the produced
densities ρ̂1(x1,i), ρ̂1(x2, j ), and ρ̂2(x1,i, x2, j ). Since R2 = r2 − 1, we conclude that both r2

and R2 are independent of detection efficiency and thus robust observables.
However, note that whenever the bins xi and x j are identical, the number of pairs must

be calculated as ⟨n(xi)(n(xi) − 1)⟩. The preceding formulas are otherwise unchanged. Our
discussion also holds irrespective of the size of the bins used to carry out the analysis as
long as smearing effects are negligible. We thus conclude that our statement of robustness
holds for both differential and integral correlation functions (factorial cumulants).

Rather than measuring R2(x1, x2), it is often sufficient or more appropriate to consider
the dependence of the cumulant on the difference #x = x1 − x2 (e.g., #ϕ = ϕ1 − ϕ2, or
#η = η1 − η2 and report R2(#x). As we discussed in §11.1.2, this can be viewed as an
average over the domain spanned by the variable x̄ = (x1 + x2)/2 determined by the ac-
ceptance for x1 and x2:

R̂2(#x) = 1
'(#x)

∫

'(#x)
dx̄R̂2(#x, x̄). (12.176)

Since R2(#x, x̄) may be obtained directly from R2(x1, x2) by means of a change of vari-
ables x1, x2 → #x, x̄, it is by construction also independent of detection efficiencies and
consequently robust. However, recall from §11.1.1 that two distinct methods may be used
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to estimate the function R̂2(#x). Method 2 yields the preceding formula (12.176) and is
consequently robust by construction, while Method 1 is based on a ratio of averages:

R̂2(#x) = ν̂2(#x)
ν1 ⊗ ν1(#x)

, (12.177)

where the product ν1 ⊗ ν1(#x) is typically determined based on a mixed-event method:

ν1 ⊗ ν1(#x) = ν̂Mixed
2 (#x). (12.178)

Formally, the density ν̂2(#x) may be calculated as

ν̂2(#x) = 1
'(#x)

∫

'(#x)
dx̄ν̂2(#x, x̄), (12.179)

while the product ν1 ⊗ ν1(#x) may be similarly written

ν̂1 ⊗ ν1(#x) = 1
'(#x)

∫

'(#x)
dx̄ν̂1(x1)ν̂(x2). (12.180)

Substituting the expressions for ν̂2(#x, x̄) and ν1(xi) in Eq. (12.177), we get

R̂meas
2 (#x) =

∫
'(#x) dx̄ε1(x1,i)ε1(x2, j )ρ̂2(x1, x2)
∫
'(#x) dx̄ε1(x1,i)ρ1ε1(x2, j )ρ1(x2)

. (12.181)

Clearly, if the efficiencies ε1(x1) and ε1(x2) have explicit dependencies on x1 or x2, the
preceding expression shall yield a ratio R2 that may differ appreciably from the result ob-
tained with Eq. (12.176). We thus conclude that Method 1 cannot be considered robust in
general. However, if the efficiencies are constant throughout the acceptance of the measure-
ment, than they can be factored out of the integral and hence cancel out of Eq. (12.181).
Method 1 can thus be considered approximately robust. Noting that ν2(#x, x̄) may be writ-
ten ν1(x1)ν1(x2)R2(#x, x̄), the preceding expression can be rewritten as

R̂M1
2 (#x) =

∫
'(#x) dx̄ε1(x1)ρ1ε1(x2)ρ1(x2)R2(#x, x̄)

∫
'(#x) dx̄ε1(x1)ρ1ε1(x2)ρ1(x2)

. (12.182)

We thus conclude that the ratio (12.181) shall also be robust if R̂2(#x, x̄) is approximately
independent of x̄:

R̂M1
2 (#x) ≈ R̂2(#x, x̄)

∫
'(#x) dx̄ε1(x1)ρ1ε1(x2)ρ1(x2)

∫
'(#x) dx̄ε1(x1)ρ1ε1(x2)ρ1(x2)

, (12.183)

= R̂2(#x, x̄). (12.184)

So, although R2 may depend on #x, Method 1 shall remain robust as long as it is constant
for any given value of #x, in other words, R2(#x, x̄) = K(#x), where K(#x) is some
smooth function of #x but independent of x̄.

One can also show that Method 1 yields a robust result for azimuthal correlations (e.g.,
functions of #ϕ) with periodic boundary conditions (see Problem 12.1).
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621 12.4 Correcting Measurements of Correlation Functions

Fig. 12.9 Schematic illustration of track merging between equal sign and unequal sign charged particle tracks. The rectangular
boxes indicate detection planes while dark circles represent the track energy deposition and detected hits. Wherever
two tracks pass in close proximity the hits they produced may end up merging. The disturbed shape and centroid of
these hits hinder the track reconstruction quality and efficiency.

Basic Instrumental Effects
Neither Method 1 nor Method 2 is robust for particle pairs featuring a small separation
#η, #ϕ, and #pT . As illustrated in Figure 12.9, like-sign charged particles with similar
momenta traverse the detector in close proximity of another and may thus not be well
resolved. Such two tracks may then appear to partially or totally merge with one another.
In the same way, unlike-sign particles with similar #η and #ϕ may cross the detection
planes at nearly identical positions and become unresolved, thereby also resulting in track
pair losses. Track merging and track crossing thus create an irreducible loss of particle
pairs. Effectively, this implies the joint efficiency ε2 does not factorize for particle pairs
with #η ≈ 0, #ϕ ≈ 0, and #pT ≈ 0. The observables r2 and R2 are consequently not
robust for particles with small track separation.

In complex detectors consisting of multiple segments or components, it is also possible
for tracks to become broken, as shown in Figure 12.10. There is typically a finite probability
that a single track might be reconstructed as two or more tracks, resulting in a phenomenon
known as track splitting. This produces extra tracks which artificially increase the aver-
age particle yield ⟨n⟩ and create artificial particle correlations. Splitting produces like-sign
tracks with very similar parameters (e.g., η, ϕ, and pT ) and may thus produce artificially
enhanced correlations for pairs with #η ≈ 0, #ϕ ≈ 0, and #pT ≈ 0. In data analyses, par-
ticularly for measurements of correlation functions, effects associated with track splitting
may be easily suppressed by using exclusively tracks that feature a number of hits well in
excess of half of the number of possible hits.

The notion of robustness also breaks down when detectors are operated in occupancy
conditions that exceed their design specifications. Detector occupancy refers to the frac-
tion of detector sensors being “hit” at any given time. In low track or hit multiplicity en-
vironments, the probability of track or hit merging is small, and ambiguities resulting in
track merging or splitting are typically limited. However, high-occupancy conditions may
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Fig. 12.10 Schematic illustration of split tracks, ghost tracks, as well as lost tracks.

induce ambiguities in hit and track reconstruction, as illustrated in Figure 12.10, which re-
sult in the reconstruction of false tracks, also known as ghost tracks. Admixtures of ghost
tracks may impair the reconstruction efficiency of proper tracks and induce instrumental
correlations if they are limited to specific regions of a complex detector. The reconstruction
of uncorrelated ghost tracks may also change the magnitude of the normalized cumulant
R2 because the artificially inflated single-track density increases the size of its denominator
but not its numerator. A similar effect may be produced by the decay of long-lived particles
such as K0

s or 60.
The robustness of correlation functions may be impaired by a variety of other instru-

mental effects, some of which we discuss in the next section.

Instrumentally Induced Correlations
We have seen in §12.4.3 that the normalized density r2 and normalized cumulant R2 are
robust when measured according to Method 2 and to a lesser extent when estimated with
Method 1, even when the efficiency varies throughout the acceptance of the measurement.
However, the robustness is lost if the detection efficiency varies with time or event-by-event
relative to some global event parameter. Let us illustrate this statement for a detection sys-
tem featuring two performance states, that is, with efficiency of detection globally taking
two distinct values for two classes of events, either separated in time, run, or some other
“external” parameter.

For simplicity’s sake, let us assume a correlation measurement between identical parti-
cles in the same kinematic range. The detection of both particles of the pair thus has the
same efficiency dependence on the measured coordinates. However, let us also assume that
two distinct classes of events of knowable size (i.e., how many events belong to each class)
exist and feature different detection efficiencies we shall denote as εi, with i = 1, 2. The
approach discussed here will hold for higher numbers of performance classes. We saw ear-
lier in this chapter that is possible to define an effective or average efficiency εavg, provided
the relative sizes of the two event classes are known. This average efficiency may then be
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Fig. 12.11 (b) Robustness function ξ (x1, x2) for a two-performance state experiment calculated for the efficiencies shown in (a),
and assuming the same amount of data were acquired with the two efficiency curves.

used to correct average single-particle densities according to Eq. (12.133). Such correction
is unfortunately not possible for correlation functions if the two sets of events are mixed.
To demonstrate this statement, let us define the fraction of events reconstructed with effi-
ciencies εi as fi, and satisfying

∑
i fi = 1. Let us also assume the two-particle efficiency

factorizes (i.e., εi(x1, x2) = εi(x1)εi(x2)). If the data are analyzed indiscriminately of event
classes, the measured single-particle and two-particle densities may be written

n̂1(x) = [ f1ε1(x) + f2ε2(x)] ρ1(x), (12.185)

n̂2(x1, x2) = [ f1ε1(x1)ε1(x2) + f2ε2(x1)ε2(x2)] ρ2(x1, x2). (12.186)

It is thus easy to verify that the ratio r2 is not robust under such circumstances:

r̂meas
2 (x1, x2) = ξ (x1, x2)r̂2(x1, x2),

with

r̂2(x1, x2) ≡ ρ2(x1, x2)
ρ1(x1)ρ1(x2)

, (12.187)

and

ξ (x1, x2) = f1ε1(x1)ε1(x2) + f2ε2(x1)ε2(x2)
[ f1ε1(x1) + f2ε2(x1)] [ f1ε1(x2) + f2ε2(x2)]

. (12.188)

which is manifestly different from unity in general. The function ξ (x1, x2) measures the ex-
tent to which the robustness of the observable r2 is broken by having different efficiencies
for two classes of events. This is illustrated in Figure 12.11, which displays the function
ξ (x1, x2) for two arbitrary efficiency curves ε1(x) and ε2(x) and f1 = f2 = 0.5 correspond-
ing to a situation where an equal amount of data is acquired with the efficiency curves.
All this said, it is quite remarkable that while large and arbitrary nonuniformities (of order
10–20%) have been assumed in the efficiency distributions shown in Figure 12.11, their
“average” leads to relatively small deviations of less than 5%. This maximum difference
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essentially amounts to half the difference between the two spatial averages of the efficien-
cies. The R2 observable thus remains relatively robust in spite of the time dependence of
the efficiency. The necessity to correct for such effects is then determined by the level of
accuracy sought after in the measurement, as well as the size of these variable efficiency
features.

If the efficiencies εi(x) are actually independent of x but depend on time, one finds that
the factor ξ (x1, x2) merely produces a shift in the amplitude of the correlation function.
However, in cases where εi(x) varies appreciably with x, particularly near the edges of
the acceptance, variations of εi(x) with external conditions or parameters such as the de-
tector occupancy or the collision vertex position may induce sizable artificial structures
throughout a correlation function [163]. Such effects may also be induced at the bound-
aries between detector components with performances that vary in time or with external
conditions such as the detector occupancy.

Robustness of the r2 and R2 observables may be recovered, at least partially, if the anal-
ysis may be carried according to event classes, that is, by measuring these observables for
each event class independently and combining the measurements into a global average.

rclass
2 (x1, x2) = f1

ε1(x1)ε1(x2)ρ2(x1, x2)
ε1(x1)ρ1(x1)ε1(x2)ρ1(x2)

+ f2
ε2(x1)ε2(x2)ρ2(x1, x2)

ε2(x1)ρ1(x1)ε2(x2)ρ1(x2)
. (12.189)

The efficiencies cancel out and one gets

rclass
2 (x1, x2) = f1

ρ2(x1, x2)
ρ1(x1)ρ1(x2)

+ f2
ρ2(x1, x2)

ρ1(x1)ρ1(x2)
, (12.190)

= r2(x1, x2), (12.191)

since, by definition, f1 + f2 = 1. This form of computation enables full-use of datasets
even though the efficiency may vary with time or experimental conditions. The technique
is applicable, in particular, for measurements of correlation functions where the acceptance
and efficiency are dependent on the position of the collision vertex. It then suffices to bin
the analysis of two- and single-particle densities in terms of the position of the vertex. With
n bins, corrected yields and correlations may thus be obtained with

rclass
2 (x1, x2) =

n∑

i=1

fi
ν2,i(x1, x2)

ν1,i(x1)ν1,i(x2)
, (12.192)

where the coefficients fi represent the relative frequency of events in each z-vertex bin and
satisfy

∑n
i=1 fi = 1.

Collision Centrality Averaging in Heavy-Ion Collisions
In studies of high-energy heavy-ion collisions, it is useful and convenient to study the
strength of single-particle yields and correlation functions as a function of collision cen-
trality estimated on the basis of global event observables, such as the total transverse en-
ergy, zero degree energy, or integrated multiplicity measured in a selected portion of the
detector acceptance. Two types of experimental effects must be accounted for in principle.
The first effect arises because cumulants and single-particle yields scale differently with
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625 12.4 Correcting Measurements of Correlation Functions

the number of sources of correlated particle production, while the second effect has to do
with possible efficiency dependencies on the event multiplicity (i.e., number of particles
produced in an event) or the detector occupancy.

First, consider that given sufficient statistics and computing resources, it should be pos-
sible to determine the normalized two-particle density r2 as a function of some collision
impact measure, b, with arbitrarily fine granularity (resolution) using Method 2:

r2(x1, x2|b) = ρ2(x1, x2|b)
ρ1(x1|b)ρ1(x2|b)

. (12.193)

An average can then be taken over collision centralities in a specific range [bmin, bmax]:

r2(x1, x2|[bmin, bmax]) =
∫ bmax

bmin

r2(x1, x2|b)P(b) db, (12.194)

where P(b) is a PDF expressing the probability of collisions of centrality b. In practice, it
may not be possible to measure the single and pair densities with fine granularity. One then
gets densities as averages over collision centrality between the limits, bmin, and bmax.

ρ1(x|[bmin, bmax]) =
∫ bmax

bmin

ρ1(x|b)P(b) db, (12.195)

ρ2(x1, η2|[bmin, bmax]) =
∫ bmax

bmin

ρ2(x1, x2|b)P(b) db. (12.196)

An estimate of the correlation function (Eq. 12.194) can then be obtained from the ratio of
the averages.

r2,est(x1, x2|[bmin, bmax]) = ρ2(x1, x2|[bmin, bmax])
ρ1(x1; [bmin, bmax])ρ1(x2|[bmin, bmax])

− 1. (12.197)

This estimate is biased, however, by the finite centrality bin width used in the measurement.
To demonstrate this bias, let us approximate the densities as

ρ1(x1|b) = n(b)h1(x1), (12.198)

ρ2(x1, x2|b) = n(b)(n(b) − 1)h2(x1, x2), (12.199)

where n(b) and n(b)(n(b) − 1) denote the average single and pair densities evaluated as
function of the centrality parameter b, while the functions h1(x1) and h2(x1, x2) denote the
dependence of the number of singles and pairs on the position x1 and x2, and are here
assumed, for simplicity’s sake, to be independent of collision centrality. The preceding
estimate of the correlation function then becomes

r2,est(x1, x2|[bmin, bmax]) = Q(bmin, bmax)
h2(x1, x2)

h1(x1)h1(x2)
, (12.200)

with

Q(bmin, bmax) =
∫ bmax

bmin
n(b) (n(b) − 1) P(b) db

(∫ bmax

bmin
n(b)P(b) db

)2 , (12.201)
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which is clearly different than the result obtained with Eq. 12.194
∫ bmax

bmin

n(b) (n(b) − 1)
n(b)n(b)

P(b) db, (12.202)

which tends to unity in the large n(b) limit. The estimate Eq. (12.200) is consequently
more and more biased with increasing bin width. This effect may, however, be suppressed
by dividing R2,est explicitly by Q(bmin, bmax). Such correction could not compensate, how-
ever, for possible dependencies of the shape of the functions h1(x1) and h2(x1, x2) with the
centrality parameter b. If the data sample is sufficiently large, the best approach is thus to
carry the analysis in fine bins of b, which one can then subsequently combine, by weighted
average, into wider centrality bins.

The estimate Eq. (12.200) is not only biased as a result of the width of the central-
ity bin but also intrinsically nonrobust against detection efficiencies. Indeed, since detec-
tion efficiencies typically decrease with higher detector occupancy, one expects particle
tracks produced in high-multiplicity collisions (central collisions) to be reconstructed with
smaller efficiencies than those produced in peripheral or low-multiplicity collisions. This
dependence effectively produces different classes of events, each with a different efficiency
response through the detector acceptance. Average of correlation function across finite cen-
trality bins may thus be subjected to instrumentally induced changes in amplitude or shape.
To illustrate this, let us express the efficiency as a function ε(x|M ) of collision centrality
measured by some global observable M . The robustness measure ξ (x1, x2) may then be
written (see Problem 12.2)

ξ (x1, x2) =
∫

dMP(M )ε(x1|M )ε(x2|M )∫
dMP(M )ε(x1|M )

∫
dM ′P(M ′)ε(x2|M ′)

, (12.203)

where P(M ) corresponds to the probability of events with centrality M , with
∫

dMP(M ) =
1 within a specific centrality bin. It is quite obvious that unless P(M ) is constant across a
bin, or the efficiency independent of M , the factor ξ (x1, x2) shall in general deviate from
unity and contribute a bias in the estimation of correlation functions. This issue can be
avoided, in principle, if it is possible to use fine centrality bins and calculate the correlation
function according to Eq. (12.192). This calculation technique yields properly corrected
and robust correlation functions in the limit of very narrow centrality bins. Its feasibility
may, however, be limited by the size of the data sample. If too fine a binning in b is at-
tempted, the sampled single-particle yield ρ1(x|b) may be null in one or several x bins.
The ratio R2(x1, x2|b) would then diverge in those x bins, and the method would conse-
quently fail. This implies that, in practice, it is necessary to systematically test the correc-
tion method and verify its convergence while changing the impact parameter bin size used
to carry out centrality bin-width corrections.

Weighing Techniques
We saw in §12.4.3 that whenever the detection efficiency exhibits dependencies on global
event observables such as the vertex position, detector occupancy, or beam instantaneous
luminosity, one may need to partition the data analysis into a large number of different
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627 12.4 Correcting Measurements of Correlation Functions

bins in order to obtain conditions under which detection efficiencies are approximately
constant within one bin. Correlation studies typically require large-size histograms and
may thus consume a large amount of computer memory. Having to replicate the same his-
tograms several times to account for efficiency dependencies may become a cumbersome
and memory expensive proposition. Fortunately, a simple solution exists in the form of a
weighing technique.

Weighing techniques are rather general and may be used toward the study of R2 as well
as other types of correlation functions such as ⟨#pT#pT(#η,#φ)⟩ discussed in §11.1.5.
The weights are designed to be inversely proportional to the detection efficiency and as
such equalize the detector response. A technique to obtain them is discussed below. Once
the weights are available, one can proceed to carry out the correlation analysis using either
Method 1 or Method 2, and by incrementing histograms with weights ω(η1,φ1, pT,1)×
ω(η2,φ2, pT,2) rather than unity, for R2 analyses, and ω(η1,φ1, pT,1) × ω(η2,φ2, pT,2) ×
#pT,1 × #pT,2 for ⟨#pT#pT⟩ analyses.

In the context of correlation studies carried out as a function of #η vs. #φ, one must
account for the fact that detection efficiencies are complicated functions of φ, η, and pT

that may evolve with the position, z, of the collision vertex. One must consequently ob-
tain weights, ω(η,φ, pT, z), that depend simultaneously on all four of these variables. The
weights thus acquire a dual function: they account for the z dependence as well as the pT

versus φ dependencies simultaneously. The purpose of the weights is to equalize the re-
sponse in pT across all values of φ, η, and for all z. They can therefore be calculated as

ω(η,φ, pT, z) =
∫

dφ
∫

dη
∫ zmax

zmin
dz⟨n(η,φ, pT, z)⟩

⟨n(η,φ, pT, z)⟩
, (12.204)

where the integration on φ and η covers the fiducial acceptance of interest. By construction,
the pT spectra and ⟨pT⟩ become independent of φ as well as η. Independence relative to
η is likely acceptable at LHC and RHIC in the context of narrow η acceptance detectors
such as STAR and ALICE, but better η dependent treatment may be required for wider
acceptances.

Realistic detector performance simulations can be used to estimate absolute detection
efficiencies as a function of track parameters as well as global event conditions (e.g., cen-
trality, detector occupancy, etc.) and calculate weights, ω(η,φ, pT), in terms of their mul-
tiplicative inverse.

ω(η,φ, pT) = 1
ε(η,φ, pT)

. (12.205)

Alternatively, detection efficiencies may also be estimated using embedding techniques
(§12.4.6).

12.4.4 FlowMeasurement Corrections

Measurements of flow correlation functions such as those defined in §11.4 require the
determination of the flow plane angle 7 and nominally assume this angle is uniformly

1::79�  .�2��80 ������� 
�	���	���
����������291/.����2�/�� ���4�82.0/���2�/892: �8/99

https://doi.org/10.1017/9781108241922.014


628 Data Correction Methods

distributed in the [0, 2π [ range. In practice, this is rarely the case because of various
instrumental effects. Fortunately, there exist several simple techniques to remedy this
problem.

The first technique, known as Phi weighing, gives each particle a weight ω(φ) propor-
tional to the inverse of the azimuthal distribution h(φ) of the particles averaged over a large
ensemble of events.

ω(φ) =
(

h(φ)
1

nφ

∑
φ h(φ)

)−1

, (12.206)

where nφ is the number of bins in φ.
The second technique, called recentering, uses a modified event Q-vector obtained by

subtracting an event averaged Q-vector from each event’s nominal Q-vector.

Q⃗′
n = Q⃗n − ⟨Q⃗n⟩. (12.207)

The third technique, commonly referred to as shifting, gives a weight ω(7) to events
based on the event ensemble distribution of reaction plane angles h(7).

ω(7) =
(

h(7)
1

n7

∑
7 h(7)

)−1

, (12.208)

where n7 is the number of bins in 7.
Other correction techniques are also documented in the literature [182].

12.4.5 Mixed-Event Correction Technique

Event mixing is a technique commonly used to decorrelate observables that can be com-
bined into one quantity, such as the invariance mass of particle pairs, two-, or multiparticle
correlation functions. The technique was initially developed in the context of analyses of
intensity interferometry of pions to obtain uncorrelated particle pairs and determine effects
of acceptance and detection efficiency directly from data [131]. The method was extended
later on for the generation of background distributions for a wide range and variety of
correlation functions, invariant mass distributions, and many other applications.

Event mixing involves the generation of “artificial” events consisting of uncorrelated
objects (hits, charged particle tracks, jets, etc.) based on actual data. Objects are sampled
from different events and are as such physically uncorrelated, that is, from the point of view
of production processes. Their detection is nonetheless subject to essentially all instrumen-
tation effects (e.g., detector resolution, acceptance, efficiency, etc.). The analysis of mixed
events enables correlation analyses of ab initio uncorrelated objects and thus provides a
baseline for actual correlation measurements.

As a practical example, let us consider a measurement of the normalized cumulant
R2(ϕ1,ϕ2) for particles produced in nucleus–nucleus collisions. Recall from §10.2.4 that
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629 12.4 Correcting Measurements of Correlation Functions

R2 is defined as a ratio of the cumulant C2(ϕ1,ϕ2) by the product of measured single parti-
cle densities ν1(ϕ1)ν1(ϕ2):

R2(ϕ1,ϕ2) = C2(ϕ1,ϕ2)
ν1(ϕ1)ν1(ϕ2)

, (12.209)

= ν2(ϕ1,ϕ2)
ν1(ϕ1)ν1(ϕ2)

− 1. (12.210)

In a background-free measurement, the measured densities are determined by the produc-
tion cross section and detection efficiencies. Rather than trying to determine the efficiencies
explicitly, one can mobilize the fact that R2 is by construction a robust observable and uti-
lize mixed events to estimate the denominator of the correlation function. The basic idea of
the event-mixing technique is to “fabricate” artificial events consisting of an equal number
of particles (tracks) as actual events, but with tracks selected randomly from a large pool
of events of similar characteristics. One can then proceed to analyze these mixed events
as if they were real events and obtain mixed two-particle densities νmix

2 (ϕ1,ϕ2). Since the
tracks composing a mixed event are by construction uncorrelated, the two-particle density
is then approximately equivalent to the product of single particles ν1(ϕ1)ν1(ϕ2):

νmix
2 (ϕ1,ϕ2) ≈ ν1(ϕ1)ν1(ϕ2). (12.211)

This technique accounts for instrumentation effects but does not contain correlations asso-
ciated with the production process. One can then obtain R2 from the ratio

Rmeas
2 (ϕ1,ϕ2) = ν2(ϕ1,ϕ2)

νmix
2 (ϕ1,ϕ2)

− 1, (12.212)

which accounts for detection efficiencies. Indeed, given that the measured densities are

ν2(ϕ1,ϕ2) = ε1ε2ρ2(ϕ1,ϕ2), (12.213)

νmix
2 (ϕ1,ϕ2) = ε1ε2ρ1(ϕ1)ρ1(ϕ2), (12.214)

one obtains the desired result

Rmeas
2 (ϕ1,ϕ2) = ρ2(ϕ1,ϕ2)

ρ1(ϕ1)ρ1(ϕ2)
− 1. (12.215)

Similar constructions can be done for correlation analyses involving three or more parti-
cles, the study of invariant mass spectra, and essentially all types of analyses requiring a
baseline or reference consisting of uncorrelated objects.

While the concept of mixed-event analysis is simple, certain precautions must be taken
to avoid biases and various technical issues. For instance, in heavy-ion experiments the
produced particle multiplicities are a steep function of the collision impact parameter. Con-
sidering that most instruments have an efficiency that monotonically decreases with rising
detector occupancy, one must be careful to only mix events of approximately the same
multiplicity and trigger type, otherwise the event mixing may result in associating incor-
rect efficiencies or trigger biases and thus lead to a biased measurement of cross section,
or correlation function.
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Care must also be taken to mix events without carrying actual particle correlations into
the synthesized mixed events. For instance, if mixed events are assembled by picking sev-
eral particles from a small number of distinct events, one is effectively transposing some
of the correlations that might be present in those events into the mixed events. Although
the strength of these correlations is clearly diluted by event mixing, it is safest to carry
out event-mixing using a single-particle per event. One must also pay attention to the fact
that the number of mixed events that can be synthesized can be deceptively large. Indeed,
given appropriate computing resources, it might be tempting to generate a number of mixed
events far larger than the actual number of real events. Such oversampling of mixed events
should definitely be avoided because it leads to the false impression that the efficiency cor-
rection accomplished, for instance, by calculating the normalized cumulant R2 based on
mixed events could receive no statistical error contribution from the mixed-event sample.
Alas, mixed events are built from actual events. A finite number of actual events implies
that single- and two-particle yields have finite statistical fluctuations. It is consequently im-
possible to eliminate these statistical errors and achieve mixed events with better precision
than that obtained with actual events.

As a specific example, consider the generation of mixed events with a multiplicity of M
particles from a pool of N events of same multiplicity M . Let us count the number of dis-
tinct mixed events that can be synthesized by randomly picking one particle per event out
of M events. There are N ways to pick the first event, N − 1 ways to pick up the second, and
so on. The numbers of event combinations, NEC, is thus NEC = N!/(N − M )!M!. Since M
events are sampled, there are thus MM ways to pick up one particle per event. The resulting
number of possible mixed event permutations, NEP, is thus: NEP = MM N!/[(N − M )!M!].
For M = 50, and N = 1000, one can use the Stirling approximation to evaluate the pre-
ceding expression. One gets NEP ≈ 10150 which is indeed a huge number of permutations.
The number can be even larger if q > 1 particles are picked from each event.

While the number of permutations achievable with mixed events is very large, one must
realize that fluctuations of νmix

2 are also unusually large because each particle included in
a mixed event is reused several times in the formation of pairs. These fluctuations were
first evaluated in ref. [180] using a pair counting technique. A more direct calculation is
however possible based on the realization that the synthesis of mixed events amounts to
multinomial sampling. For a fixed event size M , the bin content ni of a histogram of the
density ρ(x) shall have expectation values pi, with

∑m
i pi = 1, where m is the number of

bin in the histogram. The values pi represent the probability of getting counts in each bin.
Since all particles are independent because they actually originate from distinct events, the
bin contents are also uncorrelated. The number of particles ni obtain in each bin i is thus
determined by a multinomial distribution.

PM (n1, . . . , nm|M; p1, . . . , pm) = M!
m∏

i=1
ni!

m∏

i=1

pni
i , (12.216)

with
∑m

i=1 ni = M . Recall from §2.10 that moments of a PDF can be calculated based
on derivatives of its characteristic function. The characteristic function of a multinomial
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distribution (§3.2) is

φ(t1, t2, . . . , tm) =

⎛

⎝
m∑

j=1

p jeit j

⎞

⎠
n

. (12.217)

One can then readily verify (Problem 12.3) that the lower-order moments of ni are

⟨ni⟩ = E[ni] = M pi (12.218)

⟨n2
i ⟩ = E[n2

i ] = M (M − 1)p2
i + M pi (12.219)

⟨nin j⟩ = E[nin j] = M (M − 1)pi p j (12.220)

⟨n2
i n2

j⟩ = E[n2
i n2

j ] (12.221)

= M (M − 1)(M − 2)(M − 3)p2
i p j

+ M (M − 1)(M − 2)
[

p2
i p j + pi p2

j

]
+ M (M − 1)pi p j.

The variance of the pair yield nin j expressed in terms of the averages ⟨ni⟩ is thus

Var
[
nin j

]
=

(
− 4

M
+ 10

M2
− 6

M3

)
⟨ni⟩2⟨n j⟩2 (12.222)

+
(

1 − 3
M

+ 2
M2

) [
⟨ni⟩2⟨n j⟩ + ⟨ni⟩⟨n j⟩2]

+
(

1 − 1
M

)
⟨ni⟩2⟨n j⟩.

For large M , the variance of fluctuations of nin j thus approximately scale as ⟨n⟩3. One can
then write

δ⟨nin j⟩ ≈ ⟨ni⟩3/2 ≈ ⟨nin j⟩3/4. (12.223)

By contrast, errors on ⟨ni⟩ scale as ⟨ni⟩1/2. We thus conclude that errors on mixed events
grow faster than errors on the mean number of entries in single particle spectra. Large
datasets are thus required to obtained equivalent size errors on mixed events.

Alternatively, one may also consider the number of pairs, say at specific ϕ1,ϕ2 values
to be of the order of the product of the number of singles n(ϕ1)n(ϕ2). Based on a full data
sample, the relative error on this product, of order n−1

1 + n−1
2 , effects a minimum bound

on the error on the number of pairs and thus two-particle densities that might be derived
from them. The redeeming factor is that one is seldom interested in the density ρ2(ϕ1,ϕ2)
directly but instead compute an average over ϕ̄ to obtain ρ2(#ϕ) which combines from one
to m bins of ρ2(ϕ1,ϕ2). The error on the number of pairs is thus on the order or smaller
than n−1

1 + n−1
2 . There is thus no point in generating a number of mixed events that would

attempt to improve the statistical accuracy much below this bound.

12.4.6 Embedding Techniques

Embedding is a technique commonly used in experimental nuclear and particle physics to
evaluate the instrumental efficiency in finding and reconstructing objects (e.g., hits, tracks,

1::79�  .�2��80 ������� 
�	���	���
����������291/.����2�/�� ���4�82.0/���2�/892: �8/99

https://doi.org/10.1017/9781108241922.014


632 Data Correction Methods

jets, etc.) of interest. The technique involves the insertion of tagged objects generated via
MC simulations into actual events before they are reconstructed. One measures the objects’
reconstruction efficiency as the degree to which they are reconstructed when embedded into
actual events. This efficiency corresponds to the ratio of the number of objects NF found
by the number embedded NE :

ε = NF

NE
. (12.224)

Embedding may be carried out with different levels of refinement and detail. For instance,
for the evaluation of track reconstruction efficiency, one can embed tracks at the point
or hit level or at the detector level, that is, in terms of simulated analog-to-digital con-
verter (ADC) signals. While embedding points enables rapid testing of track reconstruc-
tion algorithms, it does not usually properly account for issues such as hit loss or hit over-
lap/merging. Full embedding simulations, for example the simulation of signal generation
and propagation through the detector, is usually accomplished with the computer code
GEANT with add-ons specific to each experiment. While considerably slower, full simula-
tions make it possible to account for signal losses, interferences, merging, and so on. They
thus permit as realistic as possible a simulation of the instrumental performance.

The evaluation of the error on the estimated efficiency ε requires some particular atten-
tion. Given ε is obtained from a ratio, one might at first be inclined to simply apply the
quotient rule for the error on a ratio of two quantities. That would be incorrect, however,
because the two quantities are not independent. In fact, by construction, the number of
observed tracks is necessarily a subset of the produced or embedded tracks and one has
NF ≤ NE by definition (unless there are ghost tracks). Clearly, the efficiency cannot exceed
unity. One might then be inclined to use a lower limit only if the ratio is near unity, or a
two sided error interval if the estimated efficiency is considerably smaller than unity. This
amounts to flip-flopping, as discussed in §6.1.8. Fortunately, the unified approach intro-
duced in §6.1.8 alleviates this problem and enables the definition of error intervals without
flip-flopping or empty intervals, and no undercoverage. Its application for binomial sam-
pling, relevant for efficiency estimates by embedding and related techniques, is discussed
in §6.2.2.

12.4.7 Closure Test

Data correction methods can get pretty involved and complicated. But just because sophis-
ticated unfolding techniques promise properly corrected data does not mean they deliver
precise and unbiased results. It is thus useful to carry out a closure test.

The basic idea of a closure test is quite simple: (1) define a parent distribution fP that
mimics or might closely resemble the actual distribution; (2) produce a large number of
events on the basis of this distribution and process them through a performance simula-
tor of the experiment, its event reconstruction software, and the data analysis to obtain
a simulated raw distribution fraw; (3) proceed to unfold or correct the raw data to obtain
a corrected (unfolded) distribution fcorr; (4) compare the unfolded distribution fcorr with
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the original distribution fP to verify whether the unfolding procedure yields an unfolded
distribution statistically compatible with the parent distribution.

Comparison of the fcorr and fP distributions may begin with a simple visual inspection. It
should be possible to instantly recognize improperly unfolded data if the two distributions
deviate significantly from one another. However, given finite computing resources, the dis-
tributions shall have finite statistical errors, and it may not be visually obvious whether the
distributions are in fact in mutual agreement, or not. It is then necessary to make use of
a statistical test (§6.4). The null hypothesis of this test shall be that the unfolded distri-
bution fcorr is undistinguishable from the parent distribution fP. The test may then be im-
plemented as a histogram compatibility test (§6.6.6) or Kolmogorov–Smirnov test (§6.6.7)
using a predetermined significance level β. The significance level shall be chosen, based
on the desired level of experimental accuracy, to minimize the risk of an error of the second
kind, that is, to falsely accept the null hypothesis and consider the corrections are properly
carried out when in fact they are not.

12.5 Systematic Errors

12.5.1 Definition

Systematic errors are measurements errors associated with the “system,” that is, the mea-
surement technique, the experimental protocol, or the analysis method used to carry out a
measurement. Unlike statistical errors, which can be arbitrarily reduced in magnitude by
repeating measurements of a specific phenomenon, statistical errors are an intrinsic flaw
of the “system” and thus cannot be reduced or eliminated by repeating a measurement.
Indeed, nothing is gained by repeating a flawed procedure several times. Systematic errors
are due to biases introduced by the measurement technique or protocol. Since a bias does
not disappear when a measurement is repeated, there is, in fact, no point in repeating the
same measurement many times. The bias will persist, and the repeated measurements will
have small statistical errors and thus might give the illusion that the results are accurate and
precise. However, while increased statistics improve the precision of a measurement, the
measurement remains inaccurate because it is systematically biased. Measured values tend
to be consistently either to small or too large and having a zillion data points cannot fix
that basic problem. This said, having a large data sample may enable a careful and detailed
analysis which might unravel the presence of biases. But at the end of the day, understand-
ing biases and systematic errors requires one has an in-depth understanding of all aspects
of a particular measurement.

12.5.2 The Challenge

Systematic errors often affect (but not always) all data points of a particular measurement
in a similar way: all points tend to be either too low or too large. For instance, consider a
measurement of distances made with a stretched out tape measure. If the fabric or material
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Fig. 12.12 Correcting for constant bias is possible if a signal can be measured, or extrapolated as shown, at a point where the
magnitude is null or known to have a specific value by definition or construction. Here, the signal is expected to be null
at x = 0; one can then use the observed offset b as an estimate of the measurement bias to correct all data points.

of the tape measure is worn out and stretched due to repeated usage or improper handling,
distances or sizes measured will appear consistently smaller than they really are no matter
what the size or distance is. The measured distances will thus be systematically too small.
However, when measuring functional dependencies, for instance, y ≡ y(x), one may find
that the bias on y may itself be a function of x and y. The bias might indeed tend to be
larger (or smaller) for a certain range of values of either x or y, and it might in fact be an
arbitrarily complicated function of either variables.

Constant biases are least problematic. Indeed, if a bias δybias can be identified at specific
value of x, and one has good reasons to believe it is constant for all values of x, than mea-
sured values y(x) can be corrected for by subtracting the identified bias from all measured
values:

ycorrected = ymeasured − δybias. (12.225)

This situation arises when the signal y is expected to be null, by construction or by defi-
nition, for a specific value of x. For instance, if one expect y to be strictly proportional to
x and null for x = 0, one can detect the presence of a bias, as illustrated in Figure 12.12,
by extrapolating measured data points to the origin, x = 0. Unfortunately, systematic er-
rors are not always obvious or constant, and a lot of “digging” may be required to identify
their presence and approximate magnitude. Failure to identify and correct for systematic
biases may have consequences ranging from mild inconvenience to catastrophic failure and
erroneous scientific conclusions.

The biggest problem with systematic biases is that it is usually not possible to precisely
determine the magnitude or the functional dependence of the bias. Indeed, it is one thing to
identify the presence of a source of bias, but it is usually a bigger challenge to determine
the magnitude of the effect. One is thus required to make “educated” guesses as to what
the magnitude of the biases might be and how they could impact the measured data. In the
end, one is forced to acknowledge that the “final” data might be over- or undercorrected
for biases. One must then estimate the range of one’s ignorance (minimum and maximum
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corrections possible and consistent with the experimental method and the measured data)
on the proper magnitude of corrections and determine how such uncertainties impact the
corrected data. The range of applicable corrections then determines a range of measured
values that one can quote as systematic errors when reporting the measured data.

As a specific example, let us consider the fixed bias correction illustrated in Figure 12.12.
Here, the presence of a bias is readily identified because the signal y is expected to vanish at
x = 0 but manifestly does not. One uses the extrapolated signal at x = 0 to estimate the bias
b and correct all data points (gray dots). While straightforward, this correction procedure
entails several issues. First, the extrapolation to the origin is only as good the linear fit to
the data points. If the statistic is poor, the extrapolated value y(0) may be arbitrarily large
or small, and the corrected data shall correspondingly be too low or too high. Second, this
procedure assumes the data is strictly governed by a linear dependence. What if, in fact, the
phenomenon has a quadratic (or higher order) dependence on x? The extrapolation would
then most likely be wrong and so would the corrected data. And third, it is also possible
that while the linear model is correct, various instrumental effects may cause an artificial
higher-order polynomial dependence of the signal y on x (in other words, the bias depends
on x). Use of a linear extrapolation would once again produce an incorrect (or at the very
least incomplete) correction. The task of the experimentalist is thus to evaluate, to the
best of their ability, the magnitude of such effects. The error on b (which is subsequently
subtracted from all data points) obtained from a linear would constitute a first estimate of
systematic errors on the data points. One could also use higher-order (nonlinear) fits to
extrapolate to the origin and possibly enlarge the range of the offset b consistent with the
data, and which is subtracted to obtain corrected data.

The preceding example is rather simplistic. In practice, the presence of biases may not be
obvious and evaluating the magnitude of known systematic effects is not a trivial matter.
In fact, it is often the case that far more time and efforts are spent understanding and
evaluating systematic errors than carrying out the measurement in the first place. It is also
the case that the challenge of the task typically increases in proportion to the accuracy one
wishes to achieve in a particular measurement.

12.5.3 Reporting and Improving Errors

Statistical and systematic errors have distinct causes and origins. It has thus become com-
mon practice, in most scientific disciplines, to report measurements with statistical and
systematic error bars independently. This enables an explicit acknowledgment of the pre-
cision and accuracy achieved in the reported measurement. Assuming the statistical esti-
mator used to determine the reported parameters are unbiased (or asymptotically unbiased
but with a very large dataset), the statistical error bars provide an indication of the level of
precision achieved in the measurement, while the systematic errors indicate the estimated
level of accuracy. It is then possible to evaluate, at a glance, the merits of an experiment
and identify its weaknesses. Experiments are said to be statistics limited if the statisti-
cal error bars are larger, for the most part, than systematic errors. Conversely, if the latter
predominate, the experiment is described as systematics limited.
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Achieving a better statistical error is conceptually simple, it suffices to significantly in-
crease the size of the data sample. In particle and nuclear physics experiments, this can be
achieved by increasing the duration of the experiment, the intensity of the beam and target
thickness (the luminosity of the machine), the acceptance, or detection efficiency of the
apparatus. Improving on a systematic limited experiment can be significantly harder. One
must indeed achieve better control over the various biases and improve on the techniques
used to suppress or correct for these biases. Such improvements typically require novel
experimental techniques or better ways to analyze the data.

12.5.4 Brief Survey of Sources of Systematic Errors

Sources of systematic errors are as varied as the observables and measurements techniques
used in experimental physics. It is consequently not possible to provide an exhaustive list of
all types of systematic errors that may arise in practice. At the outset, it is quite important
to have a good understanding of the experimental apparatus, the measurement protocol, as
well as the properties and limitations of the observables under study. Indeed, only a care-
ful examination of the properties and attributes of the detector components and analysis
techniques used in a measurement of interest may reveal sources of biases and system-
atic errors. Nevertheless, one may formulate a few generic remarks about the process of
understanding systematic errors and their most common sources.

As we have discussed at great length in this and earlier chapters, scientific measurements
involve a large number of steps and operations, each of which is susceptible of introducing
some kind of bias or systematic error. Two broad classes of systematic errors are worth
considering. The first class involves sources of errors associated with the measurement
itself whereas the second is concerned with “physical backgrounds.”

Measurement Biases
The reconstruction of events and measurements of cross sections in nuclear (or elemen-
tary particle) scatterings involve several steps, including signal calibration, correction for
detection efficiencies and experimental acceptance, as well as signal smearing (resolution
effects). Each of these may indeed contribute a source of bias and systematic errors.

The calibration of energy and timing signals typically involves the subtraction of an
ADC (TDC) pedestal and multiplication by an appropriate gain factor. Pedestals and gains
are determined by experimental procedures and protocols which may be statistic or sys-
tematic limited (§9.1.3). They are thus known with finite precision and accuracy. They may
also change over time for a variety of reasons. The pedestals and gains used in an analysis
may then be slightly off, and induce biases in the energy (amplitude) or time scales of the
measurement. This is particularly the case, for energy measurements, when the reference
used to obtain the gain calibration lies at much lower energy than typical energy signals of
interest in the physical measurement. The signal gain calibration is then effectively based
on an extrapolation, which may result in gross under- or overestimation of the measured
amplitudes, energies, or timing signals. Additional issues may arise if nonlinearities are
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637 12.5 Systematic Errors

involved in the energy or charge collection process. Together, these effects introduce a sys-
tematic uncertainty on the energy (charge, amplitude, or time) scale of the measurement.

Most measurements carried out in particle and nuclear physics involve some form of
counting. For instance, one associates and counts hits to form tracks, tracks to form events,
which may, in turn, also be counted. All these counting steps are predicated on some quality
control cuts: not all produced objects (e.g., hits, charged particle track, energy shower,
collision event, etc.) are duly counted and an arbitrary fraction may be missed. It is the
purpose of efficiency (and acceptance) corrections to account for these losses. Obviously,
although many distinct techniques might be used to estimate detection efficiencies, there
remains the possibility that efficiencies may be, as for gains, under- or overestimated. Such
uncertainties may arise for a variety of reasons, including the finite size of data samples,
simulation samples, as well as improper characterization or modeling of the measurement
process. Together, these effects lead to systematic uncertainties on the magnitude of cross
sections.

Measurement errors affecting both the energy scale and the magnitude of the cross sec-
tion may also arise due to finite resolution or signal smearing, whether unfolded or not. For
instance, momentum or energy smearing of a steeply falling cross section spectrum (i.e.,
with increasing momentum) has a tendency to spread cross sections from low to high mo-
menta, thereby disturbing the functional shape of the cross section dependence on energy
or momentum.

Systematic uncertainties on cross sections may also arise because of faked (often called
ghost) objects, most particularly tracks. For example, faked hits may be produced by noisy
detector signals and lead to random associations of hits into faked or improperly measured
tracks. Faked or ghost tracks may then end up being counted as real tracks and artificially
inflate the measured cross sections. Ghost tracks are most common at low momenta be-
cause spurious hits are more easily associated to large curvature tracks than straight tracks.

Various other forms of pile-up may occur and lead to biases. An obvious example of
pile-up involves the detection of tracks from several distinct collisions in slow detectors
such as time projection chambers. Tracks from different collisions may appear unresolved
and result in apparent high-multiplicity events, thereby shifting the production cross section
from low to high multiplicity.

Biases may also occur because of the physical processes involved in the detection and
measurement of signals. For instance, charged particles lose energy as they penetrate
through the various materials composing a detector. Energy losses imply a reduction in
momentum, which in turn results in an increase of curvature for charged particle tracks.
The track energy loss thus introduces a small downward bias in the moment of particles,
which cannot, typically, be compensated for equally well for all particle masses or species.
Since energy losses are largest in the 1/β2 regime, this results in a slight distortion of the
energy scale, which typically affects low momenta the most.

Event triggering (i.e., the selection of events with particular features), whether per-
formed with actual triggering detectors, or in software during the data analysis may also
induce various forms of biases, most particularly on the efficiency and cross section of
processes. For instance, requiring that a scattering event contains one or two high-energy
jets tends to skew the event multiplicity distribution toward high-multiplicity values. It
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obviously also affects the measured momentum distribution. Scattering measurements are
often recorded with minimum-bias triggers. These are typically based on large detector
arrays capable of detecting a sizable fraction of the produced particles. They are usually
designed to collect all inelastic collisions with uniform efficiency and irrespective of the
produced particle multiplicity. In practice, the finite size and limited efficiency of these de-
tectors results in cross section biases, most particularly for low-multiplicity events. There
is thus no such a thing as a truly unbiased minimum-bias trigger.

Physical Backgrounds
Physical backgrounds may also constitute sources of biases, particularly in measurements
of cross sections. They can be broadly be divided into two classes. The first class consists of
physical processes taking place within the detector because of electromagnetic or hadronic
interactions of produced particles (i.e., particles produced by the scattering under study)
with materials of the detector, while the second involves processes produced directly by
the collision under study (i.e., irrespective of the presence of a detector).

At the outset of this discussion, recall the notions of primary, secondary, and tertiary
tracks that we introduced in §8.3.1. Primary tracks are those tracks that are produced at
the primary vertex of an interaction whereas secondary tracks originate from decays of
primary particles as they traverse the detection apparatus. We have called tertiary tracks
those tracks that are produced by interaction (electromagnetic or hadronic) of primary and
secondary particles with materials of the detector. Experimentally, the segregation of pri-
mary, secondary, and tertiary tracks (particles) is largely based on their distance of closest
approach to the primary vertex of an interaction. However, by virtue of the stochastic na-
ture of decays and interaction with materials, secondary and tertiary particles may occur at
arbitrarily small distances from the primary vertex and thus be indistinguishable, in prac-
tice, from primary particles. Secondary (and tertiary) particles produced near the vertex
thus constitute a background in the determination of primary particle production cross sec-
tion. Conversely, because finite resolution effects smear the DCA of tracks, primary tracks
may appear as secondary tracks and thus contribute a sizable combinatorial background in
the identification of decaying particles via topological cuts or invariant mass reconstruction
(§8.5.1). Similarly, tertiary tracks may also be mis-identified as either primary or secondary
tracks and thus constitute a source of background (and cross section bias) for these parti-
cle types. Cross contamination of primary and secondary (as well as tertiary) is typically
based on distance of closest approach (DCA) cuts. Tight (short) maximum DCA cuts are
required to select primary and reject secondary tracks whereas wide minimum DCA cuts
are used to select secondary particles. No matter what cut values are used, however, some
secondary tracks end up being selected as primary particles, and some primary particles are
categorized as secondary. This unavoidable misidentification of the two types introduces
backgrounds and thus biases in cross section measurements of both types of particles, and
although these biases can be suppressed to some degree by judicial DCA cuts, they can
never be eliminated. It is thus a common feature of all cross section analyses to study par-
ticle yields as a function of DCA cut values in order to estimate the relative contributions
of the two types of particles. Unfortunately, such studies cannot be performed with perfect

1::79�  .�2��80 ������� 
�	���	���
����������291/.����2�/�� ���4�82.0/���2�/892: �8/99

https://doi.org/10.1017/9781108241922.014


639 12.5 Systematic Errors

accuracy and one is thus required to include systematic errors on particle yields (or cross
sections) based on trends and extrapolations.

Contamination from secondary particles is particularly insidious for measurements of
correlation functions. Secondary particles produced by two- or three-body decays are de
facto correlated by virtue of energy-momentum conservation. They thus naturally produce
spurious correlation features in two- (or three-) particle correlation functions. As for mea-
surements of single particle cross sections, one can use DCA cuts to reduce or suppress
the impact of these spurious correlation features but they cannot be completely eliminated.
One must then resort to systematic studies of the strength and shape of the correlation func-
tions when DCA cuts are changed. It then becomes possible to report systematic errors on
the amplitude of the correlation functions.

Various other physical and detector induced processes produce backgrounds in sin-
gle particle cross section measurements and spurious features in two- or three-particle
correlation functions. Particularly important in measurements of correlation functions
are processes of pair creation by photons as they interact electromagnetically with high
atomic number materials of a detector. Pair creation produces a forward going pair of
positron and electron which result in a sharp peak at the origin of #η − #φ corre-
lation functions of unlike-sign charged particle pairs. This type of contamination may
be suppressed by rejecting electron-like particle signals (e.g., based on dE/dx, TOF, or
Cerenkov radiation) and a minimum cut on the invariant mass of the pair (since pair
conversion tend to produce a very low mass peak). Contamination may persist and it is
thus necessary to assess systematic effects on correlation functions associated with these
conversions.

Biases in measurements of single particle correlation and correlation functions may also
arise because of track splitting and track merging (defined in §12.4.3). Track splitting leads
to an artificial increase of the cross section and spurious correlation features at small #η

and #φ values. It can usually be suppressed significantly by requiring “long” tracks, that
is, tracks that contain at least 50% of possible hits. Splitting contamination may remain,
however, in spite of cuts, and it is necessary to estimate track splitting effects, for instance,
by varying the minimum number of hits requirement.

Track merging poses a more serious difficulty. Indeed, the crossing of tracks with sim-
ilar pseudorapidity and azimuth of production yields merged or unresolved hits which, in
turn, lead to the reconstruction of fewer track pairs. One is then faced with a difficult loss
of single and particle-pair to evaluate. These result in a reduction of the single particle
cross section and a loss of particle pairs at small #η − #φ values. Such losses can in
principle be modeled with Monte Carlo simulations. In practice, the accuracy of this type
of simulations is severely limited by complicated and changing response features of par-
ticle detectors. One is then required, once again, to estimate systematic effects associated
with the loss of particles, and most particularly pairs of particles produced at small relative
pseudorapidities and azimuthal angles.

The aforementioned effects are the most common and salient effects encountered in
measurements. However, many other effects may need to be considered in practical situ-
ations, such as loss of signals or spurious noise associated with various types of detector
malfunction.
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Exercises

12.1 Use an arbitrary Fourier decomposition of the efficiencies ε(xi) and the correlation
function R2 to demonstrate that Eq. (12.181) yields a robust result, i.e., is independent
of efficiencies. Verify that is not the case for coordinates without periodic boundary
conditions (e.g. #η).

12.2 Verify Eq. (12.203) expressing the robustness measure ξ (x1, x2).
12.3 Use the characteristic function φ(t1, t2, . . . , tm) of the multinomial distribution given

by Eq. (12.217) to derive the lowest order moments of the distribution listed in
Eqs. (12.218–12.221).

12.4 Show that ∂χ2(µ⃗)
∂µk

= 0 is satisfied by Eq. (12.37).
12.5 Derive the expression of the covariance matrix Ui j given by Eq. (12.55).
12.6 Show that all singular values of an orthogonal matrix A are equal to unity.
12.7 Verify that the estimator (12.37) corresponds to the solution obtained by maximiza-

tion of the log-likelihood function and yield

log L(µ) =
N∑

i=1

log (P(ni|νi)) ,

where P(ni|νi) is a Poisson distribution (or binomial distribution).
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13 Monte Carlo Methods

Modern science deals with increasingly challenging and complex systems. While relatively
simple mathematical models can often be formulated, their implementation for the descrip-
tion of real-world systems is typically not amenable to analytical solutions. For instance,
one may wish to “evolve” the state of a system (e.g., in a microscopic model of nucleus-
nucleus collisions) with time to study its many configurations or one may want to calculate
the acceptance of a large detector for the study of particles produced by elementary particle
collisions (proton–proton or heavy ion collisions at the Large Hadron Collider), and so on.
The number of states, configuration, or variables may, however, be prohibitively large, or
the boundary conditions of the problem very complex, so it is not possible to sample or
integrate the full configuration of the phase space of a system by conventional integration
techniques. In these instances, it is possible to resort to Monte Carlo methods to sample
the many possible states of the system or to obtain the integral of arbitrary functions over
the system’s configuration or phase space.

We begin our description of Monte Carlo methods with a short discussion of the prin-
ciples of the method in §13.1. We then show, in §13.2, that Monte Carlo simulations es-
sentially amount to a form of integration that can be most effectively used to compute
multidimensional integrals. The notion of pseudorandom numbers and basic techniques
commonly used for the generation of pseudorandom numbers are then presented in §13.3.
Selected examples of basic applications are introduced in §13.4. More elaborate techniques
for applications in nuclear sciences are presented in Chapter 14.

13.1 Basic Principle of Monte Carlo Methods

Monte Carlo methods use “chance” or more properly said random numbers to sample all
possible states of a system. The name Monte Carlo is inspired from games of chance played
at the famous Monte Carlo casinos in Monaco, located south of France. The concept and
first implementation of the method originates from Los Alamos National Laboratory, New
Mexico, where mathematicians John von Neumann and Stanislaw Ulam, working on the
Manhattan Project in the 1940s, proposed carrying out theoretical calculations of radiation
shielding using experimental modeling on a computer based on chance. Given the secrecy
of the project, von Neuman allegedly chose the name “Monte Carlo” in reference to the
casinos where Ulam’s uncle would borrow money to gamble.

Random methods of calculation, or stochastic simulations, may be traced back to the
pioneers of probability theory, but more specifically to the preelectronic era. Monte Carlo
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simulations were essential for the development of the Manhattan Project, though, severely
limited by the computational tools available at the time. It was only with the development of
increasingly powerful computers that Monte Carlo methods were systematically explored
and increasingly used for military purposes and later in physical sciences and operations
research. The Rand Corporation and the U.S. Air Force were two of the major organizations
responsible for funding and disseminating information on Monte Carlo methods during this
time, and they began to find a wide application in many different fields. In fact, one of the
early pseudorandom number generator function, rand, is named after the Rand Corporation.

Simulations, modeling, or Monte Carlo calculations require a reliable set of random
numbers. Truly random numbers might in principle be obtained by observation of stochas-
tic phenomena. One could, for instance, utilize the time interval between decays of radio
isotopes or the time interval between the passages of cosmic rays through a particle detec-
tor. One could also use the electronic noise intrinsically present in any electronic circuit.
By their nature, stochastic phenomena are such that given one “event” it is impossible to
predict when the next will occur. Additionally, one does not expect correlations between
the occurrence of the events; a sequence of events is intrinsically unpredictable. The gen-
eration of random numbers in this fashion would require a device to measure the natural
phenomenon (e.g., electronic noise) and digitization of the signal. Both are often impracti-
cal and even problematic. For instance, use of electronic noise would require white noise,
for example, signals whose Fourier transform yields a spectrum where all frequencies have
equal probability (uniform probability) density over a wide range of frequencies. The dig-
itization process is also challenging. A useful random generation must produce numbers
with a fine granularity. It should have the capacity to produce billions of different num-
bers in order to permit simulation with high resolution and avoid coarse binning of the
observables or variables being simulated. This would in practice require digitization with
an exceeding large number of bits to enable production of random number sets with fine
granularity that provide a reasonable approximation of a subset of the set of real numbers,
R. Although these requirements can be met in principle, their realization is impractical for
most computing applications, and generally considered not worth doing. Mathematicians,
scientists, and engineers alike thus commonly use pseudorandom numbers generated al-
gorithmically by a computer program. This said, note that there exists providers of true
random numbers based, for instance, on atmospheric noise [100].

The production and study of pseudorandom numbers is an area of research of its own. We
here focus on the essential concepts commonly used in the generation of random numbers
but include references to more advanced or specialized works.

13.2 Monte Carlo Integration

It is convenient to first introduce the Monte Carlo method as a technique to carry out
integrals of single and multidimensional functions. This is of particular interest because,
in essence, all applications of the Monte Carlo technique may be reduced to the calculation
of some integral.
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645 13.2 Monte Carlo Integration

In order to motivate the Monte Carlo integration method, we first review a few theorems
of basic calculus (without demonstration).

Mean Value Theorem for Integrals
If a function, f (x), is continuous over a closed interval [a, b], then there exists a number

c, with a < c < b, such that

f (c) = 1
b − a

∫ b

a
f (x) dx. (13.1)

Composite Midpoint Rule
The area under a curve, f (x), in a given interval [a, b], can be calculated by partition-

ing the interval in n subintervals {[xk−1, xk]}n
k=1 of equal width, h. As per the mean value

theorem stated previously, there are values c′
k for each subinterval such that

∫ xk

xk−1

f (x) dx = (xk − xk−1) f (c′
k ) = h f (ck

′). (13.2)

The integral of f (x) in the interval [a, b] may then be written

∫ b

a
f (x) dx =

n∑

k=1

∫ xk

xk−1

f (x) dx = h
n∑

k=1

f (c′
k ). (13.3)

If instead of using the values c′
k satisfying Eq. (13.2), one uses the midpoints ck = a +

(k − 1
2 )h, for k = 1, 2, . . . , n, then one can write:

∫ b

a
f (x) dx = M ( f , h) + EM ( f , h), (13.4)

where

M ( f , h) = b − a
n

n∑

k=1

f (ck ) (13.5)

is known as the composite midpoint rule and constitutes an approximation of the integral
in Eq. (13.4) with error EM ( f , h). One can show that there exists a value c with a < c < b
such that the error EM ( f , h) is given by

EM ( f , h) = 1
24

(b − a) h2 f 2(c). (13.6)

As such, the error EM ( f , h) is proportional to the square of the bin size h while the area is
linear in h. This implies it is possible to obtain an arbitrarily suitable approximation of the
integral by choosing a sufficiently small value of the bin width h.

Monte Carlo Integration Rule
The Monte Carlo method is based on the composite midpoint rule approximation. How-

ever, rather than evaluating the functions at the midpoint of bins of equal width, one
chooses n randomly distributed points x1, x2, xn in the interval [a, b] and evaluates the
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average of the function at these points:

f̂ = 1
n

n∑

i=1

f (xi). (13.7)

An approximation of the integral is then obtained by multiplying this average by the width
of the interval [a, b]:

∫ b

a
f (x) dx = (b − a) f̂ + EMC ( f , n). (13.8)

The error on the integral, EMC( f , n), can be estimated from

EMC( f , n) = (b − a)

√
f̂ 2 − ( f̂ )2

n
, (13.9)

where

f̂ 2 = 1
n

n∑

i=1

f 2(xi). (13.10)

The error is thus proportional to the variance of f (xi) and inversely proportional to the
square root of the number of points (samples) included in the MC calculation. As such,
one concludes that the estimate converges slowly to zero with n → ∞ and is of order
n−1/2 for finite n.

For single-variable functions, the Monte Carlo integration converges slower than con-
ventional techniques such as the trapezoid method, which converges as n−2, or the m-point
Gauss method, which converges as n−2m+1. A numerical integral of a single variable func-
tion is thus most effectively obtained with the Gauss method. But integration over multi-
dimensional space using the trapezoid or Gauss methods (or similar methods) can quickly
become prohibitive. For instance, a system with m particles has as many as 3 × m degrees
of freedom (excluding rotational degrees of freedom): integration using say 100 bins in
each dimension would require 1003×m bins and is thus clearly impractical for large val-
ues of m, even with modern computers. However, one can show that the convergence of a
conventional integration technique in d dimensions scales as n−2/d and is thus slower than
the MC convergence (n−1/2) for problems involving d ≥ 5 dimensions. The use of Monte
Carlo techniques for problems of five or more dimensions (degrees of freedom) is thus
clearly advantageous and commonly used in practical applications.

13.3 PseudorandomNumber Generation

13.3.1 Definition and Basic Criteria

It is usually preferable to use pseudorandom numbers rather than attempting the produc-
tion of true random numbers. Pseudorandom numbers are generated by use of computer
algorithms designed to produce a sequence of number of apparently uncorrelated numbers
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647 13.3 Pseudorandom Number Generation

that are uniformly distributed over a predetermined range. Modern algorithms provide very
long sequences of random numbers that fulfill typical requirements of simulations carried
out in physics as well as in the simulation of engineered systems.1 Pseudorandom genera-
tors also provide the possibility of repeating the same exact experiment (simulation) many
times, thereby making debugging of complex simulation programs considerably easier. In
addition, modern random number generators are portable, thereby enabling the production
of identical number sequences on different computers and even different operating sys-
tems, compilers, and computer architectures. A program can thus be used and tested on
different computers with predictably identical results.

Random number generators are typically required to meet the following basic criteria:

1. They must be uniformly distributed within a specific range.
2. They must satisfy statistical tests of randomness, lack predictability, and there should

be no correlations between neighboring numbers of a sequence.
3. An algorithm should produce a large sequence of different numbers before repeating a

cycle.
4. The calculation should be very fast.

Let us consider each of these points in some detail. (1) Uniformly distributed numbers
are required to ensure no region of the parameter space used in a simulation is more proba-
ble than others. (2) Randomness and unpredictability are obviously required as the basis of
Monte Carlo simulations. Absence of correlations between nearby numbers of a sequence
is required to ensure there are no unintended autocorrelations or intercorrelations between
the generated simulation variables. (3) Given their algorithmic nature, pseudorandom num-
bers based on a finite number of bits architecture may feature two undesirable traits: Poor
designs lead to algorithms getting stuck on a specific value, for instance zero. The presence
of such a fixed end-point implies a sequence is usable only for a finite number of calls to
the generator. Good designs feature sequences that do not get stuck on a specific value
but eventually repeat: they are cyclical with a finite period. Obviously, cycles should be
as long as possible to ensure truly uniform and nonclumpy distributions. (4) Lastly, speed
is required to enable rapid and efficient simulations where the CPU’s time is spent on the
model calculations rather than the generation of random numbers.

13.3.2 Production of Uniform Deviates

There are numerous random number generators on the market (for a relatively recent re-
view, see [114]). These may be included as part of software packages such as Mathemat-
ica®, MATLAB®, and ROOT, or as standalone codes provided with compiler libraries.
Source codes are available from many vendors as well.

In essence, all generators use the same fundamental concept based on a multiplication
method called uniform deviates method. The method requires an integer r0 be chosen
as a seed, which provides a starting value, and two integer constants a and m. Successive

1 Actually, Monte Carlo simulations are now commonly used in all sciences.

2��8:�  /7��791 ������	 �	
���
�������������.4�:20/�7�4��0�.!��5.9�/10���� 09:��!��90::

https://doi.org/10.1017/9781108241922.015


648 Monte Carlo Methods

pseudorandom numbers ri are produced sequentially using the recursion relation

ri+1 = (a × ri) mod m, (13.11)

where mod stands for the “modulo” operation that yields the remainder of the left number
division by the integer m. Studies have demonstrated that with a careful choice of the
constants a and m, one can obtain finite sequences of numbers that appear to be randomly
distributed between 1 and m − 1. It thus suffices to divide the numbers by m to obtain
seemingly continuous random numbers in the range [0, 1[. The length of a sequence is
determined by the choice of the constants and is limited by the computer word size, that
is, the number of bits used in integer computation. For instance, values m = 37, and a = 5
lead to a sequence of 36 “random” numbers. Obviously, practical implementations involve
much larger constant values, which produce much longer sequences. There are also several
variations of this multiplication algorithm [114].

Detailed statistical studies must be made to ensure that untested random generators pro-
duce acceptable sequences of numbers. Failure to use generators abiding by the criteria
listed in the previous section may lead to erroneous results and conclusions. In the 1970s, a
number of commercial generators provided with FORTRAN compilers and operating sys-
tems featured unsuitable degrees of correlations. However, in recent years, better care has
been taken by suppliers, and commercially available generators are typically quite reliable.

The numbers produced by the multiplication algorithm, Eq. (13.11), are not truly ran-
dom, and one might be concerned about the existence of hidden correlations. A basic tech-
nique used to improve the generated sequences is to shuffle the numbers of a sequence. In
effect, one uses two sequences of numbers simultaneously with distinct values of constant
a and m: one sequence is stored in an array and a number from the second sequence is used
as an index to select numbers from the first sequence. Obviously, this technique is limited
by storage and capacity. Local shuffling within a block of numbers can be also used.

The ROOT environment provides four distinct uniform random generators named TRan-
dom, and TRandomX , with X = 1, 2, 3. The TRandom3, based on the “Mersenne Twister
generator” [141], features a period of about 106000, is quite fast, and is as such most likely
the best choice for the generation of uniform deviates. Note that the availability of several
distinct generators makes it possible to carry out calculations with more than one generator
and verify that the results are reasonably generator independent.

A discussion of techniques to evaluate the degree of correlation produced by a given
generator is beyond the scope of this textbook but may be found, for instance, in ref. [189].

13.3.3 Inversion (Transformation) Method

Consider the problem of generating random numbers according to a nonnegative function,
f (x), in some allowed range xmin ≤ x < xmax. We wish to produce numbers x randomly
in such a way that the probability of such generated numbers to be within the interval
[x, x + dx] is proportional to f (x) dx. The function f (x) does not need be normalized so
that its integral over the chosen applicability range equals unity. In fact, as discussed in the
previous section, a Monte Carlo technique can actually be used to evaluate that integral.
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649 13.3 Pseudorandom Number Generation

The inversion method is applicable to a function f (x) whenever it is possible to find
a primitive function F (x) and calculate its inverse F−1(x). Given that the goal is to pro-
duce random numbers in the range xmin ≤ x < xmax with probability f (x) dx, consider the
integral

∫ x

xmin

f (x′) dx′ =
∫ x

xmin

dF (x′) = F (x) − F (xmin) (13.12)

The weight associated to the integral in dF is unity. Effectively, this corresponds to hav-
ing uniformly distributed random numbers, that is, the distribution of F is uniformly dis-
tributed. One can then use a uniform random generator to select a value of F and use its
inverse F−1 to determine the corresponding value x. The integral of f (x) over the range
xmin ≤ x′ < x is a linear fraction R of the integral over the range xmin ≤ x′ < xmax which
one may write

∫ x

xmin

f (x′)dx′ = F (x) − F (xmin) = R (F (xmax) − F (xmin)) . (13.13)

Solving the preceding for F (x),

F (x) = R (F (xmax) − F (xmin)) + F (xmin), (13.14)

and inverting the function to obtain the value of x, one gets

x = F−1 (R (F (xmax) − F (xmin)) + F (xmin)) . (13.15)

The random generation of numbers distributed according to a function f (x) is thus rel-
atively straightforward and may be obtained according to the following basic algorithm.
First, use a uniform random generator bound between 0 and 1 to determine a value of
R, and next insert this value in Eq. (13.15) to produce a value of x randomly distributed
according to f (x).

Before we proceed with the implementation of the inversion method in two examples
below, note that, although simple and efficient, the method is unfortunately applicable only
in a very limited number of cases: those for which the function f (x) has an analytical
primitive (i.e., indefinite integral) F (x) easily invertible to provide an analytical solution. If
the function F (x) exists but cannot be inverted, Eq. (13.15) cannot be applied directly, but it
is nonetheless possible to obtain a generator by using a numerical inversion technique. For
cases where no primitive function F (x) exists, one must consider alternative approaches,
such as those presented in §§13.3.4 and 13.3.5.

Example 1: Linearly Distributed Random Numbers
Problem

Build a random generator that produces numbers linearly distributed, that is, according to
f (x) = ax, in an arbitrary range [xmin, xmax], with xmax > 0.
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Solution
The function f (x) is integrable, which means it is possible to use the inversion method.
The integral of f (x) is

y = F (x) = 1
2

ax2. (13.16)

Given a value y, one solves for x according to

x =
√

2y
a

. (13.17)

The inverse function F−1 may then be written

F−1(y) =
√

2y
a

. (13.18)

Now insert this expression into Eq. (13.15) to obtain a linearly distributed value of x:

x =
√

Rx2
max + (1 − R)x2

min. (13.19)

Example 2: Exponentially Distributed Random Numbers
Problem

Build a random generator that produces numbers distributed according to an exponential
distribution:

f (x) = ke−x/λ. (13.20)

Solution
The indefinite integral of the preceding exponential is F (x) = −kλe−x/λ. Its inverse is

F−1(y) = −λ ln
(
− y

kλ

)
. (13.21)

Application of Eq. (13.15) yields

x = −λ ln (R exp(−xmax/λ) + (1 − R) exp(−xmin/λ)) , (13.22)

where R is a uniformly distributed random number in the range [0, 1].

13.3.4 Acceptance/Rejection Method

Often times, the transformation method is not applicable because the analytical integral
of a function does not exist, or because, if it does exist, it is impossible to invert it.
One must then explore alternative methods. We first consider the acceptance/rejection
method, which is widely applicable provided the maximum fmax of the function f (x) is
known, that is, if the function satisfies f (x) ≤ fmax in the range of interest.

To apply this method, consider an arbitrary value of x in the range [xmin, xmax] has been
selected. The quantity f (x)dx is proportional to the probability of having this particular
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Fig. 13.1 Schematic illustration of the principle of the inversion+ acceptance hybrid method.

value of x. Given the function maximum fmax is known, one can express this probability as
f (x)/ fmax, and one can then use a uniformly generated random number in the range [0, 1]
to decide whether the selected value of x is accepted, that is, one accepts the value of x
provided the random number R is smaller than the relative probability f (x)/ fmax.

The acceptance/rejection method requires the use of two random numbers: the first is
used to select a specific value of x and the second to determine whether this value is ac-
cepted. It may then be implemented according to the following algorithm:

1. Generate two uniformly distributed random numbers r1 and r2 in the range [0, 1].
2. Use the first number r1 to select a value x with a uniform probability in the allowed

range [xmin, xmax]:

x = xmin + r1 (xmax − xmin) . (13.23)

3. Compare r2 with the ratio f (x)/ fmax; if r2 > f (x)/ fmax, and then reject this instance of
x and start over at step 1 for a new try. Otherwise retain the value of x as the final answer.

The acceptance/rejection method works for any function f (x) with an upper-bound fmax,
but it may become highly inefficient (and slow) if the function f (x) has large spikes or
varies dramatically over the range of interest [xmin, xmax]. The efficiency of a pseudorandom
generator method is defined as the probability that a value of x will be retained at any given
try. In the context of the acceptance/rejection method, it amounts to the ratio of the integral
of the function over the range [xmin, xmax] by the area fmax(xmax − xmin). The efficiency can
thus be low if the integral of f (x) is much smaller than the area, that is, if f (x) is in general
much smaller than fmax.

There are also cases when an upper bound cannot be defined. This is the case, for in-
stance, for functions of the form 1/xα , with α > 0, evaluated with a lower bound at zero.
Variable transformations may then be used to make the function smoother. For instance, us-
ing y = ln x would enable a roughly constant function over a narrow interval and therefore
yield a fairly large efficiency.

In view of the limited efficiency of the acceptance/rejection method, it is often conve-
nient to combine it with the inversion method discussed in the previous section. This is
accomplished, as illustrated in Figure 13.1, by using an envelope function g(x), which
satisfies the two following conditions: (1) The value of the function g(x) is such that
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Fig. 13.2 Schematic illustration of the principle of the composite inversion+ acceptance hybrid method.

f (x) ≤ g(x) everywhere over the interval of interest and (2) the function g(x) must have an
easily calculable primitive function G(x), which is invertible, that is, with a known analyti-
cal solution for G−1(y). A trial value x is generated according to x = G−1(R1), with uniform
deviate R1 ∈ [0, 1], and a second uniform deviate R2 ∈ [0, 1] is used to decide whether the
selected value of x shall be accepted and returned. The value is accepted if R2 is smaller
than the ratio f (x)/g(x). This hybrid method operates similarly as the acceptance/rejection
method but offers better efficiency because rather than choosing x values uniformly over
the interval of interest, one uses a function g(x) to presample x. Ideally, a function g(x)
mimics the overall behavior of the function f (x), thereby providing an increased efficiency.
The efficiency of the method is determined by the ratio of the integral of the two functions
over the interval. And, provided g(x) < fmax over the interval [xmin, xmax] of interest, one
finds the efficiency of this method is greater than that of the basic acceptance/rejection
method. The efficiency of the method is

ϵ =
∫ xmax

xmin
f (x) dx

∫ xmax

xmin
g(x) dx

>

∫ xmax

xmin
f (x) dx

fmax(xmax − xmin)
. (13.24)

The algorithm of this hybrid method can be summarized as follows:

1. Generate a random number R1 with uniform distribution in the range [0, 1], and use the
inverse function G−1(R1) to obtain a trial version of x.

2. Generate a random number R2 with uniform distribution in the range [0, 1].
3. If R2 > f (x)/g(x), reject this value of x value and start over. Otherwise retain the value

of x as the final answer.

The method first selects x according to the probability g(x) dx = dG(x). Then the accep-
tance/rejection part of the algorithm accepts x with a probability f (x)/g(x). The overall
probability of getting a specific value of x is thus g(x) dx × f (x)/g(x) = f (x) dx as needed
to properly sample the function f (x).

Functions used in theoretical calculations often feature several spikes, as illustrated in
Figure 13.2. It may then be difficult to find a “simple” function with similar behavior and
each spike may have to be handled separately. This is achieved by partitioning the range
of interest in n subdomains where one can apply n sampling functions gk (x), with k =
1, . . . , n. Clearly, each of the functions must satisfy the condition f (x) ≤ gk (x) in their
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respective range of validity and have an invertible primitive function G−1
k (y). One can thus

define a composite function g(x) as

g(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

g1(x) for xmin ≤ x < x1

· · · · · ·
gk (x) for xk−1 ≤ x < xk

· · · · · ·
gn(x) for xn−1 ≤ x < xmax

(13.25)

such that the functions gk (x) have primitive functions, and can be inverted. Generation of
pseudorandom numbers may then be achieved with the following algorithm:

1. Generate a uniform deviate R1 ∈ [0, 1[ to select an integer value k satisfying Pk−1 ≤
R1 < PK at random in the range [1, n], based on the cumulative probabilities Pk =∑k

i=1 pi for 1 ≤ k ≤ n and P0 = 0, where the coefficients pi represent integrals of the
functions gi(x) in their respective ranges of applicability

pi =
∫ xmax,i

xmin,i

gi(x) dx. (13.26)

2. Given the function gk selected, generate a random number R2 with uniform distribution
in the range [0, 1[ and use the inverse method to generate a value x according to

x = G−1
k

(
Gk (xmin,k) + R2

[
Gk (xmax,k) − Gk (xmin,k)

])
(13.27)

3. Generate a random number R3 and compare it to the ratio f (x)/gk (x); if larger, then
reject the value and return to step 1 for a new try. Otherwise, retain and use the most
recent value of x as the final answer.

13.3.5 Integrated HistogramMethod

The Integrated Histogram method is a numerical technique based on the inversion
method discussed in §13.3.3. It is commonly used either as a practical technique to han-
dle non-integrable functions or for the generation of random numbers based on histograms
measured experimentally, particularly in the context of analyses of the performance of a
measurement or detection system.

Recall that the inversion method requires inversion of the indefinite integral, F (x), of a
function f (x) one wishes to sample. The integrated histogram method replaces the function
f (x) by a histogram h(x) meant to be a reasonable representation or approximation of
the function. Additionally, it replaces the analytical inversion of the function F (x) by a
numerical inversion based on a binary search across Hx, a histogram consisting of a running
sum of hx, as schematically illustrated in Figure 13.3. Let us examine the method in more
detail.

Consider the generation of random numbers in the range [xmin, xmax] of interest. The
basic idea of the method is to replace the function f (x) by a histogram hx with sufficiently
many bins to enable a reasonable representation of the function. If f (x) is known exactly,
one has the latitude to decide the precision with which the histogram must be binned.
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Fig. 13.3 Illustration of the integrated histogrammethod. The solid line represents the cumulative distribution function, F (x), of
the PDF f (x), shown as a dotted line. The random number R is produced with a uniform PDF in the range [0, 1]. The
method outputs xout, which corresponds to the middle of binm satisfying the condition (13.30). The functions f (x)
and F (x) are here plotted with 1,000 bins to give the illusion of a continuous function.

If the histogram is obtained from a measurement, one can only hope that the statistical
accuracy and the binning are both sufficient to obtain a reasonable representation of f (x).
To simplify, let us assume the histogram is partitioned in n bins of equal width $x in the
range [xmin, xmax]. Formally, the content of each bin, hx(i), with i = 1,…, n, is given by the
integral of the function f (x) over the interval spanned by the bin:

hx(i) =
∫ xmax,i

xmin,i

f (x) dx, (13.28)

where xmin,i = xmin + (i − 1) × $x and xmax,i = xmin + i × $x. In practice, if the bins are
sufficiently narrow, one may replace the preceding integral by f (xi)$x where xi is the
midpoint of each bin. It may also be sufficient to use the (average) value of the function in
the bin rather than the area under the curve. The definite integral F (x) − F (xmin) may then
be replaced by the sum

Hx(m) ≡
m∑

i=1

hx(i). (13.29)

In the original inversion method, one uses a linear fraction F (x) = R(F (xmax) − F (xmin))
determined by a random number R to obtain a value x. This linear fraction is here replaced
by R × Hx(n) or simply R if the sum Hx(n) is normalized to unity. One must then find the
value m satisfying

Hx(m − 1) ≤ R × Hx(n) < Hx(m). (13.30)

The generated value x may then be chosen has the middle of bin m. Alternatively, one can
carry out a linear or quadratic interpolation based on nearby bins Hx(m ± 1). For suffi-
ciently narrow bins, the method produces random deviates that mimic the function f (x)
(or the histogram representing the function).

The search for the value m that satisfies the preceding condition is a weakness of the
method. If the number of bins, n, is large, the task of finding which value m satisfies the
condition can be rather CPU intensive. A linear search, that is, proceeding by systematic
inspection of all values of m starting from 1, takes an average of n/2 steps. However,
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a binary tree search requires an average number of steps that scales as ln n and is thus
considerably faster for histograms with a large number of bins.

13.3.6 Multidimensional Pseudorandom Generation

The simultaneous generation of random numbers for a system involving n variables may
be handled as the random selection or production of an n-dimension vector x⃗ in an n-
dimensional space. There are two basic methods, each with several variations, to handle
the generation of vectors x⃗ in an n-dimensional space.

The first method assumes the generation of numbers can be factorized (at least approx-
imately) whereas the second method is applicable whenever the range of the components
exhibit a simple hierarchical relation.

Factorization Method
Production of random numbers distributed according to a function f (x⃗) with the factor-
ization method is possible provided there exists a function g(x⃗) everywhere equal or larger
than f (x⃗) and which can be factorized into a product of n distinct functions:

g(x⃗) = g1(x1) × g2(x2) × · · · × gn(xn) =
n∏

i=1

gi(xi), (13.31)

where xi, i = 1, 2, n are the components of the n-dimensional vector x⃗. Each of the func-
tions gi(xi) may be simple or composite. The generation of vectors proceeds as follows:

1. First generate n xi values independently using each of the gi functions.
2. Generate a random number R in the range [0, 1] and compare it to the ratio f (x)/g(x);

if R is smaller than the ratio, retain the point, otherwise repeat step 1.

If the function f (x) is itself factorable as a product of n functions (one for each dimension),
it then suffices to set g(x) = f (x) and the method reduces to step 1.

Hierarchical Boundary Conditions Method
The generation of random numbers can become an arbitrarily complicated problem if the
ranges of the n components of the vector x⃗ are interdependent. In the simplest cases, the
ranges of the n components are independent of each other and the generation of x⃗ then takes
place in an n-dimensional hypercube. But there can be systems such that the generation of
the different components of x⃗ have intricate interdependencies. This would be the case, for
instance, if the range of x3 depends on x2 whose range itself depends on the value of x1 or
other values, etc.

The hierarchical boundary conditions method is useful if the boundaries of allowed re-
gions can be written in a form where the range of x1 is known, the allowed range of x2

depends only on x1, that of x3 only on x1 and x2, and so on, until xn whose range may
depend on all the preceding variables. Under such conditions, it may be possible to find
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a function g(x) that can be integrated over x2 through xn to yield a simple function of x1,
according to which x1 is selected. Having done that, x2 is selected according to a distri-
bution which now depends on x1, but with x3 through xn integrated over. The procedure is
continued until xn is reached. In the end, the ratio f (x)/g(x) is used to determine whether
to retain the point.

13.3.7 Gaussian Generator

By virtue of the central limit theorem, a superposition of n random variables (i.e., a sum)
leads to a Gaussian distribution in the limit n → ∞. The Gaussian PDF is thus of spe-
cial interest since it may be used to represent the fluctuations of a wide variety of pro-
cesses and systems. One indeed finds that many random observables and systems can be
described to a very good approximation with a Gaussian PDF. However, the generation
of Gaussian deviates is not a trivial task. Indeed, first note that the Gaussian distribution
cannot be integrated analytically. This implies one cannot use the inversion method and
must resort to alternative techniques. Obviously, the rejection method is readily applica-
ble for a Gaussian. However, it is quite inefficient and slow because the function has tails
extending to infinity. Alternatively, one might consider using the central limit theorem it-
self since the sum of n numbers generated according to a uniform random generator in
the range [0, 1] has a Gaussian distribution in the large n limit. But this method is also
rather inefficient and CPU-intensive given the production of a single Gaussian deviate as
a sum requires the generation of a large number of uniform deviates. A much more effi-
cient technique is based on the simple mathematical construction discussed in the text that
follows.

A Gaussian PDF depends on two parameters: a centroid µ and a width σ . One might
thus have the impression that an infinite number of different generators might be required
to match arbitrary values of µ and σ . This is not the case, however, since any Gaussian can
be mapped onto the standard normal distribution φ(z) defined such that the probability of
finding z in the interval [z, z + dz] is given by

φ(z)dz = 1√
2π

exp
(

− z2

2

)
dz. (13.32)

A simple change of variable x = σ z + µ thus provides for a Gaussian PDF with arbitrary
mean µ and standard deviation σ . Indeed, since z = (x − µ)/σ , and dz = dx/σ , one gets

pG(x)dx = 1√
2πσ

exp
(

− (x − µ)2

2σ 2

)
dx. (13.33)

Gaussian deviates with arbitrary mean µ and standard deviation σ may thus be obtained
by scaling random numbers z generated with a standard normal distribution according to
x = σ z + µ.

Normally distributed random numbers can be efficiently produced with an algorithm
devised by Box and Muller [57]. Although a one-dimensional Gaussian PDF is not in-
tegrable, a simple transformation enables the integration of a two-dimensional Gaussian.
It is thus possible to efficiently produce pairs of Gaussian deviates. Indeed, consider the
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two-dimensional (standard) normal distribution defined as follows:

φ2(x, y) = 1
2π

exp
(

−x2 + y2

2

)
= φ(x)φ(y). (13.34)

The technique introduced by Box and Muller is based on the transformation

x =
√

−2 ln r cos 2πφ, (13.35)

y =
√

−2 ln r sin 2πφ, (13.36)

where r and φ are two uniformly distributed deviates in the semi-open range ]0, 1]. The
applicability of the method is readily verified since by definition of the variables x and y
one gets

x2 + y2 = −2 ln r, (13.37)

exp
(

−x2 + y2

2

)
= exp(ln r) = r. (13.38)

Values of r and φ uniformly distributed in the range ]0, 1] thus indeed map onto Gaussian
deviates x and y. It is consequently possible to write a computer function that produces two
Gaussian deviates per call to the function. The method is very CPU-efficient because it
requires the generation of (only) two uniform deviates to produce two Gaussian deviates.

13.4 Selected Examples

We consider a few practical examples of random number generation commonly encoun-
tered in nuclear and particle physics.

13.4.1 Generation of Random Two-Dimensional Vectors

Let us begin by considering the generation of random vectors r⃗ in a two-dimensional con-
figuration space. Obviously, two random numbers will be required for each random vector.
However, one has a choice of representation: should one express the vectors in Cartesian
coordinates or in polar coordinates? In the first case, one would have to generate two num-
bers rx and ry corresponding to positions along axes x and y. In the second case, one needs
to produce a radius, r, and a polar angle θ .

The choice of representation shall depend on the specificities of the problem considered,
as illustrated in Figure 13.4. For rectangular geometry involving, for instance, the simu-
lation of particles entering detectors of rectangular cross section, it is obviously simplest
to generate numbers x and y in Cartesian coordinates corresponding to the position of the
particle’s entry point along the face of the detector. On the other hand, if the vector r⃗ repre-
sents a displacement bound in some range rmin ≤ |⃗r| < rmax, it might be more convenient
to generate vectors in terms of radii r and polar angles θ .

To generate a random position uniformly in a rectangle defined by two corners
(xmin, ymin) and (xmax, ymax), it is simplest to use rectangular coordinates as illustrated in
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658 Monte Carlo Methods

Fig. 13.4 Illustration of two geometries used for the generation of 2D random vectors. (a) Rectangular geometry, (b) circular
geometry.

Figure 13.4a:

x = xmin + r1 × (xmax − xmin) , (13.39)

y = ymin + r2 × (ymax − ymin) , (13.40)

where r1 and r2 are random numbers uniformly distributed in the range [0, 1].
The generation of random displacements expressed in polar coordinates constitutes a

more interesting case. If all directions are uniformly probable, the direction may be ran-
domly produced with θ = 2πr1 in which r1 is a uniform deviate in the range [0, 1]. For
displacement magnitudes uniformly distributed in the range r ≤ rmax, one might initially
be tempted to use a linear expression such as r2 × rmax. Note, however, that in polar co-
ordinates, the element of area is rdθ dr. Consequently, uniform sampling in r would lead
to a decreasing number of “hits” per unit of area for increasing values of radius r. How-
ever, given the element of area can also be expressed as dθd

(
r2

)
, the sampling should be

uniform in r2 rather than r and one writes

r2 = r2
min + r2 ×

(
r2

max − r2
min

)
, (13.41)

where r2 is a uniform deviate in the range [0, 1]. Formally, this can be derived as follows:
since by assumption the displacement density is set to be uniform per unit of area, the
displacement density can be written

dN
dxdy

= 1
ATOT

, (13.42)

where ATOT is a constant denoting the total area under consideration, that is, the fiducial
area in which displacements can be generated. Transforming the (x, y) coordinates in polar
coordinates (r, θ ), one gets

dN
drdθ

= dN
dxdy

∣∣∣∣
∂ (x, y)
∂ (r, θ )

∣∣∣∣ = r
ATOT

. (13.43)

The PDF determining the r distribution is thus

f (r) = dN
dr

= 2πr
ATOT

. (13.44)
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Fig. 13.5 Illustration of random number generation with complex masks featuring a combination of inclusion (gray) and
exclusion regions (white).

Assuming minimum and maximum radii rmin and rmax, let us proceed to derive a formula
for the generation of r values using the inversion method. Integration of f (r) yields F (r)
as follows:

∫ r

rmin

f (r)dr = F (r) − F (rmin) = π

ATOT

(
r2 − r2

min

)
. (13.45)

Finally, inversion of F (r) produces the anticipated result:

r =
√

r2
(
r2

max − r2
min

)
+ r2

min, (13.46)

where r2 is a random uniform deviate in the range [0, 1]. The displacement vector is thus−→
$r = (r cos θ , r sin θ ).

We have assumed that the radial displacements would generate a uniform density per
unit of area. This is unlikely to be the case in general. A more appropriate probability
density f (r) that matches the specificities of a given system has to be identified and the
size r of the displacement calculated accordingly. For instance, if f (r) is constant in the
range [rmin, rmax], than radii may be generated according to r = r2 (rmax − rmin) + rmin. If
instead, f (r) = 1/r, then one gets r = exp [r2 (ln rmax − ln rmin) + ln rmin].

Perfectly rectangular or circular geometries are obviously uncommon in real-world situ-
ations. And it is in fact where Monte Carlo methods find their most interesting and power-
ful uses. In two-dimensional geometries involving nonrectangular boundaries (i.e., curved
boundaries) or forbidden regions, one must exercise judgment and creativity as to what
shall constitute the most CPU-effective generation process. As illustrated in Figure 13.5,
one might, for instance, use a large rectangle that encloses the fiducial region (i.e., the
region of interest) and use “masks” to dismiss points produced in forbidden regions.

In the case illustrated in Figure 13.5, this amounts to having mathematical formulation
of the boundaries, that is, minimum and maximum value expressions for both the x and y.
This can be accomplished with one or multiple functions. Alternatively, one can partition
the sample space and use a two-step approach: for instance, if all positions are uniformly
probable (in the allowed regions), one first randomly selects in which partition the position
should be generated according to the relative size of the area of the various partitions, and
subsequently generate a specific position within the selected partition.
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13.4.2 Generation of Random Three-Dimensional Vectors

As with two-dimensional vectors, one must choose a coordinate system for the generation
of random three-dimensional vectors. The choice of Cartesian coordinates, cylindrical co-
ordinates, spherical coordinates, or other coordinate systems is determined by convenience
and the symmetry of the problem at hand. Since the generation in Cartesian and cylindrical
coordinates is rather similar to the generation of two-dimensional vectors, we focus on the
generation of vectors using spherical coordinates, which requires the production of a radius
r, a polar angle θ , and an azimuthal angle φ.

Let us consider all positions within a sphere of a radius rmax to be equally probable. The
radius r is to be generated in the range [0, rmax], while the polar and azimuthal angles are in
the ranges 0 ≤ θ ≤ π and 0 ≤ φ < 2π , respectively. Since all positions are equally proba-
ble, the number of points per unit of volume r2 sin θdθdφdr must be generated uniformly.
Rewriting the element of volume dφd(cos θ )d(r3)/3, we conclude that equally probable
positions, within a sphere of radius rmax, may be achieved by generating values for φ,
cos θ , and r3 using three random numbers ri, i = 1, 2, 3 in the range [0, 1] as follows:

φ = 2πr1, (13.47)

cos θ = 2r2 − 1, (13.48)

r3 = r3r3
max. (13.49)

Note that by generating cos θ in the range [−1, 1], one ensures that all polar angles in the
range [0,π ] are produced, and that all elements of volumes, being proportional to d cos θ ,
are equally probable. Likewise, the generation of r3 with a uniform PDF, rather than r,
insures that the point density remains constant throughout the volume of the sphere.

The generation of three-dimensional vectors whose probability are functions of the co-
ordinates r, θ , and φ should be treated according to the specificities of the system to be
simulated. Section 14.1.1 discusses the generation of momentum vectors according to a
Maxwell–Boltzmann distribution as an example of nontrivial dependence on the length
(radius) of the vector. Dependencies on θ and φ are obviously also possible. For instance,
anisotropic flow production in heavy ion collisions may be simulated with a simple func-
tion of the azimuthal angle φ presented in §14.1.5.

13.4.3 Weighing Method

The generation of one or several random variables according to a specific PDF is not al-
ways practical or even desirable because the PDF might be too complicated or because the
geometry and boundary conditions at hand are too intricate. It remains, nonetheless, that
the relative frequency of random variables may have to obey specific probability density in
order to represent the particular phenomenon being modeled. The weighing method may
then provide a simple solution.

Let us consider the generation of “events” consisting of n random numbers x⃗ =
(x1, x2, . . . , xn) in some domain D. Rather than generating each x⃗ according to a com-
plicated procedure, one may elect to produce each of the values xi, i = 1, . . . , n according
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Fig. 13.6 Random triple Gaussian deviates generated with the weighing method according to Eq. (13.50).

to uniform generators, each in some appropriate or convenient range. The technique then
involves the assignment of a weight to each x⃗ produced according to some weight function
W (x⃗). The variable or variables required are first generated according to uniform distribu-
tions in their respective ranges of interest. Once the variables are generated, one verifies
whether the event lies within the domain of interest. If it does not, the event is simply
ignored and the procedure repeated. If the event is deemed of interest, one calculates its
weight according W (x⃗). Then, rather than counting each event as a unit, one increments
histograms of interest in proportion to the weight W (x⃗) of the event.

Consider, as a simple example, the production of events consisting of a single random
value x to be distributed according to a triple Gaussian distribution in the range −3 < x ≤ 3
for specific values of the means µi, widths σi, and normalizations fi for i = 1, . . . , 3. Let us
ignore the fact that there exists several techniques to obtain Gaussian deviates and generate
values x according to a uniform distribution in the range −3 < x ≤ 3 and calculate for each
value of x, the weight W according to

W (x) =
3∑

i=1

fi
1√

2πσi
exp

[
− (x − µi)2

2σ 2
i

]
. (13.50)

Figure 13.6 displays a triple Gaussian distribution obtained with 10,000 events and µ1 =
−2, σ1 = 0.75; µ2 = 0.6, σ2 = 0.30; µ3 = 2.5, σ3 = 0.60.

The weight technique is particularly useful for the simulation of events involving several
variables that are correlated but difficult to generate ab initio. It also presents the advantage
that given a set of existing events, one can apply weights a posteriori and study, for instance,
the effect of different weight functions on measured distributions.

Exercises

13.1 Use the inversion method to create a generator producing random numbers according
to a parabolic PDF, f (x) = ax2. First find the inversion expression and then imple-
ment it in a computer program. Use your program to generate a histogram of the PDF
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in the range −10 ≤ x < 10, and inspect the histogram for 100, 500, 1,000, 10,000 or
more events.

13.2 Use the acceptance/rejection method to create a generator producing numbers ac-
cording to f (x) ∝ x exp(−x2/2σ 2) in the range [0, 10].

13.3 Use the acceptance/rejection method to create a generator producing numbers ac-
cording to f (x, y) ∝ x2y2 exp

(
−

(
x2 + y2

)
/2σ 2

)
in the domain −4 ≤ x < 4, −5 ≤

y < 5, for σ = 1.5.
13.4 Use the MC method defined by Eq. (13.7) to calculate the area of a circle and deter-

mine the value of π .
13.5 Write a function that produces Gaussian deviates based on the Box and Muller

method.
13.6 Write a function that produces Gaussian deviates based on the central limit theorem

and uniform deviates in the range [0, 1]. Study the precision of the method by varying
the number of deviates used in the sum.

13.7 Write a function that produces Gaussian random numbers based on the integrated
histogram inversion method. Hint: Select a domain of applicability and produce a
table or histogram containing a running integral of the Gaussian distribution.

13.8 Find a method to generate Gaussian random numbers in the x–y plane with expecta-
tion values E[x] = µx, E[y] = µy, and variances Var[x] = πy, and Var[y] = πx.

13.9 Using the generator written in Problem 13.1, study the precision of the mean, vari-
ance, skewness of the distributions obtained with 100, 500, 1,000, 10,000 or more
events.
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14 Collision and Detector Modeling

In particle and nuclear physics, Monte Carlo simulations are used for a wide variety of
purposes, including prediction and interpretation of results, studies of the performance of
detectors and their components, as well as corrections of measured data to obtain accurate
outcomes that are independent of experimental or instrumental effects. A detailed cov-
erage of all the types of simulations used by particle and nuclear physicists is thus well
beyond the scope of this text. We focus our discussion, in §14.1, on basic techniques used
in the simulation of simple physics observables, such as momentum spectra or correlation
functions, while in §14.2, we present simple techniques used in the simulation of detector
performance and data correction for smearing and efficiency effects.

14.1 Event Generators

Simulations of particle production by elementary particles or nuclei collisions are based
on phenomenological and theoretical models of varying complexity. A large variety of
models predicated on a wide range of assumptions are described in the literature and used
as practical event generators by theoreticians and experimentalists to describe and inter-
pret measured results or analyze the performance of particle detectors. Commonly used
event generators for the simulation of proton–proton collisions include JETSET [174],
PYTHIA [175], HERWIG [66], PHOJET [52], EvtGen [133], and several others. There
is an even greater variety of models for the generation and simulation of heavy-ion colli-
sions. Early models used in the simulation of AGS, SPS, and RHIC collisions include HI-
JING [188], RQMD [176], URQMD [29], AMPT [137], VENUS [191], and EPOS [192].
More recent developments for the study of the interaction of jets within the medium pro-
duced in heavy-ion collisions include Martini [169], Jewel [198], Cujet [61], YaJEM [164],
and many others. As noted earlier, we restrict the scope of our discussion to a small selec-
tion of phenomenological and theoretically motivated models, which illustrate how more
complex generators are built and can be used to carry out simple simulations and analyses.

14.1.1 Basic Particle Generators

Basic simulations of particle production in elementary particle collisions often assume
that produced particles are uncorrelated and have a kinematical distribution determined by
a specific PDF. The choice of PDF used in a particular simulation is dictated by the goals of

663
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664 Collision and Detector Modeling

the study and the needs for realistic reproduction of the attributes of collisions of interest.
We focus our discussion on a few illustrative examples.

Isotropic Exponential Distribution
We first consider the simulation of isotropic particle production according to an exponential
momentum distribution

dN
d p

= 1
λ

e−p/λ (14.1)

over the momentum range [pmin, pmax].
The generation of random momentum vectors requires three random numbers, r1, r2,

and r3, in the range [0, 1]. Isotropic emission is achieved by generating polar and azimuth
angles according to

φ = 2πr1 (14.2)

cos θ = 2r2 − 1,

whereas the generation of particle momenta according to the exponential distribution,
Eq. (14.1), can be accomplished using the inversion technique, Eq. (13.22), introduced
in §13.3.3:

p = −λ ln (r3 exp(−pmax/λ) + (1 − r3) exp(−pmin/λ)) , (14.3)

where pmin and pmax define the range over which the momentum spectrum is to be gener-
ated.

Power-Law Distribution
Particle production, particularly at high momentum, can often be described as a power law
over a restricted momentum range.

Strictly speaking, a power-law distribution is a function characterized by a scale invari-
ance. For instance, a function of the type f (x) = axk is invariant in form under scaling of
the argument x by a constant factor c:

f (cx) = a (cx)k = ck f (x) ∝ f (x). (14.4)

Indeed, scaling the argument by a factor c only multiplies the amplitude of the function
by a constant value. This behavior is in principle readily identified graphically, with data,
by plotting the logarithm of the dependent variable f as a function of the logarithm of the
independent variable x. The end result is a straight line with a slope equal to the exponent
of the power law:

ln( f ) = ln(axk ) = k ln(x) + ln(a). (14.5)

Approximate power-law behaviors have been identified in several areas of science (e.g.,
scale of earthquakes, sizes of moon craters, wealth of individuals, etc.). In particle physics,
one observes that the production of high-momentum particles can be described with a
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steeply decreasing power law originating from the approximate self-similar behavior asso-
ciated with parton fragmentation.

Power-law probability distributions are often extended by adding a slowly varying coef-
ficient S(x):

f (x) ∝ S(x)x−α, (14.6)

where α > 1, and S(x) is required to satisfy limx→∞ S(tx)/S(x) = 1 for an arbitrary con-
stant t > 0. Obviously, for S(x) = c, with c a constant, the power law holds for all positive
values of x. If S(x) is not exactly constant but varies very slowly, it may possible to find a
minimum value xmin beyond which the power law takes the form

ppl(x) = α − 1
xmin

(
x

xmin

)−α

, (14.7)

where the coefficient (α − 1)/xmin defines the PDF’s normalization.
Moments µn of the power-law function ppl(x) above the cutoff value xmin are obtained

by direct integration. One finds (see Problem 14.1):

µn =
∫ ∞

xmin

xn ppl(x) dx = α − 1
α − 1 − n

xn
min, (14.8)

which is strictly defined only for n < α − 1. One readily verifies that moments n ≥ α − 1
indeed diverge. For instance, for α < 2, the mean and all higher moments are infinite while
for 2 < α < 3, the mean exists but all other moments (including the variance) do not.

Power-law behaviors are typically observed over a finite range of the independent vari-
able x beyond which they break down. For instance, in particle physics a strict power-law
behavior as a function of the momentum (or transverse momentum) of the produced par-
ticles would imply that particles with arbitrarily large momenta can be produced. Such a
behavior is clearly impossible because it would violate conservation of energy: given a
system with a specific collision energy, there is an energy bound beyond which individual
particles cannot be produced. This problem can be solved or at the very least suppressed
with the introduction of a power law with exponential cutoff:

fplc(x) ∝
(

x
xmin

)−α

e−λx, (14.9)

where the exponential e−λx dominates the power law at very large values of x. Strictly
speaking, this function does not globally scale as and is not asymptotically a power law,
but it does exhibit approximate scaling behavior between the minimum xmin and an upper
cutoff determined by the exponential.

Generation of random numbers according to the power law Eq. (14.7) is readily achieved
with the transformation method (§13.3.3) since the function fpl(x) is integrable. One finds
(see Problem 14.2) that random continuous values of x distributed according to fpl(x) can
be obtained with

x = xmin (1 − r)
1

1−α , (14.10)
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where r is a uniformly distributed random number in the range [0, 1]. Note that for ap-
plication in high energy physics, one may substitute either the momentum p or transverse
momentum pT of the particle for x, as we discuss in the next section.

Flat Rapidity Distribution
The production of particles in high-energy collisions, either proton–proton or nucleus–
nucleus, is hardly isotropic and is typically better described with an approximately flat
rapidity distribution – particularly in the central rapidity region, i.e., y ≈ (ybeam + ytarget)/2.
The invariant cross section Eq. (8.73) may then be modeled according to a function of the
form

E
d3σ

d p3
= d2σ

πd p2
T dy

= k f (pT ), (14.11)

where k = dσ/dy is assumed to be constant in the kinematical range of interest, and f (pT )
is a suitably chosen model for the transverse momentum spectrum of produced particles.
Depending on the pT range of interest, f (pT ) can be chosen to be an exponential function
(as in §14.1.1), a power-law distribution (§14.1.1), a Maxwell–Boltzmann momentum dis-
tribution (§14.1.1) or other appropriate functions. For illustrative purposes, let us consider
the generation of particles with a flat rapidity distribution and a power-law distribution in
pT , which should be suitable (approximately) for the simulation of high pT particles or
jets.

The azimuth angle is assumed to be distributed uniformly and is generated according to

φ = 2πr1, (14.12)

where r1 is a uniformly distributed random number in the range [0, 1]. The rapidity distri-
bution is assumed to be flat in a range [ymin, ymax] and is thus generated with

y = ymin + r2 (ymax − ymin) , (14.13)

where r2 ∈ [0, 1]. Finally, the pT of the particle is produced according to

pT = pT,min (1 − r3)
1

1−α , (14.14)

with r3 ∈ [0, 1], a preset minimum transverse momentum pT,min, and a suitably chosen
value of α. The energy and moment components of the particle may then be obtained
according to Eqs. (8.39 and 8.41):

E = mT cosh y, (14.15)

px = pT cos φ, (14.16)

py = pT sin φ, (14.17)

pz = mT sinh y, (14.18)

with mT =
√

p2
T + m2, where m is the mass of the particle.
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In certain situations, it might be desirable to produce particles according to a flat pseu-
dorapidity, η, distribution. One then generates η according to

η = ηmin + r2 (ηmax − ηmin) . (14.19)

The polar angle θ of the particle is obtained by inverting Eq. (8.31)

θ = 2 tan−1 [exp(−η)] , (14.20)

and the momentum components are

px = pT cos φ sin θ , (14.21)

py = pT sin φ sin θ , (14.22)

pz = pT cos θ , (14.23)

while the energy is

E =
√

p2
x + p2

y + p2
z + m2. (14.24)

Maxwell–BoltzmannMomentum Distribution
The Maxwell–Boltzmann distribution, introduced in §3.16, describes the momentum dis-
tribution of molecules of nonrelativistic systems in (near) thermodynamic equilibrium. It
is often used to model thermalized particle production in heavy-ion collisions.

It is convenient to express the Maxwell–Boltzmann distribution as

fMB( p⃗) =
(

1
2πmkT

)3/2

exp

(

−
p2

x + p2
y + p2

z

2mkT

)

, (14.25)

which may also be written

fMB( p⃗) = 1
N

d3N
p2d pd cos θdφ

= f1D(px|T ) f1D(py|T ) f1D(pz|T ), (14.26)

with

f1D(pi|T ) =
(

1
2πmkT

)1/2

exp
(

− p2
i

2mkT

)
. (14.27)

One can then generate momenta distributed according to a Maxwell–Boltzmann distribu-
tion using three random Gaussian deviates px, py, and pz determined by

P(pi) ∝ exp
(

− p2
i

2σ 2

)
, (14.28)

with σ = mkT . The generation of px, py, and pz as Gaussian deviates produces an isotropic
distribution. In order to obtain particles with a flat rapidity distribution and a Maxwell–
Boltzmann transverse profile, it suffices to generate px and py according to the preceding
PDF and the rapidity according to Eq. (14.13). The pz component of the momentum and
the energy are then obtained with Eqs. (14.18) and (14.15), respectively.
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Fig. 14.1 Definition of kinematic variables required for the simulation of two-body decays. (a) Rest frame of the parent particle.
(b) Laboratory frame.

14.1.2 Simulation of Resonance Decays

Corrections for detection efficiencies, acceptance, and other instrumental effects require
that one can accurately model the decay of short-lived particles and take into account both
kinematical and instrumental effects. We first consider the decay of narrow-width reso-
nances, which can be represented by a fixed mass value. Decay simulations involving finite
widths are considered next, as are examples of three-body decay that may be represented
as a succession of two-body decays.

Fixed-Mass Two-Body Decays
The generation of two-body decays involves (1) the generation of the two daughter particles
in the rest frame of the parent, (2) generation of the kinematic parameters of the parent in
the laboratory reference frame, and (3) boost of the two daughter particles according to the
speed and direction of the parent. The relevant variables are defined in Figure 14.1.

In the rest frame of the parent, the two daughter particles have momenta of equal mag-
nitude, p∗, but in opposite directions. It is thus sufficient to generate the momentum vector
of the first particle p⃗ ∗

1 , and the momentum of the second particle is simply p⃗ ∗
2 = −p⃗ ∗

1 .
The magnitude of the momentum is determined by the mass M of the parent, as well as the
masses m1 and m2 of the daughter particles according to Eq. (8.165):

p∗ = 1
2M

{[M2 − (m1 − m2)2][M2 − (m1 + m2)2]}1/2. (14.29)

The generation of the polar and azimuth angles of particle 1 are carried out according to

φ∗
1 = 2πr1, (14.30)

cos θ∗
1 = 1 − 2r2, (14.31)
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where r1 and r2 represent random numbers in the range [0, 1] generated for each decay.
The CM momentum p⃗ ∗

1 and energy E∗
1 of particle 1 is thus

p∗
1,x = p∗ sin θ∗

1 cos φ∗
1 , (14.32)

p∗
1,y = p∗ sin θ∗

1 sin φ∗
1 , (14.33)

p∗
1,z = p∗ cos θ∗

1 , (14.34)

E∗
1 =

√
(p∗)2 + m2

1, (14.35)

and for particle 2, one has

p∗
2,x = −p∗

1,x, (14.36)

p∗
2,y = −p∗

1,y, (14.37)

p∗
2,z = −p∗

1,z, (14.38)

E∗
2 =

√
(p∗)2 + m2

2. (14.39)

Boosting the daughter particles in the laboratory frame requires knowledge of the direction
and speed of the parent particle. In turn, generation of the momentum vector of the parent
p⃗P requires a specific production scenario or model such as those discussed in prior sec-
tions. Let us here assume that the momentum of the parent p⃗P is known. Its velocity vector
may then be calculated according to

β⃗P = p⃗P

EP
. (14.40)

The daughter particles i = 1, 2 can thus be boosted in the laboratory frame (Problem 14.3)
according to

p⃗ lab
i = p⃗ ∗

i + [(γP − 1) p⃗ ∗
i · β̂P + γPE∗

i ]β̂P, (14.41)

where γ = (1 − β2
P)−1/2.

Finite-Width Resonance Two-Body Decays
While energy-momentum conservation constrains the energy and momenta of particles
produced in elementary particle collisions, it does not uniquely specify the mass of short-
lived particles, which can then nominally be produced event by event with values deter-
mined by a Breit–Wigner distribution (§3.15). Simulations of the decays of short-lived
(i.e., finite width) resonances thus requires generation of a mass value M for the parent
according to

fBW (M |M0,*) = 1
π

*/2

*2/4 + (M − M0)2 , (14.42)

where M0 and * are the nominal mass and width of the parent particle, respectively. Note
that since the Breit–Wigner distribution has no a priori bounds, imposing an artificial
upper-value cut to account for kinematical limitations encountered in finite beam energy
experiments may be required. A lower cut must de facto be imposed to account for the
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Laboratory reference frame

x,y

θ,ϕ

pM

p23

p1

p2

p3 θ23

θ1,23

1

2

3

Fig. 14.2 Three-body decays as sequential two-body decays. In general, the two decays do not occur in the same plane.

finite masses of the particles and the need for | p⃗∗| > 0. With the mass in hand, the gener-
ation of daughter particles proceeds in the same manner as for a fixed mass covered in the
previous paragraph.

Three-Body Decays Involving Sequential Two-Body Decays
A number of three-body decays may be described as a sequence of two-body decays, as
illustrated in Figure 14.2.

Simulations of the decay of a parent particle in terms of a sequence of two-body decays
proceeds quite similarly as the simpler case of a single two-body decay. Given the mass
M of the parent particle, one generates the first decay into particles of mass m1 and m23

according to the two-body decay algorithm. If the mass m23 is not fixed, one must first
determine its value according to an appropriate PDF such as a Breit–Wigner distribution.
Once the momentum p⃗23 is determined, one can then proceed to decay the particle into
particles 2 and 3 using the two-body decay algorithm.

14.1.3 Simple Event Generators

The generation of collision events with large numbers of particles of different species re-
quires specific assumptions be made concerning the relative probabilities of emission of
each type of particle and their momentum distributions. In this section, we first describe a
rudimentary technique that neglects energy and momentum conservation, and in the next
section, we show how one can modify the technique to achieve particle generation that
conserves energy and momentum event by event.

For illustrative purposes, let us assume the number m of particles in an event can be mod-
eled ab initio with a PDF Pm(m) which we choose to be uniform in the range [mmin, mmax],
while the production of n different particle species of mass mi, charge qi, are specified by
probabilities pi, with i = 1, . . . , n such that

n∑

i=1

pi = 1. (14.43)
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Let us further assume that all particle species can be characterized by a flat rapidity dis-
tribution in the range [ymin, ymax] and Maxwell–Boltzmann distributions in the transverse
plane, with temperatures Ti.

Before one begins with the generation of particles, it is convenient to define the cumu-
lative sum of probabilities Pi, for i = 0, . . . , n, according to

P0 = 0 for i = 0, (14.44)

Pi =
i∑

k=1

pk for 1 ≤ i ≤ n, (14.45)

with P1 = p1, P2 = p1 + p2, and so on, up to Pn = 1 by virtue of Eq. (14.43).
The generation of events can then be accomplished according to the following algorithm:

1. For each event, . . .

a. Determine the multiplicity (number of particles) of the event on the basis of uniform
PDF Pm(m):

m = int [mmin + r1 (mmax − mmin)] , (14.46)

where the notation int [O] indicates one needs to round the number O to the nearest
integer.

b. For each particle,
i. Generate a random number r2 in the range [0, 1] to determine the species (mass

mi, charge qi, and emission temperature Ti) of the particle. The species of the
particle is specified by the integer i that satisfies Pi−1 ≤ r2 < Pi.

ii. Generate the momentum vector of the particle assuming a mass mi and tem-
perature Ti with a flat rapidity distribution and transverse Maxwell–Boltzmann
distribution based on the techniques presented in earlier sections.

Note that if some of the produced particles are short-lived resonances, one can apply
the techniques presented in §14.1.2 to simulate their decay and the generation of daughter
particles.

The aforementioned event-generating technique is quite simple but somewhat ad hoc. It
provides a simple method for fast generation of particles and simple modeling of the pro-
duction of particles in elementary collisions, but given it is based on simplistic and purely
phenomenological models, it should not be expected to provide a very accurate account of
particle production cross sections and correlations. Although it can be readily modified to
use a more realistic multiplicity distribution or particle momentum distributions, it features
an intrinsic flaw that cannot be fixed by substitutions of more realistic PDFs: the events
produced do not have a specific total energy or net momentum and, as such, do not satisfy
laws of energy–momentum conservation. This may be appropriate as long as the particles
generated are meant to represent only a fraction of all observable particles produced by
actual collisions. But if the generated particles are meant to be representative of whole
events, one must use a slightly modified technique to ensure that the total momentum and
the total energy of the particles are produced with predefined values; in other words, the
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particle generation must obey laws of energy–momentum conservation. It is in principle
also necessary to account for the conservation of other conserved quantities (quantum num-
bers) such as electric charge, strangeness, baryon number, and so on. A particle generation
technique that accounts for global energy and momentum conservation is presented in the
next section. Better modeling of collisions still can be achieved with computer codes based
on comprehensive theoretical frameworks of particle interaction and particle production,
such as those already cited [29, 52, 61, 66, 133, 137, 169, 174, 175, 176, 188, 191, 192,
198].

14.1.4 Multiparticle Generation with Energy–Momentum Conservation

We saw in §8.2.2 that the cross section of a process producing n particles is determined by
the square of the transition amplitude |M| and an n-body phase factor dRn (8.79). It is thus
convenient to define the n-body phase integral Rn as follows:

Rn =
∫

4n
δ(4)

⎛

⎝P −
n∑

j=1

p j

⎞

⎠
n∏

i=1

δ
(
p2

i − m2
i

)
d4 pi, (14.47)

where P is the total 4-momentum of the n-body system, while pi and mi are the 4-momenta
and masses of the produced particles, respectively. The differential cross section in terms
of a certain kinematical parameter α (particle momentum, emission angle, etc.) may then
be written

dσ

dα
= d

dα

(
|M|2 Rn

)
. (14.48)

One can equally sample the entire n-particle phase space by assuming that |M| = 1. This
shall produce differential cross sections (spectra) that are determined exclusively by the
phase-space of the n outgoing particles, that is, cross sections corresponding to a uniform
n-body phase space. One notes that by virtue of the factor δ(4)(P −

∑n
j=1 p j ), generation

according to Rn shall automatically conserve both energy and momentum. Additionally,
given that

δ
(
p2

i − m2
i

)
d4 pi = p2

i

Ei
d pid cos θidφi, (14.49)

it should also produce particles in proportion to the density of states: events with a higher
density of states should be more probable. It is also worth mentioning that Rn leads to an
intrinsic n-body particle correlation determined solely by energy–momentum conservation.
This type of correlation is to be distinguished from those implied by the production process
embodied in the amplitude |M|. Separating these two sources of correlation experimentally
is unfortunately a rather nontrivial task. Finally, consider that if a flat spectrum in n-body
phase-space is not appropriate, one can always assign a weight to generated events based
on the desired transition amplitude |M| after an n-body event has been produced according
to Rn.

The notion of using a Monte Carlo method to calculate the Rn integral was first dis-
cussed by Kopylov [130], while Srivastava and Sudarshan [177] derived the covariant form,
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Eq. (14.47), which lends itself to a recursive calculation of the integral. We here follow the
M-generator algorithm presented by James [113].

The integral Eq. (14.47) may be written

Rn(P; m1, . . . , mn) =
∫

4n

⎡

⎣δ(4)

⎛

⎝P − pn −
n−1∑

j=1

p j

⎞

⎠
n∏

i=1

δ
(
p2

i − m2
i

)
d4 pi

⎤

⎦ (14.50)

× δ
(
p2

n − m2
n

)
d4 pn,

where the expression in square brackets is Rn−1(P − pn; m1, . . . , mn−1). One can thus in-
deed calculate Rn(P; m1, . . . , mn) recursively

Rn(P; m1, . . . , mn) =
∫

4n
Rn−1(P − pn; m1, . . . , mn−1)δ

(
p2

n − m2
n

)
d4 pn. (14.51)

Making use of Eq. (14.49), Eq. (14.51) may be written

Rn(P; m1, . . . , mn) =
∫

4n
Rn−1(P − pn; m1, . . . , mn−1)

d3 pn

2En
, (14.52)

which in principle provides a basis for the calculation of Rn since it is expressed in terms of
a Lorentz invariant and can thus be calculated recursively in arbitrary frames of reference.
The problem resides in the choice of efficient bounds of the momentum pn. It turns out
to be more efficient and practical to modify the preceding recursion formula to obtain an
expression in terms of particle masses. This is accomplished by noting that

δ(4)

⎛

⎝P −
n∑

j=1

p j

⎞

⎠ =
∫

δ(4)

⎛

⎝P − Pl −
n∑

j=l+1

p j

⎞

⎠ δ(4)

(

Pl −
l∑

k=1

pk

)

d4Pl, (14.53)

which enables us to write

Rn (P; m1, . . . , mn) =
∫

δ(4)

⎛

⎝P − Pl −
n∑

j=l+1

p j

⎞

⎠
n∏

j=l+1

δ
(

p2
j − m2

j

)
d4 p j (14.54)

×
∫

δ(4)

(

Pl −
l∑

k=1

pk

)
l∏

j=1

δ
(

p2
j − m2

j

)
d4 p jd4Pl .

Noting that

1 =
∫ ∞

0
δ
(
P2

l − M2
l

)
dM2

l , (14.55)
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one can then express Rn as

Rn (P; m1, . . . , mn) =
∫ ∞

0

⎡

⎣
∫

δ(4)

⎛

⎝P − Pl −
n∑

j=l+1

p j

⎞

⎠ (14.56)

×
n∏

j=l+1

δ
(
p2

j − m2
j

)
δ
(
P2

l − M2
l

)
d4 p jd4Pl

×
∫

δ(4)

(

Pl −
l∑

k=1

pk

)
l∏

j=1

δ
(
p2

j − m2
j

)
d4 p j

⎤

⎦ dM2
l ,

which gives us

Rn (P; m1, . . . , mn) =
∫ ∞

0
Rn−l+1 (P; Ml, ml+1, . . . , mn) (14.57)

× Rl (Pl; m1, . . . , ml ) dM2
l .

One can show that repeated applications of this “splitting” relation, starting with l = 2,
yields the recurrence relation

Rn =
∫

dM2
n−1 . . .

∫
dM2

2

n−1∏

i=1

R2 (Mi+1; mi, mi+1) , (14.58)

where

R2 (Mi+1; Mi, mi+1) = 2π

Mi+1

√√√√M2
i+1 +

(
M2

i − m2
i+1

Mi+1

)2

− 2
(
M2

i+1 + m2
i+1

)
. (14.59)

Transforming the integrals dM2 into 2MdM , one obtains

R2 = 1
2m1

∫ ∫ n−1∏

i=1

2MiR2 (Mi+1; Mi, mi+1) dMn−1 · · · dM2, (14.60)

which is pictorially represented in Figure 8.12.
One can then proceed to the generation of n-body processes as if they were a succes-

sion of two-body decays. One only needs to apply a two-body phase-space factor for each
“decay vertex.” The boundaries of integration are a tricky issue. Nominally, one might be
tempted to write

Mj−1 + mj < Mj < Mj+1 − mj+1. (14.61)

But this implies the boundaries of jth integral depend on other integrals, which leads to
incorrect sampling of the phase space in a Monte Carlo integration. The masses can, how-
ever, be chosen according to the less restrictive condition

j∑

i=1

mi < Mj < Mn −
n∑

i= j+1

mi, (14.62)
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using the generating technique

Mj = r j

⎛

⎝Mn −
n∑

i= j+1

mi

⎞

⎠ +
j∑

i=1

mj, (14.63)

where r j are random numbers in the range [0, 1]. One verifies that the Mj generated with
the preceding expression will satisfy the boundaries Eq. (14.61) provided

0 < r1 < · · · < r j < · · · < rn−2 < 1. (14.64)

For the generation of an event with n particles, it thus suffices to generate n − 2 ran-
dom numbers and sort them in ascending order for the calculation of the masses using
Eq. (14.63). However, one more step is required at each decay vertex. Indeed the aforemen-
tioned condition specifies the mass Mi but it does not dictate the direction of the produced
pair. One must then randomly choose, for each decay, a direction for the mass Mj.

φ j = 2πr j′ , (14.65)

d cos θ j = −1 + 2 × r j′′ , (14.66)

where r j′ and r j′′ are random numbers in the range [0, 1]. It is important to note that
isotropic emission is only expected in the rest frame of the mass Mj. To obtain the required
Lorentz invariance, one must generate two-body decays successively in the rest frame of
each mass Mj. This means one must successively Lorentz-transform each momentum into
the group of particles preceding it.

This algorithm was first made available as a program named GenBod in CERN software
libraries but is now available within the ROOT framework [59] as class TGenPhaseSpace.

14.1.5 Correlated Particles Generators

A variety of techniques may be used to generate correlated particles. At the outset, note
that the production of daughter particles resulting from a two- or three-body decay and
boosted in the laboratory frame according to the speed and direction of their parent particle
produce correlated particles: for a high-velocity parent particle, the daughter particles tend
to be separated by a small angle that decreases for increasing velocity (momentum) of the
parent. Similarly, the production of a finite number m of particles with the multiparticle
generation technique presented in §14.1.4 also results in net or global correlations between
all particles produced [54, 55]. Correlations shall also result from conservation laws such
as (electric) charge, strangeness, baryon number conservation, and so on.

Kinematically correlated particles may be generated if they can be produced by means
of hierarchical processes, such as sequential two-body decays or successive particle gen-
eration accounting individually for energy and momentum conservation. Correlations may
also be achieved, for instance, by shifting (§14.1.5) or boosting the momentum of groups
of correlated particles [162]. In general, it may be cumbersome or technically difficulty to
impart elaborated correlations between generated particles. Fortunately, it is always pos-
sible to generate particles independently and assign events or particle n-tuplets a weight
according to a correlation function ansatz (§14.1.5).
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Anisotropic Particle Generation
Anisotropic flow, relative to an event plane, may be represented according to a Fourier
decomposition

1
N

dN
dφ

∝ 1 + 2
nmax∑

n=1

vn cos (n(φ − ,n)) (14.67)

where ,n represent the orientation of the event plane of order n (see §11.1.1).
Generation of random angles according to the preceding expression with the inversion

method is not possible because its integral cannot be inverted, while the use of the accep-
tance/rejection method is somewhat inefficient. On the other hand, the integrated histogram
method is simple and reasonably efficient. It suffices to produce a finely binned histogram
of the distribution Eq. (14.67) and apply the histogram method presented in §13.3.5.

In some situations, one may wish to introduce flow artificially after the fact, that is,
after particles have been generated by some third-party event generator. Use of the accep-
tance/rejection method would be a bad choice in this case because it would change the
integrated particle production cross section (i.e., the integral of the momentum distribu-
tion). While the aforementioned Fourier decomposition cannot be achieved from scratch,
a reasonable approximation may be obtained by shifting particles in the transverse plane
according to

px
′ = px ×

(

1 + 2
nmax∑

n=1

vn cos(n,n)

)

, (14.68)

py
′ = py ×

(

1 + 2
nmax∑

n=1

vn sin(n,n)

)

,

where the event plane angles ,n are chosen randomly event by event in the range [0, 2π ].
The flow coefficients vn can be arbitrary constants or even functions of the transverse mo-
mentum of the particles. The above “shift” of the pair (px, py) does not change the integral
of the momentum distribution, provided that the angles ,n are generated as uniform de-
viates in the range [0, 2π ], since integrals of the sine and cosine functions in this range
vanish. The shift also conserves momentum in the transverse plane. Indeed, if the original
events were generated with momentum conservation, that is, such that

m∑

i=1

px,i = 0, (14.69)

m∑

i=1

py,i = 0, (14.70)

where m is the number of particles in the event, then a random shift of all particles of an
event according to a specific set of angles ,n and fixed vn coefficients (i.e., common to all
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particles of an event) yields

m∑

i=1

p⃗′
x,i =

(
m∑

i=1

px,i

)

×
(

1 + 2
nmax∑

n=1

vn cos(n,n)

)

= 0, (14.71)

m∑

i=1

p⃗′
y,i =

(
m∑

i=1

py,i

)

×
(

1 + 2
nmax∑

n=1

vn sin(n,n)

)

= 0, (14.72)

and thus conserves momentum in the transverse plane. Note, however, that this simple
factorization breaks down if the flow coefficients are functions of the momentum of the
particles. The introduction of flow after the fact, with this technique, thus does not strictly
conserve momentum if the coefficients vn are functions of pT and/or rapidity. It may prove
adequate, nonetheless, for simulations of the performance of large detectors that include
particle losses and resolution smearing.

Simulation of Correlations with Weights
Simulations of correlated particles production can be achieved by applying an ad hoc
weight to particle pairs, n-tuplets, or events after their production based on some function
of the particle momenta and energies. This enables the simulation of correlated particles
based on the generation of particles using simple algorithms that nominally produce inde-
pendent and uncorrelated particles.

Let us consider, as an example, the generation of particles with a peaked correla-
tion in relative azimuth and rapidity. One can generate events with uncorrelated parti-
cles as in §14.1.3. Correlation may, however, be simulated with the use of weights. For
instance, in order to simulate a two-particle correlations of the form

w(-η,-φ) = 1 + A
1

2πσησφ

exp

(

−-η2

2σ 2
η

)

exp

(

−-φ2

2σ 2
φ

)

, (14.73)

it suffices to generate independent particles with, say, flat rapidity distributions and assign
each pair a weight w(-η,-φ). To simulate a two-particle cumulant, one may generate two
sequences of events with identical multiplicity distributions. Pairs of the first sequence are
given the weight w(-η,-φ) to simulate “real” events, ρ2(-η,-φ), while pair of the sec-
ond sequence are given a unit weight and simulate “mixed” events, ρ1 ⊗ ρ1(-η,-φ). One
next calculates the ratio, bin by bin, of the ρ2(-η,-φ) and ρ1 ⊗ ρ1(-η,-φ) histograms,
and subtract one, to obtain a normalized cumulant, as illustrated in Figure 14.3.

Similarly, Hanbury-Brown Twiss (HBT) type correlations can be simulated with a
weight of the form

w( p⃗1, p⃗2) ∝ exp
(

− q2

2σ 2
HBT

)
, (14.74)

with q2 = ( p⃗1 − p⃗2)2 for pairs of identical particles (e.g., π+ or π−) with momenta p⃗1 and
p⃗2. The width σHBT of the correlation functions is known to be inversely proportional to
the size of the emitting source size r.
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Fig. 14.3 Simulation of a two-particle correlation function using the weight method. Particle pairs were given the weight
shown for real events and unit weight for mixed events. The simulation included 200,000 events with a multiplicity of
particles in the range 20 < m ≤ 50. The cumulant is calculated asρ2(-η,-φ)/ρ1 ⊗ ρ1(-η,-φ) − 1.

Quite obviously, arbitrarily complex and more sophisticated correlation functions can be
modeled using this weight technique.

14.2 Detector Simulation

Detector simulations are commonly used to (1) understand the performance of a detection
system, (2) determine the acceptance, efficiency, and resolutions of specific measurements,
and (3) obtain response matrices that can be used toward the correction of simulated data.
Such tasks can be best accomplished with detailed and comprehensive studies of the detec-
tor performance carried out within detector simulation environments such as that provided
by the computer code GEANT, introduced in §14.2.4. But since the use of GEANT re-
quires quite a bit of setup and computer coding, and considering that GEANT simulations
can be rather CPU-intensive, performance studies are often conducted with fast simulators
involving simple and sometimes rather primitive models of a detector’s response.

We introduce basic exemplary techniques for the simulation of the effects of finite effi-
ciency, detector resolution, and acceptance determination in §14.2.1, and provide a simple
example of a calculation of a response matrix for jet measurements in §14.2.3.

14.2.1 Efficiency, Resolution, and Acceptance Simulators

Efficiency Simulation
The efficiency of a detection system towards measurement of a specific type of particle (or
range of particle species) may be obtained by means of detailed simulations based on a
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realistic particle production model and a detailed simulation of the detector performance.
Alternatively, one can also embed simulated tracks (or other relevant objects) into actual
events and determine what fraction of the embedded tracks are actually recovered by the
track reconstruction software.

Let us here assume that the detection efficiency for a specific particle species is known
and can be parameterized with a model ϵ(η,φ, pT ). In some cases, it might be possible to
factorize the efficiency into a product of three functions ϵ(η,φ, pT ) = ϵ(η)ϵ(φ)ϵ(pT ). It
may even be possible to assume that dependencies on rapidity and azimuth are negligible
and treat ϵ(η) and ϵ(φ) as constants. One can then use this model to carry out fast simu-
lations of the effects of the limited detection efficiency on momentum spectra, invariance
mass spectra, correlation functions, or more complex objects such as jets.

While the effect of detection can in principle be trivially determined by multiplying the
efficiency by the production cross section, it is often more convenient to carry out a simu-
lation involving the production model considered and a model ϵ(η,φ, pT ) of the efficiency.
This has the added benefit of providing a track-by-track account of detector resolution ef-
fects. In such simulations, it can often be assumed that the detection efficiency for two or
more particles factorizes and that one can apply the function ϵ(η,φ, pT ) for each particle
independently. A simulation may be based on a simple home-brewed particle generator or
more sophisticated and theoretically motivated event generators whose events are either
generated on the fly (event-by-event) or read from stored files. A typical simulation thus
proceeds as follows:

1. Generate or read an event from file.
2. Efficiency/smearing: For each particle of an event

a. Decide whether the particle should be accepted.
b. Smear kinematical parameters of the particle (if needed/desired).
c. Store smeared parameters.

3. Analysis: Carry out the required analysis of the generated event based on accepted (and
smeared) particles. Optionally carry out the analysis on all generated and unsmeared
particles to obtain a “perfect detection” reference.

The decision whether to accept a particle is based on three steps: (1) given the (un-
smeared) kinematical parameters of the particle (η,φ, pT ), calculate the efficiency of de-
tection ϵ(η,φ, pT ); (2) generate a random number r with a uniform distribution in the
range [0, 1]; and (3) accept the particle if r ≤ ϵ(η,φ, pT ).

Figure 14.4 presents an example of the application of an efficiency function ϵ(pT ) on
a parent distribution f (pT ) = λ−1 exp(−pT /λ). It shows, in particular, that the measured
transverse momentum mean ⟨pT ⟩ can be significantly altered by the detector’s efficiency
dependence on transverse momentum, ϵ(pT ).

Resolution Smearing
Smearing of kinematical parameters is based on models of the detector response. For in-
stance, to simulate instrumental effects (smearing) on a transverse momentum measure-
ment, one requires a PDF f (pT |θ⃗ ) describing fluctuations of the measured pT determined
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Fig. 14.4 Illustration of the effect of efficiency function ϵ(pT ) on a pT spectrum and measured mean ⟨pT ⟩. (a) Selected
efficiency response curves. (b) Product of the efficiency curves by the input spectrum (f (pT ) = λ−1 exp(−pT/λ),
withλ = 0.5). (c) Average pT obtained with the selected efficiency curves.

by some set of parameters θ⃗ . The parameters θ⃗ are here assumed to be known a priori.
In practice, they could be obtained from either detailed simulations of the detector per-
formance (§14.2.4) or an explicit measurement. Often times, but not always, the smearing
response of the detection system may be assumed to be (approximately) Gaussian. Speci-
fication of the smearing function f (pT |θ⃗ ) thus reduces to the expression of the mean and
root mean square (rms) of a Gaussian as a function of the true pT of the particles. If the
mean is null, the measurement can be considered without bias, and only fluctuations need
considering. However, note that given particles lose energy (and thus momentum) as they
traverse a detector, the track reconstruction software must compensate for such losses (see
§9.2). The problem arises that at a given momentum, energy losses depend on the mass
(or particle identification, PID) of the particle, which is unknown a priori. Corrections are
thus typically made assuming the PID of the most abundantly produced particle species
(e.g., pions). This invariably leads to a bias (i.e., a systematic shift) in the reconstruction of
the momentum of particles. Such a shift should ideally be accounted for in simulations of
the performance of detection system. Thus for each simulated species production, not only
should the rms be provided as a function of the transverse momentum of the particles but
also a function estimating the momentum bias achieved in a typical event reconstruction.
Additionally, note that the reconstruction of charged particle tracks yield Gaussian fluctu-
ations in the track curvature (C), which is inversely proportional to the pT of the particle.
Fluctuations in pT are thus generally non-Gaussian. However, for simplicity’s sake, we here
illustrate a smearing simulation procedure assuming Gaussian fluctuations.

We assume the fluctuations in momentum measurements are determined by a Gaus-
sian PDF with mean µ ≡ µ(pT,0) and rms σ ≡ σ (pT,0) where pT,0 is the true momentum
of the particles. The bias µ ≡ µ(pT,0) is typically smallest for minimum ionizing parti-
cles and grows approximately in inverse relation of the momentum at small momenta and
proportionally to the momentum at higher momenta. It could thus be modeled accord-
ing to

µ(pT,0) = a−1 p−1
T,0 + a0 + a1 pT,0, (14.75)
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where the coefficients an must be suitably fitted to represent the actual measurement bias
of each particle species. Energy loss fluctuations typically scale with the average energy
loss. Since energy losses have a 1/β2 dependence at low momentum and a logarithmic
rise at higher momenta, one may model the momentum dependency of the fluctuations
accordingly. However, note that the pT resolution becomes exceedingly poor for very small
curvature because the finite granularity of the hit detectors intrinsically limits the position
resolution. One can thus in general model the rms with a low-order power series, such as

σ (pT,0) = b−2 p−2
T,0 + b−1 p−1

T,0 + b0 + b1 pT,0 + b2 p2
T,0, (14.76)

where the coefficients bn must also be suitably fitted to represent the actual fluctuations for
each measured particle species.

Assuming the coefficients an and bn are known, either from a detailed simulation or
actual measurements, one can thus carry out (fast) simulations of the detector response
(smearing) according to the algorithm presented earlier in this section. Smearing requires
calculation track by track of both µ(pT,0) and σ (pT,0) with Eqs. (14.75, 14.76). Smeared
track momenta are then obtained based on

pT = pT,0 + rG[µ(pT,0), σ (pT,0)], (14.77)

where rG[µ(pT,0), σ (pT,0)] represents Gaussian deviates with mean µ(pT,0) and rms
σ (pT,0) calculable according to the algorithm presented in §13.3.7.

A fast simulator including smearing may, for instance, be used to study the effects of
smearing on momentum spectra (Figure 14.5), the reconstruction of short-lived decaying
particles based on the invariant mass technique, or jet measurements.

14.2.2 Kinematic Acceptance of Two-Body Decays

Monte Carlo simulations based on a simple particle generator provide a quick and easy
method to determine the acceptance of a detector toward measurements of momentum
spectra, particularly those of short-lived resonances. Let us consider, as an example, sim-
ulations of the decay of kaons K0

s into a pair π+ + π− detected by invariant mass recon-
struction (§8.5.1).

We will use the algorithm presented in sections §§14.1.1, 14.1.3, and 14.2.1 to generate
K0

s with a Maxwell–Boltzmann distribution in transverse momentum and a uniform pseu-
dorapidity in the range |η| < 3. Kaons are decayed into π+ + π− pairs exclusively. Pions
are assumed detectable with a 100% efficiency if in the ranges 0.2 < pT ≤ 1.5 and |η| < 2.
However, their momenta are smeared according to Eq. (14.76) using resolution parameters
of curve 2 in Figure 14.5.

The simulated invariant mass spectra and K0
s detection efficiency obtained with these

detection conditions are shown in Figure 14.6. One finds that the pion acceptance dramati-
cally shapes the K0

s detection efficiency and acceptance.
More generally, one can use kB functions Bmin / max

i (η,φ, pT ), i = 1, . . . , kB to define the
boundaries within which a specific particle species is considered detectable. For instance,
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(c) Average pT obtained with perfect and finite resolution. (d) Ratio of the smeared spectra to the original spectrum.
Note that a pT threshold of 0.2 GeV has been used to illustrate the joint effects of finite resolution and acceptance.

as illustrated in Figure 14.7, a set of functions pmin / max
T,i (η) can express the minimum and

maximum pT values detectable by an apparatus. A particle with momentum vector p⃗ =
(η,φ, pT ) would be considered detectable if and only if it satisfies the conditions

pmin
T,i (η) ≤ pT ≤ pmax

T,i (η), for all i = 1, . . . , k (14.78)

14.2.3 Response Matrix Determination

We saw in §12.3 that the unfolding of measured distributions requires knowledge of a re-
sponse matrix describing the efficiency and smearing imparted on a measured signal by
instrumental effects. The determination of a response matrix typically requires simulation
of the effects of the instrumentation of the measured particle kinematical parameters, and
their impact on other quantities such as detected particle multiplicities, resonance decays,
or measurements of jets and their properties. Such studies are best conducted based on de-
tailed simulations of the detector performance (§14.2.4) but can often also be accomplished
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Fig. 14.6 Simulation of the decay and reconstruction of K0s → π+ + π− with the invariant mass technique. (a) Generated
(solid line) and reconstructed (dashed line) Maxwell–Boltzmann transverse momentum (pT ) spectra. (b) Generated
and reconstructed pseudorapidity distributions. (c) Reconstructed distribution in pT vs. η. (d) Acceptance and
efficiency vs. pT . (d) Efficiency vs. η; efficiency vs. pT and η; (g) K0s reconstructed mass spectrum. (h) Mass vs.
reconstructed pT . Pions are assumed detectable with a 100% efficiency if in the ranges 0.2 < pT ≤ 1.5 and
|η| < 2. Pion momentum resolution as in curve 2 of Figure 14.5.

using fast simulators such as those already discussed in previous sections. We here illus-
trate the determination of a response matrix toward corrections of measured charged parti-
cle multiplicity spectra.

For the sake of simplicity, we assume the particle multiplicity amounts to an average
value ⟨m⟩, which we subtract ab initio from the simulated produced and measured distri-
butions. The apparatus is assumed to have an efficiency such that measured multiplicities
are, on average, 2.5 units lower than the actual values, and smeared with a resolution of 0.2
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Fig. 14.7 Acceptance definition with kB boundary functions p
min /max
T,i (η,φ), i = 1, . . . , 6.

units. The response is simulated with a Gaussian distribution

P(mm|mt ) = 1√
2πσm

exp
(

− [mm − mt − µm]2

2σ 2
m

)
, (14.79)

with µm = 2.5, σm = 0.2, and where mt and mm represent the true and measured mul-
tiplicities, respectively. One million events were generated to obtain the response matrix
displayed in Figure 14.8, which was used in §§12.3.7 and 12.3.8 to present examples of
unfolding with the SVD and Bayesian methods, respectively.

More generally, one might wish to account for specificities of the apparatus resolution of
particle momenta as well as a more detailed description of its acceptance. The simulation
could then proceed as follows:

1. Create a response matrix histogram to store event values of produced and measured
multiplicities noted N and n, respectively.
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Fig. 14.8 Response matrix used for examples of SVD and Bayesian discussed in §§12.3.7 and 12.3.8.
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2. Select a large number of events Nev to be produced.
3. Define or select the function ϵ(η,φ, pT ) to be used in the simulation of detection effi-

ciency.
4. Define or select the conditions Bi(η,φ, pT ), i = 1, k to be used in the simulation of the

experimental acceptance.
5. For each event,

a. Determine the total multiplicity M of the event randomly according to an appropriate
distribution in the multiplicity range or interest (e.g., 10 ≤ M < 1,000).

b. Set particle counters N and n to zero,
c. Generate an event with M particles according to appropriate rapidity and transverse

momentum distributions (e.g., flat rapidity and Maxwell–Boltzmann pT spectrum).
i. Generate particles according to chosen production model,

ii. For each generated particle,
(a) Determine if the particle is within the rapidity, azimuthal angle, and pT

boundaries of the experiment.
(b) If it is, increment true detected multiplicity N by one unit.
(c) Use the efficiency function ϵ(η,φ, pT ) to determine if the particle is detected.
(d) If it is, smear the momentum and rapidity of the particle and determine

whether the smeared momentum and rapidity fall within the kinematical
boundaries of the experiment.

(e) If it does, increment the measured multiplicity n by one unit.
d. Increment the response function histogram according to the event’s (N, n).

6. Normalize the response function histogram

14.2.4 Detailed Detector Simulations Using GEANT

The de facto standard in particle and nuclear physics for comprehensive simulations of
detector performance is the program GEANT [14]. Specialized computer codes such as
EGS 5 (Electron Gamma Shower)[105] and FLUKA [32] are also available to simulate the
development of electromagnetic and hadronic showers within materials.

GEANT provides a comprehensive computing environment for simulating the passage
of particles through matter. It includes components for modeling detector geometry and
material properties, the propagation of particles through electric or magnetic fields, as well
as the modeling of particle energy loss and deposition in detector materials. GEANT can
thus be used to simulate the detection of arbitrarily complex collisions and study detector
performance attributes such as detection acceptance, efficiency, momentum resolution, and
much more. GEANT, now in its fourth version, provides tools to simulate with high pre-
cision a vast array of particle interactions within detector materials and sensors, including
electromagnetic, hadronic and optical processes, as well as the decay of long-lived parti-
cles. This is accomplished through modeling of electromagnetic and hadronic processes
over a wide energy range starting, in some cases, from 250 eV and extending in others to
the TeV energy range. Written in C++, GEANT was designed and constructed to expose
the physics models utilized, handle complex geometries, and enable its easy adaptation for
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optimal use in different applications. GEANT is the result of a worldwide collaboration of
physicists and software engineers. It has a wide community of users and finds applications
in particle physics, nuclear physics, accelerator design, space engineering, and medical
physics. A detailed discussion of the Monte Carlo techniques and methods used in GEANT
is well beyond the scope of this textbook but can be found in various publications (see ref.
[14] and references therein).

While GEANT enables accurate and detailed simulations of detector performance, its
application for certain tasks such as the description of hadronic showers in calorimeter can
be rather fastidious and slow. Various groups have thus designed fast simulators to achieve
the same goals as GEANT but requiring only a small fraction of its computing time, albeit
with perhaps slightly less accuracy [17, 98].

Exercises

14.1 Derive the expression (14.8) of the moments of the power-law distribution.
14.2 Verify the expression (14.10) for the generation of random numbers according to a

power law of the form (14.7).
14.3 Derive the expression (14.41) for the boost of a vector p⃗∗ in an arbitrary direction

and velocity β⃗P. Hint: Decompose the vector p⃗∗ in terms of components parallel and
perpendicular to the boost direction and use the boost formula, Eq. (8.17), to carry
the boost in the parallel direction.

14.4 Write a Monte Carlo program to calculate the acceptance and detection efficiency of
K0

s decaying into π+ + π−. Assume the K0
s are produced with a Maxwell–Boltzmann

distribution with T = 0.40 GeV. Consider the acceptance for a detector capable of
identifying pions (π±) in the momentum range 0.2 ≤ p ≤ 1.5 GeV. Plot the accep-
tance and efficiency as a function of transverse momentum pT and pseudorapidity η.

14.5 Write a Monte Carlo program using the weight method to simulate the production
of correlated pions according to the HBT effect assuming source sizes of 2, 5, and
15 fm. Additionally assume the pions are produced with a Maxwell–Boltzmann dis-
tribution with T = 0.40 GeV.
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Index

1/β2 energy loss regime, 426
V 0 decays, 449
V 0 particles, 449
E[x], 42
Var[x], 44
α-point, 41
χ2 test, 268
γ1, 46
γ2, 47
⟨x⟩, 42
Kurtold[x], 47
Skew[x], 46

accelerator tuning, 407
acceptance, 583

correction, 584
acceptance/rejection method, 650; see pseudorandom

numbers
accuracy, 579
ADC, 465
addition theorem, 68
alternative hypothesis, 255
analog to digital conversion, 465
analog-to-digital converters (ADC), 460
anisotropic flow, 558; see flow
anisotropic particle generation (flow),

676
autocorrelation, 524
average value, 42; see mean

balance function, 522
Bayes factor, 366, 368
Bayes’ theorem, 22, 55
Bayesian inference, 31, 605
Bayesian inference paradigm, 31
Bayesian interpretation of probability,

30
Bayesian network, 605
Bayesian statistics, 31
Bayesian unfolding, 605
bell curve, Gaussian distribution, 118
Bernoulli distribution, 88
beta distribution, 115

definition, 115
properties, 115

bias, 586

Bichsel functions, 428
bimodal distribution, 42
bimodal functions, 43
bin-by-bin method, 595
binomial coefficients, computation, 96
binomial distribution, 89

definition, 89
moments, 91
properties, 91

Breit–Wigner distribution, 132
definition, 132
moments undefined, 133
relativistic, 133

calorimeter
compensation, 420
homogeneous, 420
sampling, 420

Cauchy distribution, definition, 133
cause-effect network, 606
centered moment, 44
centered moments

robust, 156
central interval, 231
central limit theorem (CLT), 70

derivation, 70
generalized, 125

characteristic function (CF), 66
definition, 67
moments of a PDF, 67

Cherenkov radiation, 425
chi-square distribution, 128

combining datasets, 131
definition, 128
derivation, 130
moments, 129
properties, 129

chiral magnetic effect (CME), 568
classical inference, 29
classical statistics, 29
closure test, 632
collider experiments, 398
collision diamond, 490
combinatorial decays, 449
composite midpoint rule, 645
conditional PDFs, 56
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conditional probability, 21
conditional probability density function,

53
confidence interval, 229

ML and LS fitsn, 251
binomial, 248
central interval, 231, 242
confidence belt, 242
discrete variable, 237
empty intervals, 244
flip-flopping, 244
Gaussian, 249
Gaussian distribution, 230
general case, 241
likelihood ratio ordering, 245
lower limit, 243
minimal interval, 232
Neyman construction, 241
one-sided, 243
ordering principle, 245
Poisson, 245
unified approach, 245
unphysical values, 244
upper limit, 243

confidence level, 229
confidence region, 234
conformal mapping method, 473
conjugate distributions, 115
conjugate priors, 314
continuous random variable, 36
contravariant vector, 392
correction coefficient method, 595; see bin-by-bin

method
correlation coefficient, 65

intepretation, 65
correlation functions, motivation, 503
covariance, 61

calculation, 61
correlation coefficient, 65
definition, 61
estimator, 156
interpretation, 61
matrix, 64

coverage, property, 229
credible range, 49
cumulants, 81

definition, 82, 505
joint, 84
scaling, 508

cumulative density function (CDF), 38
cumulative distribution function (CDF), 38

Dalitz plot, 446
data analysis workflow, 461
data probability model, 88, 287
decay topology, 440

decay topology technique, 440
deciles, 49
degrees of freedom, 128
design luminosity, 407
detection, efficiency, 143
detection acceptance, 583; see acceptance
detection bias, 586; see bias
detection efficiency, 584; see efficiency
detector alignment, 473
differential flow, 566
Dirichlet distribution

definition, 117
properties, 118

discrete random variable, 36
displaced vertex, 440
displaced vertex technique, 440
distribution properties

bimodal, 42
deciles, 49
expectation value E[x], 42
full width at half maximum (FWHM), 49
median, 41
mode, 42
multimodal, 42
percentiles, 49
population mean, 42
unimodal, 42

efficiency, 584
EGS, 685
embedding

track, 631
Erlang distribution, 114
error function, definition, 120
estimator, 140

asymptotically unbiased, 150
biased, 149
consistent, 147
covariance, 156
definition, 145
information, 175
mean square error (MSE), 150
minimal variance bound (MVB), 152
Pearson correlation coefficients, 156
unbiased, 149
variance, 154, 184

event builders, 460
event plane

calculation, 562
event plane method, 562; see standard event plane

(EP) method
event plane resolution, 564
event reconstruction, 460
event triggering, 637
excess kurtosis, 47
exchangeable distributions, 98
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expectation value E[x], 42
exponential distribution, 110

definition, 110
moments, 112
properties, 111

extended sum rule, 52
extrapolation, 206

F distribution, 131
factorial moments, 506
factorization method, 655; see pseudorandom

numbers
falsifiability, 4
fast simulators, 678
first moment, 42
Fisher information, 167

definition, 167
derivation, 167
matrix, 169
properties, 170
reparametrization, 170

Fisher–Snedecor distribution, 131
fixed target experiments, 398
flat rapidity distribution

simulation, 666
flow

triangular flow, 560
directed flow, 560
elliptic flow, 560
fluctuations, 561
pairwise correlation method, 565
quadrangular flow, 560
two-particle cumulant method, 566

FLUKA, 685
forward–backward correlations, 542
four momentum vector, 392
Fourier transform, 66
frequentist inference paradigm, 29
frequentist interpretation of probability, 29
frequentist statistics, 29
full width at half maximum (FWHM), 49
functions of random variables, 39

gamma distribution, 113
definition, 113
moments, 115

Gaussian distribution, 118; see normal distribution
moments, 119

Gaussian generator, 656; see pseudorandom
numbers

Gaussian test, 265
GEANT, 685
generalized entropy, 302
global likelihood, 369
goal function, 178; see objective function
goodness-of-fit, 140
goodness-of-fit test, 268

hierarchical boundary method, 655; see
pseudorandom numbers

histogram, 159
1D, 160
2D, 164
concept, 159
definition, 159
errors, 163
multidimensional, 164
profile, 166

histograms compatibility test, 272
hit, definition, 412
Hough transform method, 473
hypergeometric distribution, 99
hypothesis testing, 253

alternative hypothesis, 255
definition, 254
discriminating power, 255
null hypothesis, 254
significance level, 255
test properties, 257

ill conditioned, 198
information entropy, 300
informative priors, 291; see priors
instrumental correlations, 622
integrated histogram method, 653; see pseudorandom

numbers
interquartile range, 49
interval estimation, 229
inversion method, 648; see pseudorandom numbers
isotropic exponential distribution, 664

joint probability density function, 50

Kalman filter, 209
algorithm, 213
control, 210
extended, 218
features, 210
gain matrix, 216
gain matrix derivation, 220
optimal estimation, 210
origin, 209
smoother, 210, 218
state vector, 213

kinetic theory, 135
Kolmogorov–Smirnov test, 273
Kullback entropy, 302
kurtosis, 47

leptokurtic, 48
mesokurtic, 48
mesokurtotic, 48
platykurtic, 48

Landau distribution, 427
Laplace transform, 66
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law of total probability, 23, 146
with PDFs, 56

least squares method (LS), 190
binned data, 203
correlated data points, 198
derivation, 191
errors, 201
estimators, 193
generalized linear models, 199
goodness-of-fit, 205
Hessian matrix, 352
Levenberg–Marquardt, 353
modified least squares (MLS), 204
numerical methods, 205
polynomial, 196
recursive, 210
steepest descent, 353

likelihood, 31
function, 149
global, 146

linear regression, 193; see straight line fit
log normal distribution, 124

definition, 124
generalized CLT, 125
moments, 124, 126

Lorentz transformation, 393

Mandelstam variables, 397
marginal PDF, 52
marginal probability density function, 51
marginalization, 51, 52
maximum likelihood method (ML), 179

binned data, 187
extended, 188

Maxwell speed distribution, 134; see
Maxwell–Boltzmann distribution

Maxwell–Boltzmann distribution, 134
definition, 134
derivation, 135
properties, 134
simulation, 667

mean
arithmetic, 152
estimator, 153
geometric, 158
harmonic, 158
sample, 153

mean square error (MSE), 150, 153, 586
mean, 153
variance, 155

mean value theorem, 645
measurement noise, 12, 214, 578
measurement precision, 585; see resolution
measurement resolution, 585; see resolution
median, 41
merit function, 178; see objective function
method 1, 529

method 2, 529
minimum ionizing particle (MIP), 426
mode of a distribution, 42
moment, 44

Var[x], 44
Kurtold[x], 47
Skew[x], 46
calculation w/ characteristic function, 67
centered, 44
first, 42, 60
fourth, 47
generating function (MGF), 66
kurtosis, 47
multivariate, 60
second, 44, 60
skewness, 46
standardized, 45
third, 46

moment about the mean, 44; see centered moment
moment generating function (MGF)

definition, 67
moments

robust, 156
Monte Carlo integration, 644

rule, 645
most powerful test, 261
MSE, 586; see mean square error (MSE)
multimodal distribution, 42
multimodal functions, 43
multinomial distribution, 96

definition, 96
moments, 98
properties, 98

multivariate function, 57
moment, 60

multivariate probability density, 57

negative binomial distribution
definition, 95
formula, 96

Neyman–Pearson test, 276
formulation, 277
sample mean comparison, 278

noninformative priors, 291; see priors
nonflow effects, 561
normal distribution, 118

central limit theorem, 122
definition, 118
moments, 119
multidimensional, 122
probability of one, two,…, sigmas, 122

normalized deviate, 205
normalized correlation functions, 511
normalized factorial moments, 511
normalized inclusive densities, 511
normalized scientific notation, 580
null hypothesis, 254
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objective function, 178
Occam factor, 369
Occam’s razor, 269, 367, 369, 378
offline analysis, 460
online analysis, 460
orthogonal functions, 199
orthogonal polynomials, 198
orthogonal transformation, 77
oversampling, 630

parent particle, 440
parent population, 141
participant nucleons, 402
particle density

semi-inclusive, 514
particle discovery, 455
particle identification (PID), 425

Armenteros–Podolansky plot, 452
calorimetry, 440
Dalitz plot, 445
specific energy loss technique, 425
three-body decays, 445
time of flight (TOF), 430
V0 topological reconstruction, 447

Pearson correlation coefficient, 65
estimator, 156

percentiles, 49
physics analysis, 460
Poisson distribution, 99

definition, 99
large λ limit, 105
large N limit of binomial distribution,

104
moments, 101
properties, 101

Poisson fluctuations, 103
Poisson noise, 103; see Poisson

fluctuations
population mean, 42
position calibration, 471
posterior, 286

calculation, 293
summaries, 293

posterior marginalization, 368
posterior predictive distribution,

297
power function, 260
power law distribution, 664
precision, 579, 585
precision parameter, 318
primary vertex reconstruction, 490
prior, 286
prior probability, 31
priors

informative, 291
noninformative, 291

priors odds ratio, 366
probability

axioms, 20
foundation, 19
properties, 21

probability density, 37
probability density function (PDF),

37
conditional, 53
joint, 50
marginal, 51
posterior, 146
prior, 146

probability distribution closure, 315
probability distribution function (PDF),

36
multivariate, 57

probability sample, 142
process noise, 12, 214, 579
pseudorandom numbers, 646

acceptance/rejection method, 650
definition, 646
factorization method, 655
Gaussian generator, 656
hierarchical boundary method, 655
integrated histogram method, 653
inversion method, 648
transformation method, 648
uniform deviate method, 647
weighing method generator, 660

pseudorapidity, 395

quality criteria, 408
quality cuts, 408
quantile of order α, 41; see α-point

radial flow, 558
random variable, 21

continuous, 36
discrete, 36

random walk, 78
Rao–Cramer–Frechet inequality (RCF),

186
rapidity, 394
rapidity gap, 542
reduced cumulants, 511; see normalized correlation

functions
reduced densities, 511; see normalized inclusive

densities
reduced factorial moments

normalized factorial moments, 511
regularization function, 598
resolution, 585
robustness function ξ , 623
robustness measure ξ , 626
run test, 272
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sagitta
definition, 414

sample
biased, 142
probability sample, 142
random, 142
unbiased, 142

sampling, 143
efficiency, 143

scalar product method, 566
score, 168
semi-inclusive cumulants, 514
Shannon’s entropy

information entropy, 300
Shannon–Jaynes entropy, 302
significance level, 255
skewness, 46

left-skewed, 46
right-skewed, 46

slow control data, 460
Snedecor’s F distribution, 131
sparsification, 460
specific energy loss, 425
spectator nucleons, 402
spherical coordinates, 396
split tracks, 417
standard deviation (σ ), 44
standard event plane (EP) method,

562
standard normal distribution, 38

definition, 120
standard uniform distribution, 107
standardized moment, 45
statistic

function, 145
statistical estimator bias, 580
statistical independence, 21, 56
statistical test

χ2, 268
bias, 262
binomial, 263
consistency, 261
discovery, 264
Gaussian, 265
goodness-of-fit, 268
histograms compatibility, 272
Kolmogorov–Smirnov, 273
most powerful test, 261
Neyman–Pearson, 276
Neyman–Pearson formulation, 277
optimization, 276
Poisson, 264
power, 258
run test, 272
Student’s t, 266
uniformly most powerful test, 261

steepest descent method, 352
Stirling factorial formula, 96
straight line fit, 193

errors, 195
formula, 195

Student’s t test, 266
Student’s t-distribution, 126

definition, 126
derivation, 280
moments, 127
properties, 127

subjective probability, 29
summaries of posterior, 293; see posteriors

TDC
calibration, 469

ternary plot, 446
test bias, 262
test power, 258
time to digital converter

calibration, 469
time-based correlation functions,

524
track

definition, 412
track finding

road finders, 475
track template, 475

track following, 475
track merging, 621
track reconstruction, 472

effect of detector materials, 480
error propagation, 480
hit outlier removal, 488
hybrid methods, 489
measurement model, 480
track model, 479
track parameterization, 477

track splitting, 621
track template method, 473
transformation method, 648; see pseudorandom

numbers
transition radiation, 425
transverse momentum, 392
trigger

minimal bias, 142

uniform deviate method, 647; see pseudorandom
numbers

uniform distribution, 106
definition, 106
moments, 107
properties, 107
random number generation, 108

uniformly most powerful test, 261
unimodal distribution, 42
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variance
calculation, 45
definition, 44
estimator, 154
mean square error (MSE),

155
vertex

definition, 412
vertex reconstruction

Billoir vertex fitting, 495
cluster finding methods, 491
divisive clusterizer, 493

histogramming finder method, 492
linear vertex finding, 493
mapping finder method, 492
topological vertex finders, 495
vertex finding, 491
vertex fitting, 495

weighing method generator, 660; see pseudorandom
numbers

weighing techniques, 626
weighted averages (WA), 207
world average, 208
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