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Preface

New ideas and concepts in the development of particle detectors have often been the
prerequisites for important experiments that led to discoveries or new perceptions in
particle and astroparticle physics. Therefore the physical principles and techniques
of detector development belong to the basic skills of an experimental physicist in
this field. Often novel detector developments also pave the way for advancements in
imaging methods using particles or radiation, for example, in medicine, biology or
material science.

The physics of detectors interrelates to many other areas of physics and engineering.
Developing and operating detectors requires knowledge of the interactions of particles
with matter, of the physics of gases, liquids and solids, of the phenomena of charge
transport and the formation of signals as well as of the techniques of electronic signal
processing and microelectronics.

The idea for this book originated within the framework of a transregional edu-
cational project on the subject of detector physics, funded by the German ‘Federal
Ministry of Education and Research’, in which the authors participated. The central
elements of the project were lecture series and accompanying manuscripts on detector
physics which became the seeds for this book. A German edition was published in
2016 [624]. Major parts have, however, been substantially revised and enlarged.

Originally conceived as a lecture book for advanced undergraduate and graduate
students, the book evolved over the years with regard to content and depth of the
treated material such that the content now goes beyond that of typical lectures on
this topic. The target group for the book are both students who want to get an
introduction or wish to deepen their knowledge on the subject as well as lecturers
and researchers who want to extend their expertise. In addition, numerous tables and
comparative synopses should serve as a reference for scientific work. We have made an
effort, and hope to have succeeded, to treat the available abundant material on the
various subjects as clearly as possible and as deeply as necessary.

At this point, we want to thank the many colleagues, co-workers and students
who in one way or another contributed to the completion of this book. For support
in producing the numerous figures we thank David Barney, Axel Hagedorn, Christine
lezzi, Jens Janssen, Manuel Koch, Edgar Kraft, Susann Niedworok, Philip Piitsch,
Ludwig Rauch, Marco Vogt and Bert Wiegers. For the simulation of reaction events,
cross checks of analytical formulae by simulations, and for assistance with using the
GEANT4 program package we thank Timo Karg, Sven Menke, David-Leon Pohl and
Yannick Dieter. For numerous discussions, information and/or proofreading of sin-
gle chapters we want to thank Markus Ackermann, Peter Fischer, Eckhart Fretwurst,
Fabian Hiigging, Fabian Kislat, Hans Kriiger, Teresa Marrodan Undagoitia, Peter
Lewis, Michael Moll, Rainer Richter, Ludwig Rauch, Jochen Schwiening and Peter
Wegner as well as Ted Masselink for enlightening discussions on the topic of charge
transport in solids. We are grateful to Sabine Baer for the support in obtaining copy-
rights and to Martin Kohler for advice in questions concerning the publication of a
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book. For the English edition we obtained information and help in language questions
from Summer Blot, Ian Brock, John Kelly, Jakob van Santen and Andrew Taylor.
For the support during the genesis and the realisation of this book we thank the
German Federal Ministry of Education and Research and the Helmholtz Research
Centre Deutsches Elektronen-Synchrotron (DESY).
In particular, we would like to deeply thank our wives, Marion and Sonja, for their
continuous support for our work on the book over almost two decades.

Hermann Kolanoski and Norbert Wermes

Berlin and Bonn, March 2020
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1
Introduction

The visual perception of objects is due to the fact that light, or more generally speak-
ing electromagnetic radiation, interacts with matter. The light is first scattered at
the object, is then absorbed in the eye and subsequently transformed into neural
signals which are further processed by the brain which finally generates the object im-
age perceived by us. The detection of elementary particles, nuclei and high-energetic
electromagnetic radiation, in this book commonly designated as ‘particles’, proceeds
similarly through interactions of the particles with matter. In general, though, we do
not directly perceive particles with our sense organs. Instead we need an external ‘de-
tector’ in which the particles interact and which derives perceptible signals from the
interaction.

The electromagnetic interaction of particles with matter is by far most frequently
employed for detection. Charged particles are detected through the ionisation of the
matter along their trajectory or also through emission of electromagnetic radiation like
bremsstrahlung or Cherenkov and transition radiation. Photons and electrons develop
electromagnetic showers in matter which can be used for energy measurement. The
strong interaction is exploited, for example, for the detection of neutrons or for the
energy determination of high energetic hadrons through the development of hadronic
showers. Finally, the weak interaction is exploited for the detection of neutrinos.

Depending on the application, particle detectors have to fulfil different tasks with
quite different requirements. A simple example is the measurement of the radiation
flux with a Geiger counter for the detection of radioactivity. In particle physics ex-
periments one usually wants to measure in addition the particle kinematics (direction,
momentum, energy) and preferably also determine the identity of a detected particle.

The requirements on the performance of particle detectors, which are closely related
to the costs, vary over a wide range. For the specification of a detector the following
criteria come into consideration depending on the intended application purpose:

— high detection probability;

— small perturbation of the process to be measured;

— high signal-to-background ratio;

— good resolution (position, time, energy, momentum, angle, ...);
— fast, deadtime-free electronic signal processing;

— simple online monitoring and control;

— justifiable costs.

The development of detectors and detection methods for particles was mainly
driven by applications in basic research, as in particle and nuclear physics. The progress
in these fields crucially depends on the state of the detector technology. This has
also been recognised by the Nobel Committee which repeatedly awarded the Nobel
Prize for decisive breakthroughs in detection methods, such as the cloud chamber:
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2 Chapter 1: Introduction

C.T.R. Wilson 1927, the advancements of the cloud chamber method: P. Blackett 1948,
nuclear emulsions: C.F. Powell 1950, the coincidence method: W. Bothe 1958, the bub-
ble chamber: D.A. Glaser 1960 and the multiwire proportional chamber: G. Charpak,
1992. Besides the use of detectors in particle, nuclear and astroparticle physics, there is
meanwhile a variety of detector applications in other fields, for example, in medicine,
geology, archaeology and material science. The detector sizes vary between a cubic-
centimetre, for example, of a dosimeter in the format of a ball-point pen, and cubic-
kilometre detectors for the detection of air showers initiated by cosmic rays.

Besides referencing the original literature we have made an effort to also point
to literature for further reading, lecture books and compact reviews of the respec-
tive fields. Comprehensive introductions into the subject of detectors are the books
by Kleinknecht [612] and Grupen and Shwartz [489]. The books by Knoll [616] and
Leo [652] are particularly suited to learn about the classical methods of construction
and operation of detectors. The applications in modern particle physics experiments
are covered, for example, in the books by Leroy and Rancoita [653] and Green [473].
Expert articles related to the different chapters of this book can be found in various
collections, for example, the ones issued by Ferbel [397] or by Sauli [850]. A com-
prehensive collection of many detection methods are the two volumes ‘Handbook of
particle detection and imaging’ edited by Grupen and Buvat [488].

This book originates from lectures which the authors gave repeatedly for the speciali-
sations in ‘Experimental Particle Physics’ and ‘Astroparticle Physics’ at the Humboldt
University in Berlin and at the Friedrich-Wilhelms University in Bonn. The volume of
this book, however, has evolved far beyond what can be presented in such a lecture
comprising typically two hours per week for one semester. However, the book should
be well suited as a basis for such a lecture, for going more deeply into the subject
matter and for getting prepared for instrumental work in particle and astroparticle
physics as well as in many fields which are addressed in section 2.4.

Besides the introductory and overview chapters (chapters 1 and 2), the book is
divided into five subject areas:

— fundamentals (chapters 3 to 5),

— detection of charged tracks (chapters 6 to 9),

— phenomena and methods mainly for particle identification (chapters 10 to 14),

— energy measurement (accelerator and non-accelerator experiments) (chapters 15 and
16),

— electronics and data acquisition (chapters 17 and 18).

Comprehensive lists of literature, keywords and abbreviations can be found at the end
of the book.
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2.1 On the history of detectors

Progress in nuclear and particle physics is based on the development of detectors with
which particles and radiation can be detected and their properties can be measured (see
table 2.1). The discovery of radioactivity by H. Becquerel in 1896 marks the beginning:
Becquerel concluded from the observation of blackening of a photographic plate, which
he kept in the dark close to a sample of uranium salt, that radiation is coming from
the uranium, a phenomenon which was later called radioactivity. Such an integral
measurement of radiation (in contrast to the detection of single quanta or particles)
was also the basis for the discovery of cosmic radiation by V. Hess in 1912 (Nobel Prize
1936 [520]). During a balloon flight he observed the discharge of an electrometer with
increasing altitude which he interpreted as being due to ionising radiation originating
from outer space (chapter 16).

In contrast to this indirect evidence for radiation it is important for basic research
that particles are individually measured with as many details about their properties
and kinematics as possible. Around 1900, photographic plates and scintillating coatings
of screens became the first detectors for the newly discovered radiation—besides the
a, B and ~ radiation from nuclei, also for cathode rays (electron beams) and X-rays. In
scattering experiments with a particles, Rutherford, Geiger and Marsden detected the
scattered particles on a scintillating zinc sulfide screen (ZnS) thereby determining their
scattering angle [841,453]. Figure 2.1 shows the apparatus with which the scintillation
flashes on the screen were recorded by eye using a microscope [453].

Also, the photoemulsion technique has been refined further so that the kinematics
of single particles of cosmic radiation could be reconstructed by analysing photographic
pictures (see section 6.3). Using this method, C.F.Powell and co-workers discovered
the pion in 1947 (see fig. 16.2). The Nobel Prize in Physics 1950 was awarded to Powell
‘for his development of the photographic method of studying nuclear processes and his
discoveries regarding mesons made with this method’ [793].

For the electrical recording of single particles H. Geiger developed tubes based
on the principle of gas amplification of the ionisation charge in strong electric fields
(H. Geiger 1908 [842]). The strong field is obtained by a high voltage applied between

£20Z 1290100 £0 U0 Jasn Ateigi NYID Aq GH9€/500q/woo dno olwapeoe//:sdiy woly papeojumoq



4 Chapter 2: Overview, history and concepts

Table 2.1 Some breakthroughs in the history of detector development. Since for such devel-
opments precise time specifications are often not possible the specifications of years in the
first column are given for orientation only. The assignment of discoveries to persons is also
sometimes arbitrary. For example, the principle of gas amplification, which is here associated
with the name of Geiger, was essential for the works on the classification of the radioactive
radiation for which Rutherford received the Nobel Prize in chemistry in 1908. Some detector
principles, like gas amplification, coincidence method and wire chambers, have been so fun-
damental that it is not possible to link them to specific discoveries. In more recent times it
became also increasingly difficult to associate detector developments with single individuals,
as for example in the case of microstrip detectors with which important discoveries involving
heavy fermions were made.

Year Name Detector principle Discovery Nobel Prize
1896 H. Becquerel photographic plate radioactivity 1903
1908 H. Geiger gas amplification

1911 E. Rutherford scintillation screen atomic nucleus

1912 C.T.R. Wilson cloud chamber many new particles 1927
1912 V. Hess electrometer cosmic rays 1936
1924 W. Bothe coincidence method 1954
1933 P. Blackett triggered cloud chamber ete™ pairs 1948
1934 P.A. Cherenkov Cherenkov radiation v oscillation 1958
1947 C.F. Powell photoemulsion pion 1950
1953 D.A. Glaser bubble chamber Q~, neutral currents 1960
1968 G. Charpak multiwire prop. chamber 1992
1980 Si microstrip detector BB oscillation

Fig. 2.1 Apparatus for the observation of the
scattering of o particles off a gold foil (Rutherford
scattering) as described in [453]. An « source R
radiates through a thin diaphragm D onto the foil
F. The scattered particles are observed on a screen
using a microscope whose objective carries a small
scintillation screen S. The microscope is rigidly
connected to the box B which is closed by the plate
P and evacuated through the tube T. The scattering
angle is set by turning the box with the microscope
relatively to foil and source (the base plate A turns
in the mount C fixed to the base plate L). Reprint
from [453], with kind permission of Taylor & Francis
Ltd.

the wall of a cylinder (cathode) and a thin wire (anode) which is strung along the
cylinder axis, see section 7.2.2. Gas amplification by secondary ionisation leading to the
development of avalanches in gases [943,944] had already been studied by J. Townsend
since about 1900 (see references in [842]). These developments led to the radiation
monitor known as the Geiger—Miiller tube [454] (often just called ‘Geiger counter’, in
particular when referring to the ready-to-use instrument) and later to the ‘proportional
counter’ which employs also gas amplification but in a more modest operation mode
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Section 2.1: On the history of detectors 5
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Fig. 2.2 First applications of the coincidence method: (a) Experimental set-up for the in-
vestigation of the properties of cosmic rays (in German ‘Das Wesen der Hohenstrahlung’ by
Bothe and Kolhérster 1929 [239]). In order to test different absorber materials, the signals
of counter tubes above and below the absorber are recorded when they occur in coincidence.
(b) Vacuum tube circuit for the detection of coincidences of the two counters Z and Z' [238].
The bias voltage of the tube D in the middle is adjusted such that a signal is only generated
at the output capacitor Cj3 if the potentials of both grids are simultaneously high. The grids
are controlled by the signals of both counters via the symmetric circuits on the left and right.
These circuits amplify and differentiate the counter signals to yield sufficiently high, short
pulses. The separation accuracy of this circuit is about 1ms. In the original application of
the circuit the output signal at C'3 was transferred to a unit counter of a telephone. Reprint
of the pictures with the kind permission of Springer Science and Business Media.

(see section 7.4). At the beginning the amplified charges were recorded by eye through
the deflection of an electrometer needle. However, the generation of electric signals
with a detector cleared the way for the automatic recording and finally for electronic
data processing in general.

A first fundamental step towards the electronic recording of events was the devel-
opment of the ‘coincidence method’ in the 1920s by W. Bothe and others (Nobel Prize
1954 [237]). The method employed the temporal correlation of the occurrence of events
to draw conclusions on the underlying physical process. For example, the penetration
ability of radiation could be measured for individual quanta or particles by observing
signals simultaneously above and below an absorber block (fig. 2.2(a)). Based on this
method coincident signals can be used to generate ‘triggers’ selecting interesting events
which can then be automatically recorded. The first coincidence circuit was realised
by Bothe in 1929 using vacuum tube electronics [237] (fig. 2.2(b)). However, before
the development of transistor electronics starting in the 1950s, the potential of such
circuits was quite limited as compared to today’s standards.

Until the 1980s, without the availability of highly integrated electronics, optical
recording by photographic exposure remained the only choice to store pictures of
complex reactions in large detector volumes. The first detector type with which particle
reactions could be made visible was the cloud chamber (chapter 6). In cloud chambers
ionisation along particle trajectories becomes visible as a ‘condensation trail’ in a
supersaturated gas. As an example, fig. 2.3 shows the renowned cloud chamber picture
of the discovery of the first antiparticle, the positron, by Anderson in 1932 [94]. The
determination of the charge sign of the particle by observing the track curvature in
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6 Chapter 2: Overview, history and concepts

Fig. 2.3 Discovery of the positron by C.D. Anderson
in 1932 [94]. The picture shows a particle track in
a cloud chamber passing a 6 mm thick lead plate.
The curvatures of the two track segments due to
the applied magnetic field of 1.5 T indicate that
the particle came from below and lost energy in
the plate. Flight direction, curvatures and track
length are compatible with belonging to a positively

charged particle with the mass of the electron; a
5 proton would have a ten-times shorter range. From
it gy Wikimedia Commons (original in [94]).

a magnet field was decisive for the identification as antiparticle. The cloud chamber
was developed around 1900 by C.T.R. Wilson and was recognised by the Nobel Prize
1927 [998]. The full capability of the apparatus only became available after P. Blackett
had automated the sequence of chamber expansion and picture taking with the aid of
a selective trigger. For the advancement of the ‘cloud chamber method’ Blackett won
the Nobel Prize in 1948 [207].

Around 1950 the bubble chamber took over the leading role as a large-volume
detector with which particle reactions could be recorded quite completely (fig. 2.4).
The bubble chamber works according to a similar principle as the cloud chamber but
rather with bubble formation in a superheated liquid which could be photographed.
For this development D.A. Glaser received the Nobel Prize in 1960 [462]. The bubble
chamber picture in fig. 2.4 illustrates the discovery of the 2~ baryon which, consisting
of three strange quarks, was pivotal for the confirmation of the quark model. Cloud
and bubble chambers are mostly operated in a magnetic field such that momentum

Fig. 2.4 Visualisation of particle reactions. Bubble chamber picture of the discovery of the
Q™ baryon [156] (courtesy Brookhaven National Laboratory).
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Fig. 2.5 Multiwire proportional chamber.
Each wire corresponds to a single pro-
////X///// portional counter tube, but with planar
cathodes below and above the wires. The
)% )% )% )% )% )% )% )% )% signal wire signal from each wire is readout separately.
(anode)

track
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and charge sign can be determined from the track’s curvature.

The transition to detectors with completely electronic readout proceeded since the
1960s in parallel to the progressing development of highly integrated electronics. The
first step in this direction was the development of the multiwire proportional chamber
(MWPC) by G. Charpak (Nobel Prize 1992 [290]). The MWPC is in principle a planar
side-by-side arrangement of counter tubes (fig. 2.5). In the 1980s, this detector type
and variants thereof, in particular drift chambers, finally replaced bubble chambers
(chapter 7). Figure 2.6 shows an example for the display of an event in a drift cham-
ber. In experiments with high radiation levels, as at the LHC (see table 2.2), mostly
semiconductor detectors (chapter 8) instead of gas-filled wire chambers are employed.
Semiconductor detectors, based on silicon or germanium, had already been employed
in nuclear physics for high-resolution spectroscopy since the 1960s. In particle physics
spatially resolving silicon detectors were introduced in the 1980s for precise measure-
ments of decay vertices, especially of heavy fermions. The required accurate spatial
resolution became feasible by micro-structuring the electrodes, adapting methods from
the rapidly developing microelectronics. With the progress in the miniaturisation of
electronics, semiconductor detectors became more affordable, allowing also their use
as large volume tracking detectors, in particular in high rate environments (e.g. at
LHC).

So far we have discussed developments which mainly concern the reconstruction
of ionisation tracks of charged particles. Another development line is detectors for the

Fig. 2.6 Visualisation of particle reactions.
Collision event recorded with the cylindrical
drift chamber of the ARGUS experiment (cut
perpendicular to the colliding electron-positron
beams) visualising the decay of an Y(4s) res-
onance with two identical B mesons in the
final state (source: DESY). It is one of the
completely reconstructed events of the type
Y(4s) — B°BY — B°B° (or : BOBY) in which
unambiguously a particle has turned into its
antiparticle or vice-versa. Such events are the
basis for the discovery of matter-antimatter

mixing in systems with bottom quarks [74].
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8 Chapter 2: Overview, history and concepts

Fig. 2.7 Cloud chamber picture of an electromag-
netic shower which was initiated by a high-energetic
photon or electron. The detector exhibits a sand-
wich architecture. The absorber layers are brass
plates; the shower particles can be observed in the
gaps between the plates. Source: ‘MIT Cosmic Ray
Group’, published in [836].

% o

measurement of particle energies, which are called calorimeters because their principle
is based on the total absorption of a particle’s energy. In dense materials the particles
deposit their energy by generating particle cascades (chapter 15). Initially, calorimeters
were developed for electromagnetically interacting particles, like electrons and photons.
Electromagnetic showers had already been observed and measured in cloud chambers,
see fig. 2.7. Since the 1940s, particularly good energy resolutions were obtained with
scintillating crystals (see chapter 13). However, the production of calorimeter crystals
is quite demanding, in particular for large quantities, and is relatively expensive. A
compromise between resolution and cost efficiency is found by employing sandwich
calorimeters which are built from alternating layers of absorber material, such as lead,
and layers of readout detectors, such as scintillators. The cloud chamber picture in
fig. 2.7 shows the principle of a sandwich calorimeter (we refer here to a cloud chamber
just because there the shower development is particularly well visible).

The accuracy of momentum measurements at high energies is limited by the achiev-
able strength of magnetic fields. Therefore, the continuous growth of accelerator ener-
gies and thus of the average particle energies requires that also the energies of hadrons
have to be measured calorimetrically. Besides the detection of charged tracks, hadron
calorimetry became a key aspect of today’s detector development.

The discovery of the Cherenkov effect by P.A.Cherenkov in 1934 (Nobel Prize
1958 [302]) was not related to a specific detector development. But it was soon realised
that the velocity dependence of the effect combined with a momentum measurement
can be exploited for a mass determination and thus usually for the identification of
a particle (chapter 14). The ability to identify particles and to determine at least
some quantum numbers was crucial for the development of the particle systematics of
the Standard Model. Beyond the aspect of particle identification, Cherenkov radiation
offers a cost-effective possibility to instrument large detector volumes, as they are often
required in astroparticle physics (chapter 16).

The detection of Cherenkov and scintillation light requires detectors which are
sensitive to few photons. Since the 1930s single photon sensitivity was achieved by
photomultiplier tubes (PMTs) which exploit the photoeffect in combination with the
effect of secondary electron emission (section 10.2.1) [1006]. A PMT basically works
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Section 2.1: On the history of detectors 9

as follows: photons hitting a thin metal foil generate electrons which are accelerated
to produce secondary electrons; after several acceleration steps the electrons are suffi-
ciently amplified to deliver a measurable output signal, even for single photons. A PMT
in combination with a scintillation counter was employed as a particle detector for the
first time in 1944 [652]. Only in combination with a PMT did scintillation detectors
find their place alongside counter tubes, cloud chambers and photoemulsions.

Primarily, detectors have been developed for the measurement of particles in nu-
clear and particle physics experiments. In such experiments, particles are mostly scat-
tered off each other. From the observation of the scattering products one tries to gain
insight into the properties of the participating particles and their interactions’.

In the beginning the only available particle sources were radioactive nuclear decays
and cosmic radiation. A scattering experiment took place using a stationary ‘target’.
For example, in the famous Rutherford scattering experiment « particles were scattered
off a gold foil (fig. 2.1); in the case of cosmic radiation the molecules of the atmosphere
served as the target. When particle accelerators became available more target-oriented
experiments could be performed at higher intensities. The development of accelerators
began in the 1920s? and since the beginning of the 1930s they were also employed for
nuclear physics experiments. In particle physics, accelerators had their breakthrough
only after the Second World War. The turning point is marked by the discovery of
the antiproton at the proton synchrotron Bevatron in Berkeley with an energy of
6.2 GeV [288]. The beam energy was in the first place chosen such that antiprotons
could be produced. Until then, all new members of the steadily growing ‘particle
z0o’—positrons, muons, pions, kaons, hyperons (A, X, Z)—had been discovered in
the cosmic radiation with the help of cloud chambers, photoemulsions and Geiger—
Miiller counters which were brought to mountains or by balloons to high altitudes.

The most important development lines of detectors have now been sketched where
we have, however, omitted the many interesting developments for special applications.
The progress was always driven by the demands at the frontier of science, wherever
it was at the respective time. For accelerator-based experiments the general trend
always went towards higher energies and higher intensities allowing us to study higher
mass scales and rarer processes. For astrophysical experiments the energy spectrum
and intensity is given and cannot be changed so that the scientific reach can only be
extended by making the detectors bigger and more sensitive.

Currently, the requirements of the experiments at the Large Hadron Collider (LHC)
at CERN (Geneva) are stimulating the detector developments. In the LHC protons
in two oppositely directed beams with the currently highest energies of up to 7TeV
are scattered off each other. The prominent challenges for the detector technology
are the very high reaction rates and particle multiplicities as well as the resulting
high radiation loads. In recent years, important progress in electronic data acquisition,
processing and storage was achieved (chapter 18). Data are selected on computer farms
with hundreds to thousands of processors, which are fed by data from up to 100 million
readout channels. The yield of stored data reaches petabytes per year corresponding
to several 100 megabytes per second. An end of this development is not yet in sight.

11n this book we try to presume as little knowledge on nuclear, particle and astroparticle physics as
possible. Some background in these fields is certainly helpful to better understand the motivations for
the detector developments. Lecture books on these subjects are for example the books by D. Perkins
[772] and A. Bettini [190].

2 Although the development of accelerators is closely related to the subject ‘detectors’ we do not
want to dwell on it but refer to the respective literature, see for example [994,999].
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10 Chapter 2: Overview, history and concepts

2.2 Detectors at accelerators

The foundations of particle physics have been laid by observing elementary reactions in
the cosmic radiation. Since the 1950s beams of accelerated particles became available in
the laboratory. The advantages of cosmic radiation, like general availability and highest
energies, are often outweighed by the possibility offered by accelerators to carry out
controllable, high-rate experiments. Also, the energy frontier has been steadily moved
upwards.

2.2.1 Accelerators

Stable charged particles can be accelerated by electric fields while magnetic fields can
keep them within compact beams on desired orbits [994,999]. A particle with the
elementary charge e gains in an electric field E over the path length L the kinetic
energy

L
T:e/ Eds=eV, (2.1)
0

where V' is the potential difference between 0 and L. Therefore, in nuclear and particle
physics the energy is quoted in units of electronvolt (eV):

1eV ~1.602 x 1071 CV = 1.602 x 10717 J.

Since DC voltages (DC = direct current) in accelerators are limited to about 1-10 MV,
the accelerators in high energy physics operate with high frequency electromagnetic
fields which are stored in periodic structures. The particles are accelerated in short
bunches when they pass the structure in phase with the accelerating field. The bunch
structure of the beams affects the design of the time structure of the data acquisition
systems of the experiments (chapter 18).

The high-frequency structures could be linearly (linear accelerator) or circularly
(cyclotron, synchrotron) arranged (fig. 2.8). A prominent example for an electron
linear accelerator is the machine at the ‘Stanford Linear Accelerator Center’ (SLAC)
built in the 1960s for the measurement of the structure of nucleons (deep-inelastic
scattering). Except for this one, all other high energy accelerators have been designed
as synchrotrons, either for electrons or for protons. A synchrotron offers the possibility
of ‘strong focusing’ by applying inhomogeneous magnetic fields to constrain the beam
size in both transverse directions (see e.g. [999]). With the introduction of strong
focusing around 1950, the preconditions were given for the construction of the proton
synchrotrons in the 30 GeV domain at CERN and at Brookhaven. Currently the largest
synchrotron complex is the proton—proton collider at CERN, named Large Hadron
Collider (LHC). This position was held for a long time by the proton—antiproton
collider Tevatron at the Fermi National Accelerator Laboratory (FNAL, Fermilab) in
the USA before the LHC started operation.

The classical synchrotron generates a particle beam which is sent onto a fixed
target. The target can be positioned internally inside the machine in the fringe region
of the beam or externally in an ejected beam. There are accelerators for electrons,
protons and their antiparticles as well as for heavy ions. In addition secondary beams of
practically all sufficiently long-lived particles (photons, pions, kaons, hyperons, muons,
neutrinos) can be generated by showering the primary beam in a dense conversion
target followed by a filter selecting the desired particles. Hadron beams are generated
by primary protons, photon beams from the bremsstrahlung of electrons and muon
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Fig. 2.8 Schematic sketches of three important accelerator types. The first classification
separates into linear accelerators (a) and circular accelerators (b, c). Under the circular ac-
celerators one distinguishes the scheme of a synchrotron (b) with a beam in the machine and
an ejected external beam and the scheme of a storage ring (c) with two oppositely circulating
particle beams which are collided at a crossing point.

and neutrino beams from decays of secondary pions and kaons. Secondary beams are
also used for testing and calibrating detectors. At CERN the highest energy external
beams are delivered by the ‘Super Proton Synchrotron’ (SPS, up to 450 GeV). The
Fermilab ‘Main Injector’, a proton synchrotron, provides beams up to 120 GeV .

Since in a stationary target a large portion of the beam particle’s energy is lost as
recoil energy, the idea of ‘colliders’ emerged where particle bunches are accelerated in
opposite directions and are collided at specific interaction points (fig. 2.8(c)). Colliders
are usually realised as rings, called storage rings, in which particles are kept as long
as possible in circular orbits. An exception thereof is the ‘Stanford Linear Collider’
(SLC, table 2.2). The experiments at LEP (CERN, see table 2.2) and the SLC have
studied the Z-boson resonance in electron—positron collisions. Because in circular ac-
celerators electrons lose their energy by radiation (synchrotron radiation) for which
the emitted power strongly increases with energy, future high-energy electron—positron
colliders are planned as linear colliders as well [555,314]. Colliders have been built for
the following particle combinations, see table 2.2: electron—positron, electron—electron,
proton—proton, proton—antiproton, proton—electron, proton—positron.

Characteristic parameters of colliders are, amongst others, the energy of the beam
particles, the time structure of the particle bunches, the spread of the interaction zone
and the luminosity. The luminosity L is a measure for the interaction rate at a crossing
point of the beams and is defined as the reaction rate N per cross section o of the
reaction (see section 3.1):

N=Lo or L:%. (2.2)
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12 Chapter 2: Overview, history and concepts

The luminosity is proportional to the particle currents and inversely proportional to
the overlap area of the beams at the crossing point. In the simplest case, for equal
beam profiles following two-dimensional Gaussian distributions with widths o, and o,
(in the plane of the machine and perpendicular thereof) one obtains:

_ONIN, f

L= (2.3)

)
dm o0y

where b is the number of bunches per beam which circulate with the frequency f
and contain Ny and N» particles, respectively [994]. The beam profiles depend on
parameters of the beam optics which is defined by the bending and focusing magnets
of the accelerator. Accordingly the luminosity can be determined by measuring the
beam parameters, for example, by moving the beams in the collision zone relative to
each other and recording the corresponding rates (‘Van-der-Meer scan’ [154]). Since
this scan cannot be executed during the running of an experiment, for a continuous
determination of the luminosity particle rates are measured by a so-called luminosity
monitor and converted into a luminosity according to formula (2.2). The cross section
entering in the formula is either known—for example for Bhabha scattering at small
angles in electron—positron colliders—or the rate was calibrated according to (2.3) by
means of the Van-der-Meer Scan and measurements of the currents using induction
coils. The highest achieved collider luminosities lie at L ~ 103*73% s~! cm~2, meaning
that for a cross section of ¢ = 1fb = 1073 cm? (fb = femtobarn) up to 10 events will
be produced per year.

2.2.2 Detector concepts

Particle detectors at accelerators are usually ‘magnet spectrometers’, meaning that
they include one or several magnets and tracking detectors with which the momenta
of charged particles can be determined by measuring the curvature of their trajecto-
ries (chapter 9). The first experiments at accelerators were of the ‘fixed-target’ type,
which means that the beam is shot on a stationary target. The detectors searching for
the reaction products were restricted to detect single particles in a small solid angle
of a few millisteradian and in a limited momentum window. Figure 2.9 shows as an
example a spectrometer for the measurement of electrons. This apparatus was em-
ployed in the classical experiment of deep-inelastic scattering at the linear accelerator
SLAC where the nucleon structure functions have been measured [935]. Besides the
dipole magnets for momentum analysis such a spectrometer also comprises focusing
quadrupole magnets for mapping, for example, different momenta independently of
the scattering angle onto the focal plane. A hit in a counter of a counter array in
the focal plane yields the scattered energy while the spectrometer direction relative
to the incoming beam yields the medium scattering angle. Thus with only a relatively
small number of detector elements and without explicitly reconstructing the complete
particle trajectory, it is possible to determine the particle’s kinematics.

At the same time, since the 1950s complete events could also be made visible with
bubble chambers, see for example fig. 2.4. Certainly, the analysis of the huge number
of photographs, which mostly contained nothing interesting, was very laborious. As
sketched in the historical section 2.1 the miniaturisation of semiconductor electronics
allowed for equipping ever larger detector volumes with ever finer segmentation of the
electronic readout. Therefore, the goal in modern particle physics experiments is often
to detect, identify and kinematically reconstruct all particles of a scattering reaction
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Table 2.2 List of colliders with centre-of-mass energies (Ecm) above 8 GeV (this limit is
arbitrary, but ensures that the machines with most of the experiments mentioned in this
book as examples are included). For the heavy ion collider RHIC and for heavy ions in LHC
the energies are given per nucleon (N = number of nucleons in an accelerated nucleus). More
details about colliders can be found in the review articles ‘High Energy Collider Parameters’
in the ‘Review of Particle Properties’ of 2014 and 1996 issued by the ‘Particle Data Group’
(PDG) [746,157].

Name Status Location Particles Fpoam Fen
(GeV) (GeV)
ISR 1971-1984  CERN (Geneva) pp 35 + 35 70 GeV
SPEAR  1972-1990  Stanford (USA) ete” 4+4 8 GeV
DORIS 1973-1993 DESY (Hamburg) ete~ 56 + 5.6 11.2
CESR 19792002  Cornell (USA) ete” 6+ 6 12
VEPP-4M  1994-  Novosibirsk (Russia) ete~ 6+6 12
PETRA  1978-1986 DESY (Hamburg) ete” 20 + 20 40
PEP 1980-1990  Stanford (USA) ete” 15+ 15 30
TRISTAN 1987-1995 KEK (Japan) ete” 32 4 32 74
SppS 1981-1990  CERN (Geneva) pp 250 + 250 500
PEP II 1999-2008  Stanford (USA) ete” 3.1+ 9.0 10.58
KEK-B 1999-2010 KEK (Japan) ete” 3.5 4+ 8.0 10.58
LEP 1989-2000 CERN (Geneva) ete” 100 + 100 200
SLC 1989-1998  Stanford (USA) ete” 50 + 50 100
Tevatron 1987-2011  Fermilab (USA) pp 1000 + 1000 2000
HERA 19922007 DESY (Hamburg) ep 30 + 920 330
LHC 2008— CERN (Geneva) pp 7000 + 7000 14000
LHC 2008~ CERN (Geneva) AA 2500/N + 2500/N 5000/NN
RHIC 2001-  Brookhaven (USA) AA 100/N + 100/N  200/NN
ILC planned not decided ete” 250 + 250 500

and to achieve that in as much of the full 47 solid angle as possible. This has natural
limitations which we will point out at several places in this book.

In the following we sketch concepts of typical ‘general-purpose detectors’ while
variants and concepts for other applications will be discussed in the corresponding
sections of the book. Detector configurations differ in whether they are placed behind
a stationary target (fixed target) or in the interaction zone of a collider.

The fixed-target experiments have forward detectors, meaning that they cover only
a part of the solid angle in the forward direction of the beam (fig. 2.10(a)). The
reaction products preferentially go into this direction because of the Lorentz boost
which the beam particle transfers to the centre-of-mass system of the reaction. The
angular acceptance of the detector can be adjusted such that nearly the full 47 solid
angle in the centre-of-mass system is covered.

For collider experiments with symmetric beam energies the laboratory and the
centre-of-mass system are the same so that the detector is best arranged spherically
around the interaction point (fig. 2.10(b)). For reasons which are related to the me-
chanical construction, the configuration usually becomes cylindrical with the beams as
the symmetry axis. Since the entrance and exit for the beams has to be left open, a full
solid angle coverage cannot be reached but rather more like 95-99% thereof. A her-
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s

Pivot © The Nobel Foundation

Fig. 2.9 Example of an imaging magnet spectrometer. The 8 GeV spectrometer was one of
three spectrometers with different momentum acceptances with which the structure func-
tions of the nucleons were measured for the first time [935]. From these structure functions
evidence for quarks inside the proton was concluded. The structure functions are measured
by inelastically scattering of electrons off nucleons (protons or neutrons). The spectrometer
only measures the scattered electrons (without detecting the recoil system) which is suffi-
cient to determine the relevant kinematical variables. The figure shows a side view of the
spectrometer which deflects the electrons upwards. The plane of the view contains the axis
through the target around which the spectrometer can be rotated to define the scattering
angle. The scattered electrons are deflected by two dipole magnets (B1, B2) and are focused
by three quadrupole magnets (Q1-Q3) such that the momenta can be determined by an array
of scintillation counters (‘hodoscope’) arranged in the focal plane of the magnet system. The
shielded housing which surrounds the hodoscope also contains trigger counters and elements
for the identification of the electrons, in particular for separating them from pions. Source:
Nobel Foundation.

metic coverage is particularly important when searching for new phenomena involving

invisible (non-interacting) particles.

General-purpose detectors which are striving for a complete detection of all reaction
products are typically constructed in layers (planar layers in the fixed-target case and
shell layers in the collider case) each taking over a specific task, see fig. 2.10. The
detector layers closest to the target or interaction point should be as ‘thin’ as possible
in order to minimise scattering and absorption of particles. In fig. 2.10 a typical layer
sequence is sketched for fixed-target and collider configurations:

(1) Vertex detectors for the detection of secondary vertices with separation from the
primary vertex of the reaction.

(2) Tracking detectors for track reconstruction yielding momentum determination
and (sometimes) particle identification. They can be inside (usually at colliders)
or in front and behind a magnetic field.

(3) Optional detectors for particle identification, for example, Cherenkov detectors.

(4) A calorimeter for the measurement of electromagnetic showers (electrons and
photons).
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Fig. 2.10 Typical configuration of detector components in (a) fixed-target (side view parallel
to the beam) and (b) collider experiments (cuts perpendicular and parallel to the beams). The
collider detector is composed of cylindrical shells around the interaction point. Explanations
in the text.

(5) A magnet coil in collider experiments; sometimes also in front of the electromag-
netic calorimeter.

(6) A hadron calorimeter, usually outside the magnet coil.

(7)  Muons are the most penetrating charged particles and therefore they are identi-
fied by their detection behind the calorimeters. In collider experiments the muon
detectors are often layers of tracking devices installed between iron blocks which
at the same time serve as magnet yoke, as in fig. 2.11.

As an example, fig. 2.11 shows a slice of the CMS detector at the LHC. The actual
dimensions of the components can be inferred from the scale on the picture. For the
CMS detector the high magnetic field of 4 T is characteristic (rather typical is < 2T).
It is also unusual that the coil of the solenoid field (axis parallel to the beams, i.e.
perpendicular to the shown view) is placed outside the two calorimeters, usually at
least the hadron calorimeter lies outside the coil. The magnetic flux of the solenoid
magnet is returned through an iron yoke outside of the coil. The iron is subdivided into
several layers between which tracking detectors for the measurement of high-energetic
muons are installed.
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2.3 Detectors in astroparticle physics
2.3.1 Detector applications

The research field of astroparticle physics is the detection of radiation and particles
originating from outer space in a wide range of energies, from solar neutrinos of some
100 keV to cosmic rays of more than 10?! eV (chapter 16). Accordingly, the respective
detector technologies are very different, and there is no detector configuration which
would be typical for a majority of experiments. However, similarities can be found
amongst detectors in the following categories:

— Balloon and satellite experiments (section 16.2): The detectors must be particularly
compact and light. They usually have a layer structure similar to detectors at accel-
erators (fig. 2.10), with specific emphasis on components for particle identification.

— Air shower detectors (section 16.4): These are in principle calorimeters which mea-
sure cosmic ray initiated showers only in one plane (the Earth’s surface) and with
a coarse sampling. The high primary energy requires the instrumentation of very
large areas and thus the optimisation of costs per detector unit.

— Cherenkov telescopes for the measurement of TeV gamma radiation (section 16.5):
These are mostly imaging telescopes with high time resolution of the cameras for
the suppression of ambient background light. Stereoscopic imaging using an array
of several telescopes yields an accurate determination of the gamma ray direction.

— Neutrino detectors for low energies (sun, supernovae, ...) (section 16.6): Because of
the low detection probability the detector mass has to be maximised and the back-
ground radiation has to be minimised. In order to suppress background, laboratories
are set up in mountain tunnels and deep mines.

— Detectors for high energy neutrinos of cosmic origin (section 16.6.5): Because of
the low reaction probability and low flux of the neutrinos, these detectors have
particularly large volumes, up to cubic-kilometres. All of the so far constructed
detectors observe Cherenkov light produced by the neutrino reaction products in
water or ice.

— Instruments for the detection of exotic particles (dark matter, monopoles, Majo-
rana neutrinos, ...) (section 16.7): The detection methods are very different for
different searches. Since in general the background causes the largest problems, the
experiments are carried out in underground laboratories as in the case of neutrino
experiments.

2.3.2 Opbservatories for astroparticle physics

The most important observatories for the measurement of air showers that are initiated
by charged cosmic particles (section 16.4) and high-energetic photons (section 16.5)
are listed in the following:

— Pierre Auger Observatory: Detection of cosmic radiation at the highest energies over
an area of about 3000 km in the Pampa Amarilla near Malargiie, Argentina.

— Telescope Array Observatory: Detection of cosmic radiation at the highest energies
on an area of about 762 km in the high altitude desert in Millard County, Utah
(USA).

— IceCube Neutrino Observatory: 1-km?3-sized Cherenkov detector about 2km deep in
the ice at the geographic South Pole.
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— Tunka EAS Cherenkov Light Array: An about 1-km?-sized air shower detector in the
Tunka valley near Lake Baikal, detects Cherenkov light generated in the atmosphere.

— Kaskade-Grande: 0.5-km?-sized detector at Karlsruhe Institute of Technology (KIT)
for the measurement of air showers.

— Imaging Cherenkov telescopes for TeV gamma astronomy: H.E.S.S. (Namibia), MAG-
IC on La Palma (Spain), VERITAS (Arizona, USA).

— High-Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory: Non-imaging
Cherenkov detector at Sierra Negra Volcano near Puebla, Mexico, at an altitude of
4100 m.

— YBJ International Cosmic Ray Observatory: The facility in the Yangbajing valley
(YBJ) in the Tibetan highlands at an altitude of 4300 m comprises several experi-
ments, including the air shower experiment ARGO-YBJ for the detection of charged
cosmic rays and photons.

2.3.3 Underground laboratories

Prominent underground laboratories are:

— Baksan Neutrino Observatory (BNO): located in the Baksan River gorge in the
Caucasus mountains in Russia, 3500 m deep; includes the SAGE Experiment (Soviet-
American Gallium Experiment for solar neutrino detection).

— China Jinping Underground Laboratory (CJPL): located in the Jinping Mountains
of Sichuan, China, at a depth of 2400m or 6720 m we (water overburden); houses
the dark matter experiment PandaX.

— Kamioka Observatory, Japan: about 1km deep, observation of oscillations of neu-
trinos from the sun and the atmosphere, includes the neutrino experiments Super-
Kamiokande, KamLand and T2K.

— Laboratori Nazionali del Gran Sasso (LNGS), Italy: one of the largest underground
laboratories for particle physics; 1400m deep in a tunnel through the Gran Sasso
massif, includes neutrino experiments, experiments searching for dark matter and
double-beta decay.

— Laboratoire Souterrain de Modane (LSM), France: in the Frejus tunnel at a depth
of 1700 m (4800 m we); includes the experiments NEMO (double-beta decay) and
EDELWEISS (dark matter search).

— Sanford Underground Research Facility (SURF), Homestake Mine, USA: in the
Homestake Mine first indications for neutrino oscillations were found with the
‘Davis Experiment’; contains now experiments searching for dark matter (LUX)
and double-beta decay.

— Soudan Underground Laboratory: located in the Soudan Mine USA, 714 m deep; it
accommodates the experiments MINOS (running until 2016) which is positioned in
a neutrino beam from the 735-km-distant Fermilab (long-baseline neutrino experi-
ments) and the CDMS Experiment searching for dark matter.

— SNOLAB: in the Vale Inco’s Creighton Mine in Sudbury, Ontario, Canada; 2073 m
deep; the laboratory is home to the Sudbury Neutrino Observatory (SNO), an ex-
periment which confirmed the oscillation hypothesis for solar neutrinos by detecting
the flux of all flavours.
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2.4 Other detector applications

Detectors, which had been developed for research in nuclear and particle physics, have
also been successfully employed in other fields, such as medicine, biology, material
science, radiation and environment protection, archaeology, geology and astronomy.
In these areas detectors are mostly used for relatively low-energetic particles, emitted
from radioactive nuclei, X-ray sources or low-energy particle accelerators.

Dosimetry. Whenever radiation is involved, for example in research, engineering or
medicine, the monitoring of the radiation with dosimeters is mandatory (see e.g. [911]).
Dosimetry instruments are, for example, Geiger counters, ionisation chambers, photo-
graphic films and semiconductor detectors. Each one of them has specific capabilities:
a Geiger counter or semiconductor can detect single radiation quanta, the current of
an ionisation chamber yields the radiation level and on a film the time-integrated ra-
diation dose is recorded. The most important measurement quantities and units of
dosimetry are compiled in appendix A.1.

Tomography, radio-labelling. Tomography is a method of producing a three-
dimensional image of the spatial structures of an object, such as the human body,
the earth or machine parts, by measuring the direction dependence of radiation trans-
mission. For example, particle detectors are employed for X-ray computed tomography
(CT) by analysing the direction dependence of X-ray absorption. In positron emission
tomography (PET, fig. 2.12) and in scintigraphy using single-photon-emission com-
puted tomography (SPECT) the examined biological structures are labelled by atoms
or compounds which contain radioactive nuclides. The nuclides emit particles whose
directions are analysed yielding a picture of the spatial distribution of the radioactivity.

Tracer method and radiometric dating. ‘Tracers’ are radioactive additives to
materials allowing us to trace material transport. For example, flows of liquids or the
abrasion debris of mechanical machine parts can be studied in this way.

In geology and archaeology the dating of rocks and of archaeological finds by mea-
surement of the activity of specific nuclides became an important research tool. An
example is the radiocarbon dating where the 3 activity of **C in an organic specimen
is measured using a proportional counter.

X-rays and synchrotron radiation. Scintillators and semiconductor detectors are
employed in structure analysis with X-rays and synchrotron radiation. Similar methods
are utilised in astronomy for the detection of cosmic X-rays by satellite experiments.

Diagnostics with neutrons. The scattering of low-energy neutrons off hydrogen
nuclei is particularly efficient (because of their equal mass). Therefore, in various areas
neutron scattering is used as an indicator for the abundance of water or, more generally,
of hydrogen. For example, in geology the neutron method is used for rock examinations
in boreholes. Neutron detectors (section 14.5) are counting tubes or scintillators that
are combined with materials which have a high cross section for neutrons.

2.5 Units and conventions
2.5.1 Units

Following a common use in particle physics, formulae in this book are often expressed
using a system of units where h and c¢ are dimensionless with h = ¢ =1 (‘natural
units’). Sometimes, we also write explicitly & and ¢ if in the literature the corresponding
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Fig. 2.12 Scheme of a positron emission tomograph (PET). PET uses a positron emitter as
marker. The positrons are stopped in the tissue near the source and annihilate with electrons
into two back-to-back photons. The photons are detected by a ring-shaped array of scintillator
crystals. The sample of all measured photon directions allows for a tomographic reconstruction
of the emitter distribution. Source: Wikimedia Commons, author J. Langner [643].

expressions are usually written in this way (e.g. atomic physics formulae in chapter 3 on
interactions) or if numerical calculations have to be carried out using a certain formula.
Numerical values are then given in SI units (SI = Systéme International d’Unités,
known in English as the International System of Units) [260]. For the conversion the
following relations are helpful:

he = 197.3 MeV fm ~ 200 MeV fm,  (he)? = 0.3894 GeVZmb =~ 0.4 GeVZmb (2.4)

The relativistic relation
E=+\/p>+m? (2.5)

is numerically fulfilled if, for example, the energy F is given in GeV, the momentum
p in GeV/c and the mass m in GeV/c?.

2.5.2 Standards for material properties

Quoting material properties we often refer to the collection ‘Atomic and Nuclear Prop-
erties’ of the Particle Data Group [762]. The specific values are given under different
ambient conditions which have to be accounted for. This is most important for gas
properties like density and refractive index. The Particle Data Group mostly refers to
two standard conditions for temperature and pressure. See [481] from which we quote
the following definitions:

STP Standard temperature and pressure (STP) for a gas is defined by the Interna-
tional Union of Pure and Applied Chemistry (IUPAC) as 0°C (273.15K), 100 kPa.
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This differs from an earlier definition that used 1 atm (101.325 kPa) as the pressure
reference.

NTP Normal temperature and pressure (NTP) for a gas is defined as 20°C (293.15K),
latm (101.325kPa).

Other standards abound, and the definitions are not necessarily consistent (see [481]
and references therein).

2.5.3 Particle kinematics

In particle physics the kinematics is mostly evaluated using relativistic formulae. The
Lorentz variables v, g are defined as (E, m, p in natural units)

E 1 p v
=—=— ===-. 2.6
== 5 B=g =1 (2.6)
The kinetic energy is
2
T=E-m - 2 for v — 1, (2.7)
2m

where v — 1 means the non-relativistic limit.

With most general-purpose detectors energy, momentum and angle of the particles,
sometimes also the mass, can be determined. Momenta are often distinguished as
longitudinal or transverse momenta (pr, pr) relative to a preference direction. For
example, this preference direction could be the direction of a magnetic field where pp
lies in the plane transverse to the field containing the curvature of the charged particles.
Often the preference direction is the beam direction which for collider experiments is
usually also the magnetic field direction.

In head-on collisions the vector sum of the transverse momenta of all reaction prod-
ucts relative to the beam direction vanishes. The transverse momentum conservation

is exploited to calculate from the observed transverse momentum 7,2 the missing
transverse momentum, p,7%%¢ = —p,2% and to estimate from that the kinematics of

unobserved particles, like neutrinos or invisible exotic particles. For calorimetric mea-
surements the ‘transverse energy’ Er and the ‘missing transverse energy’ EJ'*% are
used instead. Both are derived by treating energies like momentum vectors with the
vector pointing to an energy deposition and using the relativistic relation E =~ p. In
general, for longitudinal momenta a similar constraint as for transverse momenta does
not hold since there are always gaps in the instrumentation around the beams so that
particles are lost in forward and backward directions. In particular for hadron beams,
both in fixed-target or collider configurations, the reaction products are strongly col-
limated in the forward direction.

Relative to a preference direction also polar and azimuth angles 6, ¢ are defined
(see e.g. fig. 9.6). In collider experiments with cylinder symmetry the two angles are
defined by the cylinder coordinates. Instead of the polar angle 8 the ‘rapidity’

1 E+pr\ _ PL
y—2ln(E_pL>—arctanh(E> (2.8)

is also used. At high energies, with F & p and with cos = pr, /p, the equation becomes

y— —1In <tan Z) =:7. (2.9)
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The so defined ‘pseudo-rapidity’ 7 is also used independently of the validity of the
high-energy approximation if the mass of the respective particle is not known.

2.6 Content overview

In the chapters 3 to 5 the essential theoretical and technical foundations for the con-
ception and construction of detectors are presented. It starts with the ‘interactions
of particles with matter’ in chapter 3, the basic prerequisite of particle detection. Es-
sential for detector operation are also the phenomena of charge transport in electric
and magnetic fields, discussed in chapter 4, and the signals resulting from the charge
movement, discussed in chapter 5. The next four chapters 6 to 9 treat the detection
of tracks generated by charged particles. Beginning with the classical ‘non-electronic
detectors’, which are mostly of historical interest, detector types are presented whose
sensitive media are either gas (chapter 7) or semiconductors (chapter 8). Track recon-
struction with and without magnetic field is explained in chapter 9. In the following
four chapters detector effects and methods are described which are in a wide sense
related to particle identification. The Cherenkov, transition and scintillation effects
are discussed in chapters 11, 12 and 13, respectively. The detection of these effects
requires photodetectors, which are presented in chapter 10. In chapter 14 an overview
of methods for particle identification is given. Energy measurements, also referred to
as calorimetry, are covered by chapter 15 for accelerator-based experiments and by
chapter 16 for astrophysical experiments or, more generally, for non-accelerator ex-
periments. The last two chapters, 17 and 18, deal with the electronics of detectors
comprising the signal readout, trigger and data acquisition systems which make the
data available in digital form for physical analysis.
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Particles, charged or neutral, can only be sensed by interacting with matter. Detectors
usually exploit the following processes:

— ionisation and excitation of atoms in media by charged particles;

— bremsstrahlung: photon radiation emitted by charged particles in the fields of atomic
nuclei;

— photon scattering and photon absorption;

— Cherenkov and transition radiation;

— nuclear reactions: hadrons (p, n, 7, a, ...) with nuclear matter;

— weak interactions constituting the only possibility to detect neutrinos.

Generally, a particle will undergo more than just one interaction process on its path
through matter if it is not absorbed in its first interaction. For example, charged
particles usually lose energy in a large number of subsequent ionisation and excitation
interactions with atoms of the medium they pass through.

The probability that a particle interacts with the atoms of a medium is defined by
the cross section of a reaction. The definition of the cross section and related terms
will be given in the following section.

3.1 Cross section and absorption of particles and radiation in
matter

The cross section is a measure for the probability of a particle reaction, which in turn
depends on the kind and strength of the interaction(s) between the scattering partners.
It can be interpreted as an effective interaction area, as sketched in fig. 3.1. The cross
section o represents the effective area of a target particle ‘seen’ by an incoming particle
beam. We assume for simplicity that the beam particles have no spatial extent. The
beam enters the target with area S and length [ with a rate Nj,. There are

_rv

Nr=—N 1
r =L N (3)
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o g
S—¢ ! Ng Fig. 3.1 Illustration for the

o cross section definition: Nm and

vQ o ooo Ng are incoming particle rate

. - ’Q N and reaction rate, respectively;
Nin N *) GDUOO o S and [ are total area and target

Q o o length, respectively; o denotes

o (&) the cross section.
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particles in the target volume V' = S where p is the target mass density, A the atomic
mass per mole of the target particles’ and N4 = 6.02214076 x 10?2 /mol is Avogadro’s
number. Since 2019 the numerical value of N4 is fixed and is used for the definition
of the mole as the amount of substance which contains N4 entities [260]. The target
can consist of any type of particle (atom, molecule, electron, ...) if A is taken as the
corresponding mass per mole.
The particle number density is given by
Nr p

n = % —ANA. (32)
The beam ‘sees’ a total area Np o of target particles. The probability to hit a target
particle is P = Npo/S. This probability can also be expressed by the scattering or
reaction rate Ny relative to the rate of incoming beam particles Nj,, provided that the
target is sufficiently thin such that any change of the beam while passing the target
can be neglected:

Ng N
P:N—f: ggznal. (3.3)
The cross section can then be expressed as
Ngp 1
7 Nin nl ( )

Hence the reaction rate is proportional to the cross section, the proportionality con-
stant being the luminosity L:

Nr=olL, L=Ngnl. (3.5)

The term ‘luminosity’, here defined for a so-called fixed-target experiment, is more
commonly used for colliding beams (see the corresponding discussion on page 11).

If the assumption of a thin target is no longer valid one must take into account
that the number of particles N(z) that have thus far not interacted with the target
decreases exponentially with the penetration depth = (fig. 3.2(a)):

1The use of the symbol A in this context is not unique in the literature. Either it denotes the
(atomic) mass number, that is, the number of nucleons of a nuclide, or it denotes the atomic mass. In
this book we use for the (dimensionless) mass number the symbol A. For the symbol A we adopt the
convention used by the PDG in their review of particle interactions with matter [201] where A is the
atomic mass per mole [762]. The definition accounts for the isotopic composition of an element and
the atomic composition of molecules and mixtures. Due to the definition of the mole the numerical
values in units g/mol are close to the respective mass number, nearly equal (‘exactly equal’ until the
SI-unit system redefinition in 2019 [260]) for the nuclide 12C.
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Fig. 3.2 Number of particles in a beam as a function of the penetration depth. (a) Loss of
particles due to absorption (typical for photons) leads to an exponential decrease of the beam
intensity, (b) energy loss in matter (typical for charged particles) leads to a finite range with
a fairly local drop to zero in intensity.

aN

N = —nodx = N(z) = Noe M| (3.6)

where Ny is the original number of particles and pu = no. If the beam particles are
absorbed when they interact with target particles then p is called the absorption
coefficient or linear attenuation coefficient. Equation (3.6) is also known as the Beer—
Lambert law. The mean free path of a particle is defined as

A=—=—. (3.7)

The cross section has dimensions of area; its unit is called barn:
1barn = 1b = 10"2* cm?. (3.8)

Since nuclear densities are largely independent of the mass of a nucleus, the nuclear
volume is roughly proportional to the number of nucleons A and the cross-sectional
area is proportional to A%/3. Because of the short-range nature of nuclear forces their
geometrical area also governs the order of magnitude of their interaction cross sections:

Onucl = WT% A% ~ 45 mb A% . (39)

The typical order of magnitude is in the range of femtometres with rq ~ 1.2 fm.
Correspondingly the magnitude of atomic cross sections can be estimated using the
Bohr radius ag (ag ~ 0.05nm):

Catom ~ 7ra(2) ~10%h.

Due to the long-range nature of the electromagnetic interaction, however, a simple
dependence on A as for nuclei is no longer given. Owing to the shell structure of the
atoms, the atomic radius increases within a group of atoms with Z electrons; however,
within an atom period the radius shrinks from alkali metals to ideal gases.

For our applications we distinguish between elastic scattering on the one hand and
inelastic scattering on the other, where for the former the incoming (beam) particle
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26 Chapter 3: Interactions of particles with matter

is still present in the final state, while it has been absorbed in the latter. An example
for the elastic/inelastic case is the scattering of a charged particle off atomic shell
electrons which can be either entirely elastic or inelastic when ionisation or excitation
of the atom occurs. An example for absorption is the photoelectric effect, by which a
photon is absorbed by an atom emitting an electron. For the two cases very different
dependencies of the number of beam particles as a function of the penetration depth
result, as shown in fig. 3.2: in the case of absorption an exponential decrease occurs,
whereas for continuous energy loss the beam intensity remains practically constant
until the entire energy of the particle has been transferred to the medium (see also
section 3.2.4).

3.2 Energy loss of charged particles by ionisation
3.2.1 The Bethe—Bloch formula for the average energy loss

When penetrating a medium charged particles lose energy by ionisation and excitation
of the medium’s atoms (fig. 3.3). This is the dominant energy loss process of charged
particles up to very high particle velocities when radiation effects start to play a role
(see section 3.3).

The energy loss per path length is described by the Bethe—Bloch formula. The first
calculations using classical methods were already published by Bohr in 1913 [226]. In
the 1930s Bethe [187] and Bloch [214,213] provided a quantum mechanical treatment of
the problem, the results of which are to a large extent still valid today. Subsequently the
calculations have been refined; in particular corrections for various kinematic regimes
were computed (see e.g. [227,392] and references in [746]).

Energy loss of a particle passing through matter arises from a sequence of individual
stochastic processes. The average energy loss per path length depends on the properties
of the medium a as well as on the mass M and the velocity S of the particle:

dE Tmaz g,
—(— )= T M,B3,T) dI. 1

Here n is the target number density and do,/dT the differential cross section for a
loss of kinetic energy T in the collision. The integral from T}, t0 Tyne, comprises
the region of all possible energy transfers. Energy transferred to the atom can be
spent to release an electron from the atom by ionisation (providing binding energy
and kinetic energy of the electron), but also to merely excite the atom. We will see
that the computation of (3.10) is far from straightforward. At low energy transfers,
corresponding to large impact parameters where atom excitations play the dominant
role, the integral cannot be solved classically.

-DE
/E/' Fig. 3.3 Energy loss of a particle passing through

% matter.
o (Mass M

part'\c\

k—AX —
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Section 3.2: Energy loss of charged particles by ionisation 27

3.2.1.1 Energy loss through Rutherford scattering off shell electrons

In what follows we restrict ourselves to ‘heavy‘ charged particles (henceforth called ‘the
particle) passing through the medium. These represent all charged particles except
electrons and positrons (see page 35) for which exchange and annihilation must be
considered in addition. To compute (3.10) we subdivide the range of energy transfers
into a high energy region (T > T}) with large losses T of the particle’s kinetic energy
and a low energy region (T < T), where binding energies of the electrons cannot be
neglected and a quantum mechanical treatment is needed. Note that in contrast to a
classical treatment in quantum mechanics 7' cannot become zero. We hence obtain the
total mean energy loss from two parts:

E Tmax E
_(9E :ne/ 79 (BN (3.11)
dx T dT dz [ o,

The energy 77 dividing these regions is typically between 0.01 and 0.1 MeV [835],
but will eventually drop out in the sum of both contributions (see eq. (3.25)). Since
scattering takes place on all shell electrons the relevant target density is the electron
density

N
ne = ZPTA (3.12)

with Z being the number of electrons per atom or molecule.

To begin with the high energy region, we assume that the velocity of the particle
is large compared to the electron orbit velocity and that the energy transferred to
an electron is large compared to its binding energy. The electron is thus regarded as
‘quasi free’. Then the scattering process can be described by the Rutherford scattering
formula (see e.g. [564], ch. 13). As is well known, the classical and the (first order)
quantum theoretical derivation of the Rutherford formula yield the same result. There-
fore quantum effects must only be taken into account in energy loss computations when
the above assumptions are no longer valid, that is, for small energy transfers in the
same order of magnitude as the binding energies or for particle velocities as low as the
electron orbit velocities. We shall come back to these cases later.

We consider a projectile particle with mass M (M > m,), charge ze and 4-
momentum vectors P and P’ before and after the interaction, respectively. The
4-momentum vectors of the electron are p. and correspondingly p.. With the 4-
momentum transfer

Q*=—(P-P')?=~(p. - p.)? (3.13)

one obtains the Lorentz-invariant expression for the Rutherford cross section [564]:

do B 47rz2a2h202i
dQ? B2 Q*

Here fc is the velocity of the particles relative to each other, which in their respective
rest systems is identical and can be defined in a Lorentz-invariant way. In the system
in which the scattered shell electron is initially at rest, it has an energy E. = mec?
before and E! = T +m.c? after the collision. The squared 4-momentum transfer hence
is

(3.14)

Q* = —(pe — p.)* = 2m.*T . (3.15)
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28 Chapter 3: Interactions of particles with matter

Putting this into (3.14) yields the differential cross section (differential in the particle’s
energy loss T'):
do  2m2%a%h? 1
dr —  B?m, T?'
Extension of (3.16) to the Mott cross section which takes into account a possible spin
flip of the target electron? is obtained by applying a factor (1 — 82T/ Tpnas) [564]:

do 27rz 20212 T
— =" (1-p5? . 3.17
dT B2m, T2 ( B Tmax) ( )

(3.16)

For the assumed high energy region T7 < T < Ti,42, Where the lower limit is much
larger than the binding energies of the shell electrons, we can solve the integral (3.10):

dE Tmaz 21 2202 R T
_<> :ne/ T”;a2<1—52 )dT
du T>T T ﬁ Me T Tmaac

2 2 2h2 Tmax

In (3.18) a term 32(1 —T}/Tynax) has been approximated by 42, assuming 7} < Trnaq-

Maximum energy transfer T,,,. The maximally possible energy transfer T,q.
can be computed from the kinematics of an elastic collision of the particle with the
shell electron. The transfer is maximal for a central collision, that is, when the vectors
B P, Pl are all parallel. For the incoming particle, energy and momentum can be
expressed by the Lorentz factors g, ~:

E =~Mc?, |P| = B~ Mec. (3.19)
The kinetic energy of the outgoing electron is
T =E, —m.c*. (3.20)

Neglecting the binding energy we then obtain for the maximum kinetic energy (derived
in section 3.2.2):

2my 2 B2 2
Tmar = e © ﬁ 7 (321)
1527 m /M + (m /M)
2me c ( ) for yme, < M
~{YMc =F for v — oo
mec?(y —1) = E—mec®>  for M =m,.

For this high energy regime, the maximally possible energy transfer in (3.18) and the
maximum kinetic energy of the scattered electron in (3.21) can be assumed to be
approximately the same and equal to the maximum energy loss of the particle.

It should be noted that for both the highly relativistic limit (v — oco) and also for
M = m, the full energy of the incoming particle can be transferred to a shell electron.

2To a good approximation one can neglect the contribution from a spin flip of the projectile particle
because the responsible magnetic coupling is suppressed by a factor Q2/M?2.
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Section 3.2: Energy loss of charged particles by ionisation 29

If the incoming particle is an electron then scattering and scattered particle cannot
be distinguished (see also page 35). In this case the maximal possible energy transfer
is only T),4./2, since the ‘scattered’ electron is always defined as the one with the
smaller energy.

Minimum energy transfer. Classically the energy transferred to a free electron
can become arbitrarily small. Quantum mechanically, however, it must be considered
that below the ionisation threshold only discrete energy transfers are allowed in a single
collision. Furthermore, for particle velocities similar or smaller than the electron orbit
velocities, interference effects play a role. The quantum mechanical treatment of atomic
excitations and corrections caused by screening effects of atomic shells is the most
difficult problem in the computation of energy loss in matter. A considerable amount of
literature on this subject is available summarised by the Particle Data Group [746,482]
following [187,835,392,200]. A detailed commentary is given in [479]. Already in 1913
Bohr explained a passing electrons’s energy loss by the generation of ‘vibrations’ of the
atom electrons of the absorbing material [226]. The first rigorous treatment was given
by Bethe [187] describing the energy loss by atomic excitations to different energy
levels below the ionisation threshold down to (close to) zero momentum transfer and
yields [482]:

i _ mzohn dmec” P4y, L o2
Tn BT Ne 2 lnny Bl . (3.22)

<dE> 21 2202 h? 1 2mec B2 Ty 1

- = n

T<Ty

In essence (3.22) corresponds to an integral over an energy region between an effective
minimal energy transfer T}, = I?/2m.c?3? (typically 0.1eV to a few eV) and T} at
the upper end. The quantity I is the mean excitation energy and is defined via its
logarithm In I as the sum of the logarithms of the excitation energies F; weighted by
the corresponding oscillator strengths f, for a transition to the energy level k [187,392]:

InI=>" filnE. (3.23)
k

Logarithms are used because T also enters logarithmically in (3.22). In principle I
is defined by (3.23), but usually it is taken from a fit to experimental data. The
determination of I is a very difficult part in the computation of the mean energy
loss [482,885], such that I values found in the literature depend on the publication
date. In fig. 3.4 I/Z is displayed as a function of the atomic number Z using recent
values [545]. Their dependence on Z can be roughly described by a simple power law
fit yielding

I~ 17.772°%% oV. (3.24)

The term In1/42 in (3.22) accounts for the relativistic growth of the electric field
extension perpendicular to the direction of the moving charge. Since the penetration
depth of the transverse field increases linearly with v the maximal impact parameter
of the passing particle contributing to energy transfers increases. Classically, the inte-
gration over all contributing impact parameters leads to the logarithmic v dependence
(see e.g. the corresponding discussion in [564] and in the appendix of [84]).
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30 Chapter 3: Interactions of particles with matter

Fig. 3.4 Mean excitation energy
I devided by the atomic number
Z as a function of Z. The values

I/Z (eV)

for I are taken from table 1

in [545]. The curve represents a
fit of a simple power law in Z
following (3.24).
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3.2.1.2 The Bethe—Bloch formula

With the ansatz in (3.11) and the respective parts for the high energy regime in (3.18)
and the low energy regime in (3.22) as well as substituting the electron density n. as
given in (3.12), the Bethe—Bloch formula is obtained (see [188,835]) as quoted in [746]:

dE\ . Z 221 2me® B2V Tnae 0 6(B7)  C(By, 1)
_<d$>_KApﬁ2[21n - - - D 2P (3.25)

The formula contains two additional correction terms 6/2 and C/Z, relevant at high
and low energies, respectively (see below). The various quantities in the equation are
defined as follows:

— K =47 Nar?m, c¢®> = 0.307 MeV cm?/mol, using the classical electron radius:

62

=«

To = ———
4Amegmec? MeC

~ 2.8fm. (3.26)
— 2z, B are charge and velocity of the projectile particle.
— Z, A are atomic number and atomic mass of the medium, respectively.
— I is the mean excitation energy.
— Thae is the maximum possible energy transfer to a shell electron, occurring in a
central collision (see above).
— ¢ is the so-called density correction, important at high energies.
— C/Z is a shell correction, relevant for small 8 values.
In tables one usually finds the mean energy loss normalised to the density of the
medium (omitting here and in what follows the brackets for the mean value):
dE MeV
—— in the units ——. (3.27)
pdx gcm—2
Often one still just writes dE/dx with x being a density weighted length in units of
mass per area, for example g/cm?, also called column density:

r — pz. (3.28)

Equation (3.25) is valid for ‘heavy’ particles which includes all particles except
electrons and positrons. For electrons/positrons (3.25) must be modified (see page
35).
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I Fig. 3.5 Mean energy loss of

\ charged particles by ionisation

\ as a function of 8y =p/mc, here

\ given for charged pions in silicon.

The range indicated for the min-
imum of the energy loss is valid

\ ~1/p? without density correction .-~~~ dl
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By =p/mc

The Bethe-Bloch formula describes how particles are stopped in matter. The mean
energy loss in matter is hence also called stopping power.? The stopping power deter-
mines for example the range of a particle in matter or the energy lost after penetration
of a layer of material. One should distinguish the stopping power from the measur-
able deposited energy in a detector seen for instance as measured ionisation charges,
thus neglecting atom excitations when their de-excitation happens through low ener-
getic photons. The latter do, however, contribute to the total stopping power.? In a
thin detector layer it can also happen that a high energetic fraction of the kicked-off
shell electrons, called § electrons, leaves the detector thus reducing the mean observed
energy.

3.2.1.3 Energy dependence of (dE/dx)

Figure 3.5 shows the mean energy loss (dF/dx) as a function of the energy of the in-
coming particle for a typical example (7% in silicon) following (3.25) with a parametri-
sation of the density and shell correction as in [914]. At low energies the 1/3? term,
at high energies the In~y term is dominant. In between both regions there is a broad
minimum around [v = 3-3.5, respectively 8 = 0.95, depending on Z. Particles in this
kinematic range are thus called minimum-ionising particles (mips). Since the increase
in dE/dz for energies corresponding to Sy > 3.5 is only moderate compared to the
steep rise o< 1/3% towards energies lower than the minimum, it is common practice
to use the term mip for all charged particles with energies larger than those at the
minimum. In table 3.1 one finds besides other parameters also the minimum dE/dx
values for some materials.

Energy loss at low energies. The 1/3? dependence can be explained by the fact
that the momentum transfer increases with the effective interaction time At ~ b/yv (b
= impact parameter, v = ¢/) which is longer for slower particles. Since the momentum

3 Mass stopping power is the stopping power divided by the density as in (3.27).

4 Atomic excitations can, depending on the dielectric properties of the medium, lead to coher-
ent radiation phenomena like Cherenkov and transition radiation (Chapters 11 and 12). A unified
description of energy loss is attempted by the PAI model (PAI = photoabsorption and ionisation) [84].
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32 Chapter 3: Interactions of particles with matter

Table 3.1 Parameters to compute the energy loss for some selected materials [762]. ‘Nuclear
emulsion’ in [762] corresponds to photoemulsion type Ilford G.5 (see section 6.3). The bottom
part contains parameters for the density correction (3.29) taken from [762] (Muon Energy
Loss Tables).

Material Z A p 1 < % >7m, hwp
() (&) ) (el @)
C (graphite) 6 12.01 2.21 78 1.74 30.28
Al 13 26.98 2.70 166 1.62 32.86
Si 14 28.09 2.33 173 1.66 31.05
Fe 26 55.85 7.87 286 1.45 55.18
Pb 82 207.2 11.35 823 1.12 61.07
Ar (gas) 18 39.95 0.00166 188 1.52 0.79
Csl 108 259.8 4.51 553 1.24 39.46
polystyrene 56 104.2 1.06 68.7 1.94 21.75
water 10 18.0 1.00 79.7 1.99 21.48
(standard) rock 11 22.0 2.65 136.4 1.69 33.2
nuclear emulsion 3.82 331.0 1.42 38.0
Material a k Co (1 —Cp do
C (graphite) 0.208 2.95 —0.009 2.482 2.893 0.14
Al 0.080 3.63 0.171 3.013 4.240 0.12
Si 0.149 3.25 0.202 2.872 4.436 0.14
Fe 0.147 2.96 —0.001 3.153 4.291 0.12
Pb 0.094 3.16 0.378 3.807 6.202 0.14
Ar (gas) 0.197 2.96 1.764 4.486 11.95 0
Csl 0.254 2.67 0.040 3.335 6.28 0
polystyrene 0.165 3.22 0.165 2.503 3.30 0
water 0.091 3.48 0.24 2.800 3.502 0
(standard) rock 0.083 3.41 0.049 3.055 3.774 0.00
nuclear emulsion 0.124 3.01 0.101 3.487 5.332 0.00

transfer Ap is proportional to At it follows that the energy transfer AE = (Ap)?/2m
is proportional to 1/v? o 1/32 since v ~ 1 at low energies. If, however, the particle
velocity comes in the range of shell electron velocities, the approximation that the
minimal energy transfer is effectively determined by the mean excitation energy as
assumed in (3.22) is no longer valid. As has been mentioned already, these low energy
excitations must be analysed in detail and quantum mechanical interference effects, like
the so-called Ramsauer effect (see section 4.6.2), must be considered. We shall discuss
such effects in the context of drift and diffusion of electrons in gases in section 4.6.4.3.

The energy dependent shell corrections C'/Z in (3.25) become relevant below 3 ~
0.3. A review about the usage of shell corrections can be found in [201] with a further
reference to a detailed discussion in [182]. The shape of the energy loss curve at low
values can be taken from fig. 3.6 for protons in argon. Below a kinetic energy of about
1 MeV, corresponding to 3 = 0.05, the curve deviates from the 1/3? dependence of
the Bethe—Bloch equation, reaching a maximum and falling off steeply thereafter (note
the logarithmic scales!). At very low kinetic energies below some 1006V, the proton
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% ] the proton kinetic energy (created
= 1B using the interactive program
3 E PSTAR [182]). At low energies
o 10 EES
7 15 the influence of the shell correc-

] i tions becomes evident as deviation
0 12 from the 1/8? behaviour.
10 | ‘71\ | 5 L | | > L | 3 L

10" 10
T (MeV)

loses energy mainly by elastic collisions with nuclei until it finally thermalises.

Energy loss at high energies. The reason for the rise of the energy loss at high
energies is twofold. The first one is the asymptotic increase of the maximum energy
transfer Tynq, with v (see eq. (3.21)), which is a purely kinematic effect. The other
is the mentioned relativistic effect, namely the increasing transverse extension of the
electric field with 7 leading to an increase of contributing large impact parameters and
hence entering the Bethe-Bloch equation via the minimum possible energy transfer.

The increase of the E-field extension for highly relativistic particles, is however
limited by the screening effect of nearby atoms as a consequence of the polarisation
of the medium (density effect) leading to a flattening of the dE/dx curve at high
energies. The density effect is taken into account in the Bethe-Bloch equation by the
d(By) term. A parametrisation is given in [914] for different energy regions:

2¢In10+ Cp for ¢ > (1,
5(By) =4 2¢m10+Cp+a(C— ) for (o < (< (¢, (3.29)
0o 102 (¢=¢0) for ¢ < (o,

with  Cp =2 In(hw,/I) —1 and ¢ = log;, By -

For some materials the parameters in this equation are listed in table 3.1. A compre-
hensive collection for different materials can be found interactively on the web page
of the Particle Data Group® [762].

For large impact parameters, corresponding to small energy transfers, the charge
flying by acts coherently on the surrounding electrons and excites them to collective
oscillations about the less mobile ions. The frequency of this oscillation, the so-called

plasma frequency
2
wp = 4 (3.30)
€0Me

depends—apart from universal constants—only on the electron density. The lower
limit for the transferable energy is therefore given by the plasma excitation energy
hwyp, asymptotically replacing the mean excitation energy I of a single atom.

5The parameters are somewhat hidden in the ‘Table of Muon dFE/dz and Range’ in [762], entered
there individually for each medium.
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At the high energy end for large 7 values, the density correction in (3.29) takes the
form

5—>2ln%+21n57—1, (3.31)

employing the definition of the parameter Cp. In this extreme case the Bethe-Bloch
formula (3.25) can be written in the form

dE Z Lo 2me®Tpaw 1
——=KZ=pz*|=In e ©

dx A 2 " T () 2 (y =00, B 1). (3.32)

The mean excitation energy under the logarithm is replaced by the plasma energy hwy
and the 3242 term vanishes. A « dependence of dE/dx then only enters via an increase
of Tinaz o 7, such that the energy loss curve flattens off (fig. 3.5). The increase of T}y a4
means that higher and higher energetic 0 electrons can be produced. However, their
energy contribution to an ionisation measurement often cannot fully be accounted for
because § electrons can either leave a (very thin) detector or their energy loss contri-
bution to a measurement is not included. Motivations are for example to improve a
position measurement (limiting the cluster size to suppress § electrons emitted per-
pendicular to a particle track) or to achieve a better mean energy loss measurement
(dE/dx). The measured energy loss is then ‘restricted’ and a corresponding defini-
tion of restricted energy loss is defined including only energy losses up to a maximum
energy Te,:. Equation (3.25) is changed accordingly:

dE Z 221 2m.c B2 T, 2 T 5 C
k2,2 [Lp2me B Tew S (1, Tow ) 0 _C
Trnas 2 Z

dr —T A

rer. ATB[2 g 2

(3.33)
The restricted energy loss (3.33) saturates at high energies (‘Fermi plateau’) because
Tnae does not increase any longer with + in (3.32), but is rather replaced by a fixed
Teut (see also [746] and fig. 3.13 on page 44). The Fermi plateau reaches a value higher

than the minimum by typically about 40% in gases and less than 10% in solids.

3.2.1.4 Scaling laws and particle identification

The average energy loss per unit length (3.25), also called ‘specific energy loss’ (or
‘specific ionisation’ if, as it is often the case, only the ionisation part of the energy loss
is measured) can approximately be expressed as a function of the particle velocity and

charge:

‘ij ~ 227 f5(8) = 2 7 f, (%) — 27 fr (]@) : (3.34)
with functions fsz 1 of B, p, or T, respectively. The direct proportionality to the
atomic number Z results from the incoherent nature of the scattering off the shell
electrons, meaning that the contributions of individual electrons must be added. The
ratio p/A which also enters (3.25) can be assumed to be roughly constant. With the
approximation Z/A < 1/2mol/g, which is a reasonable assumption at least for lighter
elements, the density normalised energy loss dE/(pdz) is roughly independent of the
material as can also be seen from the column (dF/dx), . in table 3.1.

The dependencies on momentum and kinetic energy of the particle result because
for a particle mass M the ratios p/(Mc) = v3 and T/(Mc*) = v — 1 are functions
of velocity only. For a given medium the functions fs, 7 are thus independent of the
particle’s identity and mass.
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18 s
é Fig. 3.7 Average ionisation
N 16 ] energy loss of charged particle
é’, tracks measured as a function of
.é 14 r ] their momentum on 159 anode
_% - wires (and averaged) in a drift
L chamber filled mainly with argon.
12 7 For the averaging the ‘truncated
p-pairs mean’ method is employed by
10 I ; ] discarding the 30% highest values
i of a track (see section 14.2.2 and
8 fig. 14.9). Every dot represents
L a measurement for one particle
i track, observed in decays of the Z°
6T ] boson (mz = 91 GeV/c?) (LEP,
» ol e S OPAL detector [509], with kind
10 1 10 10 permission by Elsevier).

p (GeV/c)

This property of dE/dx is exploited for particle identification: particles with the
same momentum but different masses have different 8 and . Therefore different dE /dx
curves for each mass result when plotted as a function of momentum (fig. 3.7, see
also fig. 14.11). Hence knowing the momentum a particle’s mass can be identified by
measuring the mean energy loss (dF/dx) (see also chapter 14).

3.2.1.5 Energy loss by electrons and positrons

For electrons and positrons, due to their much smaller mass compared to heavier par-
ticles, energy loss by photon radiation (bremsstrahlung) becomes relevant already at
relatively small energies. Since ionisation and bremsstrahlung of electrons or positrons
can to a good approximation be treated independently we here restrict ourselves to
the energy loss by ionisation. Bremsstrahlung is covered in section 3.3.

The ionisation energy loss by electrons and positrons differs from that by heavy
particles due to kinematics, spin and their identity or respectively their antiparticle
character with respect to the electrons of the medium. For positrons a complete loss
via eTe™ annihilation into photons must also be accounted for. Generally, two regimes
of energy transfer can be distinguished: in the regime where the atomic energy levels
cannot be neglected energy loss is treated by averaging, as done above for heavy
particles; in the regime with large energy transfers discrete processes, that is Mgller
scattering (e~e~ — e~e™) or Bhabha scattering (ete™ — eTe™), are computed.

Figure 3.8 shows the comparison of energy loss by protons and electrons in silicon.
The difference near the minimum of the ionisation is about 10 %, increasing by small
amounts towards smaller and larger velocities.

One should note that the Bethe-Bloch formula (3.25) includes energy loss by Che-
renkov radiation (see also section 11.3 on page 447). These losses occur in transparent
media for energy transfers of the passing particle below the ionisation threshold if
refractive indices and frequencies fulfil the Cherenkov condition (see chapter 11). This
has already been discussed by Fermi in 1940 [398] and is explicitly described for ex-
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silicon 1 Fig. 3.8 Comparison of the

L ] energy loss by electrons (ex-
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have been computed with the
help of the programs ESTAR and
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ample in [84]. The contribution to the total energy loss is, however, only of the order
of a few per cent.

Transition radiation (chapter 12) results in a similar way if the traversed medium
contains inhomogeneities.® It is generally not included in the energy loss described by
the Bethe-Bloch formula (3.25), since homogeneous media are assumed in its deriva-
tion. More importantly, (3.25) does not include energy loss by bremsstrahlung which
becomes dominant at high 57 values (see section 3.3.2).

3.2.1.6 Parameters of the Bethe—Bloch formula for mixtures and
compounds

For different components i of a medium the dE/dz values are summed, weighted by
their mass (and neglecting atomic corrections):

dE dE
P Zw <pidx>i : (3.35)

For compounds the weights w; result from the abundance a; of atom i with atomic

mass A;:
a;A;

Zj a;A;
Also for the parameters in the Bethe-Bloch formula effective values for mixtures
and compounds can be computed:

Zew =Y aiZ;,
At = i:wAp

1
In g ~ 7 ZaiZilnIi,
e )

5Cff Zlﬂr Z aZZZ($1 .

(3.36)

w; =

(3.37)

Q

6See e.g. in [392] the discussion of ‘boundary effects’ in section 7.6.
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Fig. 3.9 Detail of a bubble chamber picture showing
a § electron emitted off a track to the right causing a
spiralling secondary track in the magnetic field of the
chamber (source CERN).

These averages have to be taken with some care, in particular for the parameters I
and § which depend on electron densities (even more so for the low energy correction
C' which is not listed here for this reason). The authors of [885] find that the above
formula for I.g works well if a compound only contains the elements H, C, N, O, F or
Cl. For other contributing elements they suggest to increase the corresponding I value
in the g formula by 13%. The review ‘Passage of particles through matter’ e.g. in [746]
discusses these issues and refers to the corresponding literature on measurements or,
if they do not exist, to improved calculations (see also appendix A in [482]).

3.2.2 Delta electrons

So-called § electrons or high energy knock-on electrons are emitted when the collisions
of the projectile particle with shell electrons are close to central, causing high energy
transfers. The kicked-off electrons then have comparatively high energies. According to
(3.16) the electron kinetic energy follows a distribution proportional to 1/72. The tails
of this distribution can reach fairly large values up to T),4. given in (3.21) especially
for relativistic projectiles. Delta electrons with kinetic energies in the keV range and
above can be observed in detectors having high spatial resolution like bubble chambers
or emulsions (fig. 3.9), but also in modern electronic detectors with high granularity.
If a detector is unable to resolve § electrons emitted off a track, this potentially leads
to a deterioration of the spatial resolution. Rarely occurring emission of very high en-
ergetic § electrons also leads to larger fluctuations in dF/dx measurements for particle
identification and hence to a worse resolution for the mean value (dE/dz). Because of
their relevance to detectors and detection methods we discuss the energy and angular
distributions of § electrons in more detail in the following sections.

Relation between energy and emission angle. It is appropriate to consider the
high-energetic processes leading to d-rays by assuming elastic collisions with ‘quasi
free’ electrons. Using the 4-vectors P, P’ p, p, of the incoming and outgoing collision
partners the relation between energy and emission angle of the electron in this elastic
scattering process can be easily derived. Energy-momentum conservation

P+p.=P +p, (3.38)

yields

€202 1890190 €0 U0 Jasn Aseiqr NYID Aq SIS H/4000/Wwoo dno olwspeose)/:sdiy Wolj papeojumod



38 Chapter 3: Interactions of particles with matter

(P—p)?=(P' =p)* =  Pp.=Pp.
= EE, — E'm.¢® = |Pc||plc| cosh. (3.39)

Using the Lorentz factors ~y, 8 of the incoming particle and the relations

E=~M&, |P|=+8Mc¢, E'=E—T, T =E —m.?, |pc|=T?+2Tmec?
(3.40)
one obtains the sought-for relation between the kinetic energy T of the ¢ electron and
the emission angle 6 (fig. 3.10):

T o/ M
cosf = Oy + me/M) , (3.41)
vBVT? + 2Tm.c?
282 02 (na2
7(0) 2mec® B~ cos® 0 (3.42)

T2 (1—B2cos20)+2yme/M +m2/M?°

The maximum energy transfer T;,,, to the electron is reached at 6 = 0° and has
already been quoted in (3.21). The minimum kinetic energy of the electron is T}, =0,
corresponding to € =90°. One should note, however, that in this kinematic regime
of minimal energy transfer the assumed scattering off a ‘free’ electron is no longer
valid. The minimum amount of energy transferred to the atom is rather given by the
minimum atom excitation energy.

For highly relativistic energies, v > 1 (8 — 1), (3.42) becomes:

2 2

2mec? cos?h  2me.c
T(0) = © = e
(9) 1—cos?6 tan? 6

(3.43)

This expression diverges for 8 — 0°, that is, T' — Tyu4.- Therefore, for 6 < 1/ one
rather first computes the limiting case for the first term in (3.42),
Y2 (1 — B? cos? 0) =291, (3.44)
thus yielding Tyqr =T(0 = 0) = yM for v — oo as in (3.21).
It is remarkable that in the highly relativistic case (y > 1 and 6 > 1/v) the

energy—angle relation (3.43) is no longer dependent on the properties of the incoming
particle, neither its energy nor its mass (solid line in fig. 3.10).

Energy and angular distributions. To estimate the influence of § electrons on
detector space resolutions we examine the energy—angle relation a bit closer. Though
large d-electron emission angles correspond to small electron energies and hence usually
have short ranges, the ionisation density of low energy electrons lying in the 1/3? region
of the Bethe-Bloch formula (fig. 3.5) is high, the higher the slower the electron moves.
Therefore ionisation clusters along the § electron’s path deteriorate the resolution for
hit reconstruction of the mother particle.

But § electrons emitted under small angles can also lead to a shift of the centre
of the measured charge cluster from a passing track due to multiple scattering (in-
creasing with 1/(pg), section 3.4) or due to magnetic deflection (as in fig. 3.9). For a
more quantitative estimation we examine the energy and angular distributions of the
electrons a bit closer in the following.

The rate of ¢ electrons per energy interval dT' and path length dx is
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Fig. 3.10 Kinetic energy of §
electrons as a function of the
emission angle for protons as
projectile particles for differ-

ent Lorentz factors ~. For the
derivation elastic scattering off
free electrons at rest has been
assumed. This assumption is no
longer justified for small energies

‘ ‘ ‘ ‘ \ of the scattered electron, that is,
0 30 60 90  near 6 = 90°.

_ air
1072 F R

dN/ (dx dT) (cm ™' Mev™")

[ Kolanosk, wermes 2015 Kolanoski, Wermes 2015
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(a) 0 electron rate as a function of emission angle. (b) § electron rate as a function of kinetic energy.

Fig. 3.11 Angle and energy distributions for § electrons in lead and in air. The distributions
have been generated using (3.49) and (3.46), valid for highly relativistic projectiles and small
kinetic energies of the electrons.

EN  do
dedl ' dT”

With the electron density n. in (3.12) and the differential cross section in (3.17) the
differential rate of § electrons per path length and energy becomes

(3.45)

d*N 1Z22K 1 F(T)

dedl  2° AP 3 12

(3.46)

Here K = 47N ar?m.c® = 0.3071 MeV g~ ! cm? is the already known constant in the
Bethe-Bloch formula (3.25). The function F(7T') from (3.17) takes care of the spin
dependence and is of order 1, such that we assume F(T) = 1 in the following for
reasons of simplicity.

Integration of (3.46) over T' and z yields the number of § electrons with energies
between T, and e, in a medium of thickness Ax:

1,7 1 1 1 MeV c¢m? 1
N=_-22"KpAr — - ~ 0. 2p A : 4
2 : A par ﬁQ (Tmzn Tma;ﬂ) 0 077 g s Par min (3 7)

In the last step we have used 8 = 1, Z/A =~ 1/2mol/g and Tz > Tinin.
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40 Chapter 3: Interactions of particles with matter

In the relativistic approximation we also obtain the emission angle dependence
from (3.43):
dT cosf
= dm.c? .
dcosf Mhe€ sin* @
Putting this into (3.46) yields:

(3.48)

EN 1,2 11
— 2= R 3.49

drdeosf 27 AP os0 MeC? ( )
cm

2
~ 2

~ 0.15 . z pcos?’H’
assuming again Z/A ~ 1/2mol/g. This expression diverges for § — 90°, corresponding
to T — 0, an extreme case for which the approximation of a free electron (as chosen)
is no longer valid. The energy and emission angle distributions obtained from (3.46)
and (3.49) are displayed in fig. 3.11. The number of low energy § electrons per solid
angle scattered near 90° is larger by many orders of magnitude than those scattered
in the forward direction. In spatially resolving detectors this leads to a broadening of
ionisation clusters along a track and hence to a deterioration of the spatial resolution.

3.2.3 Statistical fluctuations of energy loss
3.2.3.1 Overview

The Bethe-Bloch formula determines the average energy loss per path length. In fact,
however, the energy loss process has a statistical nature exhibiting fluctuations. The
energy loss AFE along a distance Az is composed of many small contributions 0,
corresponding to individual ionisation or excitation processes:

N
AE =Y 0E,. (3.50)
n=1

Statistical fluctuations occur for the number N of ionisation/excitation processes but
also for the emitted energy JF in these processes. Both together produce fluctuations
in the energy lost by a particle and also in the energy deposited in a material thickness
Azx. These are commonly called Landau fluctuations.

Number fluctuations. In thin detectors, as often used to measure tracks of charged
particles, Poisson statistics is relevant for the number of ionisations N. For example, in
argon a minimum-ionising particle generates about 94 electron—ion pairs per cm (see
table 7.1). The mean energy loss is (AE) = 2.44keV/cm. This results in an average
energy input to produce an electron—ion pair of (§F) = 26€V and is distinctly larger
than the minimum energy of 15.7eV for ionisation. Besides ionisation, atomic exci-
tations (threshold 11.6€V), remaining mostly unobserved, contribute to the average
energy demand for the production of one e —ion pair. The resolution on AFE by a
measurement of the number of e™—ion pairs can be estimated using Poisson statistics.
For a minimum-ionising particle passing through 1cm of argon this is:

o(AB) 1 1o%. (3.51)

AE VN

In comparison, for semiconductors the averagy energy needed to create an electron—
hole pair is much smaller, for example (§E) = 2.85€V for Ge and (§F) = 3.65¢€V for
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Si (see chapter 8). Hence, for the same energy loss many more electron—hole pairs in a
semiconductor are produced than electron—ion pairs in a gaseous detector and hence
a better energy resolution can be reached (about three times better for Ge than for
Ar at the same AF).

Energy transfer fluctuations. An important contribution to the total energy loss
fluctuations originates from fluctuations in the amount J E of energy transferred in an
individual process. The distribution of §F between a minimal and a maximal value
8Emin and 6E,q, has a 1/(JE)? shape (eq. (3.46) and fig. 3.11(b)). As discussed
already, the minimum value 0 E,,,;;, is given by the minimum excitation/ionisation en-
ergy, the maximum value by (3.21). The most probable energy transfer (the maximum
of the distribution) is in fact near §E,,;,, but from time to time large energies up
t0 0Epmqee ~ E are transferred in central collisions with atom electrons (see (3.21))
leading to a long tail of the distribution to high energies.

Influence on measurements. Energy loss fluctuations can influence the perfor-
mance of detectors in an unfavourable way:

— The momentum resolution of a charged particle is deteriorated if the particle loses
energy before or during the momentum measurement. Usually one can correct for the
average energy loss using the Bethe-Bloch equation. The remaining fluctuations can
sometimes be suppressed by additional measurements of energy depositions in the
detector. Some possibilities how to suppress fluctuations are described on page 45 ff.

— For particle identification by measuring (dE/dz) the resolution to separate different
particle species depends substantially on the width of the dE/dx distribution, see
section 14.2.2 and the measurement example in fig. 3.7.

— Tracking detectors suffer a reduction in space resolution by the statistical fluctua-
tions of the ionisation clusters along a track. Amongst other effects, the space reso-
lution is also reduced because the knocked-on § electrons move away from the track
and there produce secondary ionisations. For this reason the produced electron—ion
pairs most often appear in clusters: primary created electrons generate secondary
ionisations nearby. For example, in argon only 1/3 of the 94 electron—ion pairs
created per cm are primary ionisations. Since this has an essential impact on the
statistical distribution of the ionisations along a track, it plays an important role
for spatially resolving detectors (see chapters 7 and 8).

While for the momentum resolution (first item of the list) the fluctuations of the total
energy loss play a role, independent of whether the fluctuation results from excitation
or ionisation fluctuations, for both latter items only fluctuations in the measurable
ionisations have an effect.

3.2.3.2 Landau—Vavilov distribution

The energy loss AF over a fixed distance Az follows a probability density f(AFE; Az),
which is normalised in an interval between minimal and maximal energy transfer:

AEmax
/ f(AE; Az)dAE = 1. (3.52)
AEnLin

If in (3.50) the individual contributions dE,, to AE are statistically independent, the
central limit theorem of statistics states that AFE is normally distributed for N — oo
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42 Chapter 3: Interactions of particles with matter

with a variance that is, IV times the variance of the individual processes. This limit,
however, is never reached for relativistic particles, as will become clear in the following.

Generally, the energy transfer fluctuations in individual collisions along the parti-
cle’s path lead to an asymmetric distribution f(AFE;Az) which has a Gaussian part,
corresponding to the many ionisation processes with small energy loss, and a tail to
large energy loss values (see fig. 14.9 on page 554 or fig. 3.12). Large energy loss corre-
sponds to the comparatively rarely occurring hard collisions in which much energy is
transferred to individual electrons, that is, the ¢ electrons of section 3.2.2. We distin-
guish the most probable value (mpv) of the energy loss, that is, the maximum of the
distribution, from the average value (dE/dx) situated to the right of the mpv by an
amount depending on the asymmetry of the distribution.

The exact form of the distribution depends on the ratio of the mean energy loss,
as given by the Bethe-Bloch formula (3.25), and the maximum energy loss (3.21). A
measure for this ratio (but not the ratio itself) has been introduced by Vavilov with
the parameter [956]:

£

9
Tmaz

where ¢ is the factor in front of the logarithm of the Bethe-Bloch formula (3.25)
multiplied by the path length Az:

(3.53)

KR =

2
g:%K%;}%Am. (3.54)
The two limiting cases are:
klarge —  f(AFE;Az) a symmetric Gaussian distribution (for x = 1),
ksmall —  f(AFE;Az) a very asymmetric distribution.
The first analytic form for the energy loss distribution has been derived by Landau
in 1944 [640] for thin layers of material (corresponding to small x values) making the
following assumptions:
(i)  Tinaz can become infinitely large corresponding to x — 0;
(ii) the electrons are treated as quasi free, that is, shell effects at small energy trans-
fers are neglected;
(iii) the decrease of the particle’s energy while penetrating the medium layer can be

neglected.
The so derived Landau distribution is defined as the definite integral:
1 o0
) =L / et t=A iy p) i (3.55)
T Jo

This distribution (fig. 3.12) is very asymmetric with a tail towards A = oo; it has a
maximum at A = —0.22278 and a full width at half maximum (FWHM) of AX =4.018.
For computations it is available as a programmed function [625], for example in the
program package ROOT [832]. The standard form of the Landau distribution (3.55)
is transformed by scaling and shifting to a distribution that properly describes the
observed energy loss of particles in matter. The correspondence between the energy
loss AE and the variable A is given by

AE — AE,

)‘:)‘(AEwaf): ¢

—0.22278. (3.56)
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Fig. 3.12 Landau distribution as defined
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Here AFE, is the most probable energy loss corresponding to the maximum of the
Landau distribution at A = —0.22278; £ as defined in (3.54) characterises the width of
the distribution. The FWHM is given by

Wewin = ANE = 4.018¢. (3.57)

The most probable energy loss AFE,, is a more stable energy loss measure than the
mean value due to the strong fluctuations in the tail of the distribution (see fig. 3.13)
and is given by the expression [746] (nomenclature as in (3.25)):

2mec2ﬂ272 3 . 2 72100 2mec®E
AEw—§<lnI +1nj+]*5 5) §<ln ()2 +]).
(3.58)

Here—in the high energy limit v 2 100 and due to the density correction—the average
excitation energy I is replaced by the plasma energy hw, as was done also in (3.31).
For the correction term j a value of j =0.2 is given in [746]. Equation (3.58) shows that
the most probable energy loss, normalised to the layer thickness, AFE,,/Axz, depends
logarithmically on the layer thickness (§ o« Az) due to the In¢ dependence. This
dependence is reproduced in fig. 3.13 by the three lower curves.

The Landau distribution can be approximated by the so-called Moyal distribution
[965]:

_ 1 —0.5(A+e™?)
(D) \/ﬂe . (3.59)
The Moyal form is often used to fit ‘Landau-like’ asymmetric distributions by a simple
formula. Note, however, that A in (3.59) does not have the same physical meaning as
in the Landau distribution (3.55) (a comparison of both is made e.g. in [625]). For the
physical interpretation of measurements reference to the Landau distribution (3.55) is
thus to be preferred.
The Landau distribution is a good approximation for small values of the parameter
k, roughly for £ < 0.01. A generalisation allowing a realistic maximum energy transfer
Tnaz, hence being also valid for larger values of x, has been given by Vavilov [956].
However, shell effects at small energy transfers are also neglected in Vavilov’s work
(Landau’s assumption (ii) above). As a function of the Landau parameter X the Vavilov
distribution is defined via a Laplace transform (Laplace transforms in another context
are discussed in appendix H) [831]:
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Fig. 3.13 Energy loss of muons in silicon (excluding radiation losses) [746]. The solid line
is the mean energy loss of the Bethe-Bloch formula (3.25). The two curves below show the
mean energy loss with the constraints on 7.+, the cut-off value for the energy transfer per
collision, as described in the text (see page 45). The three bottom curves show the most
probable energy loss per path length for silicon layers of various thicknesses. The shortcut
notation A, is the same as AF,, in (3.58).

1 c+ioco
. VAN As
P B = 5o [ ols)eas. (3.60)
where
P(s) = eCe?) C =k(1+ p*yE),

1 —st

s)=slnk+ (s + %k 1_#alt— g | —ke*
¥(s) ( T ,
0
vg =0.5772. .. (Euler’s constant) ,

with s being a complex and c a real number. For small s values the Vavilov distribution
goes over to the Landau distribution and for large x values to a Gaussian distribution.
Validity over the entire kinematics and thickness ranges is achieved because the Vavilov
distribution has two more parameters in addition to the two Landau parameters AFE,,
and &, namely x and 2. The Vavilov distribution is also available in the program
package ROOT with the mathematical formulation documented on the corresponding
web page [831].

Examples. For a 2 GeV muon a 1m thick layer of water constitutes a ‘moderate’
thickness with x &~ 0.025 (a typical scenario in airshower experiments like Auger and
IceTop, section 16.4.3). For the same muon a 300 um thick silicon layer has k ~
1.7 x 1075. The examples in fig. 3.14(a,b) show that for small k values the Landau and
also the Vavilov distribution yield a reasonably good description; in fact for fig. 3.14(a)
there is even no visible difference between the Landau and the Vavilov fit. Examining
closer, however, one finds that for the very thin Si layer in fig. 3.14(a) both distributions
underestimate the width somewhat.
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Much larger values of k are reached with low energetic heavy particles. For example,
for a proton with a kinetic energy of 145 MeV when traversing 1 cm of water a value of
k == 1 results leading to an approximate Gaussian distribution of the energy loss, see
fig. 3.14(d). In the limit of large x values, the variance of the Gauss distribution is

0? = ¢ Thae (1 - g) . (3.61)

The transition region with medium & values is described by the Vavilov distribution
(see the example for x=0.27 in fig. 3.14(c)). For k>1 Vavilov usually is the best
description, mostly due to the fact that it has two more parameters than Landau and
Gauss. Consequently, the resulting value for £ cannot always be interpreted as defined
in (3.53) (see also fig. 3.14(d)).

For most practical usage a combination of Landau or Vavilov and Gauss distri-
butions yields good approximations. There are, however, parameter regions in which
these approximations fail, as shown e.g. in [199] for thin silicon layers. For this reason
a wealth of theoretical and experimental investigations on energy loss distributions
has been published after the first publications of Landau, Vavilov, and others. Their
main focus was to improve the quantum mechanical treatment of the atomic bound
states which become relevant at low energy transfers. Unfortunately, no simple formu-
lae exist describing these more accurate results but rather computer programs must
be employed to obtain the distributions.

In general the energy loss of particles in detectors is computer-simulated. The uni-
versal simulation program Geant4 [452] covers all k ranges with a remarkably simple
model. The model assumes that there are only two excitation levels plus the contin-
uum, that is, ionisation. The corresponding cross sections are adjusted such that the
theoretical calculations and—if available—the data on energy loss distributions are
correctly reproduced. Above an energy T.,; the § electrons are traced individually. At
large x values a Gaussian approximation with a width as in (3.61) is used.

3.2.3.3 Suppression of fluctuations

As mentioned before, the strong fluctuations of the energy loss limit the resolution
on energy-momentum measurements, the resolution of the particle identification via
dF /dx measurements and the spatial resolution in detectors that measure space points
by ionisation along a particle’s path. The fluctuations can be reduced if the most
probable value (maximum of the Landau distribution) can be used as an energy loss
estimator rather than the average because the former is more stable with respect to
individual fluctuations. From fig. 3.13 is evident that the average energy loss is fairly
constant with increasing energy of the projectile particle if one restricts the maximally
allowed energy loss in a collision to a value T' < Ty, (restricted energy loss, see (3.33)).
The most probable energy loss has a similar dependence on the particle energy as the
restricted energy loss and is thus a more stable quantity than the average energy loss
which rises towards high energies (solid line ‘Bethe’ in fig. 3.13).
Hence the resolution can be improved by suppressing the fluctuations:
(a) if § electrons can be detected and be excluded from the measurements, possible

for instance in a bubble chamber or with many thin and independent detector
layers;
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Fig. 3.14 Four examples of energy loss distributions for muons and protons after passing

through a medium with thickness d (from simulations using the program package Geant4

[452]). The table shows the parameters of the distributions, ordered according to increasing

k values. The parameters k, AFE,, £ and ogaus are computed using (3.53), (3.58), (3.54) and
(3.61), respectively. They can be compared with the fit parameters given in (a) and (b) for the

Landau and Vavilov distributions and in (c) and (d) for the Vavilov and Gauss distributions.

For the very small value of k in (a) the Landau and Vavilov distributions are practically
identical. The Gaussian and Vavilov fits in (d) can hardly be distinguished by eye, but the &
parameter needed for the Vavilov fit is much larger than the input value of x (see comment

in the text).
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Fig. 3.15 Measurement of muon momenta in a col-
lider detector. The sketch assumes the same magnetic
field in the inner and outer tracking detectors. The
energy loss, in particular in the massive calorimeter,
leads to a more and more increasing curvature of the
track.

S10T SOWIM ‘Dsoue|Oy

track detector calorimeter muon chambers
= absorber

(b) if the largest (possibly also the smallest) values of a series of measurements are
discarded from the calculation of the mean (fruncated mean) (see fig. 14.9 in
section 14.2.2);

(c) if the very large energy deposits along a particle track can be measured and be
used for a correction of the energy loss.

Regarding (c), to optimally reconstruct particle tracks for a precise momentum
measurement one usually corrects for the energy loss along the particle’s flight path.
To do this one usually must take the average dFE/dx lost over some distance of this
path. The momentum resolution can, however, be improved if one is able to measure
the actual energy lost (e.g. to 0 rays).

An example for such a procedure is the reconstruction of muons in the ATLAS
experiment at the LHC [4]. The muon’s momentum can be measured stand-alone in
the outer air toroid region of the detector in a large volume with magnetic field and with
little material (fig. 3.15). Before reaching the muon spectrometer the muons traverse
the inner tracking detector and the calorimeters. The largest amount of energy is lost
in the calorimeters including about 17cm of lead and 125cm of iron in the central
region. For this thickness we have k = 0.001 for 100 GeV muons meaning that the

Fig. 3.16 Measurements of the energy
loss by muons in the hadron calorimeter of
the ATLAS detector [122] using 180 GeV
muons in a test beam. The energy is given

Events/0.11 pC
A a (2}
o o o
o o (=]
o o o

E B in units of the measured charge signal with

- ] 1pC roughly corresponding to 1 GeV. The
3000 |~ - . . .

r 7 entries around 0 show the electronic noise
2000 o ] with an equivalent width of about 40 MeV.

L a The width of the energy loss distribution
1000 = = receives contributions from the dFE/dx

- . fluctuations, but also from the calorime-

o [l ] ter resolution. The distribution can be

0 2 4 6 8 10 described well by a Landau distribution
E (pC) folded with a Gaussian as shown in [341].
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48 Chapter 3: Interactions of particles with matter

energy loss distribution is strongly asymmetric due to the large maximum energy loss
Tnaz- The applicability of the central limit theorem, which would lead to a symmetric
Gaussian distribution, is obviously not yet valid despite the very large number of
individual ionisation processes. This is demonstrated by fig. 3.16 which is a measured
distribution of the energy loss in the hadron calorimeter of ATLAS (/125 cm iron)
for 180 GeV muons (x = 0.0006). Measuring the energy loss of the muons in the
active part of the absorbing medium can improve the momentum resolution of muons
significantly, as shown e.g. in [122].

3.2.4 Range

Due to the energy loss by ionisation the range R of a charged particle in matter has a
specific value with only a small dispersion. In contrast, when absorption is the dom-
inant interaction (e.g.for photons) the number of beam particles decreases exponen-
tially (see fig. 3.2). If, on the other hand, absorption processes can be neglected for the
passage of a charged particle beam through matter, as is the case for (heavy) charged
particles, the number of beam particles remains constant up to a relatively abrupt
drop to zero (fig.3.17(b)). In fig. 3.17(b) a slow decrease by about 10% is observed,
which can be explained by the absorption of beam protons by nuclear reactions. The
brim at the end of the range is statistically smeared by range fluctuations (straggling).
The width of the distribution in fig. 3.17(b) is smaller than 1 mm, that is, about 1% of
the total range of about 77 mm. Because of the 1/3? shape of the Bethe-Bloch curve
at low energies (fig. 3.5), at the end of the particle’s path much energy is lost over a
relatively small distance (fig.3.17(a)). This enhancement in deposited energy, called
Bragg peak, is exploited for example in the radiation therapy of deep lying tumours
(see page 5H1f).

In this section we study the range of particles in a medium assuming that they lose
energy only by ionisation and excitation and that other processes, in particular nuclear
reactions, can be neglected. In a sufficiently thick piece of material the particles come
to rest when they have lost all of their initial kinetic energy Tp.

The range R results from the integration of the energy loss along the particle’s
path, always respecting that dE/dz is a function of the momentary kinetic energy T

dE dE\ ! O 7dE\ !
(3.62)

Figure 3.18 shows the range of particles heavier than electrons for different media as a
function of 7. In this double logarithmic representation two slopes can be observed
for all media (except for hydrogen) which cross in the Sy region of the ionisation
minimum. In the integration of (3.62) these slopes correspond to the 1/3% behaviour
of the energy loss at low energies and the In~y rise after the minimum, respectively.

The ranges in fig. 3.18 are normalised to the masses of the projectile particles.
The range proportionality M can be seen as follows: For a given medium dE/dx only
depends on the velocity of the particle. Substituting

T=(y—1)Mc = dT = Mc? dy (3.63)

the range in (3.62) can be expressed as a function of ~g, the v value at the enter point
of the medium:
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number of protons

dE/dx (MeV/cm)
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(b)
Fig. 3.17 Energy loss and range in water for 10,000 monochromatic protons with 100 MeV

kinetic energy simulated with Geant4 [452]. (a) Energy loss per path length showing the
Bragg peak at the end of the range at about 7.7 cm. Only the energy loss of the proton itself
is shown and not the actual energy deposition; § electrons and photons for example can carry
energy away from the actual point where the energy was lost. The steps along the curves are
due to discretisation in the simulation. The program adjusts the step lengths to the changes
in energy loss such that near the Bragg peak the steps are very small whereas elsewhere they
are larger. (b) Histograms of the number of remaining protons N(z) and of the number of
lost protons per unit length dN(z)/dz as a function of penetration depth.

50000 T .
20000 r
10000 -
5000 F
a izgg B H, liquid |
E 500 He gas % Fig. 3.18 Mass normalised
o H : range of particles in differ-
5 200 | ent media as a function of 8y
g 122 W ? (from [746]), valid for masses M
=z [ ] larger than the electron mass.
2 1 For example, a charged kaon
10 E with mass M = 0.494 GeV /c?
St ] and momentum 700 MeV /c, i.e.
2 r 1 B~y = 1.42, has in lead a range
b T e L A/M =396 Gey T
By = p/Mc which for p = 11.35gcm ™2 yields

R | | ol arangeR:l?,Qcm_
0.02 005 0.1 02 05 1.0 2.0 50 10.0

Muon momentum (GeV/c)
002 005 01 02 05 1.0 20 50 10.0
Pion momentum (GeV/c)

0.1 02 05 1.0 20 50 10.0 200  50.0
Proton momentum (GeV/c)

£20Z 1290100 £0 U0 Jasn Ateigi NYID Aq GH9€/500q/woo dno olwapeoe//:sdiy woly papeojumoq



50 Chapter 3: Interactions of particles with matter

range in water Fig. 3.19 Scaled ranges (after

eq. (3.65)) of protons and « par-

10 i i
proton ticles in water. The curves have

been computed using the pro-
grams PSTAR and ASTAR [182].

For protons the abscissa cor-

------- a—particle

responds to kinetic energies of
4 about 1keV to 10 GeV, for o’s
the energy scale is shifted by a

2 R/M (9 ™! Mev_l)

factor of about 4, corresponding
1078 A to the a/p mass ratio. For proton

- energies of about 1 MeV to al-
-~ 1 most 1GeV both curves perfectly

Pid Kolanoski, Wermes 2015
s

5 coincide following the power law

-2
10 of (3.66).

10
/M

1 -1
dE M
R=Mc? — ) dy=— : 3.64
[ () #=s00 (3.64)
For a given medium, the function f(v) is independent of the mass and the charge of
the projectile particle as is also evident from fig. 3.18 showing the range in dependence
on By =p/Mec. Using instead of 7y the kinetic energy Ty = (7o — 1)Mc?, one obtains
a scaling relation for ranges of different particles in the same medium:

22 22 M

—R(T)==—=R(T' =T— | . 3.65

RO =R (rT =157 (3.65)
This range scaling law corresponds to the energy loss scaling law of (3.34).

In fig. 3.19 the range of protons and « particles in water, scaled as in (3.65), is

plotted against the mass normalised kinetic energy. At not too low energies both curves
lie indeed on top of each other and can be described by a common power law:

.2 T \ L7 T
i R=04 (W) gem 2 in the range 1073 < e <1.  (3.66)

For electrons the energies for which the range follows a simple power law is much
more restricted than the range for heavier particles, because the minimum of the
ionisation curves already occurs at 7" =~ 600keV. The ranges for electrons shown in
fig. 3.20 for kinetic energies between 10keV and 1 GeV can indeed be described by
a power law up to 600keV (for water R o T':%7). Over the entire region shown in
fig. 3.20 all curves can be described by a second order polynomial in log R and logT
with only slightly varying coefficients for media between water and lead:

logig R = a(log1yT)* +blog)y T +c. (3.67)

With R in gem™2 and T in MeV the coefficients are:
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range of electrons
Fig. 3.20 Range of electrons as a function

of their kinetic energy in three media (wa-

ter, aluminum, lead) computed with the
.,-;'f"'l programm ESTAR [559]. The curves are
—— water ] very similar in the region between 10 keV

R(g cm™)

------- aluminium and 1 GeV and can be well described by

R lead fitting second order polynomials of the
logarithms of the variables. The parametri-
| sation of the curves is given in (3.67) and
Kolanosk‘i, Wermes 2015 (3 . 68) .

a b c
water —0.170 1.30 —0.40
aluminium —0.176 1.25 —0.29
lead —0.197 1.13 —-0.15

(3.68)

In nuclear physics, range measurements are used to determine the energy of pro-
tons, a particles, and other nuclei. Figure 3.21 shows tracks of a particles from a
radioactive source, measured in a cloud chamber. The tracks have an abrupt ending
since they have the same energy. For radiation protection the range of a certain ra-
diation in matter is important to know (table 3.2). Heavier particles reach less far
than lighter ones but have a higher ionisation density. As an example, « radiation can
damage inner organs only if a emitters are inhaled or otherwise incorporated.

The particularly high energy deposit at the end of the range (see fig. 3.17(a)),
just before the particle’s stop, is exploited very successfully [89, 858] for radiation
treatment of deep lying tumours, first applied with heavy ions already in 1975 at LBL
in Berkeley [858]. Modern examples of such developments leading to treatment facilities
trace back to dedicated research at the Research Centre GSI in Darmstadt [490],

Fig. 3.21 Tracks of « particles from a
radioactive decay appearing in a cloud
chamber (adapted from [410], reprinted
with kind permission by Springer Sci-
ence+Business Media, see also [781]). The
range of the particles has a sharp cut-off,
which means that all « particles have the
same energy. There is one track with a
longer range originating from an excited
nuclear state.
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Table 3.2 Range of electrons, protons and « particles in air (dry, see level) and water
(computed with the interactive programs ESTAR, PSTAR and ASTAR [182]). Given are the
CSDA ranges (CSDA = continuous slowing down approximation), obtained by continuously
summing up all energy losses according to (3.62). Due to multiple scattering (section 3.4) the
projected distances between the start and the end of the track are shorter than the actual
length. The reduction factor fy,o;/csaa is given for protons and « particles. For electrons the
projected path is ill-defined because of their strong scattering.

Particles Energy Range (m)
(MGV) air fp?'oj/csda water fproj/csda
electrons 0.1 1.35 x 107! 1.43 x 10~4
1.0 4.08 x 1010 4.37 x 1073
10 4.31 x 101 4.98 x 1072
protons 0.1 1.53 x 1073 0.884 1.61 x 106 0.907
1.0 2.38 x 1072 0.988 2.46 x 10~° 0.991
10 1.17 x 1010 0.998 1.23 x 1073 0.998
a particles 0.1 1.38 x 1073 0.829 1.43 x 1076 0.865
1.0 5.56 x 10~3 0.951 5.93 x 1076 0.961
10 1.09 x 10! 0.997 1.13 x 10~* 0.997

see fig. 3.22(a), which has spun off for example the HIT facility at the Deutsches
Krebsforschungszentrum DKFZ in Heidelberg [528], or the HIMAC facility at NIRS
in Japan [525]. Compared to a treatment with X-rays, the healthy tissue traversed
before reaching the tumour is damaged much less (see fig. 3.22(b) and fig. 3.22(c)).
In addition, the tumour volume can be scanned precisely by ion beam control and
beam energy dependent range variation. Some depth—dose profiles are compared in
fig. 3.22(c).

The relative biological effectiveness (RBE) of ions near the Bragg peak increases
with their mass and is larger for carbon ions (2C) than for protons or helium ions
(*He), for example. For still heavier ions than carbon RBE generally increases, also in
the beam entrance region. A therapeutic optimum is reached at medium ion masses
such as carbon which is often used in therapies. The physical reasons trace back to
less straggling, laterally because for the same range protons must have lower momenta
than 12C ions and thus suffer more multiple scattering (see eq. (3.102) on page 67), and
longitudinally due to the larger width of the energy-loss distribution (eq. (3.61)). For
details we refer to [858]. Cases exist, however, for which protons have turned out to be a
very reasonable alternative, not least due to their easier availability (e.g. in applications
for eye tumours). In other areas of irradiation of cancerous tissue, irradiations with
photons or 8 rays can be most effective or even just more practicable, for example in
the case of leukaemia or if irradiation is needed during an operation.

3.3 Energy loss through bremsstrahlung

So far we have treated the energy loss of charged particles when penetrating matter as
caused by their interaction with the atomic shell (excitation and ionisation). Charged
particles can, however, also lose energy by radiating electromagnetic quanta, predom-
inantly in the Coulomb field of the nucleus. As shown in fig. 3.23, the process can be
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Fig. 3.22 Tumour therapy using ion beams exploits that the fact that maximum energy
deposit occurs at the end of the penetration range forming the Bragg peak. (a) Patient with
brain tumour in the radiation gantry (photo: A. Zschau, GSI). (b) Dose profiles around a brain
tumour (the tumour is marked by contour lines): (left) radiation using 2C ions, (right) radi-
ation using gamma rays (source: O. Jakel, GSI). The colour scale shows the relative radiation
dose (blue = minimum, red = maximum). The comparison shows that the surrounding tissue
is better spared from damage in ion beams (from two beam directions) than using v rays
(from nine beam directions). Also using ~ rays, the applied dose can be better concentrated
on the target volume by changing the beam direction (‘conformation therapy’), however, the
results are by far better for ion radiation. (c) Depth profiles of the dose applied by carbon
ions compared to those of X-ray and ~ radiation (source: U. Weber, GSI). In ion therapy the
dose maximum is distributed over the tumour volume by varying the energy and position of
the beam (as is shown in (b)) such that the tumour is irradiated as homogeneously as pos-
sible. For irradiation by photons the beam intensity decays exponentially due to absorption.
The dose profile, however, shows an initial buildup, the maximum moving more inward with
increasing energy. This is because the photon-induced flux of ionising electrons is first built
up following the cross section for electron production by photons.

viewed as Rutherford scattering with simultaneous radiation of a photon. In section 3.4
we will discuss that upon scattering off a heavy nucleus the directional change of the
projectile particle can no longer be neglected as was the case for scattering off the
atomic shell.

3.3.1 Radiation from accelerated charges

In classical electrodynamics the energy emitted per unit time from an accelerated
charge is computed as

dW 2 22e2

24728
dt 3 4dmeycd

m2

77 o (3.69)

where for the right-hand side & oc 2Ze?/m? is inserted considering a particle with
charge ze at a fixed distance r being decelerated by the field of a nucleus with charge
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e f/f v
= Fig. 3.23 Bremsstrahlung due to the interaction of a charged
é particle with the Coulomb field of a nucleus.
Ze

Ze (mi = zZe?/r). The energy loss hence is inversely proportional to the squared
mass of the decelerated particle. A computation employing relativistic quantum elec-
trodynamics yields a proportionality to Z2E/m? of the radiated power (see e.g. [564]).
The Z? dependence is characteristic for coherent scattering processes off a nucleus, in
contrast to ionisation.

The characteristic £/m? dependence is the reason that for energies below some
100 GeV energy loss through bremsstrahlung is only significant for electrons and
positrons. For electrons in lead bremsstrahlung loss exceeds ionisation energy loss
starting already at 7 MeV, in air at about 100 MeV, reflecting the Z? dependence.
On the other hand this also means that low energy electrons from radioactive sources
with energies in the 0.5-2 MeV range mainly lose energy by ionisation and can thus
be used to characterise ionisation detectors. For particle momenta occurring in LHC
reactions, however, bremsstrahlung also becomes relevant for muons and pions.

In what follows we will focus on bremsstrahlung of electrons (including positrons)
with relativistic energies (E > mc?). At the end of this section bremsstrahlung of high
energy muons will also be discussed.

3.3.2 Enmnergy spectrum and radiation length
3.3.2.1 Energy spectrum of bremsstrahlung

The quantum-electrodynamical analogue to the classical radiation field is the radiation
of individual photons with energies E.. The quantum mechanical calculation of brems-
strahlung of an electron in the field of a heavy point-like nucleus was first carried out
by Bethe and Heitler in 1934 [189]. Later the calculation was improved by different
authors. Reviews can be found in [517,619,948,886].

For the exact computation of photon radiation of electrons in realistic materials
various approximations must be made:

Charge screening of the nucleus: Since different momentum transfers are involved in
the radiation, form factors must be considered for the charge distributions inside
the nucleus and for the atomic shell. It turns out that the influence of nuclear
form factors can be neglected since the corresponding momentum transfers to the
nucleus are small. The electric form factor of the atom, however, turns out to be
very important: the shell causes a screening of the nuclear potential which is the
stronger the smaller the momentum transfer.” The minimum momentum transfer at
which the screening effect sets in for a given energy E of the primary electron and
energy F. of the radiated photon can be estimated [517]. The momentum transfer
¢ is minimal when the momenta of the incoming and outgoing particles are (anti-
)parallel. Using the absolute values of the 3-momenta p, p’, k of the in- and outgoing

"Note that the influence of the atomic form factor on the spectrum has just the opposite dependence
on the momentum transfer than the nuclear form factor. In a classical picture the reason for this
is that, when entering the nucleus, the charge seen by the scattering process effectively decreases,
whereas upon immersing into the negative charge cloud of the shell the positive charge of the nucleus
becomes effectively larger.
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electron and the photon one obtains

1 m2c3E
min = p—p —k = = F2—m2ct— [ (E—E)2—m2c—F. | 0 —e= 77
q p—p - <\/ m2ct—y/( )2—m2c 7) 2B (B-F)

(3.70)
We have only considered the 3-momentum transfer ¢,,;, since the heavy nucleus
practically does not receive any energy transfer. In addition, at high energies the
momenta p, p’ can be replaced by the energies E, E— E.,. The approximation on the
right-hand side of (3.70) is valid for E and E — E,, > m.c*. Quantum mechanically,
the spatial uncertainty corresponding to the momentum transfer, is the formation
length or coherence length: "
dmin
When this length reaches atomic dimensions an increasingly larger part of the entire
atomic shell takes part in the interaction and the nucleus is more and more shielded
by the shell. As a measure of the amount of screening the ratio of the mean atom
radius and the formation length is considered:

Iy = (3.71)

Tatom Tatom Qmin
= = . 3.72
In the Thomas—Fermi model (see e.g. [120]) the mean atom radius is given by ratom =
1
137h/(mec Z3) and the screening parameter becomes [517]

137 mec? E,

= B E—E) T (3.73)

n

Numbers other than 137 in the expression for 7 also appear in the literature. Most
of the time the two extreme cases ‘no screening’ (n > 1) and ‘complete screening’
(n = 0) are discussed. Exact calculations usually lie between these extremes. The
screening effect is more relevant at higher particle energies because the momentum
transfers needed for a given radiated energy £, are smaller for higher projectile
energies as (3.70) shows. In practice one can use the approximation of ‘complete
screening’ starting already at particle energies of some 10 MeV. This is also a valid
and good assumption for most cases discussed in this book.

Coulomb correction: In the Born approximation particles are described by in- and
outgoing planar waves. The influence on the wave function of the charged particle
by the Coulomb fields of the atoms is taken care of by a ‘Coulomb correction’.

Dielectric suppression: Bremsstrahlung photons with very small energies are absorbed
in the material due to the polarisability of the medium and a resulting loss of
coherence [937,105] leading to an effective cut-off of the low energy part of the
photon spectrum.

Scattering off shell electrons: In realistic media one must also consider bremsstrahlung
in the field of the shell electrons. It turns out that the influence of the shell can
approximately be accounted for by the substitution Z2 — Z(Z + 1).

LPM effect: At very high energies, roughly above 1 TeV, bremsstrahlung (and also pair
production, section 3.5.5) is suppressed by the so-called Landau—Pomeranschuk—
Migdal effect (LPM effect). This effect is particularly important for astroparticle
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Table 3.3 Numerical values for the radiator functions Ly,qq and L, .4, after [948].

Z Lrad L;“ad
1 5.31 6.144
2 4.79 5.621
3 4.74 5.805
4 4.71 5.924
>4 In (184.15 Z1/3) In (1194 Z~%/3)

physics, but also starts to become important in today’s high energy accelerators.
We omit this effect in this section, but will describe it in chapter 15 on page 590
and appendix G in the context of the discussion of highly energetic electromagnetic
showers.

In the Born approximation—but including screening and Coulomb corrections—
the differential cross section for an atom to radiate a photon with energy E.,, integrated
over the emission angle is (see e.g. [948]):

jj; = ng {(;l - §y+y2> {ZQ<¢1(77) - gan—‘lf(Z)) +Z<1/J1(77) —81nZ>]

+ g(l -y [22 (qh(n) - cbz(n)) + Z(wl(n) — wz(f})>:| } : (3.74)

Here 7, is the Bohr electron radius and y = E,/E the fraction of the electron energy
taken by the photon. Other nomenclature used in (3.74) will be defined and commented
on below. The Coulomb correction f(Z) is given in [342] as a series expansion in
a = « Z, with « being the fine structure constant:

— 42 ~ 2 2 4 6
[(Z)=a") nE ey Y (1 —3 +0.20206 — 0.0369a” + 0.0083a" — 0.002a ) .
n=1

(3.75)
For heavy nuclei this correction amounts to up to about 10%. The screening effects
are contained in the functions ¢1, ¢o for scattering off the nucleus and in 1, ¥y for
scattering off individual electrons, each with factors Z?2 for the nucleus and Z for the
electrons, respectively. These functions have been computed by different authors and
for different atomic models used. In what follows, we will give approximations for cross
section computations.
In the case of complete screening (n = 0), that is, for high energies (see page 54)
the differential cross section can be given in the following form [948]:

do _darg [(4 4 )
dE, ~ B, \\3 377

|2 (L0s(2) 1)) + 2L0a(2) | + S0 - 022+ D)} (570)

Here ¢1(0) — ¢2(0) = ¥1(0) — 2(0) = 2/3 has been used. The so-called radiator
funtions L,qq(Z) and L, ,(Z) are defined as

1 1
Lyad = ~61(0) = =In Z,
d 4¢1() 5o
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20
last term
— included

not included

Fig. 3.24 Bremsstrahlung
spectra for carbon (Z=6)
and lead (Z=82) according
to (3.76), but normalised by
a factor F/Z?. The dashed
curves do not include the
last term in (3.76).

8LOT SAWIdM "Bsoue|oy

0.0 0.2 0.4 0.6 0.8

1.0
y =E,/E
, 1
rad = 11/)1(0) —2InZ7.

Numerical values are given in table 3.3.

In fig. 3.24 bremsstrahlung spectra according to formula (3.76), multiplied by E.,/Z?,
are displayed for carbon (Z = 6) and lead (Z = 82). The curves are similar in shape,
but the fact that they differ in height, even after normalising by a factor E./Z2,
demonstrates that the cross section increases somewhat less than with Z2. The small
difference between the full and the dashed curves means that the last term in (3.76)
is quite small (we will learn below that it is ignored for the definition of the radiation
length). Note that in the adopted high energy limit the curves do not depend on the
primary energy E.

Approximation (3.76) holds for high electron energies with the exception of the
kinematic regime of highest photon energies (corresponding to high momentum trans-
fers to the atom). For non-asymptotically high electron energies and not too small
photon energies (E, > 50 MeV) the cross section (3.74) can be computed using the
following approximate formulae [592]:

~ [20.867 — 3.2421 + 0.625 72, n<l1

o1(n) = { 21.12 — 4.184 In(n + 0.952), n>1, (3.77)
~/20.029 — 1.930 + 0.086 7%, n<l1

$2(n) = {d)l(n)’ N1, (3.78)

Y12(n) = IMIE/TZG;(—Z;‘(Z) ((;3172(77) - %an - 4f(Z)> +8InZ. (3.79)

The characteristic properties of the bremsstrahlung cross section (3.76) are (a)

the Z2?/m? dependence (r. o 1/m.) which already showed up in the classical formula
(3.69), and (b) the (leading order) dependence on the photon energy:

do 1
— X = 3.80
&, B, ( )
The divergence at £, =0 has no practical effect because the lowest frequencies are
absorbed by the atoms (by the dielectric suppression mentioned above). In realistic
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Fig. 3.25 Measured brems-
—= strahlung spectra of an

09}
0sl X-ray tube for different
: 50 kv .
07l / tube voltages, normalised to
06 Mo iy w unit area. X-ray transitions
— ¥ ,
A with electrons returning

tube voltage

80KV to the K-shell cause lines

photon count (a.u.)
o
w
T

04 on top of the continuous
03 100kv bremsstrahlung spectrum,
0.2 characteristic for the cathode

materials, here tungsten with

molybdenum traces, filtered

0 20 40 60 80 100 120

photon energy (keV) with 1.2mm Al equivalent.

Adapted from [193].

simulations the radiation of small photon energies up to a cut-off energy can be treated
as a continuous energy loss. Real photons are created only above this cut-off energy
(see e.g. [452]).

3.3.2.2 Example: X-ray tube spectra

In X-ray tubes photons with X-ray energies are produced from electron bremsstrah-
lung emitted from high-Z cathode materials as targets. A typical cathode material
is tungsten featuring Z =74, a high melting point and good thermal conductivity for
efficient cooling. X-ray photons absorbed still in the cathode can cause electrons to be
emitted from inner atomic shells. The vacancies are subsequently filled by electrons
from outer-shells emitting characteristic electromagnetic radiation in the X-ray regime
corresponding to the levels’ energy separation. Figure 3.25 shows measured X-ray
tube spectra for three different tube voltages [193]. Superimposed on the (continuous)
bremsstrahlung spectrum are characteristic lines due to transitions from higher shells
(L, M, N) to the K shell. The otherwise linearly falling bremsstrahlung spectrum is at
low energies absorbed by filters (1.2mm Al equivalent), cutting off also the L-lines.
Instead of the X-rays emitted as a result of the electron transition the energy can
also be transmitted to shell electrons thus being removed from the atom with char-
acteristic energies (Auger electrons). Corresponding electron spectra are discussed in
section 3.5.3 and shown in fig. 3.40.

3.3.2.3 Angular distribution of bremsstrahlung

With increasing energy E = ym,. of the incoming electron the photons are emitted into
an increasingly narrower cone in the forward direction with a characteristic opening
angle
1 MeC?
0y~ — = ——. 3.81

A computation of the angular distribution of the emitted photons is very elaborate
and requires to make approximations depending on the kinematical regime considered
(see e.g. [180,619,592]).

Small-angle approximation. As an example we present here the double differ-
ential cross section for bremsstrahlung by electrons as derived by Schiff [861]. The

£20Z 1290100 £0 U0 Jasn Ateigi NYID Aq GH9€/500q/woo dno olwapeoe//:sdiy woly papeojumoq



Section 3.3: Energy loss through bremsstrahlung 59
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initial electron direction and
~y=EFE/m. is the Lorentz
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radiated photon. In addition
the grey curve represents
the coarse approximation
by the electron propagator
term (3.84) with arbitrary
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calculation was made in the Born approximation with the additional approximations
for small polar angles, for high initial electron energies and for complete shielding
(which is appropriate for small radiation angles, corresponding to small momentum
transfers, see above). In the small-angle approximation, where sin 6, ~ 6, the angle
appears only in the product x = v 6.,,. Therefore it is convenient to substitute the vari-
able 6, by x. Otherwise we use the variables as defined above with the addition of the
outgoing electron’s energy E' = E — E,, to write Schiff’s differential cross section [861]:

do 4o Z2 r?
= e x (3.82)
gl v
1622 E’ (E+ E')? E? + E™ 422 E'
— — In M (x)
(22 +1)*E (22 +1)2E? (2 +1)2E? (22 +1)*FE

1 E, \? Z13 \?
ith — = —= — d ~ 111.
P (%E’) +<o<x2+1>> wmd ¢
In the compendium by Koch and Motz [619] this formula, labelled 2BS, is compared
to a collection of other approximations and is also plotted for different electron and
photon energies (fig. 6 of [619]).

Schiff’s differential cross section (3.82), multiplied by the radiated photon energy
E,, is plotted for different initial electron energies in fig. 3.26. In each plot the curves
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for different F, are similar in shape and even of similar height due to the multiplica-
tion with E., removing the 1/E, dependence. This similarity becomes stronger with
increasing electron energy. Most of the photons are radiated under small polar angles
of the order of 1/+. As one can see in fig. 3.26 the most probable angle is found around
g ~ 1/(29).

The leading dependence of the differential cross section with respect to the ra-
diation angle 6., originates from the electron propagator (inner electron line) in the
bremsstrahlung diagram of fig. 3.23. The propagator has the form 1/(¢? — m?) where
ge is the 4-momentum of the virtual electron. Denoting p, and k the 4-momenta of
the outgoing electron and the photon, respectively, we get with ¢. = p., + k and
8 = |lc/E"

@z —m?2 =m?2 + 2kk, —m? = 2E,E' — 2E,|p!|ccos = 2E,E'(1 — Bcosf). (3.83)
For small photon energies as compared to the electron energies the angle 6 is approx-
imately 6, and 8 is about the value for the incoming electron. The propagator enters
the cross section quadratically so that we can approximately write

dcos 6, _ 4y*0,db,
(1—fBcosh,)? (1+ 02+2)% "

do (3.84)

The right-hand side of (3.84) holds for small angles and 8 & 1. This propagator
contribution is also shown in fig.3.26. Remarkably, this very coarse approximation
reflects quite well the dominant features of the bremsstrahlung angular distribution
at small angles.

Large-angle approximation. The large-angle approximation has been calculated
in kinematic regimes where shielding can be neglected by Hough [543] (also discussed
in the compendium [619]). In [573] numerical values of double-differential cross sections
of some selected elements are compiled for angles above 15° at different primary and
radiated energies. In order to give a quantitative feeling for the bremsstrahlung contri-
bution at large angles we quote the cross section for carbon integrated over the angles
at £ = 500MeV and E, = 100 MeV. Interpolating the data tabulated in [573] and
integrating over the range 6, > 15° a cross section do/dE. ~ 80nb/MeV is obtained.
The same cross section integrated over the full angular range is do /dE, ~ 5.4 mb/MeV
according to (3.76) and fig. 3.24. Although the large-angle cross section is thus many
orders of magnitude less than the full cross section, in specific experiments, where the
forward bremsstrahlung is often excluded by design, the large-angle bremsstrahlung
may be of a similar order of magnitude as the processes the experiment is aiming for.

3.3.2.4 Radiation length

Averaging the radiated energies over the bremsstrahlung spectrum in (3.76) yields the
mean energy loss per path length:

dE Nap /E do
— = E,—dE.
dx A 0 ’YdE,Y R

N 1
= 40”3%” E [(Z%Lmd ~ @)+ 2La) + g (22 + 2)| . (38))
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Section 3.3: Energy loss through bremsstrahlung 61

where for the upper integration bound E —m.c? ~ E has been used. At high energies,
the energy loss per unit path length thus approximately scales with the electron energy.
One can then introduce the radiation length X as the characteristic length for energy
loss through bremsstrahlung by:

dE E

E(z) = Eye Xo, (3.87)

Integration of (3.85) yields:

meaning that after a path length x = X an electron on average possesses only 1/e of
its initial energy; the fraction 1 — 1/e = 63% has been radiated off.
In [948] the radiation length Xy is defined by:

N
— 4o Nap

XO A [ZZ(Lrad - f(Z) ) + ZLrad] . (388)

In this definition the term (Z% + Z) in (3.85), taking values between 1% and
1.7% depending on Z, has been neglected.® With numerical values for the constants
(4ar? N4)~! = 716.408 mol cm 2 we obtain:

716.408 A mol/g g
Z%[(Lyaa — f(2))+ ZL. ] cm?”’

Radiation lengths of various materials often occurring in particle physics experiments
are listed in table 3.4.

A compact formula, obtained from a fit and deviating by less than 2.5% from the
input data for all elements except for He (deviation ~5%), is given in [724]:

716.408 A mol/g ¢

Z(Z+1) 1In 38% cm?

pXo = (3.90)

In this representation the dependence on Z can be seen better: in addition to the Z?2
dependence for coherent scattering off the entire nucleus there is the same contribution
proportional to Z originating from the scattering off individual shell electrons which
has to be summed over.

For mixtures and compounds the radiation length can be calculated from the cor-
responding contributions X, of the individual components with weight fraction g;:
Pi

— = ith i ==, 91
pXo ZpXol s g p (3.91)

The radiation length X, generally serves as an important measure to characterise
electromagnetic processes taking place in the Coulomb field of a nucleus, this is, apart
from bremsstrahlung, above all eTe™ pair production (section 3.5.5) and multiple
Coulomb scattering (section 3.4). For example, Xy is used in detector building to
characterise the thickness of material traversed on average by a particle. Note, however,

8The term is neglected in order to be able to also express the cross section for pair production
(section 3.5.5) at high energies by means of the radiation length.
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Table 3.4 Radiation length (given as pXo in units mass/area and in units of length at the

given density) and critical energy F. (electrons), E¥ (muons), as well as the correspondingly

relevant atomic properties for various materials often used in detector applications (adapted
from [762], the data for photoemulsions correspond to Ilford G5 [889]).

. Z/A) Density E E#
Material 7 { ¢ c
(mol/g)  (g/em®)  (g/em?)  (cm)  (MeV) (GeV)
elemental solids
Be 4 0.444 1.85 65.19 35.2 113.7 1328
C 6 0.500 2.21 42.70 19.3 81.7 1057
(graphite)
Al 13 0.482 2.70 24.01 8.9 42.7 612
Si 14 0.499 2.33 21.82 9.36 40.2 582
Fe 26 0.466 7.87 13.84 1.76 21.7 347
Cu 29 0.456 8.96 12.86 1.44 194 317
Ge 32 0.441 5.32 12.25 2.30 18.2 297
W 74 0.403 19.30 6.76 0.35 8.0 150
Pb 82 0.396 11.35 6.37 0.56 7.4 141
U 92 0.387 18.95 6.00 0.32 6.7 128
scintillators
Nal 11,53 0.427 3.67 9.49 2.59 13.4 228
Csl 55,53 0.416 4.51 8.39 1.86 11.2 198
BaF, 56,9 0.422 4.89 9.91 2.03 13.8 233
PbWO,4 82,74,8 0.413 8.30 7.39 0.89 9.6 170
polystyrene 1,6 0.538 1.06 43.79 41.3 93.1 1183
gases (20°C, latm)
H, 1 0.992 0.084x1073 63.04 750500  344.8 3611
He 2 0.500 0.166x1073 94.32 568200 257.1 2352
air 7,8 0.499 1.205%x1073 36.62 30390 87.9 1115
Ar 18 0.451 1.66x1073 19.55 11777 38.0 572
Xe 54 0.411 5.48x1073 8.48 1547 12.3 232
other materials
H>0 (liquid) 1,8 0.555 1.0 36.1 36.1 78.3 1029
standard rock 11 0.500 2.65 26.5 10.0 49.1 693
photoemulsion 3.82 11.33 2.97 17.4 286

that the definition of the radiation length bares some level of arbitrariness since the
published formulae usually rely on some approximations made. Definitions other than
those given here and in [746] do exist, based on different approximations, for example
in [835]. For the mentioned rough calculations this does usually not play a major role.
If more exact computations are needed, Monte Carlo simulations are usually employed
which use more precise formulae.
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2
o Fig. 3.27 Energy loss by ion-
silicon isation and by bremsstrahlung
for electrons as a function of the
— electron kinetic energy. Both
{\I‘C‘ contributions (dashed lines)
S | .. proton intersect at the critical energy
E) 10" | --- electron (ion) - E. = 47.87MeV, defined as
< == electron (brems) ] in (3.92). In the Rossi-PDG
3 — electron tota) definition (3.93) this value is
7 E. = 40.19MeV [762]. For com-
L parison also the ionisation energy
- e T loss for protons is given. All
- / Kolanoski, Wermes 2015 curves have been computed using
10° 0 ”””‘1 — ”””‘2 — ”””‘3 ",  the interactive programs ESTAR
10 10 10 10 10

and PSTAR [182].
T (MeV)

3.3.3 Ciritical energy

Energy loss by radiation and by ionisation have different dependencies on the energy
E and the mass M of the particle, as well as on the nuclear charge Z of the medium:

ionisation: x ZInE/M
bremsstrahlung: o« ZZE/M? .

Due to the different energy dependencies ionisation dominates at low energies, brems-
strahlung at high energies. A critical energy E. is defined as the point in energy at
which both energy loss curves intersect (fig. 3.27):

Different to (3.92) the Particle Data Group [746] has adopted the definition by Rossi
[835] according to which the critical energy is the energy at which the ionisation energy
loss after one radiation length equals the energy of the radiating electron:
dE
—(E, Xo=-E,. 3.93
This definition merges into (3.92) under the assumption that (dE/dx)req = —E./Xo.
For (3.93) reasonably good approximations are available, differing for solid and liquid
compared to gaseous media due to the density effect:
610 MeV
E,.~ ﬁl.;l (solids and liquids) ,
(3.94)
710 MeV

B, 20V .
Z 109z (88e)

Radiation length X, and critical energy F. are important parameters for the develop-
ment of electromagnetic showers (see chapter 15). Numerical values for some materials
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Fig. 3.28 Energy loss for positive muons in copper (taken from [746]; see also detailed
description and references therein). The vertical bands separate regions with different theo-
retical descriptions. The centre marks the validity region of the Bethe-Bloch formula (3.25).
At high energies where bremsstrahlung dominates the drawn curves show the total energy
loss (solid), the loss by radiation (dotted) as well as by ionisation without (dashed) and
with (dash-dotted) the inclusion of the ¢ term in (3.25). The region at low energies labelled
‘Anderson—Ziegler’ is described by an empirical fit to measured data. The region below this,
labelled ‘Lindhard—Scharff’; is based on a theoretical model which yields an energy loss depen-
dence roughly proportional to 8 (dashed line). At the lowest energies non-ionising energy loss
caused by elastic nuclear recoil dominates. At low energies the energy loss is smaller for neg-
ative than for positive particles (‘Barkas effect’ [153]) attributed to higher order corrections
and indicated here by the curve labelled ™.

are given in table 3.4.

3.3.4 Energy loss of high energy muons

The energy loss by bremsstrahlung scales with the inverse squared mass of the radiating
particle as 1/m?. At very high energies, the radiation contribution to the energy loss
hence also plays a role for particles heavier than electrons, first for muons and pions,
at still higher energies also for kaons and protons.

In the following we consider the energy loss of high energy muons because of its
relevance at modern high energy accelerators in the TeV range (like LHC) and also
for the detection of cosmic rays. The energy loss can be represented as a sum of the
contributions from ionisation and from bremsstrahlung (fig. 3.28):

_AE

= a(E) +H(E) E. (3.95)

Here a is the energy loss contribution from ionisation and b E the contribution from
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Table 3.5 Parameters a and b for the linear approximation (3.95) of the energy loss of
muons [309]. The column density is given here in mwe = ‘metre water equivalent’, that is,
the thickness of an equivalent water layer in metres (mwe = 100 g/cm?). The third column
contains the critical energy for muons [762] (for different materials see table 3.4).

Medium a (GeV /mwe) b (1073 /mwe) E! (GeV)
air 0.281 0.347 1115
ice (~water) 0.259 0.363 1031
standard rock (see text) 0.223 0.463 693

bremsstrahlung. The critical energy E* at which both contributions are equal is defined
by [482]:
a(EY) = b(E*)EY . (3.96)

Values for E¥ for different media are given in [762] together with tables containing the
energy dependence of a and b. At high energies (above the critical energy) a and b can
be taken as constant. This has been shown for example in [309] by fits to simulation
results.” In table 3.5 fitted parameters for air, ice, and ‘standard rock’ are listed.
‘Standard rock’ with the medium properties as given in table 3.4 is used as a reference
medium for underground experiments (see section 2.3.3 and chapter 16).

The energy dependence of the energy loss (3.95) allows us to measure the energy
of muons above the critical energy without a magnetic field. This is particularly inter-
esting for experiments with a large detector volume that cannot be completely covered
magnetically. Examples are neutrino detectors like IceCube [36] detecting muons gen-
erated by high energy neutrinos (see section 16.6.5).

Integrating the energy loss (3.95) assuming constant a,b, an energy dependent
range for muons with primary energy E can be determined using (3.62):

R(E) = %m (1 + ZE) . (3.97)

The range of muons plays an important role for shielding against cosmic radiation in
underground experiments. In ‘standard rock’, for example, muons with an energy of
1TeV have a range of about 0.9 km and in water or ice of about 2.4 km.

3.4 Multiple Coulomb scattering

Charged particles are scattered in the Coulomb fields of nuclei according to the Ru-
therford cross section. Relative to this effect, the deflection by interaction with shell
electrons are small at energies E > mec?.

After passage of a particle through a material of thickness Ax the particle has in
general undergone multiple scattering processes leading to a statistical distribution of
the scattering angle relative to the original direction.

Coulomb scattering off a single nucleus is described by the Rutherford cross section

(fig. 3.29):

do _ 22,252 1 1

a0 T Ao 3.98
ds Rutherford 62172 4 Sin4 (9/2) ( )

9Note, however, that the critical energy cannot be determined using constant a, b in (3.96).
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Fig. 3.29 Scattering of a charged particle (charge ze) in the
Coulomb field of a nucleus with charge Ze (Rutherford scatter-

ing).

Here 0 is the scattering angle, z, 8 and p are charge, velocity and momentum of the
scattered particle, and Z is the charge of the nucleus. Given the predominantly small
momentum transfers (corresponding to the large reach of electromagnetic interactions)
the process is a coherent scattering process off the total charge of the nucleus resulting
in the quadratic Z-dependence already mentioned (by contrast the energy loss by
ionisation is proportional to Z since all shell electrons contribute as an incoherent
sum). If the scattered particle is light compared to the mass of the nucleus it is deflected
with only a small energy transfer to the nucleus.

For a not too thin scattering medium, that is, if the number of scatters exceeds
about 20, we speak of multiple or Moliere scattering. According to the central limit
theorem of statistics one expects for an infinite number of scatters that the distribution
of the scattering angle is Gaussian. The general case of a finite number of scatters has
been treated by Moliére [710,711]. For most practical cases the distribution obtained by
the Moliere theory can be approximated well by a Gaussian distribution. One should
keep in mind, however, that the Moliere distribution predicts larger probabilities for
large multiple scattering angles which results from the nature of the underlying Ruther-
ford scattering processes. Figure 3.30 shows a measured scattering angle distribution
of protons [198] compared with the exact Moliere theory and with the approximation

Fig. 3.30 Distribution of the scat-
tering angle of protons with kinetic

scattering of protons in a foil of aluminium

energy 7' = 2.18 MeV having traversed
an aluminium foil with area mass den-
sity of # = 3.42 x 1073 gem™? (i.e.
thickness of about 13 um) [198]. The
measurements are compared with

103_

the exact Moliere theory and also
with a Gaussian (data and curves
taken from [198]). In this logarithmic
representation plotted against the
squared scattering angle the Gauss

10 distribution is a straight line. The

scattering angle is normalised here to
the characteristic angle 6. appearing
in the Moliére theory (6. = xcVB
with parameters x. and B as given
0 1 2 3 4 5 6 in [711], 0. %ems\/i). Thus with

82 =(6/62 0 = 0/0. the leading dependence of
the Moliére distribution at small

angles is proportional to exp(—4?).
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(a) Distribution of the plane projected scattering (b) Distribution of the squared spatial scattering
angle as defined by (3.103). angle as defined by (3.104).

Fig. 3.31 Gaussian approximation of scattering angle distributions.

of a Gaussian distribution. In this logarithmic representation it is particularly obvious
that the tails of the distribution at large scattering angles cannot be described by a
Gaussian.

In the small-angle Gaussian approximation the multiple scattering angular distri-
bution is specified by one parameter, the standard deviation 6,,s (often denoted 6y in
the literature) of the angle 6,,,ne projected onto a plane perpendicular to the direction
of motion of the incoming particle:

1 07 ane
f(eplane)daplane = W €xXp <_ QPéZ )deplane . (399>

A simple formula for the parameter 6,,s has been estimated by Rossi and Greisen [834]
from the variance of the scattering angle distribution as

FE, x

~ ]2 ~
Oms = \/ (Opane) = Vapes\ Xo (3.100)

where the scale is specified by

4
By =me | — = 21.2MeV . (3.101)
(6%

In (3.100) x is the thickness of the scattering material and X the medium’s radiation
length. The radiation length appears here again because it characterises processes in
the Coulomb field of a nucleus as also the case for bremsstrahlung of electrons in the
field of a nucleus (section 3.3) for which X has been defined in (3.88).

A better approximation for the parameter 6,,s is obtained by the so-called ‘High-
land formula’ [522] given here in the parametrisation of [679], adapted also by the
Particle Data Group [746]:

13.6MeV/c [ < x )
Ops = ————24,/— | 1+0.038In — | . 3.102
pp Xo Xo ( )

The spatial scattering angle is the angle between the particle direction before and
after the scattering volume and is composed of the two orthogonal projections 0, 6,:

Ospace =: 0 = /02 + 95 in the small-angle approximation, where x, y are orthogonal to
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Fig. 3.32 Sketch illustrating
multiple scattering of a charged

particle in a scattering layer
projected onto a plane perpen-
dicular to the incoming particle

direction as well as characteristic
quantities used to describe this

multiple Coulomb scattering
process (source: PDG [746]).

the direction of motion. The 6 distribution is obtained as the product of the statistically
independent distributions for 6, and 6, each following (3.99):

1 62
Here we used df,, df, = 0 df d¢ and integrated over ¢. Note that the spatial scattering
angle can only assume positive values, in contrast to the projection of this angle onto a

plane (fig. 3.31 and fig. 3.32). It is thus appropriate to examine the probability density
of §% which with 20df = df? becomes

2 2
h(0%)d6® = 2 7

62 9
exp < 29%15)d0 . (3.104)
The distributions (3.103) and (3.104) are normalised to unity in 0 < < co. The max-
imum of h(#?) is at # =0 and corresponds to the most probable scattering angle in a
solid angle interval 0 df d¢, whereas the average value is at (§) = \/7/260,,, > 0. The
standard deviation of the spatial scattering angle with respect to the most probably
value at 0 =0 is

(02) = V20,5 . (3.105)

The angle v/26,,, approximately corresponds to the characteristic Moliere angle 6, in
fig. 3.30.

For computer simulations of particles traversing a detector the traversed matter
is sliced into scattering layers and the relevant scattering quantities are calculated
for each layer. The sketch in fig. 3.32 illustrates the quantities describing the effects
of multiple scattering after traversing a layer of material with thickness z: the rms!®
averages of the effective scattering angle 1ane, the deflection angle ¥piane, the offset
from the original entrance point ypjane and the central offset spiane. The relation to
the scattering angle parameter 6, is given by [746]:

1 1 1
;ZILZ@ = Ops , <¢Plane> = ﬁ Om.s 5 <yplane> = % T Oms 5 <3plane> = 47\/3 T Opms
(3.106)
10rms = root-mean-square; square root of the mean squares of a set of numbers x;, that is, 4/ (z2)

(the same as the standard deviation of the z; if the mean is zero) which is also defined for continuous
random variables. Frequently also the terms ‘rms deviation’ or ‘rms error’ are used for the rms of the
differences between values #; predicted by a model or an estimator and the observed values x;, that

is, \/((z — 2)2).
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Fig. 3.33 Influence of multiple Coulomb
scattering on the reconstruction of sec-
ondary vertices. The direction of a track is

measured by two layers of a detector (e.g.
silicon strip detectors). The scattering at
the first detector layer leads to a recon-
struction error when extrapolating the
track to the primary vertex (indicated by
the shaded area).

i
i
i
i
a /
i
/ /
Kolanoski, Wermes 2015

Table 3.6 Error of the determination of the impact parameter dp of a 5 GeV pion assuming
a beam pipe with radius 5 cm and a thickness of 1 mm.

Material Xo (mm) x/Xo Oms (rad) Ady (pm)
Al 89 0.011 0.0003 15.0
Be 353 0.003 0.00015 7.5

These approximations are precise to about 5% for layer thicknesses of 1072 < /Xy <
10; this is the range of about 5 um to 50 mm for lead or 0.3 mm to 3m for air.

Example: Measurement of secondary vertices in a collider experiment. De-
cays of hadrons with charm and bottom quarks can successfully be detected by iden-
tifying their decay vertices which often are sufficiently separated from the collision’s
primary vertex (see also sections 8.1, 9.4.6 and 14.6.2). Bound states containing b-
quarks, for example, have lifetimes of 7 ~ 1.5 ps. At a momentum of 10 GeV the
average decay length then is (I) = y8cr = 2 mm.

Whether a track can come from a secondary vertex is indicated by the impact pa-
rameter dg (see also chapter 14, section 14.6) which is the distance of closest approach
to the primary vertex of an extrapolated track in the plane perpendicular to the beam
(fig. 3.33). The error of a measurement of dy (grey fanned area in fig. 3.33) determines
if a track can be separated sufficiently well from the primary vertex.

Let us assume the radius of a beam pipe in which beam collisions take place be
rp = 50mm and the first layer of a very precise detector be directly placed on this
beam pipe. A second detector is at a larger radius. Beam pipe and first detector
together shall have a thickness = and a joint radiation length X, from which we can
compute an average effective scattering angle 6,5 according to (3.105). Assuming that
the spatial resolution of the detectors is much smaller than the uncertainty caused by
multiple scattering the error on dy becomes:

Ado = Gms rB. (3107)
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Fig. 3.34 Diagrams for (a) photoelectric effect, (b) Compton effect and (c) pair production.

This means that the distance of the first detector layer to the vertices should be as
small as possible and the detector should be as thin as possible in comparison to the
radiation length of its material (see also section 9.4.6.2).

In table 3.6 the error of the impact parameter is given for a thickness of the
scattering material of x =1mm and a particle momentum of p=5GeV/c and g =~ 1
for the materials aluminium and beryllium. Since the radiation length of Be is about
four times larger than for Al the error of the impact parameter is hence a factor of 2
smaller.

In section 9.4 of chapter 9 the conditions for a good vertex resolution are discussed
more generally.

3.5 Interactions of photons with matter

For particle detectors the following interactions of photons with matter are of partic-
ular importance (fig. 3.34):

— Photoelectric effect: the photon transfers its total energy to an atom which there-
upon emits a shell electron.

— Compton effect: the photon is scattered elastically off a shell electron.

— Pair production: the photon converts in the field of a nucleus into an electron—
positron pair.

Figure 3.35 shows these processes in a picture of a bubble-chamber event and fig. 3.36
on page 72 shows the various photon cross sections as a function of the photon energy.
The three processes dominate at photon energies above the ionisation threshold. At
low energies Thomson and Rayleigh scattering also play a role. Thomson scattering
is low energy photon scattering off free charges. For electrons it constitutes the low
energy Compton limit (see eq. (3.128)). The coherent scattering off a whole atom
without shell excitation or ionisation is called Rayleigh scattering.

We discuss all processes entering in fig. 3.36 in sections 3.5.2 to 3.5.5 below. For
Rayleigh and Thomson scattering almost no energy transfer to the atom occurs. Hence
they are not of importance for photon detection.

3.5.1 Photon absorption

As a result of the above interaction processes, photons are absorbed or—in the Comp-
ton case—scattered off from their original direction, with a probability proportional to
the path length dx in the medium. In section 3.1 the absorption coefficient u, specifying
the absorption probability per path length, has been defined:

1 dN

Ny .
TNy k=P o=no (n = target density) . (3.108)

The reciprocal of y is the mean free path or absorption length:
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Fig. 3.35 Details of a bubble chamber picture of an electromagnetic shower (see section 15.2)
developing from bottom to top (source: CERN [284]). The picture was taken by the ‘15-foot
Bubble Chamber’ at Fermilab filled with a mixture of He and Ne. The curvatures of the tracks
are due to a magnetic field pointing in this exposure into the plane of the picture (negative
tracks are curved clockwise). The crosses are reference points for the measurement of the
track parameters. The picture shows examples for the processes sketched by the diagrams in
fig. 3.34. Pairs of tracks with opposite curvatures and small opening angle at the vertex are
electron—positron pairs, here originating mostly from bremsstrahlung photons. In the picture
also the case is indicated in which the photon obviously originates from the annihilation of
a positron with a shell electron (inverse pair production). One of the annihilation photons
again produces a pair close to the annihilation point at a position lying in the direction of the
original positron. Pairs that have a vertex very near a straight line and having a tangential
emission topology, likely come from bremsstrahlung of the particle belonging to the straight
track. The individual spirals, curved clockwise, are electrons, created by photo or Compton
effect.

A=—=—. (3.109)

Again, one usually finds tabulated values normalised to unit density:

N —1
H_2A, respectively pPA= (H> (3.110)
p A p

in units cm?/g or g/cm?, respectively. Figure 3.37 shows the absorption lengths of
various elements as a function of the photon energy. The number of photons in a
beam follows an exponential law following from (3.108):

N(x) = Nge " (3.111)

This must be compared with the ionisation interactions affecting charged particles
which show a completely different depth dependence: the particles lose energy con-
tinuously resulting in an energy dependent but fixed absorption range (see fig. 3.2 on
page 25).
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Fig. 3.36 Different contributions to the photon total cross section as a function of energy in
carbon and lead (source: PDG [932]).

Op... = atomic photoelectric effect (electron ejection, photon absorption)
ORayleigh = Rayleigh (coherent) scattering; atom neither ionised nor excited
OCompton = incoherent scattering (Compton scattering off an electron)

Knue = pair production, nuclear field

Ke = pair production, electron field
0g4.4.-. = photonuclear interactions, most notably the giant dipole resonance.
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Fig. 3.37 Photon absorption length (or mean free path) A = 1/(u/p), with 4 = mass attenu-
ation coefficient and p = density, for various elements as a function of the photon energy [932].

Figure 3.36 shows the different processes contributing to the interaction cross sec-
tion of photons for carbon and for lead [746]. The characteristic dependences of the
processes on the photon energy and on the nuclear charge Z of the traversed medium
are discussed in the following.

3.5.2 Thomson and Rayleigh scattering

The scattering of an electromagnetic wave off a free charge is called Thomson scatter-
ing. The scattering occurs because the electric field excites oscillations of the charge in
field direction, that is, transverse to the wave direction. The energy is subsequently re-
emitted in form of dipole radiation. In the photon picture of the electromagnetic wave
this leads for unpolarised photons at low energies, where the recoil energy of the charge
can be neglected, to an angular distribution of the scattered photon proportional to
1 + cos? 0,.
For electrons the differential Thomson cross section is

1+cos®0,) , (3.112)

where 6., is the polar angle of the scattered photon with respect to the incoming photon
direction. Integration over the solid angle yields the total Thomson cross section,

8mr?
OTh =

=0.665D), (3.113)

with the classical electron radius r, ~ 2.8 fm as defined in (3.26). The Thomson cross
section for electrons is often used as a reference for other photon cross sections.

Coherent, elastic photon scattering off a whole atom is called Rayleigh scattering.
In the range of visible light, Rayleigh scattering is known to cause the blue sky. Here
we use the term more generally for coherent photon scattering up to the X-ray regime
as shown in fig. 3.36.

€202 1890190 €0 U0 Jasn Aseiqr NYID Aq SIS H/4000/Wwoo dno olwspeose)/:sdiy Wolj papeojumod



74 Chapter 3: Interactions of particles with matter

For atoms the above described oscillations become oscillations of shell electrons,
determined by the polarisability of the atom. The polarisability depends on the reso-
nances with eigenfrequencies w;g, which lie for atoms and molecules in the ultraviolet
and above. Sufficiently away from the eigenfrequencies one can neglect the widths of
the resonances and the scattering cross section can be written as

2
oR = 0%, w? (Z w2fw2> . (3.114)
i

i0

The sum goes over all Z dipole oscillators with oscillator strengths f;, which are
normalised as Y., f; = Z (see e.g. [564])."" The w* dependence is characteristic of
dipole radiation.

For w < wp, which includes the visible light region, this becomes

2
OR = O'%h w4 (Z (jz ) , (3115)
i0

%

which is the well-known dependence explaining the blue colour of the sky by the
enhanced scattering at higher frequencies.

Above the resonances with w >> wp, but the photon wavelength still much larger
than the atomic radius, the oscillations become independent of the individual eigen-
frequencies and the whole electron shell oscillates with the frequency w of the driving
field. Then the Rayleigh cross section becomes

2
OR =0y <Z fi> = 72 6%, = oo™ (3.116)

The formula means that the photon sees the Z electrons coherently; it describes the
nearly energy independent low energy part of the curves labelled oRrayleigh in fig. 3.36.

As the wavelength of the photon decreases with increasing energy, the photons
begin to resolve the electronic structure of the atom leading to damping of the coherent
scattering. The damping can be described by applying a formfactor to the Thomson
cross section.

3.5.3 Photoelectric effect

In this section we treat the photoelectric effect or just photoeffect, both used synony-
mously in this book. It is the dominant photon interaction process at energies in the
lower keV range, typically above 1keV. Absorption of optical or near optical photons
is discussed in chapter 10 together with the corresponding photodetectors.

In the photoelectric effect the photon transfers its complete energy onto an atom
which then releases the absorbed energy by emitting an electron into the continuum
(fig. 3.34(a)):

v+ atom — (atom)t + e~

The atom absorbs the recoil momentum and is ionised after the reaction.
11 The cross section (3.114) is often expressed by the macroscopic parameters of refraction or electric

permittivity (as also in [564]). The connection with the microscopic picture of atomic dipoles is given
by (11.10).
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In order that the photoeffect takes place, the energy E., of the photon must exceed
the binding energy E'p of the electron (E, > Eg); the energy surplus is transferred as
kinetic energy to the electron

T=E,-Ep.

The recoil energy transferred to the atom can be neglected due to the atom’s large
mass.

The cross section for photoeffect rapidly drops with increasing photon energy and
(at fixed photon energy) strongly increases with increasing Z. For a given photon
energy the probability for absorption is largest for the most strongly bound inner
shell electrons, for which the energy surpasses the threshold for that shell. This is
why jumps in the absorption cross section, so-called absorption edges, are observed
when the binding energy of an electron in a particular shell is reached with increasing
photon energy: E, = E%, i = K,L,.... The cross section is highest for shell i, for
which E, — E% is smallest. For carbon (fig. 3.36(a)) one can only see the edge for the
K-shell whereas for lead (fig. 3.36(b)) the edges of the K-, L- and M-shells are visible.
At still lower energies (< 5 eV) the cross section falls again, a characteristic described
in more detail in chapter 10.

Cross section. The computation of the photoelectric effect for all energies is very
complex and challenging, requiring approximations, as it involves the entire atom. For
all practical applications it is therefore recommended to use measured data which are
provided for example by the US National Institute of Standards (NIST) [545] and also
as an interactive database [181].

Computations of the cross section for photon absorption in the K-shell only are
found in various textbooks, e.g. in [180,517]. Since these computations reproduce the
data fairly well and since K-shell absorption is dominant for energies above the K-edge,
the results for this simplified case are presented and discussed in the following.

For photon energies larger than the K-shell ionisation energy, but small compared
to the electron mass (E, < m.c?), the non-relativistic approximation is justified. In
this approximation the total absorption cross section in the K-shell per atom is:

oNE = /3201 €735 Z° 6%, f(€) (3.117)
with € = E,/m.c®, o = 1/137 the fine structure constant and o%, = gmf the

Thomson cross section (3.113), respectively. The expression without the factor f(€)
corresponds to the Born approximation which assumes a plane wave for the outgoing
electron. Practically, however, this approximation does not yield good results for the
cross section in any energy range [517]. A reasonable description of the data is only
obtained when the factor f(£) is included taking care of the fact that the electron
must absorb the angular momentum of the photon (see e.g. [180]). The factor f(§)
depends substantially on the ratio of the binding energy in the K-shell Ex and the
kinetic energy transferred to the electron T'= E, — Ek:

B 1 exp(—4€ arccot §)
1) = QWZQ\/; () (3.118)

with &=
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The strong dependence of the cross section on the photon energy and the nuclear
charge Z characteristically appears in the Born cross section of (3.117) proportional
to Z° /E%5 The correction factor f(&), however, mitigates these dependencies such
that the Z dependence changes to Z™ with n = 4—5 and the E, dependence to E ;™
with m < 3.5.

The non-relativistic approximation (3.117) holds up to values of ¢ = 0.5 according
to [517]. At higher energies Dirac wavefunctions have to be used to compute the matrix
element of the process. In [517] a relativistic derivation by Sauter is given:

3 . 42, s |4 7y —2) 1 Y+ -1
ok =50ma —0O 17 |5+ 1-— In .
2 € 3 v+1 2972 -1 v—+/2 -1

(3.119)
Here v = (T + m.)/me is the Lorentz factor of the outgoing electron which for E., >
Ep can be written as v = (E, + me)/m.. The non-relativistic Born approximation
(3.117) without the correction factor f(§) is recovered from (3.119) for small photon
energies, that is, v — 1 (but with E, still large compared to the threshold Ex).
At large photon energies (£, > m.) v — € holds, transforming (3.119) in the highly
relativistic limit (7 — o0) to the form

5
ol = g 0%y, o Z? . (3.120)
Thus, at high photon energies the cross section decreases only as 1/E., that is, much
more slowly than at low energies near the K-edge. However, in the region where approx-
imation (3.120) is applicable, photoeffect is negligible compared to Compton effect and
pair production. Figure 3.38 illustrates this for four semiconductor materials, showing
the fraction of X-ray photons absorbed by photoeffect for the same thickness (300 pm).

Angular distribution. The angular distribution of the outgoing electron is given
in lowest order as [451,452]:

do sin? 6 {

deosd (1— Beosf)? 1+ }7(7 -D(y—-2)1- ﬂcos&)} (3.121)

2
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Fig. 3.39 Photoelectric effect: angular distribution (probability per solid angle) of the
outgoing electron relative to the direction of the incoming photon (computed with
eq. (3.121)) for different kinetic energies of the electron corresponding to Lorentz factors
v = 1.01, 1.1, 1.5, 2.0, 5.0. Left: relative probability plotted versus the cosine of the elec-
tron angle; right: the same relative probability plotted as a polar diagram for three electron
energies (v = 1.01, 1.5, 5.0).

with 6 being the polar angle of the emitted electron relative to the direction of
the incoming photon. In higher order additional terms proportional to powers of
aZ appear. The distribution is shown in fig. 3.39 for different electron energies.
In the non-relativistic limit v — 1 the distribution becomes that of dipole radiation
(do /dcosf) o sin? @) with preferred emission orthogonal to the direction of the incom-
ing photon. With increasing energy, § — 1, the electron is emitted more and more in
the direction of the incoming photon.

Energy deposit in a detector. The vacancy created by the photoelectric effect in
an inner shell can be filled again by electrons from outer, preferentially nearby shells.
The energy released in this process can be re-emitted as a photon or as an electron,
so-called Auger electrons. Since both processes involve atomic transitions between
discrete energy levels, the corresponding photon or electron energies are also discrete,
giving rise to characteristic peaks in X-ray and Auger spectra. In X-ray spectra the
photon peaks are called characteristic lines since their energies are characteristic for
an element. The probability for energy release by photon emission increases with Z,
whereas Auger emission becomes less probable with increasing Z. The spectroscopy of
such X-ray photons (XRF = ‘X-ray fluorescence spectroscopy’) or of Auger electrons
(XPS = ‘X-ray photoelectron spectroscopy’) is used as a very sensitive method for
the analysis of surfaces where either monochromatic X-rays or electrons bombard a
surface to be examined. An example for an electron spectrum is given in fig. 3.40.
Characteristic lines observed in the spectra of X-ray tubes are shown in fig. 3.25 on
page 58.

If the total energy of the incoming photon is detected, a so-called photopeak is
observed in the measured energy spectrum. If, on the other hand, a secondary photon
with discrete energy leaves the detector, a second peak (escape peak) can develop. For
tests of gas-filled or semiconductor detectors the radioactive isotope °°Fe is often used
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Fig. 3.40 Electron spectrum of an olivine mineral surface bombarded by a Al-K, X-ray
source (hv = 1486.6 €V) (from [268]). The photopeaks are labelled by the corresponding ele-
ment and the bound state, from which the electron was emitted. In addition two Auger lines
from oxygen and magnesium (O KLL, Mg KLL) can be seen.
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which has a 7 line at 5.9keV (see table A.1 in the appendix). If ®*Fe photons are for
example absorbed in the argon gas filling of a proportional chamber (section 7.6.1)
one can—in addition to the photopeak at 5.9 keV—observe an escape peak at about
2.9keV (fig.3.41). The energy that has left the detector is predominantly the energy
difference between the L- and the K-shell, carried outside the detector by photon or
electron emission. Auger electrons are with some probability completely absorbed in
the detector and their deposited energy hence also contributes to the photopeak.

3.5.4 Compton effect

The Compton effect is the scattering of a photon off a free or quasi-free electron
(fig. 3.34(b)). A shell electron is termed ‘quasi-free’ in this context when the energy of
the incoming photon is substantially larger than the electron’s binding energy (E, >
Ep). We call a scattering process Compton scattering if the electron is kicked out of
the atom, carrying away the recoil momentum. There is also the possibility that, even
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Fig. 3.42 Kinematics of the Compton
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at high photon energies, the electron remains in the atom shell. In this case the whole
atom takes the recoil (‘coherent photon scattering’) and the scattered photon’s energy
is nearly the same as the initial energy, independent of the scattering angle. Coherent
photon scattering becomes strong at lower energies. At photon energies of visible light,
where the corresponding wavelengths are much larger than the atom dimensions, this
is known as Rayleigh scattering (see fig. 3.36). The Compton effect is dominant in an
extended energy region around 1 MeV. The extent of this region is much larger at low
Z of the medium than at high Z (see fig. 3.49).

Kinematics. Since the photon is scattered quasi-elastically off the electron, energy
and angle of the scattered photon are not independent. To quantify this relationship
we use the 4-momenta defined in fig. 3.42: k = (E,, kc) and p. = (m.c?,0) are the

4-momenta of photon and electron (at rest) before the scattering, and k' = (EZ, Kc)
and p!, = (F/,p’c) are the 4-momenta after the scattering. The angle of the scattered
photon with respect to the direction of the incoming photon we call 6., that of the

electron .. From energy-momentum conservation

k+pe=k +pe, (3.122)
we find:
(k= k)=, —pe)* = —kK =mic"—p.pe
= E, E(1 = cosb,) = mec® (B, — mec®) = mec® (Ey, — E.). (3.123)

The right-hand side of the last equation uses the kinetic energy of the electron
T =E, —m.’=E, — E, (3.124)

which follows from the energy part of (3.122). The energy of the scattered photon as
a function of the scattering angle results from (3.123):

E
El = - 3.125
7 14€(1—cosb,) ( )

with € = E., /m.c?.

Cross section. The differential cross section per (free) electron, known as the Klein—
Nishina formula [609], is calculated using methods of quantum electrodynamics:

2

doc T ( 9 €2(1 — cos6.)? )
doc _ c |+ cos2f,, 4+ <L —Cos0)” ) 3.126
dQy  2[1 4 €(1 - cosd,)]? T 1+ €(1—cosb,) ( )
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For small photon energies, ¢ — 0, the differential cross section for classical Thomson
scattering results, as given in (3.112) in section 3.5.2:

The angular distribution for Compton scattering is shown in fig. 3.43. There is a strong
rise in the forward direction which is steeper for larger photon energies. Integration of
the Klein—Nishina formula (3.126) over the solid angle yields the total Compton cross
section per electron (fig. 3.44):

5 [1+6 <2(1+6) 1

1
—— ——In(1+2 — In(1 + 2¢) —
¢ | e T2 n(l+ 6)) + 5 n(1+ 2e)

14 3¢
(14 2¢)?

oc =2mr (3.127)

For very small, respectively very large photon energies the following approximations
hold:
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8 2
71'37"6 (1—2e¢) fore<1 (Thomson limit) ,
oo =~ (3.128)

Ty 1 . R
In(2¢) + 3 fore>1 (highly relativistic) .

€

Compton scattering off electrons in atomic shells. The Compton cross section
(3.127) has been derived for free electrons. An electron bound in an atom can only be
considered quasi-free if the photon energy is well above the electron’s binding energy.
As the photon energy increases, more and more shell electrons become free in this
sense and hence the Compton cross section per atom approaches proportionality to Z
with the individual electrons contributing incoherently:

ol = Z oo . (3.129)

Here o¢ is the Klein—Nishina cross section for a single free electron. Figure 3.36 shows
that the Compton cross section drops towards lower energies where coherent scattering
(Rayleigh scattering) off the whole atom (leaving the electron shell intact) becomes
dominant (see section 3.5.2).

Recoil energy. For detectors it is important that the kinetic energy of the recoil
electron ' = E, — E! (3.124) can be detected. Reformulating the Klein-Nishina
formula (3.126) one obtains the differential dependence of the Compton cross section
on the kinetic energy T of the recoil electron:

do Tr? t? t 2
— = °_ |2 t—— 3.130
dT mece? +€2(1—t)2+1—t ( e)] ’ ( )

where t = T/E,, (fig. 3.45). Because the scattering process is elastic, as for the photon
also for the electron a one-to-one relation between energy and angle 6, results:

T(Ey+mec®)  1+e
ENT?Z+2mec®T /1 2¢/t

cosf, = (3.131)

The maximum energy transfer to the electron is obtained from (3.125) for backward
scattering of the photon (., = 180°) corresponding to forward scattering of the electron
(0. =0°). The electron kinetic energy becomes maximal in this case: T — Tya.. In
the measured energy spectrum this leads to the so-called ‘Compton edge’ at

2€

Tma:x::E T 5.0
Y14 2

(3.132)
lying somewhat below the photopeak (fig. 3.45). The energy difference between pho-
topeak and Compton edge E (0 =m) decreases with increasing £, and reaches

Mec?

2

E(0=m)~ for E, > mec?. (3.133)

Inverse Compton effect. The scattering of low energy photons off high energy
electrons is called ‘inverse Compton effect’ (IC). Inverse Compton effect occurs when
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electrons are accelerated and then transfer their energy to photons. This is a way to
produce high energy photon beams via Compton scattering off laser photons from a
high energy electron beam. In astrophysics this IC effect plays an important role in
the generation of high energy (TeV) gamma rays.

For the energy of the scattered photon one obtains

1
E =B, + Beosa (3.134)
1— BeosfIC + F* (1 + cos (1€ + o))

with energies E., E; and F, of the in- and outgoing photon and incoming electron,
respectively, the angle Oﬁc of the scattered photon against the direction of the incoming
electron'?, and the angle o defining the deviation of the incoming photon direction
from that of a head-on collision.

For the collinear case, that is, & = 0, the maximum scattered photon energy results
for 950 =0 as (v is the Lorentz factor of the electron):

Boooop 1P g +6° (3.135)

e g2 T 142 By (14 )

For small incoming photon energies we have approximately:

me c2

E! ~4y*E, for E, <

¥, max (3'136)
The quadratic increase of the maximum photon energy with the energy of the electron
shows that the energy transfer of IC scattering is very effective. The spectrum of IC
photons has a strong enhancement at the maximum energy of the scattered photons;
the average energy is about 1/3 E!

y,max"
3.5.5 Pair production
In the Coulomb field of a charge a photon can convert into an electron—positron pair

according to the diagram of fig. 3.34(c). The energy of the photon must be larger than

12The angle H,IYC differs from the previously defined scattering angle 6,: 1€ = —6,.
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(a) Bremsstrahlung. (b) Pair production.

Fig. 3.46 Diagrams of the two Bethe—Heitler processes: (a) bremsstrahlung and (b) pair
production.

twice the electron mass plus the recoil energy transmitted to the field producing charge.
Except for very light elements, pair production occurs predominantly in the Coulomb
field of the nucleus.'® For nuclei the recoil energy is practically always negligible such
that the threshold energy for pair production is

E, ~2m.*  (threshold). (3.137)

Photon emission by an electron (bremsstrahlung) and pair production are closely
related, as is evident from fig. 3.46. If one modifies in the graph for bremsstrahlung
(fig. 3.46(a)) the outgoing to an incoming photon and the incoming electron into
an outgoing positron one obtains the graph for pair production (fig. 3.46(b)). The
corresponding matrix elements are related, at least in lowest order. Therefore both
processes are treated together in the fundamental work of Bethe and Heitler [189],
hence also called ‘Bethe—Heitler processes’. Reviews can be found for example in [342,
517,719,948].

The cross section for pair production shows a similar dependence on the screen-
ing effect caused by the atomic shell, as we have discussed for bremsstrahlung in
section 3.3.2. The screening parameter corresponding to the one in (3.73) is here [517]

137me(:2E7

= 3b. Bz (3.138)

n

where F,, E_ are the energies of the positron and the electron, respectively. Full
screening is obtained for small values of 7.

The differential cross section for the creation of an electron—positron pair, where
the electron receives the fraction = E_/E, of the photon’s energy, is in the Born
approximation given by [948]:

% = ar? {@x(x —1)+ 1) [22(¢1(n) - §1n2—4f(2)) + Z(1(n) — ian)}

+ a1 =) [(Z0a00) — o) + 20 (0) — va)] |- (3139)

In this approximation the cross section is symmetric with respect to electrons and
positrons, that is, for the transition x — 1 — x. The Coulomb correction f(Z) and the
screening functions ¢ 2 and 1 2 are defined as for bremsstrahlung in section 3.3.2.1.
With the approximate formulae (3.77)—(3.79) for these functions, curves of the differ-
ential cross section for various photon energies have been computed in fig. 3.47.

13Pajir production can also occur with an electron being the scattering partner.
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For the case of full screening the cross section can be written similar to the one for
bremsstrahlung [948]:

d 4 1
di = 4ar? { (333(93 —-1)+ 1) [Z*(Lyag — f(Z)) 4+ ZL.. 4] + §:c(l —x) (2% + Z)} .
T
(3.140)
The functions L,qq and L/, have already been introduced in the context of brems-

strahlung in section 3.3.2.1. Integration of (3.140) yields the total pair production
cross section in high energy approximation:

1

7
Upai'r = 4047“3 5 {[Zz(Lrad - f(Z> ) + ZL;‘ad} + 42

(2% + Z)} : (3.141)
The equation shows that the pair production cross section in this approximation is
independent of the photon energy and is proportional to the mean energy loss by
bremsstrahlung given in (3.85). The latter is the case if one neglects in both cases the
last two terms, that is, here the term 5(22 + Z). Consequently, one can express the
pair production cross section in terms of the radiation length defined in (3.88):

71 A
ir A = —— . 142
Op 9 XO NAP (3 )
Hence the photon absorption length for pair production becomes
1 9
Ay = ——— ==X, (3.143)

Opair Natoms 7

where natoms = pINa /A specifies the density of scattering centres. For pair production
the radiation length is the distance over which pair production takes place with a
probability of

Plete ) =1- e”9 =54%.

In comparison, after one radiation length an electron has lost the fraction 1 — 1/e =
63.2 % of its energy by bremsstrahlung.

The field of the nucleus is formed by the coherent sum of Z nucleon charges leading
to the Z2 dependence of the cross section for pair production. Only for light nuclei
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is pair production off electrons of a comparable magnitude as pair production off
nuclei (k. and ky in fig. 3.36). One should, however, be aware that for example for
hydrogen both processes contribute about equally at high photon energies. Electron or
nucleus, respectively, must absorb the recoil momentum in the process. Since a recoil
electron receives a much larger energy transfer than a nucleus due to its much lighter
mass, the threshold for pair production off electrons is moved up in energy and the
near threshold rise is flatter (fig. 3.36). The threshold behaviour for different nuclei is
shown in fig. 3.48.

Even at large momentum transfers Ap to the nucleus, the energy transfer (Ap)?/2M
remains small due to the large masses of nuclei. The remaining energy after pair cre-
ation is transferred as kinetic energy to the e™ and the e~. The development of electro-
magnetic showers at high energies (section 15.2) is largely determined by the interplay
between bremsstrahlung and pair production. Since both processes depend on the ra-
diation length, the thickness of detector layers is often measured in multiples of their
radiation length (see table 3.4 on page 62).

3.5.6 Dependence of photon processes on energy and atomic
number

The following list provides a summary of approximate dependencies of the discussed
photon interactions on the powers of F, and the atomic number Z:

Process Equation Z E
photoeffect (3.117) 7", n~4-5 EF k<35
photoeffect, E, — oo (3.120) A Ev_k, E—1
Compton effect (3.127), (3.129) Z 1/E, for E, > m.c?
pair production (3.140) 72 ~ const for E, large

For the photoeffect the first row is only valid in a restricted region closely above the
K-edge.

Figure 3.49 shows regions in the (E,, Z)-plane in which a process is dominant in
each case. For a given Z value the strong decline of the photoeffect with energy leads to
the fact that the Compton effect becomes dominant from a certain energy onwards. It
is then taken over by pair production starting at its threshold and becoming constant
at high energies. The stronger dependence on Z of photoeffect and pair production
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compared to Compton scattering is responsible for the fact that the region in which the
Compton effect dominates becomes smaller with increasing Z. For silicon (Z = 14), for
example, the Compton effect dominates roughly between 60keV and 15 MeV, whereas
for lead it is dominant between about 0.6 MeV and 4 MeV. For media with high Z, the
Compton effect only dominates in a relatively narrow window around 1 MeV. In this
region around 1 MeV photon absorption generally reaches a minimum. Electromagnetic
radiation of this energy is therefore difficult to shield.

3.6 Interactions of hadrons with matter

In interactions of hadrons (p, n, w, K, ...) with matter, besides ionisation, hadronic
interactions play an important role. A theoretical treatment of hadronic interaction
is very challenging due to the multitude of possible reactions which are generally also
less well computable than electromagnetic processes. Here we only introduce some
terms and definitions used to describe the interactions of high energetic hadrons in
detectors and defer a more detailed treatment to chapter 15 where hadron calorimeters
are described.

In analogy to the radiation length X for electromagnetic processes, for high energy
hadrons a (hadronic) absorption length A, is defined. If Ny hadrons initially enter an
absorber, after a distance x a number

N(z) = Nye /e (3.144)

still remain. The absorption length can be deduced from the inelastic hadronic cross
section being about constant for high energy hadrons (= 45mb per nucleon, see eq.

(3.9)):
Ag=——— XAS. (3.145)

The approximate proportionality to .A~>/% results from (3.9) and the assumption that
p is roughly proportional to A (remember that we denote the atomic mass by A and
the mass number by A, see footnote 1 on page 24). Again, in tables one usually finds
quoted values for p A, instead. For larger Z the absorption length A, is generally
much larger than the radiation length Xy (see table 15.3 on page 599). This is why
hadron calorimeters are always much larger than electromagnetic calorimeters (see
chapter 15). Instead of the absorption length an interaction length \;y; is also defined

100 T T T T T T TTTTTT

— photoeffect pair
< 80 .
S dominant production
© 60 dominant
E Fig. 3.49 Regions in the (E,,Z)
(O]
2 a0l | plane in which the different photon
§ Compton effect absorption processes are dominant
‘g 201 dominant N (adapted from [382], data from [181]).
N
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in which the sum of the elastic and the inelastic cross sections enters. In many cases the
relevant quantity, however, is the absorption length A\, because elastically scattered
particles usually do not transfer much energy to the medium and are rarely strongly
deflected from their original direction.

Charged hadrons lose energy continuously by ionisation of the traversed medium,
as described by the Bethe-Bloch formula (3.25). Hadronic interactions are the cause
that not all particles travel up to the range defined by ionisation only (eq. (3.64))
but are rather absorbed on their way. With increasing energy, when the ionisation
range becomes much larger than the absorption length, hadronic interactions start to
dominate in an extended medium and hadronic showers develop (section 15.3).

3.7 Simulation of interactions in detectors

In order to extract numerical values for quantities like reaction probability, cross sec-
tion, or lifetime from measurements of particles by a detector, the detection efficiency
must be known. Mathematically the determination of the detection efficiency for a
certain particle reaction is the solution of an integral over all possible final states of
a reaction weighted with the probability to detect a given final state. Usually, such
high dimensional integrals cannot be solved analytically, not least because the func-
tions to be integrated do not exist in analytic form. A standard method for numerical
integration of complex integrals is the so-called ‘Monte Carlo method’. In this method
discrete final states (normally many-particle systems) are generated at random and
the individual particles are traced through the detector. In the tracing process the
various interactions the particles undergo with the media, like energy loss, absorption
or the creation of secondaries, are simulated (again by random number generation).
Finally, it is decided whether a particular final state of the reaction is accepted or is
rejected, on the basis of satisfying certain criteria for its detection. Then the efficiency
e for the detection of the reaction is calculated as the number N, of all accepted final
states divided by the number Ng.,, of generated states:

N,
= 2« 3.146
€= Nyen ( )

The program package Geant4 [452] is often used as a framework to simulate responses
of detectors or detector parts. In Geant4 detector geometries can be defined, the dif-
ferent detector materials can be described and a number of different programs can be
invoked, specialised to simulate various particle reactions. In general one would like to
describe all processes exactly on a micro-physical level. Often it is however necessary
to find a compromise between accuracy, computing time and adaptability.

In the simulations the individual particles are generally traced progressively in
small steps and energy loss, absorption, or the creation of secondaries are computed
according to their cross section probabilities. At high energies in particular, featuring
collisions with high particle multiplicities, correspondingly large computing times arise.
Hence desired precision and CPU-time investment must be balanced against each
other. The process step sizes need to be optimised and cut-off energies must be defined
up to which particles shall be traced before depositing their rest energy locally. Step
sizes and cut-off energies depend on the specific requirements and are empirically
adapted.
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4.1 Introduction

The detection methods for charged particles most often exploit the ionisation of sen-
sitive detector layers by particles passing through. An electric field moves the created
charges towards the electrodes which sense the signals induced by this movement.
In most detectors the charges are generated in gases (chapter7), in liquids (e.g. in
liquid-argon calorimeters, chapter 15) or in semiconductors (chapter 8). In gases and
liquids the charge carriers are electrons and ions; in semiconductors they are electrons
and ‘holes’. Holes are missing electrons in the valence energy band which behave like
(moving) positive charges.

For charge carriers moving in electric and magnetic fields one can distinguish or-
dered and unordered motions which are superimposed (fig. 4.1):

— A random, unordered motion with a velocity distribution which—in thermal equilib-
rium and without external fields—is classically described by the Maxwell-Boltzmann
distribution'. An external electric field can ‘heat up’ the carrier motion and hence
change the distribution.

— A drift motion whose direction is determined by the external electric and magnetic
fields.

If a concentration gradient exists, for example when charges are created locally, the
unordered motion leads to diffusion of the charge carriers causing a dispersion of the
local charge distribution.

IThe Maxwell-Boltzmann distribution is the classical approximation for both the Bose-Einstein
distribution for bosons and the Fermi—Dirac distribution for fermions in the case that quantum
effects are not dominating, that is, at low particle densities and/or high temperatures. The classical
conditions are usually fulfilled for charge transport in gases. In semiconductors the (intrinsic) charge
densities are higher and quantum effects play a role in interactions with the lattice. However, often
the classical approximation can also be used for semiconductors, as for the charge carrier distribution
in the conduction band (see eq. (8.13)).
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The drift velocity ¥p results from an equilibrium between the accelerating electric
force and a damping or friction force arising from collisions with surrounding atoms and
molecules. In most cases the drift velocity is much smaller than the mean unordered
velocity (v):

|Up| < (v) . (4.1)

In all cases considered in this chapter the velocities are much smaller than the velocity
of light and the kinematics can be treated non-relativistically.

In section 4.2 the Boltzmann transport equation for charge carriers in a medium
with external fields is introduced and solved under simplifying assumptions. With these
solutions expressions for the drift velocities of charge carriers under the influence of
external electric and magnetic fields are computed in section 4.3. In section 4.4 the
dispersion of a charge cloud due to diffusion caused by the unordered motion will be
investigated. The solutions of the Boltzmann transport equation will be discussed in
sections 4.5 and 4.6 for ions and electrons in gases, respectively. For the description of
the motion of electrons and holes in semiconductors lattice effects must be taken into
account, as discussed in section 4.7.

The subject of this chapter is described in textbooks on statistical physics (e.g.
[874,544]) where, however, transport phenomena are often not sufficiently detailed.
For example, the Boltzmann transport equation is usually only treated in the context
of the kinetic gas theory covering the motion of ions in gases. For the more complex
phenomena related to the movement of electrons in gases we will refer to the special
literature within the respective text passages. The application to transport phenomena
in semiconductors is described, for example, in [402].

4.2 Charge carrier transport: Boltzmann transport equation

The Boltzmann transport equation describes the evolution of the microscopic position
and velocity distributions of charge carriers in a medium in dependence on external
forces, like electric and magnetic fields, and other parameters like temperature and
pressure. We consider in the following an ensemble of charged particles which can
interact with each other and with the medium. From the solution of the equation,
which needs as input the microscopic scattering cross sections and inelasticities, drift
and diffusion are determined as collective properties of the distributions which are
macroscopic observables of the charge carriers.

Solving the transport equation is very involved and in general only possible nu-
merically. Therefore, in the following we shall make simplifying assumptions which
nevertheless should permit a discussion of the characteristics of drift and diffusion.

£20Z 1290100 £0 U0 Jasn Ateigi NYID Aq GH9€/500q/woo dno olwapeoe//:sdiy woly papeojumoq



Section 4.2: Charge carrier transport: Boltzmann transport equation 91

In practice, more accurate results are obtained by numerically evaluating the trans-
port equation. This is usually done for the electron motion in gases which exhibits
particularly complex dependences on the mixing ratios of gases and on the external
fields.

4.2.1 Boltzmann transport equation

In the following we consider a charge cloud in a medium with the phase space distri-
bution f(7,,t). The probability dp to find a charge carrier at the time ¢ in the phase
space interval [(7, ), (¥ + dF, ¥ + dv)] is

dp(7,0,t) = f(7,v,t) d>7d>7 . (4.2)

If the total number of charge carriers is conserved the integrated probablity can be
normalised in the full phase space (PS):

- fRT, ) dPrd*T=1. (4.3)

The evolution of the distribution in the phase space is described by the Boltzmann
transport equation

a _of |
i~ ot

of

Vif + — Vaf = e (4.4)

coll

The total time derivative df /dt on the left side is expanded in terms of the partial
derivatives in the middle part. The first term of the partial derivatives occurs in the
case of explicit time dependence of f and vanishes in the stationary case. The two
next terms describe the changes of f by motions in phase space where the first one
describes the motions in position space, corresponding to the diffusion, and the second
one the motions in velocity space. The acceleration dv/dt in the second term originates
from the external electric and magnetic fields. The expression on the right-hand side
is called the ‘collision integral’ and is a functional which contains integrals over f,
thus turning the Boltzmann transport equation into an integro-differential equation.
The collision integral accounts for the friction due to the collisions with the atoms
or molecules of the medium, which are described by measured or calculated cross
sections for the microscopic elastic or inelastic scattering processes. The solutions are
the microscopic distributions in phase space from which the macroscopic quantities,
like drift and diffusion, are derived. On the other hand, the microscopic cross sections
and inelasticities can be inferred from the measured macroscopic quantities.

Acceleration term. Let the acceleration be given by the Lorentz force,

dv o, "
md—:—q<E+ﬁxB), (4.5)

where the force acts on a particle with mass m and charge ¢ (¢ = fe or multiples
thereof, where e is the elementary charge). The coordinate system can be chosen such
that the fields lie in a plane spanned by the 2- and 3-axes, as displayed in fig. 4.2:

E=(0,0,E) and B=(0,Bs, Bs). (4.6)

Then (4.5) yields
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92 Chapter 4: Movement of charge carriers in electric and magnetic fields

E=(0,0F)
B=(0B,8B,
Fig. 4.2 Coordinate system defined by the fields E and
B. The 3-axis is aligned along the E-field and the 1-axis
X, along the cross product E x B. The 2-axis completes a
right-handed orthogonal system.

Kolanoski, Wermes 2015 = X1
dv q 0 VoW3 — V3w
== 0 -+ —V1Ws s (47)
dt m E
V1W2
where q
i = —B; i =1,2,3 4.8
wi = — (i ) (4.8)

are the cyclotron frequencies.

4.2.2 Collision integral

The Boltzmann transport equation (4.4) means that in the collision-free case, which
implies that the collision integral vanishes, the density in the phase space does not
change thus yielding df /dt = 0. This follows from Liouville’s theorem, which is also
valid for systems on which external forces act as long as those forces are conservative
(see e.g. [874]). Only the interactions of the particles among each other, described by
the collision integral, can alter the phase space density.

The collision integral describes the scattering of particles into a phase space element
and out of it. If the interactions occur elastically by two-body collisions 1+ 2 <+ 344,
the integral reads (setting ¥4 = ¥ for the particle under consideration):

of
ot

= /W(%, Ua; U3, ) { f (7, 01, 1) f (7, Ua, £) — f (7, 03, 1) f (7, U, 1) } dv1 dvpd s .

(4.9)
The integral specifies how at a given time ¢ and position 7 the phase space density
f(7 v,t) changes due to the in and out scattering of particles with velocity ¥. The
function W (v}, v2; U3, ¥) gives the probability that the particles 1 and 2 which meet
in space and time at 7, ¢ scatter into the second pair of velocities and vice versa. The
term W (¥, Ua; U3, U) f (T, U1, t) f (7, Ua, ) specifies the increase which follows from the
scattering of particle 1 and 2 yielding a particle in the considered phase space element
around U, while the other particle obtains the velocity U3 (fig. 4.3(a)). Correspondingly,
the other (negative) term describes the decrease of the density in the considered phase
space element. That means, the particle with velocity v’ leaves the element by scattering
with a particle of velocity U3 while the scattering partners assume the velocities v; and
vy (fig. 4.3(b)).
The scattering probability W (¥}, ¥, U5, ¥) contains the differential cross sections
and the constraints due to energy and momentum conservation. The integral in (4.9)
has to be taken over all possible scattering partners 1, 2, 3 in the initial and final states.

coll
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v v

<

N
<
o

Vi Vs Vs vy

@) (b)
Fig. 4.3 Two-body scattering processes at the position 7 and time ¢. (a) A particle is scattered
into the velocity element around ¥ and (b) a particle is scattered out of the velocity element
around .

In (4.9) it is assumed that only one particle type is involved and that the scattering
processes are reversible, yielding

W (01, U; Us, Us) = W (Us, Ua; U1, Va) - (4.10)

In general, one has to sum over all particle types and one has to account for possible
inelastic interactions where the energy can be redistributed between the particle types
or the energy can be exchanged with the surroundings. Additionally, particle sources
and sinks can occur, like for example the generation and absorption of secondary charge
carriers. However, in the following simplified consideration we shall assume particle
number conservation.

In practice the evaluation of the collision integral is the real challenge for solving
the Boltzmann transport equation. As mentioned before, due to the collision integral
it becomes an integro-differential equation and can usually only be solved numeri-
cally. In the following we discuss essential properties of velocity distributions using
approximations.

4.2.3 Special solutions of the Boltzmann transport equation
4.2.3.1 Maxwell-Boltzmann distribution

The stationary, position-independent and force-free case implies f(7,v,t) = f(¥) and
the expressions with partial derivatives in (4.4) vanish. Then one obtains for the col-
lision integral:

of

ot

For the elastic scattering considered in (4.9) a sufficient condition to obtain an equi-
librium solution fy, which fulfils (4.11), obviously is

Jo(01) fo(02) = fo(¥s) fo(U4) . (4.12)

One can show that in this case it is also a necessary condition, see for example [874].
The velocities on the left and the right side of (4.12) are linked by energy-momentum
conservation (as also in the integral (4.9)). In statistical physics (e.g. [874]) the solu-
tions are shown to always take the form of the Maxwell-Boltzmann equation:

=0. (4.11)

coll

fo(¥) = C exp(—Av?), (4.13)
where C' and A are constants. One can easily see that this function solves (4.12):
C? exp(—A(v? 4+ v3)) = C? exp(—A(v3 +v3)). (4.14)

The equality follows from energy conservation: v} + v3 = v3 + v3.
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94 Chapter 4: Movement of charge carriers in electric and magnetic fields

4.2.3.2 Relaxation approximation

To give a not too complicated example for a solution of the Boltzmann equation in the
case of a non-vanishing %{ we resort to the so-called relaxation approximation.

In a closed system the interactions take care that the energy and momentum dis-
tributions are stationary on a statistical average. Fluctuations in these distributions
are equalised with a time constant 7, the ‘relaxation time’, during which the system
returns to the equilibrium state. Since the reason for the relaxation is the interactions
of the particles, the time 7 is related to the mean time between two collisions, the
‘collision time’ (see section 4.3.).

Let us assume that the perturbation, for example by external fields, is switched
off at t = 0 and that the relaxation is proportional to the deviation of the fluctua-
tion from the equilibrium distribution, the effective collison integral in the relaxation
approximation can be set to

of _of)  _ [—Jo
el (4.15)

This equation has the solution

f@) = fo+ (f— fo)e ¥/, (4.16)

describing that the perturbed system returns to its equilibrium with a time constant
T.

The relaxation approximation can be used for systems which are stationary on a
statistical average. This is often fulfilled in the cases of charge transport in detector
media, that is, in the cases relevant for this book. The examples which we give in
the following yield quite realistic results and can be used for simulations of charge
transport in media.

4.2.4 Perturbation by external fields

We now consider a system which is shifted from the original equilibrium distribution
fo(¥) to a new position and time independent distribution f(%) by applying external
fields. With the Lorentz force in (4.5) the Boltzmann transport equation (4.4) has the

form o7 o7
q il e > v — 2
E—FE(E—H}XB) Vol = %

For a stationary distribution f, on a time-scale much larger than the relaxation time,
the time derivative of f vanishes.

. (4.17)

coll

4.2.4.1 With electric field only

To begin with, we assume that the external force is given by an electric field only. If the
field is sufficiently weak so that the equilibrium state is not substantially disturbed,
we can apply the relaxation approximation:

of 4 zg

7-‘r*E_: gf%

5 T (4.18)

Here the additional approximations of applying the differential operators to fj instead
of f and of neglecting df /0t have been used.
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Section 4.2: Charge carrier transport: Boltzmann transport equation 95

For solving the equation we express the absolute value of the velocity of a particle

through its kinetic energy:
1
€= imv2 . (4.19)
The equilibrium distribution fy depends only via the energy e on the velocity. Therefore

the velocity gradient in (4.18) can be written as

= 9fo & 7 9o
= 2J9 = A 4.2
vva De v € (96 ( 0)
Given this equation, the solution of (4.18) is
= = dfo
=t L BVsfo = fo—qBri = gm0 )

On the right-hand side we used the definition of the coordinate system as in (4.6) yield-
ing ¥F = v3E. Obviously the resulting distribution f is anisotropic with a preference
in field direction (3-axis).

4.2.4.2 Generalisation to the full Lorentz force

We now consider the Boltzmann transport equation in the form of (4.17) including
the full Lorentz force in the relaxation approximation:
of f—Jfo of

S+ L (B+oxB) Vof =120 = -2 (4.22)

In this case, however, we cannot employ the same approximation for the velocity
gradient as in (4.20) because the then arising triple product - (7 x B) vanishes. As a
result the magnetic field would have no effect on the distribution which, however, does
not correspond to the observation. Therefore the effect of the B-field in (4.22) has to
be accounted for by evaluating the gradient in higher order containing the anisotropy
due to the E-field. Accordingly, we write the gradient as
o -y
of = Va(fo+0f) = Gl +Vsdf. (4.23)

Inserting this into (4.22) and using the approximation 9f /0t ~ 9 fy/0t = 0 yields

qﬁﬁ%+i(ﬁx B) Goof = 2L (4.24)
m T
Here again for the E-field the velocity gradient is applied to the f; approximation
while for the B-field this contribution vanishes and only the § f term contributes.

For the solution of (4.24) we make the ansatz that an effective E-field A exists with
which a solution can be constructed corresponding to (4.21):

6f:——TAV~f0——q7'vAafO. (4.25)
m Oe
From this equation the gradient of § f is calculated as
Vidf =—qr A2 12/ (4.26)

Oe
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96 Chapter 4: Movement of charge carriers in electric and magnetic fields

Inserting & f and Vi df into (4.24) yields

UE—%T(ﬁxB),i:ﬁ = E—ff(éxff)z,l. (4.27)
&/

From the right equation one obtains a relation between E, B and A which is inde-
pendent of the velocity vector. The solution for A can be represented by the com-
ponents in the directions of E7 B and E x B, hence as a linear combination 4 =
aE +bB + C(E X E) Inserting this expression into (4.27) yields by equating the
coefficients of E, é, E x B:

—

- 1 . (EB)B ExB
A = 727_2 (E + TwQTQ _|_ B WT> s (428)

where w = ¢B/m is the cyclotron frequency. Inserting A into the expression for fin
(4.25) yields the approximated solution for the distribution f = fo + df:

—WoT
2 | 9fo
WowsT De .

1+ ngz

e .
f=fo—qTUA£:f0—qEva (4.29)

The right-hand side uses the definitions of the field components and the cyclotron
frequencies in (4.6) to (4.8) and fig. 4.2.

4.3 Dirift velocity

One of the macroscopic observables which we will derive from the treatment of charge
transport using the Boltzmann transport equation is the drift velocity of the charge
carriers resulting from the external fields. The drift velocity ¥, is the mean value of
the velocity vectors of the particle ensemble with respect to the distribution function

f:
By = (7) = /ﬁf(ﬁ) P (4.30)
A non-vanishing drift velocity results only if f(¥) has an asymmetry in ¥ space. In

order to describe such an asymmetry in terms of angular distributions we express the
velocity components using spherical coordinates:

vy = vsin 6 cos ¢, V9 = vsinfsin ¢, vz = vcosh. (4.31)

In addition we express the absolute value of the velocity by the kinetic energy:

1 2 d 2¢ 1
e=-mv’ = ov= \/—6, dv = — , vidv = = de. (4.32)
2 m 2me mm

Then the differential velocity distribution becomes

f(¥) dvy dvg dvg = f(¥) v* dvdcos§ dp = f(e,cos b, ¢) 1/ % dedcosfde.  (4.33)
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Section 4.3: Drift velocity 97

Here f(€,cos @, ¢) is the original function f with the velocity components expressed by
the variables €, cos @, ¢ corresponding to (4.31) and (4.32). The velocity distribution f,
which we mostly refer to in this chapter, has to be distinguished from the energy—angle
distribution F' which is defined by

f(@)v?dv = f(e,cosb,p) 4/ % de = F(e,cos0, ) de. (4.34)

Since both the velocity distribution and the energy—angle distribution are probability
densities they are normalised:

1 :Q/Zof(ﬁ) v2dde:Q/0/oof(e,0059,¢) \/gdedﬂ = !ZF(E,COSG,QS) de d).

(4.35)

4.3.1 Drift velocity with E-field only

With the approximate distribution function (4.21) the drift velocity becomes according
o (4.30):

oo

://vi f(z_)')v2dde:/ v; fov?idvdQ 7//qE%7mv3v2dde. (4.36)
€
Q0 Q0

Q0

The first term on the right-hand side, which represents the averaging of the velocity
component v; over the isotropic part fy of the distribution, vanishes for all components
1. Since v; and v3 for ¢ = 1, 2 are uncorrelated the second term also vanishes for i = 1, 2
but remains finite for ¢ = 3. This can be seen when averaging the terms v; v, which
contain the angular dependences of f(¥), over the space angle. Expressing v; vs by
spherical coordinates according to (4.31) one finds

/vivgdﬂz/vQSingbsianosGdQ:/v2cos¢sin90030dQ:0 (i=1,2),

Q Q Q
(4.37)
2.2 Am o ;
/vi v3dQ = /v cos” 0dQ) = 3 (1=3). (4.38)
Q Q

Thus the drift velocity has only the one component in E-field direction resulting from
the anisotropy of the distribution f(¥) with respect to this direction:

in T 0
Ups =3 [ 4 —aff rotdy. (4.39)
0

The remaining integration over the velocity can be turned into an integration over the
energy using (4.32):

ArgE [ [26)%? 2¢E
'UD,SZ_lL T(6> %d —4r q /)\ 8fo . (4.40)

3 m m de
0
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98 Chapter 4: Movement of charge carriers in electric and magnetic fields

On the right side of the equation, 7 has been substituted by A = 7v, which is the mean
free path between collisions (see (3.7)),

A= — 4.41
no’ ( )

with the particle density n and the interaction cross section ¢. Depending on the
context the drift velocities are either expressed using the mean free path or the collision
time 7. For charge transport in gases, often \ is used and in semiconductors mostly 7.

4.3.1.1 Drift velocity dependence on the mean free path
By partial integration of (4.40) one finds

Vo = — 2qE/A %d = 4 g% /foé(Ae)de — [ford
3m e 0
0 N——

=0 (4.42)

oo

= 47 ng/fo —eJr)\ de—47rZE /)\fodeqt/foe%de
3 m? Oe
0

0

The last term in the first row vanishes because the energy distribution fo(e) always
goes to zero for € — oo (mostly exponentially). The integrals in the last term of
the second row can be rewritten as averages of \/v and dA/dv with respect to the
distribution fo(?):

o 4
<)\>:/)\fov2d’l)dﬂ=4ﬂ'/ ffo—de ) )\fode,
v v 0 mJo (4.43)
oA = Qfo’de’UdﬂzllTr/ jgfov de=2-" e@fode
Ov ov 0 m Jo
where 1 0N 1 0\
€ = —mv?, = —v— and de =muvdv
2 “9c ~ 2 0w

have been used.
Replacing the integrals in (4.42) by the averages (4.43) the drift velocity becomes

o= (2 (2Y 1Y) ”

The right-hand side of (4.44) introduces the mobility x4 which in isotropic media and
without magnetic field is generally defined as a positive quantity by the equation

Tp = +ukE . (4.45)

The sign in (4.45) has to be chosen according to that of the charge ¢ of the drifting
particle.

If the cross section does not vary too strongly with energy the first term in (4.44)
dominates, for example for ions in gases. With the mean collision time
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(r) = <2> (4.46)

2qFE 2

Up,s = g% <T> = :l:/le, w= g% <’T> . (447)
The prefactor 2/3 results when the acceleration by the electric field acts on an isotropic
thermal velocity distribution (see the detailed derivation in section 8 of [943]). Since
the assumptions (e.g. isotropy, v, < (v) or velocity dependences of the cross sections)
can differ, the prefactors can have different values. In addition, note that in the ap-
proximation (4.15) 7 originally had the meaning of a relaxation time, but now it is
interpretated as collision time. The interpretation of 7 as collision time corresponds
to the assumption that on average at each collision the velocities are isotropically re-
distributed and the energy gained by a particle from the field is dispersed, hence the
system is brought back to its respective equilibrium. If for example, the mean colli-
sion time 7 instead of the mean free path A is assumed to be constant, (4.44) with
d\/dv = T yields

one obtains

E
Ups = ok T=xukF, w=-—=r (1 = const) . (4.48)
m

4.3.1.2 Drift velocity dependence on the collision time (energy weighted
average)

In semiconductor physics often an ‘energy weighted average’ of the collision time 7 is
introduced instead of (4.46) (see e.g. [402]). To define such an average we go back to
(4.40):
4B 2¢\*?* 0 fo
e 0 4 (m) 36
By partial integration and assuming again that fy approaches zero for € — oo, we find
an integral relation between fo and 0fy(e)/0e:

/ fo(e)e'/?de = /0 3{;6()3/%6. (4.50)

(4.49)

Since fj is the unperturbed equilibrium distribution we assume it to be normalised as
in (4.35) for f, which means treating the perturbation term as being small. Combining
the normalisation of fy with the relation (4.50) yields

z [e%e) . 61/2 e — 247’(’\/7 8f0 3/2
2 [" e / de.  (451)

We can now divide (4.49) by the expression on the right-hand side of (4.51) which
is unity and thus does not change the relation for the drift velocity in (4.49). This
yields a modified expression for the drift velocity:

S dfo
B _qE I Te3/? sede  qF g
vD,S - ME - EW . H<T>6 — o= E<T>E . (452)

The equation defines the ‘energy weighted averaging’ which we distinguish from the
usual averaging (over the distribution f) by a subscript € on the average symbol. Since
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100 Chapter 4: Movement of charge carriers in electric and magnetic fields

(4.52) has been directly derived from (4.49) both equations lead to identical results for
the drift velocity.? The introduction of an ‘energy weighted averaging’ is helpful if fo
can be approximated by the Maxwell-Boltzmann distribution and 7 depends on the
energy by a power law. In this case (4.52) can be solved analytically (see e.g. [893,402]
and also eq. (4.142) on page 126).

In general the ‘energy weighted average’ of a function g(e) is defined by

- fooo g(e) €3/2 %de
B fooo €3/2 %de

4.3.2 Drift velocities with E- and B-fields

(9)e (4.53)

With the external E- and B-field components as given in (4.6) the distribution function
(4.29) yields with a calculation analogous to (4.36):

dm qF [ woT 2¢\ 22 dfo qF —WwoT
= ——de="— {1 ——
m Oe m 1+ w272

B
,o 22
bt 3 m J, 1+w?r

>E . (4.54)

. A qFE % wawsT? [ 2 3/2 (‘3de qF WowzT? (4.55)
0B = L7 —= (= ——de="—(1T—"— :
b2 3 m Jy 14+w?r2\m Oe m 1+w2r2/ 7
AroE [ 1 2,2 /9 3/23 E 1 2.2
o = AmdE Lwsr (2 0fo 4o _ 9B [LIHWST N 5
‘ 3 m Jy 1+w?r2\m Oe m 1+ w?r?2/,

The right-hand side displays an energy weighted average of a more complex function
of the collision time using (4.53). Simple conclusions that are independent of the
averaging procedure are as follows:

(1) Without an E-field there is no drift motion: from £ = 0 follows v , = 0 for all 4.
2) E = E3# 0 always yields vj , # 0, independent of the B-field.

2)
(3) For By = 0 (B parallel to E) yields only vp 5 # 0 (drift as for B = 0).
(4) B3=0 (B perpendicular to E) yields

vp ., Vg, #0 and vp, =0 (4.57)
(the drift motion takes place in the plane perpendicular to the B-field).

4.3.2.1 B perpendicular to E

For perpendicular fields E and é, hence B3 = w3 = 0, By # 0, we = w # 0, we want
to estimate the ratio of the absolute values of the drift velocities with and without
magnetic field. For that purpose we use the right-hand sides of (4.54) to (4.56) without
averaging, which means that 7 is considered to be an effective collision time:

v VORI 1 ) (158)

v 05 5] V1+w?r? . '
We see that the drift velocity is smaller with magnetic field than without. The ex-
planation is that the distance between collisions projected onto the drift direction is
shorter than the actual curved path of the particles in the magnetic field (see fig. 4.4).

2The term ‘energy weighted averaging’ is somewhat misleading because the integration does not
imply the distribution function itself and the energy factor only formally looks like a weight.
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Fig. 4.4 Descriptive explanation of the Lorentz

angle. The electron moves in the magnetic field on a
. curved orbit, here presented by a segment of a circle.
b During the collision time 7 the electron has turned its
direction by the angle wr. After each collision follows
a similar segment of a circle if one assumes that the
velocity vector vanishes on average after a collision.
In contrast to this simplified picture, however, the
segments are stochastically distributed. The whole

sequence of such microscopic orbit segments yields

my

Kolanoski, Wermes 2015 . . . . . .
a macroscopic change in the drift direction with

respect to the direction of the electric field by the
Lorentz angle o,

Figure 4.4 also shows that between the drift velocity and the accelerating E-field
an angle emerges, the ‘Lorentz angle’:

5.l
|UD,1

B
D,3

= wT. (4.59)

tana;, =

According to fig. 4.4 the Lorentz angle a, ~ wrt can easily be understood as the
average deflection angle of an electron during the (effective) collision time.

In the approximation for low magnetic fields, 1 + w?72 — 1, the drift components
in (4.54) to (4.56) become by energy weighted averaging:

qFE qFE
=L, wpa=0, WB=Tm . e

Characteristic are the dependences of the drift component in the E-field direction,
v ,, on 7 and that of the drift component generated by the B-field, v5 |, on 72. Then
the Lorentz angle can be calculated as

Tw - (461)

tanoa;, = w

On the right side we introduced the so-called ‘Hall factor’ r, which is used in semi-
conductor physics to describe the ratio of the mobilities measured by the Hall effect
to the mobility given by the conductivity (see section 4.7.3). For small magnetic fields
7y is given by

py = AT (4.62)

4.3.2.2 B parallel to E

This case is given by wy = 0 and w = w3 # 0, and the drift velocity has only the
component in the direction of both fields. From (4.56) one concludes that the drift
velocity is in this case the same as without magnetic field, that is to say

=B

7% =79, (4.63)
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102 Chapter 4: Movement of charge carriers in electric and magnetic fields

While the drift velocity does not change the transverse diffusion (perpendicular to the
fields) becomes smaller, as further discussed in section 4.6.4.5.

4.4 Diffusion without external fields

A spatially inhomogeneous distribution of the charge carriers will be equalised by dif-
fusion. In the force-free case the evolution towards a stationary, equalised distribution
is described by the Boltzmann transport equation (4.4) without a force term:

df of dr s af
i~ ot Tar VT il (4.64)
The particles diffuse along the spatial gradients with a diffusion speed determined by
the collision integral.

The diffusion equations known as Fick’s laws can be derived from the Boltzmann
transport equation (shown in books on statistical physics, e.g. [544]). In the following
we want to start from these laws without retracing their derivation.

4.4.1 Diffusion equation

We consider a spatially localised charge cloud with a time dependent distribution
f(7,U,t) in phase space, here without external fields. Such a localised charge cloud
will spread out due to the thermal motions, which means the charges diffuse into the
surroundings. The spatial number density results from the integral over the volume in
velocity space:

p(7it) = Ny / f(7,5,)d%. (4.65)

Here Ny is the number of particles in the charge cloud at time zero, and
N(t) = / p(7, t)d>F (4.66)

is this number at an arbitrary time t. In general, N = N(¢) is a function of time. It
will only be constant if no (free) charges are lost, for example by recombination or
attachment, and if no new charges are created. In this case the continuity equation
holds:

8p =7
5+ Vio=0. (4.67)

According to Fick’s first law the diffusion current j, flows in the direction of the
density gradient with the diffusion coeffcient D as a proportionality constant:

jo=—-DVp. (4.68)
Inserting this into (4.67) yields the diffusion equation, referred to as Fick’s second law:

dp
o~ DAp=0. (4.69)

This differential equation can be solved by a spatial Gaussian distribution:

3The diffusion coefficient D is a (scalar) constant only if the diffusion is isotropic. In general D
enters into (4.68) as a tensor (see e.g. [325,217]).
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A Fig. 4.5 Time evolution of
ﬂ diffusion in one dimension for

Kolanoski, Wermes 2015

Y/ \ particles that were created at
/I\\ the origin at the time ¢t = 0 (in
i - _, ; . X arbitrary units).
-10 -5 0 5 10
N 72
)= ————exp|——= | . 4.70
PR = D P ( 4Dt> (4.70)

The mean quadratic width of this distribution along each coordinate z; (i = 1, 2, 3)
grows linearly with time:

1
(23) = N/x? p(7,t) d*7 = 2Dt . (4.71)

In this equation the integral goes over the full space, that is, from —oo to o0 for all
three coordinates. The mean quadratic radius of the charge cloud becomes after the
time ¢:

(r?y = (x3) + (z3) + (23) = 6Dt . (4.72)

The widths along the three coordinate axes are
01 =09 =03 = 2Dt . (473)
Since the solution (4.70) turns into a ¢ function for ¢t = 0,

li rt)=NJ 4.74
lim p(7¢) (), (4.74)
it follows that a point-like distribution evolves as a result of diffusion into a Gaussian-
shaped cloud expanding with the square-root of time. This means that a charge that
has been created at the time ¢t = ¢’ at the position 7’ has a probability density to be
seen at the time ¢ > t' at position 7 given by a Gaussian distribution (fig. 4.5):

p(F ;7' )y =N (MD(T&-t/))S/Q exp (—M) : (4.75)

In general charges are generated at different points and different times, as is usually the
case for the passage of ionising particles through a detector medium. The distribution
of the charge cloud p(7, t) at time ¢ is obtained by integrating over the charge generation
as given by the distribution u(7’,¢") of the positions and times of generation points:

(7 — )2

p(7t) = N / (1) (W)w exp <_40(tt’)> B (476)

Example. In the case of a line-shaped distribution along the trajectory of an ionising
particle, u takes the form:

1

—/ t/ —
=y

O(F' =[Fo+e(t' —t)l) (o <t'<ty). (4.77)
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104 Chapter 4: Movement of charge carriers in electric and magnetic fields

The vector 7/ (t) = 7o+ (t' —t(,) represents the linear equation of the particle trajectory
passing between t{, and ¢} through the medium with the velocity ¢ The particle enters
the medium at 7/ = 7. Choosing the particle direction as the x3 axis one obtains the
one-dimensional distribution

1
u(zy,t') = T 3 (25 — [z30 + c(t' —15)]) (to <t <ty). (4.78)
1t

We now use this to execute the integral (4.76):

1 ’ x? + 23
P =N [ ) exp (-T2
p(7 1) 1Dt 1) p< 4D(t—t6)>

t

e (‘ T AR ) W

to

In the expression for the width of the charge cloud the time was assumed to be constant,
t' & t}), because the duration of the particle passage is short compared to the relevant
diffusion and drift times. Then (4.79) yields a two-dimensional diffusion distribution
perpendicular to the particle trajectory, described by the coordinates x; and o, with
a relative amplitude depending on x5 via the integral over dt’ (second row in (4.79)).
The solution of this integral is

¢

1
1 - ' —t)])?
1 /eXp (a3 [$3,0+C(/ D)\ g
) — 1t AD(t — t})

’
t()

_ WD(t—t6) orf (£U3 71’370) —erf xr3 — I3,0 7C(t/1 7156) ' (480)

c(ty —tp) 4D(t — ty) 4D(t —tf)
Here we used the Gaussian error function erf (see e.g. [976]). The expression c(t] —t{)
gives the length of the line charge created along the particle path. The diffusion leads
to an elongated charge distribution whose cross section at fixed x3 follows a two-
dimensional Gaussian distribution. In the case of very long charge line distributions,

T30 K T3 K x30+c(th —tf), the integral in (4.80) becomes independent of x5 (because
of erf(+o00) = 1) and thus also the diffusion cloud at any time ¢.

4.4.2 Determination of the diffusion coefficient

For a particle which scatters off the other particles of a medium, the probability density
for the path length between two collisions is (see also eq. (3.6))

1
p(r) = Xe—T/A’ (4.81)

where A = (r) is the mean free path of the particle in the medium as used before in
(4.41). In (3.7) we had shown that A is inversely proportional to the particle density
and to the collision cross section.

In the following we consider a particle originating from 7= 0 which diffuses ther-
mally. The diffusion expansion until the kth collision is described by the mean quadratic
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Section 4.4: Diffusion without external fields 105

Fig. 4.6 Simulated example for a random
walk of a particle which freely moves by

a path length following the distribution
(4.81) and will then be scattered isotrop-
ically. In the limit of a large number of
scatters, the length of the connecting line
between start and end (dashed) follows a

normal distribution.

Kolanoski, Wermes 2015

distance (r?); from the origin (see fig. 4.6). The positions of the collisions are given
by the vectors 7.

— At the first collison:
o ]. o0 r
(r?), = / r2p(r)dr = —/ r2e”Xdr = 2)\2.
0 AJo
— At the second collison:
<T2>2 = <(7?1 + 7?2)2> = <’I"% + T% + 27"17‘2 (o)) 9> .

Additionally the right-hand side has to be averaged over the angle  between 7; and

75. The assumption of an isotropic direction distribution corresponds to a uniform

distribution in cos 6:

1 +1

3 dcos @ (r? 4 r3 + 2ri79 cos 6) (4.82)
-1

(r +73) = (r}) + (r3) = 2(r?)12 = 2(2)).

(r?)s

— At the kth collison:

<7"2>k =k2 )\2 .
At the kth collison, on average the time
kX
ot = —
v

has passed. Therefore the time dependence of (r?) follows with (4.71) and (4.72):
o0r2) _ ()

ot ot
After averaging over the velocities and the mean free path A\, which in general depend
on v, one obtains for the diffusion coefficient:
{(Av)

D=t (4.84)

— 2\ =6D. (4.83)

The averaging is carried out over the distribution function f which is usually deter-
mined by numerically solving the Boltzmann transport equation.

As a measure for the spread of the charge cloud during the drift motion the ‘char-
acteristic energy’ € is defined by the ratio of the diffusion coefficient D to the mobility
of a charge ¢ (introduced in eq. (4.45)):
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106 Chapter 4: Movement of charge carriers in electric and magnetic fields

€ = ab > kT. (4.85)
I

A small value of ¢ is favourable for the localisation of a charge cloud. A lower limit
for €, is stated by the Nernst—-Townsend-Einstein relation® as €, = kT, which is the
mean thermal energy of a particle in equilibrium with a medium at temperature T (k
is the Boltzmann constant). The limit arises because a perturbation, for example by
an electric field, can only heat up but not cool the particles. For ¢, ~ kT the velocity
distribution corresponds approximately to the Maxwell-Boltzmann distribution. De-
viations from this ‘thermal limit’ prevail in particular for the electron drift in gases
(see section 4.6.4.3).

4.5 Motion of ions in gases

The velocity distribution of ions in drift gases practically does not change with an
applied electric field for field strengths which are usual for ionisation detectors. Hence
the energy dependence of cross sections does not play a role and the mobilities (4.45)
become independent of the electric field.

The ion motion in gases plays an important role in the development of signals
on the anode of a wire chamber if gas amplification takes place near the anode (see
section 5.3.2). Relevant parameters for the motion of ions in their own gas are listed
in table 4.1. In addition, values of mobilities for some combinations of ionised organic
molecules in different drift gases are given in table 4.2.

4.5.1 Example: gas parameters for ideal gases

In the following we will compute the diffusion coefficient, the mobility and the char-
acteristic energy for the molecules of an ideal gas. The velocities follow a Maxwell—
Boltzmann distribution:

3
2

(@) dnvidv = 4x ( v? exp (_mv2) dv. (4.86)

i)
2rkT
On the left hand side is the function f(¥) as defined in (4.33) integrated over the solid
angle. Using the relationships of (4.32) yields the corresponding distribution of the
kinetic energy e:

F(e)4mwde = 2w (ﬂ_le)g Ve exp (—i) de . (4.87)

As compared to (4.34) and (4.35) the angular dependence of F'(e,cosf, ¢) has been
integrated out assuming an isotropic distribution. Hence the distributions (4.86) and
(4.87) are normalised such that the integral over v or €, respectively, is unity.

In the following we will use some mean values with respect to the distribution
(4.86) or (4.87) (obviously both distributions yield the same results):

(v) = % and <i>:\/7f]TmT (4.88)

4 Also called Nernst—Townsend relation or Einstein relation.
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Section 4.5: Motion of ions in gases 107

Table 4.1 Gas parameters for ions moving in their own gas under normal conditions (from
[849]): mean free path, mean (unordered) velocity, diffusion coefficient and mobility.

Gas A (cm) (v) (cm/s) D (cm?/s) put (em?/V/s)
H, 1.8 x 107° 2 x 10° 0.34 13.0
He 2.8 x 1075 1.4 x 10° 0.26 10.2
Ar 1.0 x 107° 4.4 x 10* 0.04 1.7
05 1.0 x 107° 5.0 x 10* 0.06 2.2
H>0 1.0 x 1072 7.1 x 104 0.02 0.7

Table 4.2 Mobilities of some ions in gases (from [849]). The listed organic gases are methane
(CHy), isobutane (i-C4H1o) and methylal ((OCHs)2CH;), which are often used as ‘quenchers’
(see section 7.5).

Gas Ton put (em?/V/s)
Ar (OCH3),CHS 1.51
i-C4Hyp (OCH3),CH} 0.55
(OCH3)2CH, (OCH3),CHF 0.26
Ar i-C,H, 1.56
i-C4Hig i-C,.HY, 0.61
Ar CHf 1.87
CHy4 CHy 2.26
Ar Coy 1.72
COy COf 1.72

In an ideal gas the cross section o for elastic collisions, and thus also the mean free
path A, are energy independent:
1 kT

A= — , with n= 2

—. 4.89
no  po kT ( )

On the right-hand side the particle density n = dN/dV is expressed in terms of
pressure p and temperature using the ideal gas equation pV = NET.

With these preparations we can now determine the gas parameters diffusion coef-
ficient D, mobility x4 and characteristic energy €. With (4.89) the diffusion coefficient
can be computed according to (4.84):

(M)  AMv) 1 Mmiﬂ

- 4.90
3 3 3op ™n P ( )

Equation (4.44) yields for the mobility (with dA\/dv = 0 because the scattering is
energy independent for ideal gases):

2 1 [8kT  T'/?
= SIN(2Y = L« . (4.91)
3m v Jop V. m™m P
Inserting (4.90) and (4.91) into the definition of the characteristic energy in (4.85)
yields for ideal gases the Nernst—Townsend—Einstein relation:
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108 Chapter 4: Movement of charge carriers in electric and magnetic fields

_ 9D

kT . 4.92
. (4.92)

€k

Hence for ions in gases (at not too high field strengths) the characteristic energy
reaches the lower limit kT as given in (4.85), corresponding to the minimally possible
dispersion of the charge cloud during the drift motion. This result is expected since
we assumed thermal equilibrium with no external forces.

4.5.2 Blanc rule for gas mixtures

The Blanc rule, see [212], states that the inverse mobility of ions in a gas mixture
is given by the sum of the inverse mobilities of the components, p;, weighted by the
respective relative concentrations:

i => L . (4.93)

The rationale for this rule is that the mobilities are inversely proportional to the
product of cross section and particle density which have to be added for gas mixtures.
A corresponding equation also holds for the diffusion coefficients because they have
the same dependence on the cross section and the particle density. Deviations from
this rule are observed if charge exchange between the drifting ions and the molecules
of a gas component with a different mobility becomes important.

4.6 Motion of electrons in gases

The motion of electrons in gases is much more complicated than that of ions. The rea-
son is that for electrons the cross sections and inelasticities are in most cases strongly
energy dependent due to the numerous electronic excitation levels of the gas atoms.
The discussion in this section will therefore be more extensive, also accounting for
the particular importance for gases as detector media. We follow here the manifold
literature on electron motion in gases,® for example [535, 550, 753, 752, 805, 866].

In the following we want to find a stationary, position independent solution of the
Boltzmann transport equation (4.17) for electron motion in gases under the influence of
external fields. As in section 4.2.4 we start in lowest order with an isotropic distribution
fo and derive the anisotropies from the perturbations of fy induced by the electric and
magnetic fields. Employing the obtained distributions we will determine the detector-
relevant quantities drift velocity, diffusion coefficient and Lorentz angle. As already
noted, in practice this determination is carried out by numerical computations, for
example using the program Magboltz [196,195].

4.6.1 Parametrisation of the collision integral

The evaluation of the collision integral requires the energy dependent cross sections
o, or instead the mean free paths A for a particle density n, and the corresponding
inelasticities of the scattering cross sections. In general, the parameters are functions
of the energy e:

- Ae) = ml(e): mean free path,

5The essentials of electron motion in gases have already been clarified with the classical work of
J. Townsend and others at the beginning of the last century, see for example [943].
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Section 4.6: Motion of electrons in gases 109

- 7(e) = /\(Ue): collision time, the mean time between two collions for a particle with
energy e,
- Ale) = %: inelasticity, the relative energy loss by a scattering (‘cooling’).

In elastic scattering processes the elasticity condition connects the initial velocity
v with the velocity v" after the scattering and the scattering angle :

m
"=ov|l—-—(1- . 4.94

v =w M( cos ) ( )

After averaging over the scattering angle distribution, assumed to be isotropic, the

energy loss due to the recoil for m <« M becomes Aecoil(€) = 2m/M. Adding the
inelastic contributions from j excitation levels with excitation energies ¢; and cross

sections o;(€) (i =1,...,7) yields the mean inelasticity:
Al =2 4 ~oile) e (4.95)
M —~ o(e)e '

=1

Here o(¢) is the total cross section for scattering of electrons off gas molecules.

4.6.2 Cross sections and inelasticities

In fig. 4.7 the cross sections for some gases, which are often used for detectors, are
displayed as a function of the electron energy. The elastic cross section is in each case
plotted as ‘momentum-transfer (MT) cross section’ which is the cross section weighted
by the momentum transfer. For all gases the elastic cross section exhibits maxima and
minima which arise from quantum-mechanical interferences of the electron wavefunc-
tion when scattering on the potential well of the atom or molecule (see e.g. [862]).
This quantum-mechanical phenomenon is called the Ramsauer effect or Ramsauer—
Townsend effect [807,395]. The so-called Ramsauer minimum, which is particularly
distinct for argon and the other heavy noble gases, plays a special role for the energy
dependence of the drift velocity. For example, the elastic electron cross section in pure
argon in fig. 4.7 shows the Ramsauer minimum at ¢ ~ 0.3eV and a maximum at
e~ 10eV.

Argon has its first excitation level at 11.6 €V, below which the cross section is purely
elastic, with a small damping by the recoil energy transferred onto the atom according
to (4.95). The polyatomic molecules CHy, CO4 and CFy in fig. 4.7 have vibration and
rotation levels already in the eV region and below. These gases are employed for the
‘cooling’ of the random electron velocities. For example, the energy distributions in
argon in fig. 4.8(a) are clearly shifted downwards by adding 10% methane (CHy), as
can be seen in fig. 4.8(b) (see the discussion of the figure in the following section).

4.6.3 Approximate solutions of the Boltzmann transport equation

In order to determine the parameters for drift and diffusion of electrons in gases we
use in the following the relaxation approximation for the velocity distribution as given
by (4.29). In contrast to ions which, at not too high electric fields, exhibit thermal
velocities following a Maxwell-Boltzmann distribution (see section 4.5), electrons are
in general heated up by an electric field. Therefore, the isotropic steady-state part fy,
to which the field dependence is added as a perturbation in the approximate solution
(4.29), has first to be determined. In the literature cited at the beginning of this
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Fig. 4.7 Cross sections for elastic and inelastic electron scattering in different gases (MT
denotes the ‘momentum transfer cross section’ see text). The plots have been created inter-
actively on the web page [195] (the data were retrieved in 2013). The legend explains the line
patterns for the different types of cross sections.

section (page 108) one usually starts with the Boltzmann equation (4.4) for a stationary
distribution (8f/8t = 0) in a phase space continuum without spatial structure (Vif =
0), which means there is no diffusion. The thus reduced equation expresses that the
force term, which causes a movement in velocity space, has to be balanced by the
collision integral:

dv = af

7 Vof = 5t . (4.96)
The solutions offered in the literature exploit the steady-state condition that the kinetic
energy an electron gains by the work of the field over the mean free path A, that is, gE\,
has on average to be compensated by the mean energy loss in a collision, Ae = Ae. In
the following we just quote the solution without a derivation which would be beyond
the scope of this book. For the derivation and more details we again refer to the
literature cited on page 108.

coll
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4.6.3.1 Isotropic part of the distribution
A solution of (4.96) for the isotropic part of the energy distribution of electrons,
corresponding to the distribution fy in section 4.2.4, is given by:®
€ 3 /A !
fole) = C exp |- / . ()ws de'
0o (gEX(€))" + 3¢'A()wp kT

(4.97)

Before we discuss the different terms in this equation let us note that the function
fo(e€), corresponding to f(e, cosf, ¢) of (4.33) in the isotropic case, is actually a velocity
distribution with the velocity expressed by the kinetic energy. The normalisation of
fo(€) is given by (4.35) (the factor 4 is due to the integration over the full solid angle):

47r7fo(e) \/g de=1. (4.98)
0

This normalisation fixes also the constant C' in (4.97). Instead of fj often the energy
distribution Fp, analogously defined according to (4.34), is used leading to the energy
distribution corresponding to (4.97):

O e exn | - € 3e’ A€ wp Y
Fole) = C"ve pl /0 (qE/\(e’))2+3e’A(e’)ka;Td ' (4.99)

The normalisation of Fy(e), which also fixes the constant C’, is given by

4w | F(e)de = 1. (4.100)
0

In (4.97) and (4.99) the quantity wy, which accounts for the effect of the magnetic
field (oriented as in (4.6)), is defined as

= 71+w27'2

q
wp = wg(B,7) = W;

2
with w?=w? +w? = (—B) . (4.101)
m

The variable 7 = A\/v is the collision time. The numerator of the integrand in (4.97)
and (4.99) contains the energy loss per collison and the first term in the denominator
contains the work of the field over the mean free path, gFE\. The second term in the
denominator has been added by hand to account for the thermal motion of the gas
molecules (see the explanation in [871])).

If the term (eEA(¢'))? in the denominator of the integrand, which describes the
energy gain from the electric field, becomes small as compared to the second term,
which contains the inelastic damping, then the integral becomes €/kT and Fy(e) turns
into the Maxwell-Boltzmann distribution:

1\? €
Fy(e)dmde = 27 <7rkT> Ve exp <_ﬁ) de. (4.102)

6 The formulae for a general orientation of the magnetic field relative to the electric field are taken
from [866]. In the case that the magnetic field is orthogonal to the electric field the solution coincides
with corresponding ones in the literature, for example in [805].
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Fig. 4.8 Computed energy distributions of electrons in argon and in a mixture of argon
(90%) and methane (10%) for different field strengths at normal pressure and temperature
(101325 Pa, 293.15 K = 20 °C). The energy distributions F'(¢) are defined as in (4.34). The
curves originate from plots in [752] (argon) and [864] (argon—methane). (a) Pure argon: the
energy distributions shift with a higher electric field towards higher energies. The curve for
E = 2.5 kV/cm clearly shows the downward bending when reaching the lowest excitation
energy (11.6eV). At much higher field strengths the distribution continues up to the ionisation
energy (15.8eV) where secondary ionisation sets in. (b) Argon—methane (90:10): the curve
with the field strength 250 V/cm can be compared to the corresponding one for pure argon
(in (a) the tail of the distribution is shown as a dashed line). The maximum shifts from
about 2.5eV in pure argon to about 0.6eV in the mixture with methane. The methane
admixture damps the electron energies due to inelastic scattering. For comparison also the
Maxwell-Boltzmann distribution for 7' = 293.15K = 20°C (kT ~ 0.025eV) is shown.

With increasing (eEA(¢'))? the electron distribution will be ‘heated’ as demon-
strated in fig. 4.8 using the example of argon (a) and of an argon—methane mixture
(b). In argon the damping is very low, permitting long tails of the distribution to-
wards high energies, while an admixture of a gas with polyatomic molecules damps
the energies. See also the related discussion in section 4.6.2.

4.6.3.2 Distribution with anisotropies due to external fields

In the relaxation approximation the complete distribution function f(¥) is set up
according to (4.29) as

—WoT
qF I 9 9fo
S U ofo 4.103
f(e,cos0,¢) = fo(e) m o1t “;‘gjg " "B ( )

This function contains the anisotropies due to the external fields,” which provide ab-
solute value and direction of the drift velocity according to the equations in section
4.3.

"In the literature the distribution f(e, cos 6, ¢) is often expanded into a series of spherical harmonics
Yim (6, ¢), see for example [805]. The representation (4.103) corresponds to an expansion up to l = 1.
This becomes obvious when in (4.103) the components of ¥ are expressed in spherical coordinates.
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In the following we will use the distribution function (4.103) to derive the param-
eters for electrons moving in a gas.

4.6.4 Determination of the macroscopic gas parameters
4.6.4.1 Dependences of the drift velocity

In the following we want to analyse the dependence of the drift velocity on the electron
cross sections in the drift gas which enter through the mean free path A(e) and the
inelasticity A(e) into the formula for the drift velocity (4.44). For this purpose we
evaluate the drift velocity with the distribution as given in (4.97). In order to obtain

an easily understandable relation, we assume wy = 1 (B = 0) and that the kT term
in the denominator can be neglected. Then the derivative of fy in (4.40) becomes

afy 3eA
ae = _foi(qEA)Q ) (4.104)

If we additionally assume that the change of A with energy is small, hence \/de =~ 0,
then follows from (4.40) with (4.104):

1 2 OOA 3 2€ 2 1 A s
D:4 —_— — — €2 —_ = _— — €2 . 4.1
v 7TqE\/m/O € fo(e)\/m?’d€ quE<)\6> (4.105)

The averaging on the right-hand side has to be done with respect to the fy distribution
using for the integration (4.33). From (4.105) one obtains

qEvp = <A6§> . (4.106)
The right-hand side is the mean energy loss per time because Ae = Ae is the energy
loss in one collision and v/ is the number of collisions per time. The left side is the
mean work per time done by the field. Therefore (4.106) states that in the stationary
case the work delivered by the field will be compensated by the energy loss due to the
collisions. Hence we recover the assumptions made for solving the Boltzmann equation
(4.96).

4.6.4.2 A simplified model for the gas parameters

For the illustration of the influence of the parameters E, A\, A—that is, of the electric
field and the cross sections—on the gas parameters vy, D, €, we follow a discussion
in [753]. There the (unordered) velocity v is assumed to be constant or to have a
narrow distribution. Then the two equations (4.106) and (4.44) can be equated without

averaging over v:
1 v 2qFE )\
= —Ae—=-——. 4.107
v qF E)\ 3muo ( )

Using in addition € = mv?/2 this yields v, v,, D, € as functions of E, ), A:

2 qF
=4/ —==—A, 4.108
v=/ = m (4.108)

qEX
= —, 4.109
an (4.109)

€
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2 |AgFE
=/ 24/2 LN 411
o V3w (4.110)

D=""=_ [T\, (4.111)

_ab _¢ED _gEX _ (4.112)
1% Up V3A

Hence in a narrow distribution approximation €; = €, revealing the meaning of the
characteristic energy. The typical dependences of the motion parameters on E, A, A
are as follows:

€k

— v, vp < VA: Both velocities increase with an increase of the mean free path because
the acceleration phase between the collision increases. The acceleration heats up the
unordered motion.

— D o \3/2: The diffusion increases with the mean free path.

— v, D, € decrease with increasing A (the inelasticity causes a ‘cooling’ of the elec-
trons).

— vp increases with increasing A (v small = 7 = A/v large: the acceleration phase
becomes longer).

The gas parameters v, and € are functions of EA. Because of the relation

E FE1
Elx= — x ——, (4.113)
no  po

these quanties only depend on the so-defined ‘reduced field strength’ E/p or E/n. In

the older literature these quantities were often given in the following units:
— E/p:1 Vem ™! Torr~! = 760 V/cm at NTP,
— E/n: 1 Townsend = 1 Td = 1077 Vem? = 250 V/cm at NTP.

The abbreviation NTP denotes normal conditions for temperature and pressure as
defined in section 2.5.2 on page 20 (1atm = 101 325Pa = 760 Torr (mmHg), 293.15 K
=20°C).

Example. As an example we consider the energy distributions of electrons in an
argon—methane mixture (90:10), as depicted in fig. 4.8(b) for different field strengths.
The distributions are shifted to smaller energies as compared to the distributions
in pure argon since the inelastic cross section of methane, which sets in at about
0.1eV, damps the higher energies. Therefore, up to about 200 V/cm the maxima of
the distributions lie below the Ramsauer minima of both gas components. Using our
rough approximation of a narrow energy distribution we assume that the energy lies in
the declining region of the cross section below the Ramsauer minimum. In this region
we approximate the cross section (dominated by argon, see fig. 4.7) by a power law in
energy and a constant inelasticity:

o(e) = o0 (e/eV)™2 = 6.5 x 10719 cm? (¢/eV) 72, (4.114)
Ale) = 0.25. (4.115)

The choice for the inelasticity A is somewhat arbitrary because below the Ramsauer
minimum A is very small, as for pure argon. In our simple model, however, some
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Fig. 4.9 Behaviour of the electron drift veloc-
ity as a function of the field strength for different
gases (from [849]). The saturation of the drift
velocity, possibly followed by a decrease at high
fields, is characteristic for hydrocarbons, see the
corresponding discussion in the text.

2
E (kV/cm)

inelasticity is required because the characteristic energy, which is taken as the mean
value of the narrow distribution, has to be moved from higher to lower energies by
these inelasticities.

With these values for ¢ and A and under normal conditions an energy of, for in-
stance, e = 0.1eV, hence a value below the Ramsauer minimum, is obtained applying a
field strength £ = 140 V/cm. This field and the resulting drift velocity v, = 55 um/ns
are typical for the operation of drift chambers (section 7.10). Under these conditions
the ions’ drift velocity is slower by a factor of 1000 or more. For example, the drift
velocity of the Ar™ ions at the quoted field strength is v, = 2.4 um/us.

4.6.4.3 Drift velocities in various gases and gas mixtures

For complex molecules, like the hydrocarbons methane, ethane and propane or as well
carbon dioxide, which are often used in drift chambers, the energy dependent inelastic
excitations are important (examples in fig. 4.7). In mixtures of noble gases (mostly
argon) with such gases the energy distribution of the electrons is shifted towards the
Ramsauer minimum (fig. 4.8), thus into the region of strongly varying cross sections.

In drift chambers (section 7.10) the admixture of hydrocarbons is employed for
adjustment of the ‘working point’ which besides the setting of drift field also includes
the chosen gas amplification, see section 7.4. Gases that reach a maximum of the drift
velocity at drift fields typical for wire chamber operation (some kV/cm) are called
‘saturating’ gases (fig. 4.9). The gas saturation, in particular with a flat maximum,
can be advantageously exploited in order to obtain an approximately constant drift
velocity even for inhomogeneous fields. The adjustment options for argon—methane
and argon—ethane are shown in fig. 4.10. Depending on the application other criteria
can also be essential for the choice of the mixture, for example little diffusion, stable
gas amplification, only minor ‘ageing’ of the detector and others (see section 7.5). For
argon—ethane a typical mixing ratio is 50:50 which requires a drift field of somewhat less
than 1kV/cm in order to operate in the regime of saturated drift velocities. To reach
this regime with argon—methane in the ratio 90:10 only about 120 V/cm is required,
which makes this gas attractive for long drift paths with a very high total voltage (see
e.g. section 7.10.10). A disadvantage of argon—methane (90:10) is the larger diffusion
as compared to argon—ethane (50:50).
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Fig. 4.10 Measured drift velocities of electrons in different gases and gas mixtures as a
function of the electric field. The measurement curves have been taken from [433] and [570],
respectively. (a) Argon—methane: the plot shows that already a very small admixture of
methane causes strong changes of the drift velocities. Varying the mixing ratio the maxima
can be adjusted in a wide range of (reduced) field values. (b) Argon—ethane: for these gas
mixtures the drift velocities at the maxima are more similar than for the methane admixtures.
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D 67.2:303:25 9 (0)
(“m/qg)k E=500V/cm A40L Fig. 4.11 Drift velocity (left axis,
v 6, open points) and Lorentz angle (right
0L = Js0 axis, full points) for electrons in the
specified gas mixture as a function
20+ —20 of the applied magnetic field at fixed
drift field [249]. The curves have been
10- 1% calculated using a simple model as
0 ‘ 1 ‘ 1 ‘ 1 ‘ 0 described in the text.
0 05 10 15
B (T)

Because of the strong energy dependence of the cross sections and inelasticities
there exists no simple formula for drift velocities of electrons in gas mixtures that
would correspond to the Blanc rule for ions given in (4.93).

4.6.4.4 Lorentz angle

Figure 4.11 shows the drift velocities and Lorentz angles (section 4.3.2.1) as a function
of the applied magnetic field (perpendicular to the E-field). The measurements are
compared with curves calculated using the formulae (4.58) and (4.59), which are based
on a simplified model assuming that the collision times with and without B-field are
equal, hence 7(F, B) = 7(F,0). The calculation matches very well the measurements
for the plotted range of field strengths; at higher fields larger deviations arise [249].
Arrangements with crossed E- and B-fields are often employed in storage ring ex-
periments with cylindrical drift chambers in solenoidal fields (see section 7.10, fig. 7.38).
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Fig. 4.12 (a) Characteristic energy and (b) width of a diffusion cloud after 1 cm drift distance
(using eq. (4.117)) plotted against the electric field strength for different gases (adapted
from [871], with kind permission of Elsevier).

4.6.4.5 Diffusion

In isotropic media the diffusion coefficient is determined using (4.84):
A A A
D= % = / ?vf(v, cos B, ¢) v3dvdcos 0 dp = 471'/ %fo(v) v?dv. (4.116)

The right-hand side is only valid if Av has no directional dependence, see the related
discussion below.

Employing (4.73) and (4.85), a constant drift velocity v, results in a width of the
charge cloud of electrons after traversing the distance x:

2D 2
0y = V2D T =/ ;’iEx (4.117)

The diffusion is minimal in the thermal limit (4.92), corresponding to the characteristic
energy €, = kT, yielding

2kT x
eFE

Owth = (4.118)

Examples for the field dependence of the characteristic energy and the diffusion
are shown in fig. 4.12. Minimal diffusion are exhibited by carbon dioxide (CO3) and
methylal ((OCHj3)2CHs), which stay close to the thermal limit up to relatively high
field strengths. Also the hydrocarbons methane and isobutane show relatively small
diffusion because the random motions are well damped. The strongest diffusion in this
figure is shown by pure argon because of the absence of damping by vibrational and
rotational excitations of the gas molecules (see fig. 4.7). For all examples in fig. 4.12
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Fig. 4.13 Transverse and longitudinal diffusion widths (for 1 cm drift distance) as a function
of the drift field for different gases without magnetic field (adapted from [254]).

the diffusion initially decreases with the field followed by a flattening and potentially
an increase again. According to (4.117) an increase comes about if the characteris-
tic energy increases more strongly than proportionally to E. This behaviour can be
observed in fig. 4.12 for methane and isobutane and at very high fields also for COs.

In general, the velocity distributions and the mean free paths are direction depen-
dent, which has to be taken into account for the calculation of the diffusion coefficients
according to (4.116). Without magnetic field an asymmetry relative to the electric field
direction arises. Then in general, transversal and longitudinal diffusion with coefficients
Dy and Dy, respectively, have to be distinguished. Examples are shown in fig. 4.13.
Superimposed magnetic fields have a stronger effect on the diffusion, such that the
diffusion coefficient has in general to be written as a tensor (see e.g. [217]).

An important effect in the case of parallel E- and B-fields is the reduction of the
transverse diffusion, which is given by

D

Dr = 1+ w272’

(4.119)
where 7 is the mean collision time.® The magnetic field causes a winding of the trans-
versely moving electrons around the electric field. This field configuration is applied
for drift chambers of the type ‘time projection chamber’ (TPC) with very long drift
paths (see section 7.10).

4.7 Charge carrier transport in semiconductors

What has been discussed for gases in the previous sections of this chapter also applies,
very generally speaking, to semiconductors. However, lattice phenomena must be taken

81n this form, formula (4.119) only holds for small magnetic fields, up to about 0.5 T. For larger
fields 1 4+ w272 approaches again a linear behaviour as a function of 72, however, with a smaller slope
(see e.g. [217]).
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Section 4.7: Charge carrier transport in semiconductors 119

into account. A specific account on the motion of charge carriers in semiconductors is
given in the following sections.

In a semiconductor the charge carriers are electrons and holes (see chapter 8). In
pure semiconductor crystals the ‘intrinsic’ (without doping) electron and hole densities
are equal (in silicon at room temperature about 10'° cm~3). In general, doping leads to
unequal number densities of the charge carriers, called majority and minority charge
carriers, respectively. In n-doped semiconductors electrons are the majority charge car-
riers and in p-doped semiconductors these are the holes. The majority charge carriers
are more abundant by many orders of magnitude than minority charge carriers, in
silicon about 10'° times.

The charge carrier motion in semiconductors follows the Boltzmann transport equa-
tion (4.4) which describes the diffusion and drift motions, as sketched in fig. 4.1. Al-
though to solve the Boltzmann transport equation in semiconductor crystals, lattice
phenomena have to be taken into account, which in general requires the use of quan-
tum mechanical methods (see e.g. [881,402]), the charge movements can largely be
described using similar models and parameters as for the movement in gases discussed
in sections 4.5 and 4.6. The reason mainly is that electrons and holes in a semiconduc-
tor can be treated as if they could move freely. This becomes possible by employing
the concept of an ‘effective mass’ for the charge carriers which accounts for the binding
inside the lattice (see section 8.2.3).

Solving the transport equation for semiconductors, an essential result is, as dis-
cussed before for gases, that time-independent electric fields cause stationary drift
motions of the charge carriers. The drift motion results from an equilibrium between
electric acceleration and friction by collision processes; in the case of semiconductors
these are collisions with the lattice.

The unordered thermal motion causes diffusion of the charge carriers into regions of
lower concentrations. For instance, concentration differences occur in semiconductors—
as in gases or other ionisable media—along the ionisation trails of a charged particle
or around the local ionisation by an absorbed photon. In semiconductors charge car-
riers also diffuse across boundary surfaces, for example between p- and n-conducting
substrates, which is in fact the basic functional principle of semiconductor electronics
(see section 8.3).

4.7.1 Drift of electrons and holes

In a semiconductor the acceleration of electrons and holes by an electric field E is
compensated by scattering off lattice phonons and crystal defects. The motion is gen-
erally described by the Boltzmann transport equation (4.4) as in the case of gases. We
also mention here an often used ansatz using the Drude model [366] developed already
around 1900. According to this model the equation of motion for the average electron
movement, that is, the drift velocity v, reads

m* ({7,3 + U:) =qE, (4.120)

where ¢ = +e and m* are the charge and the effective mass, respectively, of the
charge carriers in the semiconductor (see eq. (8.5) on page 266). The various effects
of scattering by the lattice are combined into one parameter, the relaxation time 7.
The time 7, under the assumptions given in section 4.3.1 also called collision time,
is the mean time to the next momentum change, that is, until the next scattering
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120 Chapter 4: Movement of charge carriers in electric and magnetic fields

process that changes the direction of the particle. For silicon the relaxation time is in
the range of picoseconds and is strongly temperature dependent. The Drude ansatz
corresponds to the relaxation approximation of the Boltzmann transport equation in
section 4.2.3.2 applied to average motions. )

In the stationary case of constant drift velocity (¢, = 0) the Drude ansatz leads to

TG uE, (4.121)

Up =
m*

where the mobilities of the electrons and holes are given by

qT

*

me,h

e = (4.122)

Compared to the solutions of the Boltzmann transport equation, as discussed in section
4.3, the quantity 7 in (4.121) and (4.122) corresponds to an energy weighted average,
as defined in (4.52).

At fixed temperature and at small electric fields the mobility u is roughly constant,
similar to the behaviour of ions in gases (section 4.5). But as a function of temperature
the mobility changes strongly because of the temperature dependence of the various
collision processes (mostly elastic) which determine the collision time 7. In semicon-
ductors we particularly distinguish between the scattering off lattice phonons and off
lattice defects. Since the wavelengths of the thermal charge carriers are larger than the
lattice spacing they can only interact with long wavelength phonons, called acoustic
phonons, corresponding to coherent lattice oscillations (sound waves in solids) [929].
The lattice oscillations impede the electron motion increasingly with higher lattice
temperature. For example, the dependence of i for acoustic phonon scattering (APS)
on the temperature for electrons in the conduction band is [152,929]:

1
HAPS X 7(m*)5/2 T2 (4.123)
where m* here is the effective electron mass at the conduction band edge (for the
definition of m* see (8.3) in section 8.2.3). An analogous relation holds for holes in the
valence band. For (Coulomb) scattering off ionised impurities, called fonised impurity
scattering (IIS), the temperature dependence is [319,929):

T3/2

(1) (m*)172 20

Hi1s X

where ny; is the impurity density. The mobility increases with temperature since at
higher thermal velocities the charge carriers are less deflected from the original di-
rection due to the 1/p?-dependence of the Rutherford scattering formula (eq. (3.98)).
Note that also the density of ionised impurities increases with the temperature.

In addition scattering off neutral, non-ionised impurities, called neutral impurity
scattering (NIS), is possible. Although no Coulomb scattering from those impurities
takes place they change the lattice locally and thus affect the carrier mobility. With
higher temperature they can become ionised, that is, their density nnr decreases at
the expense of an increase in nj;. A (weak) temperature dependence thus only enters
indirectly through the density change [379,880]:

€202 1890190 €0 U0 Jasn Aseiqr NYID Aq SIS H/4000/Wwoo dno olwspeose)/:sdiy Wolj papeojumod



Section 4.7: Charge carrier transport in semiconductors 121

-3/2
APS T L
\ /
3
108 T 7T T T TTIT o \\// 0
= o S TN NIS~T
— N<10"cm APS
- 4x10" __| &NIS APS &I
10° E
v F log T
NE B 242 ]
S a4 =220 "
S 10° E ' E
B = 1.3x10" N =
—8 : /\ . : %
1S — - = \ 1=
3 2x10" 3
10 E77Si (low-field) N EE
— U, N =
- T N ]
i W | 3l
2 | | LIl | 1 LIl | | NN
107, 10 102 103

temperature (K)

Fig. 4.14 Mobilities of electrons in silicon as a function of temperature for different doping
densities N. The insert shows (on a double logarithmic scale) schematically the temperature
dependence which is expected from the scattering of the charge carriers off the lattice itself and
impurities therein as described in the text (see also [567]). Data are taken from [565], see also
[929]. The abbreviations are APS = ‘acoustic phonon scattering’, IIS = ‘ionisation impurity
scattering’, NIS = ‘neutral impurity scattering’, and their respective sums APS & NIS and
APS &IIS.
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Other scattering processes as, for example, the scattering of charge carriers from one
band minimum to another through interaction with more energetic (optical) phonons,
is less relevant, in particular in silicon and germanium.

Therefore, the overall temperature dependence of the mobility in semiconductors
follows qualitatively the curve in the insert of fig. 4.14. In the case of different con-
tributing scattering processes 7 the total mobility is obtained by adding the individual
inverse mobilities (‘Matthiessen’s rule’):

Vp=> 1/p;. (4.126)

%

HNIS X (4.125)

The reasoning for this rule is similar to that of the ‘Blanc rule’ for ions in gases in
(4.93). Mobilities in silicon [565], measured for different doping densities, are displayed
in fig. 4.14. The strong dependence on the doping arises because the doping atoms act
as scattering centres.

At a given temperature and for small field strengths (in Si for F < 10 kV/cm),
the drift velocity v, is proportional to the electric field (see (4.121)) which means
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according to (4.121) that the mobility is constant. At high field strengths this is no
longer true since the mobility becomes field dependent as shown in fig. 4.15 (see for
example [929]).

At zero and approximately at low electric fields the system of charge carriers and
the lattice (phonons) is in thermal equilibrium; the emission and absorption of phonons
by charge carriers leads to (approximately) zero net energy exchange between charge
carriers and lattice [929]. The charge carrier distributions at thermal equilibrium follow
a Fermi-Dirac or approximately a Maxwell-Boltzmann distribution. With increasing
field strength, a stationary equilibrium is reached between the energy spent for the
acceleration of the charges and the net energy transferred to the lattice by phonon
scattering (phonon absorption and emission), which damps the (unordered) charge ve-
locities and eventually leads to a constant drift velocity, see the corresponding equation
(4.106) for electrons in gases. Up to moderate electric fields the scattering processes
dominantly involve the emission of acoustic phonons (see also page 120). At higher E-
fields higher modes of lattice oscillations are increasingly excited, a scattering domain
governed by optical phonons, i.e. with oscillation frequencies in the optical range. In
this regime damping becomes more effective and the mobility drops with increasing
field strength, such that the drift velocity v, becomes more and more field independent
approaching a saturation value. At still higher fields the charge carriers can ionise the
atoms, generating avalanches of secondary charge carriers.

A simple empirical ansatz [281] yields a good description of the drift velocity over
a wide range of field strengths, see fig. 4.15:

E
vp = W(E)E = Ko . (4.127)

1
{1 + (“OE)B] "

In this equation ug is the low field mobility and vg,t is the saturation drift velocity,
which is reached at high fields in silicon and germanium (fig. 4.15). The empirically
determined exponent 3, which is not necessarily equal for electrons and holes, typically
lies between 1 and 2 (see the corresponding explanations in [941]).

Figure 4.16 shows for silicon and germanium the proportionality of the drift velocity
to the electric field over a wide field range as well as the saturation at high fields. At
room temperature the saturation velocity is in the range of about 107 cm/s. Typical
values for the low field mobilities of the charge carriers in silicon detectors at room
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Fig. 4.16 Drift velocities of electrons and holes in silicon, germanium and gallium arsenide
at 300K as a function of the field strength (data taken from [565, 900,838,336, 929]). The
saturation at high field strengths is a consequence of the mobility decrease as shown in
fig. 4.15.

temperature are (see also table 8.2):

cm? em? 1
i) = 1450 — i) = 500 — ~ — i -
11n (S) 5050 #e(Si) =500 <~ S
For gallium arsenide (GaAs) the electron and hole mobilities are approximately (see
table 8.2):

2 2
1
1n(GaAs) = 8800 C% , tp(GaAs) = 320 o s

Vs 304

For comparison, the mobilities of ions in gases are typically 1000 times smaller than
those of electrons in silicon (table 4.2).
The drift motion of the charge carriers leads to a drift current

jdrift =e(ppp—nin) E = O’E7 (4.128)

where n, p are the charge carrier densities and o is the electric conductivity. In solids the
mobility p is usually measured exploiting the 1 dependence of the electric conductivity:

c=nqi. (4.129)
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124 Chapter 4: Movement of charge carriers in electric and magnetic fields

Table 4.3 Transport parameters in some semiconductors: low field mobility po, saturation
drift velocity vsat (at 300K) at high fields, diffusion coefficient D (for intrinsic semiconduc-
tors), thermal velocities at 300K (see table 8.1 and [929,560]).

Semi- Ln, fp Vgat D, D, v, vé’h
conductor () () () (%) (%) () ()
Si 1450 500 1 x 107 36 12 2.3 x 107  1.65x 107
Ge 3900 1800 7 x 108 100 50 3.1x 107 1.9 x 107
GaAs 8500 400  1.2x107 200 10 4.4 %107 1.8 x107
InP 5400 200 1 x 107 130 5 3.9x 10" 1.5 x107
InAs 40000 500 8 x 107 1000 13 7.7 x 107 2 x 107
CdTe 1050 90 26 2 3.5x 107 1.4 x107
diamond™  =1900 ~2300 7 x 10° 57 46 ~ 107 ~ 107

) Values quoted in the literature for the mobility in diamond vary strongly [776, 409,731, 563].
An approximate value is given in table 4.2. For plasma-deposited monocrystalline single crystal
diamond, values as large as 4500 cm?/Vs for electrons and 3800 cm?/Vs for holes are reported
in [562].

4.7.2 Diffusion in semiconductors

Owing to the thermal motion, spatial concentration differences of the charge carriers
are equalised by diffusion of the charge carriers from regions of higher concentration to
those of lower concentration. According to Fick’s first law (4.68) this leads to a diffusion
current which for the densities n and p of the electrons and holes, respectively, takes

the form
Jn.dif = —eD, Vn, Jp.aig = —eDpVp, (4.130)

where D,, ,, are the diffusion coefficients for electrons and holes, respectively, which
are specific for a certain semiconductor (table 4.3).
Together with the drift current (4.128) the total current is obtained as

jn = jn,drift + jn,diff = —€ln nk —eD, Vn,

jp = ;p,drift +jp,diff = e,uppE: - er 6p- (4-131)

For a system in thermal equilibrium, the Fermi level £ (for definition and use
of Er see chapter 8, pages 267 ff)? is constant over a boundary with a concentration
gradient, whereas the conduction and valence band edges (£ and £y) bend up or
down (see fig. 8.16 on page 275). For such systems the Einstein relation can be derived
from (4.131) as follows (see also (4.85) and (4.92) as well as the footnote on page 106).

For electrons in equilibrium, that is, for jn =0, (4.131) yields in the one-dimensional
case (in the z direction):

on
HnTy o (4.132)

The electric field F, determines the position of the conduction band edge £c = —ep+
const (see chapter 8), therefore yielding

9Note that for reasons of consistency within a chapter the use and meaning of the symbols E for
the electric field and £ for energy levels is reversed in chapter 8.
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_99(x) _ 10€c(x)

E, =
ox e Ox

(4.133)

with ¢ = &/e being the electrical potential. The electron density at the conduction
band edge is exponentially dependent on the distance of the Fermi energy to the
conduction band £ — Ep:

_ Ec—Er
where C' is a constant which is not needed any further. The derivative is
on 1 Ec—EF 0&c n 0&c
b _ =—-——==. 4.1
Oz kT {C exp( kT )} Ox kKT Ox (4.135)
With (4.132) we have
B 10&c(x)\ n 0fc

From this derivation for electrons and the corresponding one for holes, we obtain
the Einstein relation which relates the diffusion coefficient and the mobility through
fundamental physical constants (e, k):

D, kT D, kT

— , — =— (4.137)
Hn € Hp e

The corresponding relation holds for ions in gases (at moderate fields), as shown in
section 4.6.1, see (4.92).

4.7.3 Motion of electrons and holes in magnetic fields

Semiconductor detectors are often employed as tracking detectors in magnetic fields.
Under the influence of the Lorentz force F = ¢ (E + ¥ x B) the charge carriers move
between two collisions on curved trajectories. The resulting drift motion no longer
follows the direction of the E-field, except if E and B are parallel. For the general case
of arbitrary E- and B-fields the equations for the drift components are given by (4.54)
to (4.56) in section 4.3.2.

Also in section 4.3.2 the deflection of the drift motion from the original direction
by the Lorentz angle «; was described for the case of perpendicular E- and B-fields.
A simplified illustration of this effect is shown in fig. 4.4 on page 101. The strength of
the deflection is given by the ratio of the drift velocity components perpendicular and
parallel to the electric field, corrresponding to (4.59) in section 4.3.2:

B
U5l

tana,; =

=Wy (4.138)

UD,S
Here w = g/m* B is the cyclotron frequency and 7 is the relaxation or collision time
accounting for the effects of the magnetic field. The time constant 7 enters in the Hall
mobility p (hence the subscript ‘H’) which is measured via the Hall effect [893,402].
The Hall mobility is related to the mobility uy_, without magnetic field by the Hall
factor 7, (see also section 4.3.2) defined by
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HB=0

Ty

(4.139)

The mobility p15_, is measured via the conductivity employing (4.129). Equation
(4.138) can now be rewritten as

tano, = wry = i*TH B=pyB=ps ryB. (4.140)
m

The Hall factor was already introduced in section 4.3.2 by (4.62) in the approxi-
mation of small fields:

_— () _ (4.141)

The subscript € on the averaging symbol indicates the energy weighted average as
defined by (4.53).

While for semiconductors the Hall factor is defined by the measurement method,
namely by the Hall effect, a corresponding factor occurs also for gases in the evaluation
of the Lorentz angle. Without the assumed approximation of small magnetic fields the
more complex averages in (4.54) to (4.56) have to be used rather than (), and (72)
as in (4.141). Other approximations may have to be scrutinised as well.

Examples.

(1) In the simple—but not realistic—case that 7 is constant, 7 = 7, = 7, follows
and thus ry = 1.

(2) If one considers only acoustic phonon scattering (thermal lattice vibrations) the
mean free path A is constant and 7 = A/v. The distribution function of the charge
carriers is in good approximation a Maxwell-Boltzmann distribution which can
be employed to determine r, as follows:

() _ [T e W g

0 31 —715 1\
€ *
(fO Te2e dee) ™m

For scattering processes in which A is not constant and/or the assumed approxima-
tions are not valid, r; takes other values. As a rule, r; > 1 is valid for non-degenerate
semiconductors with symmetric band structure. However, r,; < 1 also occurs, in par-
ticular for p-silicon with non-symmetric curved band structure [658,560]. For silicon
at 300 K and small magnetic fields (wr; < 1) one finds r, ~ 1.15 for electrons and
ry ~ 0.8 for holes [659] in a wide range of doping concentrations up to about 10*® cm=3.
For large magnetic fields, as typical for particle detectors, r; ~ 1 applies.

In semiconductor detectors with structured electrodes, like microstrip or pixel de-
tectors, the Lorentz angle «, plays an important role for the optimisation of the
electrode dimensions and pitches in order to obtain the best possible spatial resolu-
tion. Because the Hall mobility for electrons in silicon is a factor of 4.5 larger than for
holes the Lorentz angle for electrons is also larger. At a magnetic field of 1 T and for
moderate electric fields, where the mobility is still field independent, o, amounts to
9.5° for electrons and to 2.1° for holes. The Lorentz angle possibly changes with the
operation time of the detector due to radiation damage and because higher electric
fields may be required, leading to shorter collision times and hence smaller mobilities
and (usually) smaller «,, (see e.g. [469]).
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5.1 Introduction

Particles can only be detected if they deposit energy in a detector medium. Often at
least part of that energy is used to ionise the surrounding atoms, thereby creating
charge carriers (electron/ion or electron/hole pairs). Detectors sensing those charge
carriers are for instance gas-filled ionisation or proportional chambers, semiconductor
detectors, photodiodes and others. By separating the ionisation charges in an electric
field, electrical signals can be produced on external electrodes which can be further
electronically processed. The possibility of processing measured data electronically is
one of the most important construction criteria for modern detectors and will only
be overruled if there are other, more important criteria—for example photoemulsion
may be chosen if particularly precise tracking is required. Even in detectors where
the primary signal is not due to ionisation usually the detection chain nonetheless
comes down to the detection of ionisation. For example, Cherenkov or scintillation
photons are converted to ionisation charge when hitting the photosensitive layers of
photodetectors like photomultipliers or photodiodes (chapter 10 specifically addresses
the processing of light signals).

In ionisation detectors the formation of signals that can be electronically processed
proceeds along the following steps:
— a particle deposits energy in the detector volume;
— charge pairs (electron—ion or electron—hole) are created;
— the charges are separated by an electric field generated by an electrode system

moving them towards the electrodes;

— the moving charges induce an accumulation of charges on the electrode surfaces;

the charge induction will be recorded as a charge, current or voltage signal.

For further discussion of signal formation in electrode systems it is fundamentally
important to understand that signals on electrodes form by the motion of charges
relative to the electrodes. Therefore it is not important for the signal generation that
the charge actually arrives at the electrode. A charge can get lost in the ionisation
volume, for example by recombination or attachment, but the signal from a preceding
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Fig. 5.1 Effect of a charge approaching an electrometer. (a) An uncharged electrometer
which is insulated against ground. (b) A charge g, approaching from infinity, induces a coun-
ter-charge on the metal surface of the electrometer which increases as the distance becomes
smaller. Within the free-floating electrometer the charge is conserved and hence can only be
separated. The charge with sign opposite of that of ¢ (here ¢ < 0) accumulates on the metal
surface close to ¢ and the same sign charge accumulates on the surfaces further away. This
generates a deflection of the electrometer’s needle. (¢) Grounding the electrometer pedestal
allows the (negative) charge to drain off so that a current signal can be measured on the path
to ground.

movement of that charge can still be detected. Hence ‘charge collection’ on the elec-
trodes is not the essential phenomenon, but it is rather the movement of the charge
relative to the electrodes.

The conditions for signal formation can be illustrated by the simple example shown
in fig. 5.1, which is familiar from lectures on electrostatics. When a charge ¢ approaches
the electrode of an insulated electrometer an opposite sign charge will be induced, as
depicted in fig. 5.1(b). The closer q comes, the larger the deflection of the electrometer’s
needle becomes. When ¢ stops moving the needle deflection does not change. After
grounding the electrometer (fig. 5.1(c)) a measurable current flows which will be a
short discharging current pulse if the external charge does not move further. Else, if
the external charge moves continuously, a continuous current will flow which will be
the stronger the faster ¢ moves and will disappear when ¢ arrives at the electrode or,
more generally, when ¢ does not move anymore. This current can be used for forming
an electronic signal. Note that, as mentioned before, for a signal to form it is not
necessary that the charge is ‘collected’ by the electrode.

Since ionisation detectors are usually treated as current sources in equivalent cir-
cuits the current can be considered as the basic observable. By measuring the current
over a resistor or by integrating it on a capacitor the signal can be converted into a
voltage or a charge signal, respectively.
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5.2 Weighting field and Shockley—Ramo theorem
5.2.1 Weighting potential and weighting field

To obtain general statements about the formation of signals by moving charges we
initially consider a simple system of two electrodes, as sketched in fig. 5.2 (left). A point
charge ¢ moves in a closed volume bordered by outer and inner conductors, each of
them laid on a fixed potential. In this example the voltage between the two conductors
is V and the inner conductor is grounded. The voltage V leads to induction charges
Q@ and —@, respectively, on the electrodes. For a capacitance C of the arrangement
the induction charge is given by @ = C'V. The charge ¢q at location 7, induces an
additional charge AQ(7;). While moving the charge ¢ from 7 to 7y + dry the field of
the electrodes, Eg, does the work:!

AW, = q Ey d7. (5.1)
This work has to be delivered by the power supply (Wy ) and/or the field energy (Wg):
dWy +dWy +dWg =0. (5.2)

If the voltage is kept constant (dV = 0) the work done by the power supply is only
determined by the charge d@Q extracted from the power supply:

AWy =dQV +QdV =dQV . (5.3)

Here we adopt the convention that d@ is negative if negative charge is moved into the
power supply (or, equivalently, if positive charge is taken from the power supply) and
that d@Q has the opposite sign as the charge induced on the electrode surface.

The total field energy in the volume 7 bounded by the electrodes is

1 q
W = 5ee / E%dr, (5.4)

where € is the electric field constant, also called vacuum permittivity, and e the relative
permittivity. In the following it will be shown that this field energy does not change
when the charge ¢ moves in the field.

As illustrated in fig. 5.2, the field E can be expressed as a linear superposition of
the field Ej generated by the electrodes (without charge in the volume) and the field

—

E, generated by the additional charge:
E=FEy+E,. (5.5)

According to (5.1) the work on the charge ¢ will be done by the field E; at the position
of the charge, while the field generated by the charge q itself, Eq, does not contribute
to the work, as follows from the laws of electrodynamics.

Accordingly, the potential ¢(7) in the volume bounded by the electrodes can be
represented by the sum of a potential ¢g without charge ¢ and the potential resulting
from the additional charge ¢:

IThe particle carrying the charge q usually gains kinetic energy by the work of the field. This
energy is mostly dissipated in interactions with the detector medium. However, for the considered
energy balance of the electrode system only the delivered work of the field is relevant, no matter how
this energy is dissipated.
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Fig. 5.2 Sketch illustrating the movement of a charge in an arrangement of potentials. The
arrangement on the left hand side with the inner conductor at ground and the outer conductor
at the potential V' can be decomposed into the two arrangements on the right-hand side. See
also the discussion in the text.

O(7) = Go(7) + ¢q(7) - (5.6)

The boundary conditions for the potentials on the outer and inner electrode surfaces,
S, and S;, respectively, are

()]s, = do()]s, =V,
o(7)|s; = ¢o(7)]s, =0, (5.7)
¢Q(F)|Sa = ¢q( )|Sl =0.

Hence the potential ¢q fulfils these conditions given by the fixed voltages whereas the

potential ¢, due to the charge ¢ is to be determined with all electrodes grounded. The
potentials result from the solutions of the Laplace or Poisson equation,

=3

303

Ao =0, (5.8)
Agy = ——L5(F—7y), (5.9)

€€Q

with the boundary conditions (5.7). The corresponding fields are

Ey = -V, (5.10)

E,=—Vo,. (5.11)

Using Green’s theorem one can show (see e.g. [512]) that the field energy of a static
electrode field (approximately also of a low-frequency field) is also separable into the
two components from the electrode field and from the point charge field:

Wg =Wg, + WEq . (5.12)
Under a movement of the charge g both these field energy contributions do not change,

dWg = dWEO + dWEq =0, (5.13)

since according to the assumptions, the field EO is static because of the constant
voltage and the field Eq neither does work on the charge ¢ nor does it exchange energy
with the power supply as the electrodes are kept on fixed potential (here on ground).
Therefore it follows from (5.1), (5.3) and (5.13):

AW, +dWy = ¢Egdi +dQV =0 =  dQV = —qEydr. (5.14)

This means that the work on the charge q is exclusively provided by the voltage source
yielding
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dQ = fq%df'. (5.15)
v
The field Ej is given by the geometry of the electrode arrangement and its absolute
value is proportional to V. This means that in (5.15) the quantity Ey /V and thus also
the induced charge d@ are independent of the applied voltage V. Hence we can simply
set the voltage to V' =1 (in any units) to determine the so-called weighting potential
and the corresponding weighting field:

_ %
=7
Thus the weighting potential ¢,, is the specific potential ¢y that solves the potential
equation (5.8) with the boundary condition V' = 1. According to its definition ¢,, is
dimensionless and E,, has the unit of an inverse length. In the following we will show
that the weighting field concept goes beyond a simple division by V', particularly when
dealing with multi-electrode systems.
The charge signal in (5.15) can now be expressed using the weighting field:

bu Ey=-Vo,. (5.16)

dQ = —qE,, dr. (5.17)

The time evolution of the induced charge is given by the charge motion ¥, and cor-
responds to the signal current,? which is drawn from the voltage source while keeping
the voltage constant:?

. dr
is=——=qFE,7p with ﬁD:%. (5.18)
In general, the direction of the charge velocity ¥, can be different from the direction
of the weighting field E,,, for example in the case of a superimposed magnetic field or
in multi-electrode systems (see next section for the generalisation to systems with an

arbitrary number of electrodes).

Presence of polarisation charges. We have already pointed out that the weight-
ing field depends only on the geometrical arrangement of the electrodes. For the deriva-
tion of the weighting field we did not explicitly exclude the case that dielectric polari-
sation charges exist in the detector volume. The relative permittivity € enters into the
field energy Wg term in (5.4) and in the potential equation for the point charge (5.9).
Therefore it might be surprising that the result for the weighting field is independent
thereof. The reason is that the field of the point charge is inversely proportional to €
because the divergence of the field is

—

VB, =-Lsi-r,). (5.19)

€€p

For the induced charge this permittivity dependence is cancelled because, according
to Gauss’s theorem, the charge induced on the outer conductor is given by

AQ = 660/ E,dS. (5.20)
Sa

2See the remarks on the sign convention for the induced current in section 5.2.4.
3For current and voltage signals, ig(t) and vg(t), respectively, lower case letters are used.
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The electrode signals are independent of the polarisation charges in the volume be-
tween the electrodes to the extent that the dielectric properties of the medium can be
treated linearly.

Presence of space charge. In practice it is important that the weighting field is
also independent of possible space charge in the detector medium, as long as the space
charge remains locally fixed. An important example is the space charge in a depleted
semiconductor layer. Though the space charge changes the electric field that causes
the movement of the charge, and thus the drift velocity v, it does not change the
weighting field. This can be explained as follows. In fig. 5.2 one can add a space charge
contribution with the density p in the inner volume and with vanishing potentials on
the electrodes. This corresponds to an extension of the potential in (5.6) by a potential

¢P(F)7

O() = ¢o(7) + ¢q () + & (7") , (5.21)
which fulfils the Poisson equation with boundary conditions:
Ap, = —é with  ¢,(F)|s, = ¢(7)ls, = 0. (5.22)

Considering the energy balance for this field shows that it does not contribute to the
signal. Since the electrodes are grounded no energy can be exchanged with the power
supply, and since the space charge is stationary the field energy does not change either.
Both together lead to the conclusion that this field cannot do work on the point charge
and thus neither contributes to the energy balance (5.14) nor to the weighting field.

Signal computation using weighting fields. An important advantage of signal
computation by means of weighting fields according to (5.17) and (5.18) is the decou-
pling of the charge motion (caused by the electric field) from the field which determines
the charge induction. The direction of motion does not have to coincide with the direc-
tion of the weighting field. Such a situation arises, for example, if the charge motion
is influenced by a magnetic field, or if the field is formed by many electrodes (see
next section). Another advantage is that the algorithms can simply be extended to
systems with an arbitrary number of electrodes. The task to compute the signals of a
moving charge on all electrodes, which appears in the first instance confusingly com-
plex, becomes quite manageable by employing the Shockley—Ramo theorem as will be
discussed in the next section.

5.2.2 Shockley—Ramo theorem

We consider an arrangement of k electrodes to which voltages Vi, Va,..., Vi are ap-
plied. Thanks to the superposition principle the potential generated by the electrodes
¢0(7) in the space between the electrodes can be represented by a sum over different
configurations of potentials ¢; (i = 1,...,k). For each configuration ¢ all electrodes
remain at a potential 0 except for the potential of the electrode i which lies on its
actual voltage V; (fig. 5.3):

k

L . . (lsle:Vvl
aso(r)—;@(r% with e =0, j#£i.

(5.23)

The potential ¢ is defined analogously to the decomposition (5.6) or (5.21). That
means ¢ is the potential between the electrodes calculated without including the point

£20Z 1290100 £0 U0 Jasn Ateigi NYID Aq GH9€/500q/woo dno olwapeoe//:sdiy woly papeojumoq



Section 5.2: Weighting field and Shockley—Ramo theorem 133
Fig. 5.3 Schematic illustration of

V, 0
\7 Ys (/ Y a system with k electrodes lying on
respective potentials V; (i =1,... k).
= This system can be represented by
\ / i=1 \ / a sum of k arrangements, each one
Vi ! 0 0 with another electrode on its actual

0 potential and all others grounded.

M =

Kolanoski, Wermes 2015

charge and possibly existing polarisation and space charges. The weighting potential
and weighting field, respectively, for each configuration ¢ are

¢w,i(7?) = % 3 Ew,i = _ﬁcbwi . (524)
Each weighting potential ¢,, ; individually fulfils the Laplace equation with the above
defined boundary conditions V; = 1 and all other Vj; = 0:

Ad)wﬂ(F) = 0, With ¢w,i|5’i = 1, ¢w,i|5j¢i = O (525)

Generalising (5.17) and (5.18), the Shockley-Ramo theorem [891,806] states that the
signal induced by a moving charge ¢ on an electrode i is given by the weighting
potential or the weighting field of the potential configuration ¢;(7):

dQ; = —q E,, ; dF,
(5.26)

iS,i = qu,i Up -

Here and in the following the charge signal d@; has the sign as adopted for (5.3): ‘dQ;
is negative if positive charge is taken from the power supply and has the opposite sign
to the charge induced on the electrode surface’. In the following we denote d@); and ig ;
as defined in (5.26) as ‘signal charge’ and ‘signal current’, respectively. The Shockley—
Ramo theorem implies that the signals d@); or ig; on an electrode do not directly
depend on the strength of the electric field between the electrodes or on the applied
high voltage. However, the electrical field usually determines the direction and the
velocity of the charge motion and thus according to the Shockley—Ramo theorem (5.26)
the signal shape. The weighting field Ew,iv which depends only on the geometry of the
arrangement, determines the signal on the electrode i generated by the movement of
the charge with the size and sign of the signal current being proportional to the velocity
component in the field direction. Figure 5.4 shows an example with four electrodes.
The weighting field and the actual electric field, and thus the direction of motion of
the charge, have different orientations at the position of the charge. If in addition
space charges are present, as in semiconductor detectors, then even in two-electrode
systems the weighting and electric fields are no longer proportional. For instance, in
a parallel plate capacitor with homogeneous space charge the electric field increases
linearly with the distance x from an electrode as E o x. In contrast the weighting
field remains constant, given as E,, = 1/d where d is the electrode distance.

The Shockley—Ramo theorem was proven in the previous section for a two-electrode
system using energy balance arguments. The generalisation to multi-electrode systems
only exploits the superposition in (5.23) in addition and the fact that in the configura-
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Fig. 5.4 Example of an arrangement of four electrodes. (a) Actual field and potential configu-
ration and the resulting direction of motion of a charge; (b) Configuration for the computation
of the weighting field corresponding to electrode 1. Field profiles are depicted by arrows and
potential contours by dashed lines.

tion where all but one electrode are grounded (as in fig. 5.2) the grounded electrodes
do not perform work.

In several publications it was clarified that the weighting potential should be com-
puted without including stationary charges (space charges) and polarisation charges
[572,282,447,512], as long as the dependence of the polarisation on the applied voltage
remains linear.* The proof has been sketched at the end of the previous section (see
also egs. (5.19) and (5.20) on page 131).

Extensions of the weighting field method as shown here and in the following can
be found in the literature. Time dependent weighting fields are treated in [449]. For
silicon it was shown that time-dependent weighting fields are required to describe the
response of substrates with un-depleted or partially depleted regions [822] which are
(partially) conductive. To what extent this affects silicon sensors damaged by radiation
(see section 8.12.1) has been studied in [875] concluding that the weighting field of
a highly irradiated silicon detector is about the same as that of a fully depleted,
undamaged detector due to a compensating effect, since by irradiation the resistivity
of the substrate is changed (see also section 8.12.1).

5.2.3 Recipe for the computation of signals on electrodes

For practical applications of the Shockley-Ramo theorem a recipe for the step-by-step
calculation of signals is given here:

— Determine the weighting field E_"w,i(r? ) of an electrode i by setting the potentials to
Vi=1and V4 = 0.

— Determine the real field E(7) between the electrodes.

— Determine the drift velocity o5 (7(t)) of the charge ¢ moving along the trajectory
7(t); without a magnetic field the velocity is 7, (7(t)) = pE(7(t)), where p is the
mobility (see chapter 4).

4The general case which includes nonlinear behaviour of the medium and space charges is discussed
in [500].
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— Determine the signal current according to ig ;(t) = qu,i Up.

Knowing the space-time relation 7(t) one obtains the time evolution of the signal
current ig;(t) at the electrode 7. Integrating the current over the time interval ¢y to ¢
provides the detected charge:

t t
Qs.i(t) = —/ igi(t")dt’ = —q/ Ey; Updt (5.27)
t() t(J

t)
- / VG dF = @i (7)) — dua(F(t0))]
7(to)

Here the relative sign is fixed by the ‘conventional current direction’ (see explanations
in the next section).

5.2.4 On the sign of the induction current

A current I is defined as the integral of the current density j over the area A that j

passes:
Iz/j'dA’. (5.28)
A

The direction of the current density is unambiguously given by the velocity vector
¥p of charge carriers:
Jj=nqvp, (5.29)

where n is the density of the charge carriers and q is their charge. For positive charges
the current density vector has the direction of the charge movement and for negative
charges the inverse direction. In the definition of (5.28) the size of the current is
determined but not its sign since the orientation of the area A can be arbitrarily
chosen. We define the ‘conventional current direction’ as the direction of the movement
of positive charges or the opposite direction of the movement of negative charges,
implying that the area in (5.28) is oriented in the direction of the current density 5
Consequently, with this definition, the motion of free positive or negative charges in
an electric field always leads to a positive current.

The integral in (5.28) over a closed surface S with the surface’s normal pointing
outwards yields

dt

where the current flow corresponds to a decrease of charge Qinner inside the surface
area. The differential form of (5.30) yields the continuity equation,

% Jd anne7 = d pdV (530)

_Op

V-j= TR (5.31)
which is valid independent of any sign convention. When applied to a current node
that is surrounded by a closed surface, (5.30) yields Kirchhoff’s nodal rule. According
to this rule the sum of all currents at a node is zero, provided there is no source or sink
in the node, corresponding to dQ;nner = 0. Thus, the nodal rule controls the relative
signs of incoming and outgoing currents at a node.

We consider now a charged, free-floating capacitor which stores a charge Q¢ > 0

and —Q¢ on its positive and negative electrode, respectively. A discharge, either by
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136 Chapter 5: Signal formation by moving charges

shorting the electrodes or by generating ionisation charges in the volume between the
electrodes, leads to a decrease of the charge on the positive electrode (dQ¢ < 0) and
to an increase on the negative electrode. Adopting the ‘conventional current direction’
the discharge of a capacitor always leads to a positive current:
__dQc . o

I= T (dQc < 0) (conventional current direction) . (5.32)
That a positive current leads to the decrease of charge according to (5.32) might
not seem very intuitive and therefore the sign of the current is often reversed [800].
Adopting this convention the discharge of a capacitor leads to a negative current
accompanied by a decrease of charge on the electrodes:

_dQc : o
I= 5 (dQc < 0) (inverted current direction). (5.33)

The discharge of a capacitor with capacitance C' which is decoupled from a voltage
source leads to a voltage jump across the capacitor,

1
dv = —d 5.34
v C QC7 ( )

which is always negative since in both conventions dQ¢ is negative.

Both sign conventions for currents are used in the literature. For the derivation of
the Shockley—Ramo theorem usually the conventional current direction is chosen (for
example in [512]), while for the description of signal processing the inverted current
direction is preferred (e.g. in [799]). Often the conventions are swapped even within
an article or talk when turning from the theoretical description of the Shockley—Ramo
theorem to applications. Therefore, when the sign of the currents is important, one
should pay attention to the convention used.

Naturally the signs of the physically observable quantities, like charges and volt-
ages, have to be independent of the convention. In fact, the charge induced by a positive
charge on a conductor surface is always negative. When the positive charge moves away
from the electrode the induced charge will become more positive. At fixed electrode
potential this positive charge will be delivered by the voltage source. The change of
the induced charge on the electrode is positive but according to the convention we
used in (5.3) the charge taken from the voltage source has the reverse sign.

5.3 Signal formation in two-electrode systems without space
charge

To begin the discussion of signal formation we restrict ourselves to systems with only
two electrodes, without space charge and without magnetic field (p = 0, B = 0). In
such a situation the drift velocity of a charge usually has the same or opposite direction
of the electric field. Polarisation charges in a linear isotropic medium with a relative
permittivity € # 1, should not be excluded (according to the Shockley—Ramo theorem
current and charge signals do not depend on polarisation). Furthermore we assume
that the charges drift in the electric field along the field lines (without magnetic field)
with a velocity that is constant for a given field strength. We further assume that no
charge is lost along the drift path. Examples for such systems are ionisation chambers
filled with a gas or a liquid as well as gas-filled proportional and drift chambers. For
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Fig. 5.5 Parallel plate detector (plate capacitor) as ionisation chamber. The figure shows
examples for the generation of a point-like primary charge distribution by a photon and of a
linear charge distribution by a through-going charged particle. The ionisation charges will be
sucked to the electrodes by the electric field generated by the applied voltage V5. In (a) the
current of the ionisation charges is measured; in (b) the voltage drop, caused by the current
flow over the resistor, can be recorded (here the signal readout is assumed to be high-ohmic).

signal formation it is an important property of gases and liquids that the drift velocity
of electrons for usual drift fields typically is about three orders of magnitude larger
than that of ions.

5.3.1 Signal formation in homogeneous electric fields

We consider an ionisation chamber consisting of a parallel plate capacitor with an
approximately homogeneous electric field (fig. 5.5). When charged particles or photons
deposit energy in the chamber medium, free charges are created which then drift to
the electrodes. With the plate distance d, the plate area A and an applied voltage V}
the electric field and the capacitance are

Vo . eco A

E=-22¢ = . .
del’ C d (5.35)

The weighting field for the readout of the positive electrode is obtained with V5 =1
and V = 0 on the opposing electrode:

Ey=—=¢,. (5.36)

Electron—ion pairs which are generated in the capacitor volume are separated by the
electric field and move to the opposite electrodes with constant drift velocity. Drift
with acceleration will be treated in section 5.4.1 for configurations with space charge.

Local charge deposition. We will assume that an electron—ion pair with charges
g~ = —e and ¢7 = +e is generated at x(, for example by absorption of a photon,
and that the charges drift to the corresponding electrodes. According to the Shockley—
Ramo theorem (5.26) the signal current is

qi

- e
is =q"E,T, = — 7 iy = —vp (5.37)
where v} = |7F| is the magnitude of each of the vectors and e = |¢*| is the elementary
charge. Since charges with opposite sign move in opposite directions the signal current
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138 Chapter 5: Signal formation by moving charges

of both charges is positive (employing the conventional direction), as required for a
discharge current (see section 5.2.4). Integrating over the time until the charges reach
the electrodes,

d _
=1 -0 (5.38)
vg vy

yields the total signal charge:

e T= T+
=05 +Qf = -7 / v, dt +/ vl dt (5.39)
0 0

__e (d=wo\ _e (T _ _
- (S2) - () =

The sign in front of the integral corresponds to the convention in (5.32). According
to (5.39) the contributions of the positive and of the negative drifting charges to the
total induced charge depend on the generation point zy. At the opposite electrode the
sign of the signal pulse is opposite since the weighting field in (5.36) for this electrode
is reversed while the velocities maintain their directions.

In typical ionisation chambers the contributions of both charge components to the
signal currents are very different due to the different drift velocities for electrons and
ions in gases and liquids (see above):

igzgv; > z‘gzgvg. (5.40)
This is depicted in fig. 5.6. The instantaneously starting current is different in mag-
nitude for electrons and ions but for one charge type it has the same magnitude on
both electrodes, independent of zy. This changes if the electrodes are segmented (see
section 5.5).
The signal charge (5.26),

dQE = —itdt = fSU;JDEdt, (5.41)
leads to a measurable voltage change on a capacitor if the electrodes are isolated from
the voltage source or decoupled from it by a high resistance R (see fig. 5.5(b)):

g = %dcﬁ = —%Ewdf —é vEdt. (5.42)
The voltage change of a discharging capacitor is always negative, as was already
pointed out in connection with (5.34). In the equation above C' is the detector capac-
itance including possible parasitic capacitances of the wiring. Note that the relative
permittivity e enters through the capacitance C' into the computation of the volt-
age signal while the induced currents and charges are independent of the polarisation
charges, as argued in section 5.2.1. To be able to integrate the charge the resistor R
in fig. 5.5(b) has to be chosen such that the time constant for charging the capacitor,
T = RC, is large compared to the drift times.? Then the time evolution of the voltage
signal vg(t) is

5The integration of the induced charge accompanied by a corresponding voltage change over the
electrodes does not satisfy the conditions under which the Shockley—Ramo theorem was derived,
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Fig. 5.6 Schematic illustration of (a) current
and (b) voltage signals of a charge pair in an ion-

Kolanoski, Wermes 2015

|+

isation chamber in parallel plate configuration

as in fig. 5.5. Currents and voltages are given

v (t) by the equations (5.37) and (5.43), respectively.
For clarity of the illustration, the drift velocity

—~

0R==<
e vt U of the ions is set to only 1/3 of the electron
(b) V T velocity instead of the typical 1/1000.
vV +VF
L T i
e, _ ¢
_@(”D‘L“D) 0<t<min(T~,T7),
e
_@(d—fUO"’Ugt) T-<t<Tt,
vs(t) = vg (t) +vd(t) = . for (5.43)
—@(xo—‘rv;t) TH<t<T™,
_c t > max(T—,TT).
Cd

In fig. 5.6 we restrict ourselves to the case T~ < T since T~ is almost always smaller
than 7" due to the very different drift velocities.

Hence both the voltage and charge signals exhibit a linear increase with time,
with different slopes for the electron and the ion component, respectively (fig. 5.6).
If predominantly only the electron signal is observed, for example because the longer
drifting ions recombine, the magnitude of the signals become dependent on the charge
generation point, a feature which one usually tries to avoid.

For gas-filled ionisation chambers, as used for dosimetry, usually only the current
generated by many ionisation processes can be measured with a circuit, as in fig. 5.5(a).
Without gas amplification (see section 7.4.1) a single ionisation with a charge of about
10~ C is not measurable. One should also realise that a measurable current of, let’s
say, 1pA requires an ionisation rate of about 107 Hz. In denser media, solid or lig-
uid, ionising tracks also generate sufficient charge without amplification so that single
pulses can be observed.

Charge deposition along a particle track. Another important case, besides the
local charge deposition, is the generation of charge as a uniform line charge along a
track with a charge density dg*/dx = £Ne/d (fig. 5.5), which is for each charge sign
normalised to the total charge, qit = +Ne.

specifically at fixed voltage. We assume here that the voltage change is sufficiently small so that the
drift velocities do not change. Since the weighting fields are independent of the voltage the theorem
should also hold in this case. This argument has been confirmed for the examples discussed in this
chapter by comparing our calculations to results obtained employing the concept of time-dependent
weighting fields (see e.g. [449,820]).
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140 Chapter 5: Signal formation by moving charges

The current signal induced on the readout electrode by the movement of the charges
results from the contributions of all drifting individual charges. The charges contin-
uously reach the electrode leading to a linearly decreasing current. To determine the
current contributions at a time ¢ (5.37) has to be integrated over that part of the line
charge for which the charges did not yet arrive at the electrodes:

ig(t):% i?dxz?ﬁe(l—;) for0 <t < T~
ig(t)=0 U else -
" v d=vpt Ne Ne t .
ZS(t):FO ddw:ZI’*‘(l_T*‘) for0<t< Tt
iL(t) =0 else

where now T~ = d /v, and Tt = d/v} are for both charge carriers the longest possible

times to drift over the full detector thickness. After arrival of the last charge of each
type the corresponding current signal vanishes.

The charge and voltage signals (for high impedance signal readout) are obtained
by integrating the currents (5.44):

+ t e 2
vE(t) = Qsc(t) — —é/o ()t = —% (Tti -3 (Tti> ) . (5.45)

The total voltage signal is then (assuming the usual case T~ < T7):

vs(t) = vg () + v (t) (5.46)
_% T%+TL+ ;((;)Z(TZ)Q)] for 0<t<T-,
= Tz;(;f for T- <t<T,
_% for t>TT.

Initially the increase of the pulse with time is completely determined by the electrons
because of the about 1000 times slower ion movement. After the electron collection
time T~ = d/vg, the pulse develops with a much slower increase. In time-critical
applications often only the fast part of the pulse is utilised. From (5.44) one finds that
the total charge signal of the electrons on the readout electrode is

Ne

Qt_ot = _Ta (547)

thus about half of the total electron charge; the other half is due to the ion signal. This
holds independently of the angle under which a particle track crosses the detector. An
inclined track would however increase the number N of electron—ion pairs because of
the longer path length.

Example. A sampling calorimeter (see chapter 15) is composed of alternating layers
of metal plates in which particles generate showers and of ‘active’ layers for the de-
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0
(a)
< 501 Fig. 5.7 Signal formation on the electrodes of an
2 x=04d ionisation chamber configured as a parallel plate
o100 capacitor (plate separation d) for (a) a point charge
g 1501 N x=07d generated at the distance x from the anode and for
(b) a line charge along a line perpendicular to the
200 x=10d plates. The slope of the signal is in both cases domi-
0 (b) nated by the electron movement; on this time-scale
20k (< 1 ps) the ion signal shows a hardly noticeable
S ol é contribution. The maximal signal voltage (180 p'V
; § for the assumed 10000 electron—ion pairs and a
= 601 T- £ capacitance of 9 pF') will in (b) only be reached after
g0l | ¢ a very long time (ms), far outside the drawn time
range.
-100;

| |
200 400 600
t (ns)

tection of the shower particles. A common choice is lead plates alternating with gaps
filled with liquid argon.® A high voltage across the gaps sucks the ionisation charges
generated by the shower particles to the plates. Hence such a calorimeter is operated
as an ionisation chamber. The active medium is a liquid rather than a gas because of
its higher density and thus higher signal yield. However, this does not change the prin-
ciple features of signal formation as discussed here. To give an example, we consider
typical parameters of a detector cell of such a calorimeter:

Vo =15kV, v} ~15cm/s, v, ~0.5cm/us,
d =235mm, A=16cm?, e=15 = C~9pF.

The resulting electron and ion collection times are

7™ = i =470ns, TH =
Up

= 15.7ms. (5.48)

§+‘ &

Thus the two collection times are different by more than four orders of magnitude.

Figure 5.7 shows the signal evolution for different primary charge distributions.
The distributions are (a) point-like at different distances from the electrodes and (b)
along a line perpendicular to the plates, each with 10000 electron—ion pairs. Because
of the distinctly different drift times the signal shape is mostly determined by the
electron movement. In both cases the signal rises over the full ion collection time to
the same value (=~ 180 uV).

As already mentioned, for time-critical applications often only the electron signal
is used. For use in a fast trigger, particularly at high event rates as at the LHC, the
signal can be differentiated by a high-pass filter with a suitable time constant. In this
way pulse widths of some 10ns at still acceptable charge resolutions can be reached.

6This calorimeter type was realised, for example in the ATLAS detector [4] at LHC and in the H1
detector [34] at the HERA collider.
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Kolanoski, Wermes 2015 (a)

Fig. 5.8 Principle of a proportional counter tube with an anode wire on the axis of a cylin-
drical cathode: (a) side view, (b) cross-sectional view. The charge is generated at the radial
distance ro from the axis. The detector has the capacitance Cge; including all parasitic capaci-
tances like those due to the wiring. Rgv is a high-ohmic resistor in series with the high-voltage
power supply (HV). In order to decouple the signal electrode from the high voltage the signal
is AC-coupled to an amplifier by a capacitance C' which is large compared to Cge:. The sig-
nal amplifier is here assumed to be an ideal operational amplifier with infinitely high input
impedance (see also section 17.2). Hence the actual input impedance is given by the resistor
Rs. This circuit corresponds to a high-pass filter differentiating the detector signal with the
time constant 7 = Rgs Cyet.

5.3.2 Signal formation in cylinder-symmetric electrical fields

The signal formation in a wire chamber with gas amplification (chapter 7) is signifi-
cantly different from that in a parallel plate assembly. The movement of the primary
charge carriers to the wire (anode) or to the cathode, respectively, can be neglected as
a contribution to the generation of the signal compared to the movement of charges
created in the amplification process. Due to the strongly rising electric field near the
wire the amplification only starts very close to the wire. Since the electrons therefore
have a very short drift path to the wire they contribute little to the signal. In this
case the signal is predominantly generated by the ions because in the high field near
the wire they reach high drift velocities comparable to those of electrons (for ions the
drift velocity is proportional to the field, see chapter 4).

As a typical representative of wire chamber geometries we consider a proportional
counter tube (section 7.2.2) to demonstrate important aspects of signal formation in
a cylindrical geometry. The counter tube has an anode wire with radius a, surrounded
by a cylindrical cathode with radius b, and a length [ which should be large compared
to the radii (fig. 5.8).

Weighting field. In section 7.2.2, field strength and potential for an applied volt-
age Vo as well as the capacitance per length are given by (7.5) and (7.6) for this
configuration:

- 1 Vo 7 Inr/b 2meg

(r) rinb/ar’ o(r) Olnb/a ’ : Inb/a (5.49)
The radius vector 7 is perpendicular to the cylinder axis with r = |7] being the radial
distance to the cylinder axis in this direction. This yields the weighting field and
potential for the computation of signals on the wire by setting V5 = 1 while keeping
the cathode on ground:
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= 1 1 7 Inr/b
E,(r)=-———-, w(T) = — . 5.50
) rlnb/ar Yu(r) Inb/a (5.50)
The potential fulfils the boundary conditions
dw(a) =1, ¢u(b)=0. (5.51)
Employing the Shockley—Ramo theorem (5.26),
T ) dQs = dT
dQs = —qFE,d =——==qFE,—, 5.52
Qs = —qE,dr  or g TR AT, (5.52)

we can compute the induced signals on the readout electrode (the wire).

Induced charges. We assume that at a distance ry from the wire N electron—ion
pairs are generated which are separated in the field of the chamber. The whole charge
which is induced on the wire contains contributions from the movement of the electrons
from 7o to a and of the ions from ry to b, respectively:

o 1 “1, Inrg/a
Qs =—( Ne)lnb/a /TO Tdr— Ne nb/a (5.53)
1 by Inb/rg
+_ I B MO
Qs = (+Ne)lnb/a /TO Tdr Ne mb/a (5.54)

The sum of both charge contributions,

Q¥ = Q5 + Q& = —Ne, (5.55)

is the charge which flows from the anode to the voltage source (the same charge, but
with reversed sign, flows from the cathode to ground). The total charge is independent
of the position g where the primary charge pair was created. However, in contrast
to an arrangement with a homogeneous field as discussed in the previous section, the
contributions of the electron and ion movements are in general very different and
dependent on ry because of the 1/r behaviour of the field. The ry dependence of the

ratio of the contributions is
o 1
(QS) _ lnro/a (5.56)
0

QJSr ~Inb/rg

It is instructive to consider two special cases: (a) charge generation at a large distance
from the wire (rg > a) and (b) very close to the wire where the amplification sets
in. For typical parameters of a wire chamber with wire radius @ = 10 um, cathode
distance b = 10 mm and for example ro = b/2 the ratio is

QS) ~9. 5.57
<Q§ ro=b/2 ( )

Hence in this case the electron component determines the signal because the electrons
travel through a region with much larger weighting potential difference (see eq. (5.27))
than the ions.

In detectors with gas amplification, however, the charge movement in the drift space
practically does not play a role for the signal. Here it is essential that the overwhelming
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part of the charge is generated in an avalanche very close to the wire. In fact, about
half of the total charge is generated over the last interaction length, \;,,. Therefore we
approximate the distance of the charge production from the wire by € ~ \;, = 1 um
(ro = a + ¢€) yielding an estimate of the ratio (5.56):

<Q§> ~0.01 — 0.02. (5.58)
QS ro=a+e

Hence, in detectors with gas amplification, the integrated charge signal is dominated
by the contribution from the ions (generated in the avalanche).

Time evolution. Because of the dominance of the ion signal we first consider the
contribution of the ion movement to the time evolution of the current signal. The ions
start near the anode at ry =~ a where the field strength and hence the initial velocity
of the ions is very high. According to the Shockley—Ramo theorem (5.26) the time
dependence of the induced current is

i&(t) = Ne m;@. (5.59)

The radial dependence r(t) is obtained from the drift motion of the ions:

dr uwtvy 1
& vt =By = L0 5.60
dt vp = prE(r) In(b/a) r’ ( )

where p* is the mobility of the ions in the gas (see section 4.3, eq. (4.45)). The
integration of this differential equation yields (with ro = r(t = 0)):

(t) 1 +V
_ L2y 2y B Yo
/ rdr = 5 (r?(t) — rg) b/ t

T0

2utV, t
- ’"“):\/Tgﬂgb/st:“ L+ (5.61)
0

with a characteristic time ¢ defined as

+  rglnb/a

=2 .62

This parameter roughly corresponds to the rise time of the ion signal at small ¢. The
time an ion needs to arrive at the cathode is

2 2
b* — g

TT=t(r=0b)=tf—5"2. (5.63)
To

The result 7(t) \/ﬁ in (5.61) shows that the ion movement is fast at the

beginning (¢t < td) and slows down with increasing distance from the wire because
of the strongly falling electric field. Inserting (5.60) and (5.61) into (5.59) yields the
explicit time dependence of the ion signal:

o Ne 1
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As opposed to the ions the electrons travel only a very short distance (few micrometres)
after the onset of gas amplification and thus generate only an extremely short signal.
If one assumes for the electrons in the gas amplification region an average free path
of Xion = 1 pum and a constant velocity of about v, ~ 5m/ps (see section 7.4.1) the
typical time until the arrival of the electrons at the wire is

1 um
5m

This intrinsically high time resolution can hardly be exploited in drift chambers be-
cause the primary ionisation is spatially distributed, yielding an arrival time smearing
in the order of nanoseconds. Since the electrons contribute only about 1% of the ion
signal, as estimated above, we will focus in the following on the ion signal.

The time dependence of the charge signal is obtained by integration of (5.64):

Ne Eoar Ne t
A~ O () = — - _ In(1+—]. 5.66
Qs(t) ~ Qg(t) 2lnb/a/0 t 4+t 2Inb/a n< +tf{> (566)

T~ = (rg—a)/vy = us = 0.2 x 10725, (5.65)

The induced charge will be accumulated on the electrode if the voltage source is
decoupled by a high-ohmic resistor yielding a voltage signal with a rise time determined
by the ion drift (see footnote on page 138) and a height depending on the capacitance
of the detector Cger = Ci 1 (see (5.49)):

_ Qs(1) Ne Ne

t
t) = = —yoln 1+ — ith = = . (5.67
vs(t) Clet vot ( * tg) W vo 2Inb/a Cyet 4mepl ( )

This means that the peak voltage only depends on the total charge and on the length
of the counting tube, but not on radial dimensions (provided that additional stray
capacitances, caused e.g. by the connection to the signal readout, can be neglected).
As a quantitative example we discuss the voltage signal of a proportional counter

tube with typical parameters:

a=10pm b=10mm, [ =02m = Cg = 1.61pF,

Vo =2kV, put(argon) =1.7cm?V-1is71

G=10* ¢=100e xG=1.6x10"13C.
In addition to the already introduced parameters the gas amplification G is also listed.
In fig. 5.9(a) the curve with the label ‘7 = oo’ presents the voltage signal according to
(5.67) for these parameters. In this example the characteristic times are

Tt =1ms and ta'zlns.

Hence the total charge collection time is typically about 10° times larger than the
characteristic signal rise time. The maximal voltage signal is reached after the time
T+ yielding
Ne T+
TH)=—————In(1+— | ~—-100mV.
vs(T™) 2Inb/a Cyet n( + tg) m

However, because of the steep voltage rise at small times, due to the high ion velocities
near the anode, nearly 20% of the voltage is already reached after a time of 10 ta' =
10 ns:

vs(10tf)  Inll

~ ~ 0.17.
vg(TT) In106 0
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(a) Signal evolution in a counting tube. (b) Suppression of ‘pile-up’.

Fig. 5.9 (a) Signal formation in a cylindrical drift chamber with gas amplification. The
parameters are chosen as described in the text. The relevant time constants are tf = 1ns
(fast signal rise) and 7" = 1 ms (collection time for the ion signal). The different pulse shapes
show the influence of the differentiation of the signal with different times 7 = RsCget. (b)
‘Pile-up’ signals with and without RC filter. In the drawing it is assumed that the long ion
tails have been cancelled as well (‘ion tail cancellation’) so that the pulses quickly reach the
baseline (see section 17.3.5).

Differentiation of signals. To avoid signal pile-up in high rate experiments the
signal is often cut off by differentiation employing a suitable high-pass filter, as depicted
in fig. 5.8(a): The anode wire is connected to high voltage via a high-ohmic resistor
Ry (some MQ). The voltage signal generated by the drifting charges rises at the input
of the amplifier, which ideally has an infinitely high input impedance and is decoupled
from the high voltage by the coupling capacitor C'. The actual input impedance is
given by Rs. A voltage change at the amplifier input leads to a current i(t) = v(t)/Rs
across Rg which damps the voltage signal with a time constant 7 = Rg Cges as long
as the coupling capacitance C' is large compared to Cye;:

v(t) =vge /7. (5.68)

For a given detector capacitance Cyey = C)l (here 1.61 pF) the time constant is
determined by Rg. The further pulse shaping, including cancellation of the ‘ion tail’
by means of dedicated filter circuits, is described in section 17.3.

Each charge contribution at time ¢’ contributes to the voltage signal with an ex-
ponential factor as in (5.68). Altogether the result is that the integrand (5.66) has to
be weighted with an exponential function:”

’

p =t
e T e | T+ . to
’Us(t) = —’U()/O mdt/ = —yge T |:El (T) — Ei (T):| s (569)

7This result fully agrees with the more general approach for the calculation of signals on electrodes
embedded in an electronic network using the concept of ‘time-dependent weighting fields’ as for
example described in [449,820], see also the footnote on page 138. This approach yields the voltage
signal in Laplace space (with the Laplace variable s, see appendix H):

El(Sto)
14+s7

v(s) = —vol exp(sto)
to

Here vg is defined as in (5.67) and E; is the exponential integral function for complex values of the
argument. The inverse Laplace transform yields (5.69) as expected.
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with vy defined as in (5.67). The function Ei(z) is the ‘exponential integral’ (see
e.g. [255,976]). Figure 5.9(a) shows the signal at small times for different values of
the time constant 7 = RgCyet. The curve for Rs = oo, corresponding to 7 = oo,
depicts the signal development without differentiation. The exponential decay of the
differentiated signal is flattened at larger times due to the Ei terms in (5.69), caused
by the persistent ion current.

Figure 5.9(a) demonstrates that by differentiation and possible further pulse shap-
ing on a time-scale of about 10 ns, only a fraction of the total charge will be measured,
typically about 20% (‘ballistic deficit’, see also section 17.3.4). The loss can be accepted
since in turn a better signal separation is achieved at high rates (fig. 5.9(b)) improv-
ing the resolution of closely succeeding hits from nearby particle tracks (double-track
resolution). At high rates differentiation alone does not prevent a shift of the voltage
baseline due to the very long ion signals. This can make the signal thresholds rate de-
pendent (fig. 5.9(b)). With smart electronic circuits, called ‘ion tail cancellation’ and
‘baseline restoration’), a baseline shift can be mostly suppressed (see section 17.3.5 or,
for example, [799,905]).

With such a differentiation of the signal the very fast electron signal fully con-
tributes so that the signal fraction due to electrons can increase to about 5-10% as
compared to the 1-2% fraction of the full charge, as calculated in (5.58).

5.4 Signal formation in detectors with space charge
5.4.1 Charge and current signal of an electron—hole pair in silicon

A semiconductor detector resembles a parallel plate detector, filled with a dielectric
(see chapter 8). The difference, however, is that the electric field is not constant because
of space charge in the depletion zone of the detector. The field decreases linearly from
the pn junction side to the opposite side of the detector (fig. 5.10). In the following
we refer to a silicon detector with a weakly n-doped substrate material on which a
more strongly doped p-layer is applied. Starting from the pn junction the depletion
layer grows with increasing inverse bias voltage into the detector. The nt layer on the
opposite side serves as contact. Other arrangements and more details are described in
chapter 8.

At full depletion the field reaches zero at the n™n™ boundary at the side opposite
to the readout electrode of the detector. At incomplete depletion (underdepletion), the
field ends at the conductive, (still) undepleted layer (fig. 5.10(a)). If the applied voltage
is larger than required for full depletion a constant field component is superimposed
on the linear component (overdepletion). The field is given by

. 2v, V-V,
B(x) = - {dfp(d — )+ dd"} €

_ V+ Vdep 2Vdep —

_ { - i, e, (5.70)

where V' is the applied voltage and Ve, is the voltage necessary for full depletion. The

voltage Vye, follows directly from (8.59) in section 8.3.1 and depends mainly on the

doping density Np and the thickness of the detector d:
€ND de

Vdep ~ 7660 5

(5.71)
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Fig. 5.10 Layout and electric field of a silicon detector. (a) Sketch of a silicon detector with
incomplete depletion (underdepletion) and e/h pair generation at xo; (b) linear behaviour of
the electric field for full depletion as well as for over- and underdepletion.

At sufficiently large overvoltage the conditions approach more and more those of a
parallel plate detector with constant field (see section 5.3.1). With the abbreviations

V + Vdep 2Vdep
a = T ) b = d2 9

(5.72)

the electrical field reads .
E(z)=—(a—bz)é,. (5.73)

We now consider an electron—hole pair (e/h) generated at x = zo (fig. 5.10(a)).
The electrons drift in the direction opposite to the field and the holes in the direction
of the field:

1 /a .

Ve = —fe By (z) = +pte (@ — bz) = Jr?e (g - x) = Te, (5.74)
1 /a .

vp = +ppEr(x) = —pp (a — bx) = o (Z — sc) =y .

The equations use the characteristic times for the charge carrier movements,

1 d?
Te = = . 5-75
h ,U/e,h b 2/J/e,h Vdep ( )
The solutions of the differential equations (5.74) are
1
xe(t) = % - (% - mo) e e v, =, = (% - :E()) p e /e, (5.76)
1
xh(t):%—<%—xo) et/ vhzih:—<%—xo) T—het/”.

Thus the result is an accelerated movement of the charge carriers. At high field
strength, however, the drift velocity can saturate leading to conditions as in the case
of parallel plates with constant drift velocity, as described in section 5.3.1.

At full depletion the electrons reach the electrode at xz. = d at the time ¢t = T~
The holes reach the electrode at z;, = 0 at the time ¢t = TF. With (5.76) we obtain
for these times:
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a — bxg
a—>bd "’
The collection times are finite only if the denominators are positive. With a, b from
(5.72) this means for electrons:

T~ =7.1n Tt =7,1n

. 5.77
a — bxg ( )

a—bd >0 = V>V, (5.78)

For smaller voltages V' than the depletion voltage Vg, the electrons no longer reach the
electrode. However, as long as the charges are created in a region of non-vanishing field,
there are still signals induced at the readout electrode (top electrode in fig. 5.10(a))
due to the movement of both carriers, albeit smaller than at full depletion. Thus, in
order to obtain full signal efficiency, the applied voltage should always be larger than
the voltage needed for full depletion. In the following we use the upper electrode in
fig. 5.10(a) as readout electrode (hole collection) for which we will compute the current
signal. According to the Shockley—Ramo theorem (5.26) the current signal is (for the
sign convention see section 5.2.4):

i§"(t) = qEwTen (5.79)

As argued in section 5.2.2 the weighting field is independent of stationary space charges
and thus the same as in the parallel plate configuration in section 5.3.1. Hence for the
upper electrode the weighting field is given by

- 1

Ey=—7 8. (5.80)

With that and the velocities in (5.76) we obtain the time evolution of the charge signal:

. el ra -
i) = am (Z - xo) et/ for t<TT,
(5.81)

1
ig(t) = € (g —x0> e t/me for t<T™.

The current signal ends when the charge stops drifting. Typical numerical values for
electron and hole mobilities in semiconductors are found in table 8.2 in section 8.2.1.
In order to obtain an estimate for the drift times we examine the characteristic times
in (5.75):

d? €€

B 2pte,n Vaep - He,neNp )

(5.82)

Te,h
For silicon detectors with €5, = 11.9 and typical doping concentrations Np = 102 cm ™3
(see section 8.3.1), 7. ~ 5ns and 75, &~ 15ns are obtained. Applying a voltage V =
1.5 Vyep (overdepletion, to get finite drift times for the electrons) and assuming charge
generation either in the centre of the detector or far away from the readout electrode
one finds for the drift times:

20 =05d = TT=057,="77ns,
29 =0.95d = T+t =147, =21ns,

r9=05d = T~ =117, =5.5ns,
0 =095d = T~ =027, =1.0ns.

(5.83)
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Fig. 5.11 Typical signal evolution for current ig(t) and charge Qs(¢) for electrons and holes
at the negative electrode of a silicon detector as depicted in fig. 5.10. The detector parameters
are: V =150V, Vgep = 100V, d = 300 pm. (a, b) Point charge with starting point g = %d for
N = 10000 elementary charges; (c, d) charged particle with N = 10000 elementary charges,
equally distributed along the track. The finite arrival time is ensured by 50% ‘overdepletion’.

Thus silicon detectors have a relatively short collection time for electrons and holes
and can be deployed as ‘fast detectors’.
The sum of the electron and hole components yields the total current (fig. 5.11(a)):

is(t) = i5(0) + (1)
(5.84)

_¢(a_ L _i/r - _ L t/m + _

where O is the Heaviside step function.
By integrating the current signal one obtains the induced charge signal Qg(t)
(fig. 5.11 (b)):

a—bxg

o [(1 - e—t/Te) o~ —t)+ (e t/mn 1) o(r+ —t)

+ (1 - e—T’/Te) ot—T7)+ (e T 1) ot — T*)} . (5.85)

Qs(t) = —e

The equation can be written in a more compact form as long as none of the charges
has reached the respective electrode:

a—bxg

Qs(t) = —e bd

(e t/mn e%/n) for t < T, T+. (5.86)

The first line in (5.85) shows the growth of the induced charge as long as the
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charges move. The second line contains the totally induced charges after the respective
collection times. Using the expressions for T+ in (5.77) the total charges can be written
as follows:

tot— __ a—bxo T /T d—JfO

QY™ = —e 5 (1 e ) =—e—, (5.87)
tot+ _ a—bxy T ___ %

Q'™ = —e 54 (e 1) e— - (5.88)

This yields the total signal charge originating from the movement of both charge
carriers:

QY = Q¥ + Q¥ =—e. (5.89)
With the detector capacitance C' the charge signal can be converted into a voltage
signal,

vs(t) = Qs(t)/C, (5.90)

which may be utilised for further electronic processing.

5.4.2 Signal shape for the passage of a particle

Computing the signal of an ionising particle with N e/h pairs equally distributed
along its track (fig. 5.10(a)) the contributions of the individual starting points zy have
to be superposed. Neglecting diffusion and applying (5.81) for the contribution of an
individual charge, the current signal of a particle track can be calculated. For a given
time ¢ the currents (5.81) of the individual charges have to be integrated over all those
generation points xy from which the charge did not yet arrive at the electrode at the
time ¢:

ig(t):—%%e_i ; o (%—x) de for 0<t<T. ..,
§nas~ 3 Thinn
ig(t)=0 else,
4 (5.91)

t a
i;f(t):—%%heJ“h /h (g—x) dr  for 0<t<T,. .
T

min

%(d—xh )_%(dQ_J;h,Q )

min min

it(t) =0 else.

Each current flows for up to the maximal drift time that is needed to pass the detector
thickness according to (5.77):

- _ a
Tmax =T (.’L'O = 0) :Telnm,
a (5.92)
T;a;v = T+(l'0 = d) = Th In m .
Charges starting at the integral boundaries z¢,,, and z", in (5.91) reach their re-

spective electrode at the time ¢ at which the coordinates are z.(t) = d for o = z¢,,,,
and xp,(t) = 0 for xg = 2, in (5.76). Solving the equations for z yields

e =0 (d _ %) o*Ht/Te. gh 2 (1 _ e—t/m) : (5.93)

max b
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Fig. 5.12 Schematic repre-
sentation of a cut through a
d y strip detector perpendicular
to the strips. The weighting
L potential ¢, (z,y) for the nth
X strip is plotted as computed
¢n.1 =0 d)n: 1 ¢n+1 =0 according to (5.94).

Kolanoski, Wermes 2015

Inserting (5.93) into (5.91) yields the current signal of a track passing perpendicularly
through the detector and, after integration over time, the charge or voltage signal. In
fig. 5.11(c,d) the result is presented for a particle with N = 10000 e/h pairs along its
track.

5.5 Signal formation in detectors with segmented electrodes

The previous discussions apply for two-electrode configurations with unsegmented elec-
trodes. However, often a position sensitive readout is desired which can be achieved
by subdividing the electrodes into smaller elements. Common examples are strip and
pixel detectors. We condider here a multi-electrode system with one-dimensional sub-
division into strips. The conclusions, however, to a large extent also hold for pixel
detectors with a two-dimensional subdivision (see e.g. [823]).

We assume that the strip width a is large compared to the distance between strips.
The strip length should be large relative to their width and the thickness of the detector
so that the problem can be treated as depicted in fig. 5.12. The figure shows the
weighting potential, delineated by lines of constant potential, for one of the strips,
taken as the readout electrode. With the above assumptions the weighting potential
can be computed by solving the homogeneous potential equation, A, (x,y) = 0, with
the respective boundary conditions on the electrodes (¢, = 1 on the readout strip,
¢ = 0 else):

sin(my) sinh(m§)

1
ow(z,y) = — arctan (5.94)
iy

cosh(mx) — cos(my) cosh(r§) -

Here z, y are the coordinates in the sectional plane, x lies in the plane with x = 0
in the middle of the considered strip and y perpendicular to it such that the elec-
trode planes lie at y = 0 and y = 1 (thus d = 1). This solution of the potential
equation can be found, for example, by means of conformal mapping,® as shown in
appendix B. Evaluating the potential numerically one has to ensure that the arctan
function is mapped onto the domain [0, 7] by accounting for the signs of numerator
and denominator separately.

In fig. 5.13(a) the weighting potential is plotted for different strip widths as a
function of the distance y from the electrode. For a very large strip width (¢ —
o0) the configuration approaches the geometry of a parallel plate detector with the
weighting potential depending almost linearly on the distance from the electrode. For

8Usually the computation of complex field configurations is performed numerically with the aid of
special programs (e.g. Garfield [959] or FlexPDE [415]).
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Fig. 5.13 Plots of the weighting potential ¢, according to (5.94): (a) ¢ as a function of
the distance y from the strip plane at x = 0 (strip centre) for different strip widths a; (b) ¢,
as a function of the distance x from the strip centre for different distances y from the strip
plane at fixed strip width a = 0.2; (¢) ¢ in two-dimensional representation at fixed strip
width a = 0.2. All lengths values are given in units of the detector thickness d.

small strips (¢ < 1), in contrast, the weighting potential has a steep slope near the
electrode. This means, according to the Shockley—Ramo theorem, that the strongest
signal contributions result from the charge movement near the readout strips or pixels.
Therefore this effect is called the ‘small pixel effect’.

Figure 5.13(b) displays the potential for a = 0.2 (e.g. 60 pum for a 300 um thick
detector) as a function of the horizontal distance x from the strip centre at different
depths y; in fig. 5.13(c) the same is displayed two-dimensionally as a function of = and
y. With sufficient distance to the strip plane, the weighting potentials for the ‘signal
electrode’ where the drifting charge is collected and its neighbour electrodes are very
similar. In the middle of the detector, at y = 0.5, the potential is nearly independent of
the z position, as can be seen in fig. 5.13(b). A charge drifting towards the segmented
electrode (strips or pixels) initially induces a broad surface charge distribution, causing
similar signals on several neighbouring strips. Upon further movement of the charge
towards the strip electrode the induced signal further increases on the signal electrode
while it decreases on the neighbouring electrodes. For electrodes whose dimensions are
small compared to the distance of the drifting charge from the electrode, the signal
development is the same on all strips (or pixels) for most of the time the charge moves.
It differs for the signal electrode and its neighbours only shortly before the drift ends.

The implications of the ‘small pixel effect’” have to be taken into account in the
design of a detector. This is particularly true if electron and hole mobilities are very
different (p, < pe) as for example for the semiconductors CdTe or CdZnTe, or if the

€202 1890190 €0 U0 Jasn Aseiqr NYID Aq SIS H/4000/Wwoo dno olwspeose)/:sdiy Wolj papeojumod



154

- N W b~ N

_ 4

depth

0 02 04 06 08 1

strip 2
(neighbour)

Chapter 5: Signal formation by moving charges

(b) +V,

x S, strip

~ depth

0 02 04 06 08 1

currenton strip 1 1.0 charge on strip 1 )
i — a=02 8 —a=02 )
- —a=03 - —a=03 o
| -— a=05 6r -— a=05 PR
- a=10 - ---a=10 Ry
0 02 04
current on strip 2 (neighbour) 0.5 charge on strip 2 (neighbour)
04F  _a=o02
— a=03
--a=05
---a=10
/”’ -\\\
=T e —— e _ N
3 = ==~ N
1 1 1 1 1 1 1 1 |
0 0.2 0.4 0.6 0.8 1.0

Kolanoski, Wermes 2015

Fig. 5.14 Weighting potentials (a,b) and resulting current and charge signals (c) for a strip

or pixel detector at different values of the strip width a (strip width and depth coordinate are
given in units of the detector thickness d). Strip 1 is the signal electrode where the charge is

collected, strip 2 is a neighbouring electrode. In (a) the weighting potential is shown for the

signal electrode (strip 1) and in (b) for the neighbouring electrode. A charge moving towards

strip 1 generates a monotonically increasing current signal (c). The charge signal increase as

well until it reaches its maximum at arrival. For the neighbouring electrode the current signal
crosses the zero line and the charge signal vanishes at arrival of the drifting charge on the

signal electrode.
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charge carriers can be trapped (see section 8.12). Let us consider an example where the
holes are very immobile and the electrons are trapped after a short distance. In such a
case the local absorption of a photon, at a distance from the readout electrode which
is large compared to the strip width, generates only a small signal which is evenly
distributed over several electrodes and thus is not very sensitive to the position.

Figure 5.14 presents the two situations where the charge drifts towards the mea-
suring electrode or towards a neighbouring electrode, respectively. According to the
Shockley-Ramo theorem (5.26) the current signal always has the same sign if the
charge moves towards the measuring electrode since the product of the velocity and
the weighting field, EwﬁD, does not change the sign. In this case the integral over
the current yields the value of the moving charge, +¢. In contrast, in the region of
the neighbour electrode the product E Wy changes sign, and thus also the current,
yielding a vanishing integral over the current corresponding to the fact that no charge
arrives at that electrode.

At the beginning of the charge movement the neighbouring electrodes see nearly
as much signal as the electrode on which the charge arrives. If the electronic readout
cuts the signal off after short drift times, for example to cope with high rates, several
neighbouring strips (or pixels) could have a similar signal—an effect which has the
same impact on a measurement as cross talk between channels.
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6
Non-electronic detectors

6.1 Cloud chamber 157
6.2 Bubble chamber 161
6.3 Photoemulsions 163

The first detectors which made trajectories of ionising particles visible were cloud
chambers, photoemulsions and bubble chambers. All of these ‘classical’ detectors can
not be read electronically. Today, cloud and bubble chambers have no or little rele-
vance anymore since the relatively cumbersome data acquisition and data processing
for these detectors is no longer competitive given the fast progressing developments
in electronics and its application to detectors. Only photoemulsions, despite their la-
borious evaluation procedures, are still employed in modern experiments if spatial
resolutions in the micrometre range are requested where emulsions are still unrivalled.
Today cloud chambers are often used for demonstration purposes, because they in-
structively visualise particle tracks from radioactivity and cosmic rays. They are also
relatively easy to construct and operate. Bubble chamber pictures are also often em-
ployed for demonstrations of whole reaction sequences and typical event topologies.
A guidance for the understanding of bubble chamber pictures is offered by CERN,
see [284]. For the visualisation of events in this book we will also resort to pictures
from cloud chambers, bubble chambers and photoemulsions, as for example in fig. 6.1
(see also figs. 2.3, 2.4, 14.1, 15.9 and 15.26).

Historically these detectors played a decisive role for the development of nuclear
and particle physics, see section 2.1. Until the beginning of the 1950s, particle physics
was explored employing cloud chambers and photographic plates; afterwards, until
the 1980s, bubble chambers played a prominent role for research at accelerators. For a
detailed description of these classical detectors one has to go back to older literature,
for example the contributions in the Encyclopedia of Physics ‘Nuclear Instrumentation
I from 1958 [330]. The newer developments on the subject of photoemulsions are
described in the volume on ‘Detectors for Particles and Radiation’ of the Landolt—
Bornstein series [345].

6.1 Cloud chamber

The cloud chamber, introduced 1912 by C.T.R. Wilson (Nobel Prize 1926), was the
first instrument with which particle tracks could be made visible and thus the particle
kinematics could be analysed. The principle relies on making the microscopic ionisation
charges, which a charged particle generates in a gas along its trajectory (section 3.2),
macroscopically visible. When a gas, saturated with water vapour, is in a supercritical
state, the generated ions form condensation nuclei such that the particle track becomes
visible via the condensing droplets (see fig. 6.1(a) and also figs. 2.3 and 2.7).
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Fig. 6.1 Visualisation of particle reactions by means of the detectors which are described in
this chapter. (a) Detail of a cloud chamber picture of a nuclear reaction [208]. An « particle
reacts with a nitrogen nucleus (in the filling gas of the chamber), the intermediate state
decays into a proton (thin line going to the left) and the oxygen isotope 'O (thick track
going to the right). (b) Bubble chamber reaction. Interaction of a pion beam (from left) in
a bubble chamber (BEBC, see section 6.2) filled with hydrogen. One sees the straight-lined
beam particles, primary vertices at which many particles are generated and secondary vertices
of decaying particles. Source: CERN. (c) Interaction of a secondary particle of the cosmic
radiation recorded by nuclear emulsion [793]. The picture shows a charged kaon (then still
called 7) that enters from the top right, comes to rest at the point P and then decays into
three charged pions. One of the pions makes a further interaction in the emulsion. Source:
The Nobel Foundation.

6.1.1 Expansion cloud chamber

In Wilson’s cloud chamber the supercritical state is reached by cooling of the gas vol-
ume through adiabatic expansion. The principle of the apparatus is shown in fig. 6.2(a).
A usually cylindrical gas volume is rapidly expanded by means of a piston movement.
The droplets which form along ionising tracks are illuminated from the side and pho-
tographed through a pressure-resistant glass pane which closes the cylinder on the side
opposite to the piston. In order to study nuclear radiation, radioactive sources can be
directly inserted into the gas volume (e.g. an « radiator as in fig. 3.21 on page 51).
Usually a magnetic field is superimposed perpendicular to the glass pane, so that the
track curvature lies in the plane of the photograph, as for example in fig. 2.3 on page
6.

At the beginning, cloud chambers were expanded in a random time sequence, with
the result that only a few per cent of the pictures contained interesting events. Blackett
and Occhialini reached an essential improvement of the data acquisition efficiency
by triggering the camera upon a coincidence of pulses from Geiger counters [209,
210]. Figure 6.2(b) shows a schematic sketch of an assembly used for studying cosmic
radiation [210]. The diffusion of the ions during the time between the particle passage
and the recording of the photograph after the termination of the expansion determines
the spatial resolution. A minimum of 10-20 ms is quoted in [210] for this time interval
which, however, was also selectively varied to make individual ion clusters visible. The
diffusion becomes smaller with either increasing pressure or larger mass of the ions,
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Fig. 6.2 (a) Functional principle of a cloud chamber; explanations are given in the text.
(b) Arrangement for the observation of cosmic radiation with a cloud chamber (adapted
from [210]). The cloud chamber has the shape of a disk with a sensitive volume of 13 cm
diameter and 3 cm depth. The chamber is set up vertically in order to allow the observer,
here a camera, to look perpendicular to the preferential direction of the cosmic radiation.
Three Geiger—Miiller tubes (B1, B2, Bj; diameter 2cm) are positioned above and below the
chamber. A coincident signal of the tubes triggers the expansion and the camera. A magnetic
solenoid field deflects the particles in the plane perpendicular to the camera view.

Oxygen Hydrogen

Fig. 6.3 Cloud chamber tracks in oxygen (left) and in
hydrogen (right) [209]. The lighter hydrogen ions diffuse
more strongly than the oxygen ions. Reprinted with kind
permission of the Nature Publishing Group.

as can be inferred from eq. (4.90). In fig. 6.3 tracks in oxygen and in hydrogen are
compared under the same conditions [209].

In principle, a cloud chamber picture can contain all information necessary for
kinematic reconstruction and particle identification. As a rule the pictures are taken
with two cameras and the kinematics is stereoscopically reconstructed,' yielding mo-
mentum and direction of the particles. By counting the number of ionisation clusters
(and possibly of § electrons) the velocity can be determined and therefore in principle

11t is interesting how tracks were stereoscopically reconstructed without the help of a computer
[996,210]. For this purpose the developed photographic plates were inserted again into the cameras,
illuminated from the back and thus back-projected through the camera optics. A mechanical track
model could then be aligned with the intersection points of the projection rays. In principle, this
stereoscopic back-projection is a deconvolution algorithm as implemented today in computer programs
which generate tomographic pictures.
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Fig. 6.4 Diffusion cloud chamber. Top: Schematic sketch, see explanations in the text. Bot-
tom: Samples of tracks from different particle species. Source: DESY.

also the mass if the momentum is measured (see section 14.2.2). In these early times
electrons, protons, nuclei and ‘mesons’, which are particles with masses between those
of electrons/positrons and protons, could thus be distinguished.

The energy of relatively slow particles can be determined by measuring the range
if they stop in the chamber, as demonstrated using the example of « rays in fig. 3.21
in section 3.2.4. By inserting absorber plates into a cloud chamber (figs. 2.3 and 2.7)
characteristic signatures of particle species can in addition be exploited, like the ability
to penetrate through the plates or to develop a shower.

6.1.2 Diffusion cloud chamber

While the just described expansion cloud chamber hardly plays a role anymore, a
variant, the diffusion cloud chamber asserted itself for demonstration purposes. In
particular, it is eminently suited for the observation of the natural background radia-
tion.

The principle is depicted in fig. 6.4. A glass case encloses an atmosphere that is
saturated with alcohol. From top to bottom a strong temperature gradient develops
between a channel, in which the alcohol is evaporated, and a cooled base plate, in
which the alcohol condenses. In between is a region, typically a few centimetres thick,
where the alcohol is supercritical and where droplets condense out after passage of
an ionising particle. Under stationary conditions, that is, under constant temperature
gradient and regulated alcohol supply, a continuous operation is possible, in contrast
to the properties of expansion cloud chambers.

The shape of the cloud tracks is an indicator for the particle species and its kinetic
energy. Natural background radiation generates various track types (fig. 6.4 bottom):
heavy, slow particles from nuclear decays (protons and « particles) that leave short,
broad tracks; low-energetic [ particles that generate thin tracks which often change
the direction due to scattering; tracks from high-energetic muons that are thin as well
as being, however, quite straight.
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Diffusion cloud chambers are offered by producers of teaching materials. In the
internet one finds also instructions for do-it-yourself chamber construction with very
simple means; see for example [764].

6.2 Bubble chamber

The bubble chamber, invented 1952 by D. Glaser, employs a similar principle to the
cloud chamber [462,463]. Here a supercritical state of a medium is also used to trans-
form a microscopic perturbation into a macroscopic signal. In this case the ionisation
tracks become visible by bubbles in a superheated liquid. Liquids are typically three
orders of magnitude denser than gases so that a bubble chamber is usually both the
target for particle beams and the detection instrument for the reaction products. The
employed liquids are, amongst others, hydrogen, propane, neon, freon or mixtures
thereof.

6.2.1 Functional principle

The functional principle of bubble chambers is depicted in fig. 6.5. By adiabatic de-
compression of the liquid the chambers come into a state of boiling retardation. In
this state bubbles are seeded by the ionisation clusters of particles which passed the
volume shortly before. After the photographic recording the liquid will be compressed
again (5-20 bar). The cycle can be repeated about every second, the rate being mainly
limited by the propagation of the pressure change in the container. Since the chamber
is usually situated in a magnetic field the momenta of the ionising particles can be
determined through the track curvature.

In contrast to cloud chambers, bubble chambers have the essential disadvantage
that they cannot be triggered. In liquids the seeds for bubble formation are local heat
accumulations whose energy is delivered by the recombination of the electrons [884].
While in cloud chambers the ions, which are in this case the condensation nuclei, have
lifetimes of many milliseconds, the heat accumulations are dissipated within not more
than about 107 '%s. Since within this short relaxation time the liquid must already
be in the critical state, the triggering of the expansion, for example by using external
counters, is in practice not possible. This limits the possible applications appreciably.
Therefore bubble chambers have mainly been operated in external accelerator beams

cameras

I,

Fig. 6.5 Functional principle of a bub-
magnet field ble chamber. In a container a liquid is

compressed and decompressed by the

00O
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Fig. 6.6 The Big European Bubble Chamber (BEBC). (a) The vessel containing the liquid
with a diameter of 3.7m, a height of 4m and a capacity of 35m® is mounted inside the coil
of a superconducting magnet. The piston with a weight of 2t compresses and decompresses
the liquid, for example hydrogen with a pressure of 4 bar at a temperature of 26 K at the
boiling point. From 1973 onwards hadron and neutrino beams have been directed to the
bubble chamber, which was operated with hydrogen, deuterium or a neon-hydrogen mixture
(maximal pressures between 5 and 20 bar). By the end of its lifetime in 1984 BEBC had pro-
duced 3000 km of film. Source: CERN. (b) Example of a high-energetic neutrino interaction
in a neon—hydrogen mixture (72% neon). The short radiation length of the mixture of 44 cm,
which is short compared to pure hydrogen with 890 cm, permits the observation of converted
photons and bremsstrahlung of electrons. Source: [750].

where the expansion can be triggered synchronously to the periodically ejected particle
bunches. Since every bubble grows after being initialised, the photographs can be
triggered with a delay after the bubbles reach the desired size. On the other hand, the
shortness of the time in which a bubble chamber is sensitive has the advantage that
the bubbles can be very precisely localised (if mechanical and optical perturbations
can be controlled). With holographic recording techniques bubble resolutions in the
order of 10 um have been reached.

6.2.2 Bubble chamber systems

Until the early 1980s the bubble chamber was one of the most important apparatuses
for the detection of high-energy particle interactions.? For instance, the first evidence
for the neutral current of weak interactions, a direct confirmation of the electro-weak
theory, was found with the bubble chamber Gargamelle at CERN in 1973 [492]. The
Big European Bubble Chamber (BEBC) (fig. 6.6), which obtained data from 1973 to

2TFor a historical review see [504].
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1984, was the largest instrument of its type with a volume of 35m? and a magnetic
field of 3.5 T [503].

Since bubble chambers are both targets for particle interaction and detectors for
the reaction products, they provide particularly complete and detailed observations
of particle reactions. The charged particles can be kinematically reconstructed with
high momentum and angular resolution. In addition, the determination of the specific
energy loss dE/dz is possible by counting the bubbles along the tracks yielding the
Lorentz variables 8 or 7, where the measurement is sensitive to § at non-relativistic
energies and to v at relativistic energies. The dE/dx measurements can be substan-
tially improved by excluding § electrons (‘restricted energy loss’, section 3.2). Together
with the momentum measurement the mass and thus the particle identity can be de-
termined, as discussed already for cloud chambers. In bubble chambers, however, the
kinematic measurements are generally much more precise because the ionisation is
denser and the observable track length is usually larger. In ‘heavy’ liquids like neon,
freon or xenon, photons, electrons and positrons can be identified by their electromag-
netic interactions, see fig. 6.6(b) and fig. 3.35.

In their ability of precisely measuring particle reactions, bubble chambers can def-
initely compete with modern detectors or may even be superior. Given the availability
of digital cameras, even the complex photographic recording cannot necessarily be
regarded as an exclusion criterion. Nevertheless, because of a combination of various
disadvantages bubble chambers have largely been replaced by detectors with electronic
readout. For collider experiments there is no need for a target and hence the advantage
of bubble chambers to offer target and detector as an entity becomes irrelevant. But
in general the decisive disadvantage is primarily the missing possibility for triggering
and a comparatively low tolerance for high rates. However, the favourable properties of
bubble chambers are still exploited for specific applications, as for example for the de-
tection of dark matter (see section 16.7.3.3) or for the use as neutron dosimeters [557].

6.3 Photoemulsions
6.3.1 Introduction

The radioactivity of atomic nuclei was discovered in 1896 by the blackening of a
photographic plate [166] (see also section 2.1). Until the 1950s photoemulsions, when
used as detectors also called nuclear emulsions, played a prominent role in the discovery
of elementary particles in cosmic radiation. In order to maximise the probabilities
to record events, the photoemulsions were brought onto high mountains or to high
altitudes with balloons. In this way C.F. Powell and co-workers, for example, discovered
the pion (see fig. 16.2 and also section 2.1).

When passing a photosensitive layer an ionising particle leaves a blackened trace
after development of the emulsion which can be microscopically measured with resolu-
tions of better than 1 um. Despite the rapid development of micro-structured, electron-
ically readable detectors (chapter 8) this is still the best spatial resolution of particle
detectors that has been reached to date.. Therefore, in the case of particularly high
demands on the spatial and angular resolutions, as for measurements of decay vertices
of short-lived charm and bottom hadrons or 7 leptons, photoemulsions are still today
employed [345], if the rate conditions do not require electronic processing.

Typical application areas, where the reaction rates are low enough that the accu-
mulation of tracks in an emulsion is possible during the lifetime of an experiment, are
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balloon experiments for measurements of cosmic radiation (section 16.2) and exper-
iments using neutrino beams (see examples in this section). Outside of particle and
astroparticle physics, nuclear emulsions are also employed in medicine, biology and
geology [345].

6.3.2 Properties of nuclear emulsions

Nuclear emulsions are photographic plates with a transparent gelatine layer which is
particularly thick (up to some mm) compared to the emulsions used for light exposures
(up to some 100 um). A large thickness yields larger track segments providing direction
information already in a single layer. In the gelatine layer tiny crystals of silver halides
(dominantly AgBr, less Agl or AgCl) are uniformly distributed. For nuclear emulsions
the AgBr part is generally larger than in normal photoemulsions for light, and the
crystals are finer with diameters of typically about 0.2 um.

The AgBr crystals are semiconductors with a band gap of 2.6 €V, in which electron—
hole pairs are created when traversed by ionising particles. The electrons diffuse
through the crystal and are trapped preferentially by lattice defects at the crystal
surface. Positive silver ions, which sit movably on interstitial sites, can be attracted
by the negatively charged defects where they are neutralised and become stationary.
By reiteration of this process at the same lattice defect, clusters of metallic silver are
formed consisting typically of three to four atoms (see e.g. [345,934]). Depending on
the specific properties of the emulsion these clusters can be stable for periods between
several days and several years, but they are not visible because of the small number of
atoms. They constitute the so-called latent image which only becomes visible by the
development process, augmenting the number of silver atoms of a cluster by a factor
of 103-101°.

In the development process a metallic silver atom acts as seed for a growing silver
grain, which is two to three times larger than the original crystal and becomes visible
in the microscope as a black point. The silver halides that remain outside the latent
centres are flushed out by the fixation process. The developed silver grains mark the
track of an ionising particle with a high spatial resolution of better than 1 pum. The
number of Ag grains per 100 um generated by a minimum-ionising particle is called
the ‘sensitivity’ of the emulsion. It depends on the number and size of the silver halide
grains and also on ambient conditions, like temperature and humidity. Typically the
sensitivity amounts to about 20-40 Ag grains per 100 pm with grain sizes of about
0.1-1 pum (fig. 6.7) [345].

The density of photoemulsions varies between 2.5 and 4 g/cm® depending on the
AgBr content and also fluctuates with the ambient relative humidity. In [762] a density
of 3.8 g/cm?, a radiation length of 3 cm and an hadronic interaction length of 35 cm is
quoted for a photoemulsion® (see also table 3.4). The reason for the relatively short
radiation length is the high content of silver and bromine in a nuclear emulsion (mass
fractions of 47% and 35%, respectively [762]). For the OPERA experiment [39] (see
next section) emulsions with a density of 2.7 g/cm? and a radiation length of 5cm
have been employed.

3The quoted properties correspond to those of the emulsion Ilford G.5 at a relative air humidity
of 58% in [889]; see table 4 there.
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Fig. 6.7 Left: Picture of AgBr crystals in an emulsion layer taken with a scanning electron
microscope (SEM). The crystal diameter is about 0.25 pm. Right: Track of a minimum-ion-
ising pion with a momentum of 10 GeV /c. Source: [605], with kind permission of Elsevier.

6.3.3 Emulsions as detectors
6.3.3.1 Emulsion stacks

Nuclear emulsions are normally produced as photographic plates consisting of glass
or plastic carriers on which the emulsion is applied with thicknesses between 10 pm
and 1000 um. As already mentioned, thick layers offer the advantage that a track can
already be coarsely measured in one layer. At about perpendicular incidence of the
particles, for example, the coarse direction of a particle can be measured by focusing
the measurement microscope at different depths. Such a direction estimate helps a lot
for associating tracks in different layers. On the other hand, thin layers are more stable
against deformations during the processing, in particular during the drying after the
development.

Usually emulsions are layered in thick packages which are separated into single
sheets for microscopic analysis. The relative alignment of the package layers can be
made with the help of tracks that pass through several layers or by using dedicated
X-ray beams.

In the early 1950s ‘emulsion cloud chambers’ (ECC) were introduced that are big
piles of emulsions, sometimes with absorber plates between the emulsion layers, in
which complete reaction processes could be recorded [587]. As for bubble chambers
the ECCs serve both as target and as detection instrument. A typical example is shown
in fig. 6.8.

6.3.3.2 Emulsion experiments

Example: DONUT experiment. The production of 7 leptons by 7 neutrinos was
first observed in an emulsion target of the DONUT experiment. Figure 6.9 shows the
tracks reconstructed in an emulsion target for such an event. Essential for the identi-
fication of the event is that the 7 lepton tracks are seen before they decay (in collider
experiments only the decay vertex can be reconstructed) and that the reconstructed
origin agrees with the primary vertex. The average decay length is

A =~fer = ——cT, (6.1)
Y
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Fig. 6.8 Example for an emulsion target. Shown is the layer structure of a building block
(brick) of the emulsion target of the OPERA experiment (from [39]). The photographic films,
consisting of emulsion layers on plastic carriers, alternate with lead absorber layers. The
front face of a brick has an area of 10.2cm x 12.8 cm, the depth is 7.9cm. A target wall is
composed of 2912 bricks, in total the experiment has 62 walls which are split into two identical
‘supermodules’.

where v, 8 are the Lorentz variables and 7 is the average lifetime. The relevant pa-
rameters of a 7 lepton are ¢r = 87 um and m, = 1.777 GeV; thereby a 7 lepton with
an energy of, for example, 10 GeV has an average decay length of about 500 pm.

In particle physics experiments emulsion detectors are in most cases combined
with electronic detectors forming hybrid systems. DONUT is such a hybrid detector,
as shown in fig. 6.10 [621]. While the emulsions provide the precise vertex information
the electronic detectors provide trigger and time stamps, the association with tracks
in the emulsion, energy and momentum determination (magnetic field, calorimeter),
and particle identification (muon spectrometer, calorimeter, . ..).

Other emulsion experiments. We presented the DONUT experiment as a more
recent example for the successful deployment of emulsion targets. Experiments with
similar concepts are for example CHORUS [380] and OPERA [39] (see also the review
on the use of emulsions in neutrino experiments [377]). The experiment CHORUS at
CERN, a predecessor of DONUT, searched for oscillations of muon neutrinos to 7
neutrinos. In this case the search was in vain because the relevant ratio of neutrino
energy to the detector distance did not cover the right range, as we know today.

The discovery was later made by the OPERA experiment at a neutrino beam which
was sent from CERN to the Gran Sasso Laboratory at a distance of 730 km (the beam is
called CNGS = CERN Neutrinos to Gran Sasso). The OPERA experiment introduced
a completely new scale for emulsion experiments. Given the large distance from the
beam source, the beam divergence has to be accounted for. Accordingly the target
cross section is 6.7m X 6.7 m, thus nearly 200 times larger than that of the DONUT
experiment which was operated only 36 m behind the beam source (fig. 6.10). The
OPERA emulsion films have a total area of about 110000 m?, which certainly is a
challenge for the analysis of the films; see next section.

Common to the three experiments is the fact that they were operated at neutrino
beams where the event rates are relatively low such that the emulsion packages could
stay for quite long times (months to years) in the experiments.
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Fig. 6.9 Production of a 7 lepton at the primary vertex of a neutrino reaction, recorded in
the emulsion target of the DONUT experiment [620] (with kind permission of Elsevier). The
reaction is interpreted as v + X — 7~ +Y followed by decay of the T into a charged particle,
two neutrinos and possibly neutral hadrons. The 7 is identified by its decay causing the kink
at 280 pum distance from the primary vertex (F.L. = flight length). The relative position in
the emulsion target, which is similar to the emulsion stack shown in fig. 6.8 but with iron as
absorber, can be read off from the structure at the bottom of the picture. The different scales
for the longitudinal and the transverse dimensions are given at the bottom left. The primary
vertex lies in an iron layer and the decay in the following plastic layer. The measurements of
the tracks in the emulsion layers are also depicted.
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Fig. 6.10 The DONUT experiment [620] (with kind permission of Elsevier). The experiment
has taken data at a neutrino beam which was generated by an 800-GeV proton beam in a
1m long tungsten block (‘beam dump’). Such a beam consists mainly of electron and muon
neutrinos, however, in charm decays also 7 neutrinos are produced. The 7 leptons generated
by 7T neutrinos can be detected in the emulsion target (see fig. 6.9). Subsequent detector
components provide additional measurements: a magnet and tracking chambers (D1—Dg) for
the momentum analysis of the charged tracks, a calorimeter for the energy determination of
electrons and photons and finally a muon detector for the muon identification.
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Fig. 6.11 Analysis of the emulsion tracks in a block of the OPERA emulsion target (accord-
ing to [118,898], with kind permission of Elsevier). The structure of the block is shown in
fig. 6.8. The left pane shows the scanning principle for a single 44 um thick emulsion layer
which is scanned in 15 focal planes at equal distances of 3 um. Correlated points in different
focal planes are combined to a ‘micro-track’. The middle pane shows how the micro-tracks
in the two emulsion films of a layer are connected across the about 200 wm thick plastic car-
rier to form ‘base-tracks’ This reconstruction yields spatial resolutions of 1 um and direction
resolutions of a few mrad [118] for tracks which perpendicularly hit the emulsion layers. The
right pane shows the combination of the tracks in a block of 57 double emulsion layers.

6.3.4 Scanning of emulsion films

The emulsion layers are individually scanned for tracks using microscopes with a field
of view of some 100 um. By variation of the focal plane in steps of few micrometres
a track can be measured three-dimensionally (tomographic imaging). As an example
the scanning of the OPERA emulsion target is depicted in fig. 6.11.

Today’s operation of emulsions with areas of several 1000 m?, in the case of OPERA
more than 100000m?, would not be possible without automated, computer-assisted
scanning and reconstruction procedures. The first fully automated system is described
in [109]. Meanwhile, for the automated scanning of the OPERA films a rate of 72 cm? /h
is quoted [717]. But even then the demands can only be satisfied using many scanning
microscopes in parallel.

In order to make the scanning as efficient as possible, in many hybrid experiments
the extrapolations of external tracks into the emulsion target are employed to restrict
the scanning to regions in which a vertex is expected with a certain probability. It also
became customary to insert quickly exchangeable sheets (CS = changeable sheets)
between and behind emulsion targets which are first analysed in order to localise
tracks in the compact target material more accurately than with external tracks [377].

6.3.5 Other applications of nuclear emulsions

Besides the described applications of emulsions in particle and astroparticle physics,
emulsions are also employed in other fields like medicine, biology or geology. Besides
the well-known use of emulsions as X-ray films, emulsion films are also used, for exam-
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ple, in auto-radiography for the detection of radiation from radioisotopes which mark
chemical compounds in biological and other substances (see the references in [556]).
In the following we give examples for imaging techniques using radiation of higher
energy where the capability of ECCs for the determination of a particle’s direction
and possibly also its range is employed.

Muon radiography. In 1965 Luis Alvarez proposed investigation of the Chephren
pyramid for unknown cavities using cosmic muons [86]. The idea is to use muons
as diagnostic radiation like X-rays for the examination of a body. Muons, the most
penetrating component of cosmic rays, allow us to explore particularly massive objects
like pyramids, volcanos or the rocks above a mine gallery.

Muons can be measured using any detector which provides charged particle track-
ing with sufficient direction accuracy [745]. Detectors used for this purpose include
wire chambers (chapter 7), scintillation horoscopes (chapter 13) and also emulsions.
Emulsions, for this application as ECCs (page 165) with good direction accuracy, offer
the advantage of not requiring an electric power supply and can thereby be deployed
as compact and relatively light units for field applications. The density profile of the
volcano Usu in fig. 6.12 was determined using an ECC [345].

Beam characterisation in tumour therapy. In section 3.2.4 the employment
of protons and heavy ions in tumour therapy was discussed. As an alternative for
existing methods of proton therapy verification (see e.g. [617]) it was proposed to use
ECCs that are equipped with tissue-equivalent absorber plates. Studies on such so-
called phantoms showed that such a combination of absorber and detector can deliver
very accurate three-dimensional dose distributions [243]. In this case the phantom
was constructed following the principle of an ECC with OPERA films (fig. 6.8) and
polystyrene (plastic).

Radiating with carbon ions (see fig. 3.22 on page 53) the determination of the
deposed energy distribution becomes more difficult because carbon undergoes more
nuclear reactions than protons of comparable energy and thus more frequently gener-
ates nuclear fragments with ranges beyond the Bragg peak of carbon. In [344] a mea-
surement of the properties of a therapeutic carbon beam with an energy of 400 MeV
per nucleon is described using an ECC composed of polycarbonate absorber plates
and emulsions of variable sensitivity. The results for energy loss, multiple scattering,
absorption and secondary particle production demonstrate the potential of ECCs to
become important auxiliary means for irradiation planning.
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In many particle physics experiments detectors are employed which measure charged
particles through their ionisation of gases. Such gas-filled detectors allow for the de-
termination of particle trajectories in large volumes, often in a magnetic field. For
these applications they have largely replaced cloud and bubble chambers (see chapter
6), mostly because the charges generated along a track can directly be converted into
electronic signals which can be more efficiently read out and further processed. Com-
pared to semiconductor detectors (see chapter 8) gaseous detectors are in most cases
cheaper, in particular for large volumes, and tend to represent less material for the
passing particles.
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[Ob Ruv

\Y

j>/\

Kolanoski, Wermes 2015

Fig. 7.1 Principle of an ionisation detector. The sensitive detector medium, in this case

gas, resides between two electrodes with a voltage applied across. During the passage of a

charged particle through the gas charges are liberated which move in the electric field towards

the electrodes. The moving charges induce a current signal at the electrodes (see chapter 5).

In principle, the detector is a capacitor which discharges upon ionisation of the medium.

Electrically it acts as a current source.
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Fig. 7.2 Tracks of charged
particles in a three-jet event,
interpreted as a quark—antiquark
pair with emission of a gluon, in
the drift chamber of the TASSO
detector at the PETRA storage
ring. The picture displays a

sS4 s

cross section perpendicular to
the colliding electron—positron
beams. The insert shows a pro-
jection onto a plane containing
the beams. Source: DESY.

The principle of a detector which senses the ionisation charges is shown in fig. 7.1:
particles ionise a gas in the electric field between capacitor electrodes. The electrons
and ions are separated by the field, causing a current between the electrodes which
can be registered. This is the principle of an ionisation chamber for the measurement
of radiation fluxes containing a large number of particles. For the detection of single
particles this current signal is not sufficient for electronic registration because it would
not be discernable above the noise level. However, the signal can be intrinsically in-
creased by gas amplification in the very high field around the anode. The high field is
achieved by a suitable electrode geometry where secondary ionisation can be initiated,
leading to charge avalanches.

As low-priced, compact electronics became available by the beginning of the 1970
detectors could be equipped with high granularity readout covering large volumes
(Charpak 1968 [293,291], Nobel Prize 1992 [290]). Figure 7.2 shows as an example the
tracks of a three-jet event in the central drift chamber of the TASSO experiment at
the PETRA storage ring [222]. This chamber was put into operation in 1978 and was
one of the first large drift chambers comprising a sensitive volume of about 16 m® and
2340 readout channels. Today such detectors for charged particles may have 10° or
more readout channels.

7.2 Detector types

For different application areas a variety of different detector types exist using gas as
the sensitive medium. On the one hand they can be distinguished according to the
way they are used (see also section 7.4 about operation modes): detectors which mea-
sure radiation fluxes (radiation monitors such as ionisation chambers and proportional
counters) and those which provide information about the locations where the parti-
cle passed the detector (position-sensitive detectors such as multiwire proportional
chambers, drift chambers and gaseous micro-structure detectors). On the other hand
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Fig. 7.3 (a) An ionisation chamber is essentially a capacitor, charged up by a voltage V,
which discharges due to the ionisation in the capacitor volume. The current is a measure of
the radiation flux. (b) A cylindrical ionisation chamber for dosimetry in medical applications
(model NE2571) (adapted from [376], with kind permission of Elsevier). The ionisation volume
(air) amounts to only 0.6cm® at a diameter of 0.64cm. The materials of the detector are
chosen such that the radiation field is influenced as little as possible (low atomic number Z
when measuring in water or air). Here the electrodes are made of graphite and aluminium,
insulated by Teflon (PTFE= polytetrafluoroethylene), and the whole detector is covered by
a sleeve made of acrylic glass (PMMA = polymethyl methacrylate).

one can distinguish according to whether the primary ionisation charge is measured
directly, non-amplified (ionisation chamber) or amplified (e.g. proportional chamber
and Geiger counter).

7.2.1 Ionisation chamber

In an ionisation chamber particles ionise a gas volume within a capacitor (fig.7.3).
The electrons and ions are separated by an applied electric field and are measured as
current between the electrodes. Ionisation chambers are not sensitive to single particles
but they are used as radiation monitors for high particle fluxes. The detectability
for charges starts at about a femtocoulomb, that is, about 10* elementary charges.
A current measurement in the range of nanoamperes is not too difficult, but with
some more effort is also possible down to the picoampere regime. A current of 1nA
corresponds to about 10'° ionisations per second, while a minimum-ionising particle
passing through argon gas generates only about 100 ions per cm (see table 7.1).

In radiation therapy ionisation chambers serve as calibration standard for dosimet-
ric measurements. With an appropriate geometrical format ionisation chambers can
also be introduced into body orifices for in-vivo dosimetry (fig. 7.3(b)).

Tonisation chambers are also deployed as smoke detectors or, more generally, for
monitoring the purity of gases. In such devices the detector volume is directly con-
nected to the ambient air (or any gas to be monitored) and will be ionised by a weak
radioactive source (e.g. the alpha-radiator 4! Am, see table A.1 on page 820). Impuri-
ties, for example from smoke, boost the neutralisation of the ionisation charges leading
to a decrease of the measured ionisation current.

7.2.2 Counting tubes with gas amplification

The principle of a counting tube is shown in fig.7.4. In a cylindrical tube, which
is filled with a special gas, a thin wire is stretched along the cylinder axis. A high
voltage is applied between the wire (anode) and the cylinder wall (cathode). In the
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Fig. 7.4 Principle of a counting tube. The plot delineates the relevant geometrical parameters

and the cylinder coordinates r and z which are used for the calculation of the field and the
detector capacitance (the azimuth is not shown since it is not relevant for the calculations).

1/r field of this cylinder capacitor the electrons created in the ionisation processes can
be sufficiently accelerated near the wire that they can initiate secondary ionisation.
This leads to the formation of avalanches and thus to the amplification of the ionisation
charge with typical amplification factors of 10*-106. This principle of gas amplification
at a thin wire on the axis of a gas-filled tube was developed by H. Geiger [842]. It
eventually lead to the development of the Geiger—Miiller counter (section 7.6.2) [454].

Counting tubes are distinguished according to their operation regime: proportional
counting tubes work in a regime where the amplified signals are about proportional to
the primary ionisation; Geiger—Miiller counters are operated with higher amplification
in a regime of saturation in which the signals become independent of the primary
ionisation (trigger counter). Counting tubes can also be run as ionisation chambers
without charge amplification, as depicted in fig. 7.3(b). The various operation modes
with different gas amplifications will be discussed in section 7.4.2.

Electric field and capacitance of a counting tube. The electric field in a count-
ing tube corresponds to that of a cylinder capacitor. For the field calculations we use
cylinder coordinates: z as longitudinal coordinate along the axis with the origin in the
middle of the tube, ¢ as azimuth around the longitudinal axis and r as the perpendic-
ular distance from the longitudinal axis (fig. 7.4). We assume that the length [ of the
tube is large as compared to the diameter 2b; the diameter of the wire is 2a.

The field will be derived from the static Maxwell equations,

- — 1 — = 1 1
VE = —p or /EdS = —/ pdV = —/ dq, (7.1)
€o s € Jv v

€o

where S is the surface surrounding the volume V' which contains the charge density p.
In the considered case of a cylinder capacitor the charge is concentrated on the surfaces
of the electrodes. Taking into account that here the charge density corresponds to a
surface density on an electrode, we obtain

E(r)2nrAz = ;AQ, (7.2)

where AQ is the charge on the anode surface per length Az. Assuming a very long
wire the charge density per length of the anode wire, dQ/dz, can be taken as constant.
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Then the field has only a radial component perpendicular to the anode surface and
can be expressed as the radial gradient of a potential ®:

1 1dQ 0P
E = —_—— = . .
(r) 2mwe, r dz or (7.3)
The field is generated by an applied voltage V for which the following holds:
b
1 b dQ (7.3) b
%4 /a (r)dr S n-— (r)r In . (7.4)

This finally yields the field and the potential as a function of the applied voltage:

14 Inr/b
L o) = -
rinb/a’ (r) Inb/a’

E(r)= (7.5)

where ® is fixed such that ®(a) =V and ®(b) = 0. The capacitance per length is

_ dQ/dz _ 276, . (7.6)

C
1% lng

For example, an applied voltage of V' = 1kV yields with ¢ = 10 pm, b = 10 mm a field
strength on the anode surface of

1kV kv

o 10 cm
10 um In (4322 )

E(a)

and the capacitance per length is C' = 8 pF/m.

The 1/r behaviour of the electric field and also of the weighting field (see section
5.3.2) leads to a logarithmic increase with time of the charge or voltage signals, re-
spectively (eq. (5.67) in section 5.3.2). In that section it was also shown that typically
the signal contribution by the ion movement strongly outweighs the contribution by
the electron movement (eq. (5.58)).

7.2.3 Position sensitive chambers

Figure 7.5 shows the principle of a gas-filled chamber with which the coordinate of
a traversing particle can be detected. The most important types of position-sensitive
gaseous detectors are the multiwire proportional chamber (MWPC, section 7.8, used
as example in fig. 7.5), the drift chamber (section 7.10) and relatively novel chambers
with micro-structured electrodes (section 7.9). As in proportional tubes, gas amplifi-
cation takes place at the thin wires or fine microstrips if the anode—cathode voltage
is sufficiently high. The wire spacing of about 2 mm determines the spatial resolution
in an MWPC. In a drift chamber, an advancement of the MWPC, the drift time of
the electrons from the generation by ionisation to their arrival at the wire is measured
in order to calculate from this the location of the ionisation. The wire separations in
drift chambers can be much larger than in MWPCs, in the range of centimetres, while
reaching typical spatial resolutions of about 100 pwm.

Predecessors of these chamber types were spark chambers (section 7.7.1) which
today are still employed for presentations of cosmic radiation because of their public
appeal. At very high gas amplification sparks develop along ionisation trails which can
be sensed both optically and acoustically.
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Fig. 7.5 Principle of a position-sensitive multiwire proportional chamber (MWPC). The
continuous lines represent the field lines around an anode and the dashed lines the drift
paths of electrons generated by ionisation.

7.3 lonisation and charge loss in gases

The basis for the detection of particles in gas-filled detectors is the creation of charges
by ionisation. For the efficiency of signal formation it is also important that the charges
do not get lost by recombination or attachment while they are moving towards the
electrodes.

7.3.1 Ionisation

Primary ionisation. Particles which pass the detector ionise the gas along their
trajectories. The mean energy loss per path length can be determined using the Bethe—
Bloch formula (3.25). In table 7.1 the material constants which are important for
ionisation are compiled for the most common drift gases. The mean energy loss dE/dz
and the number n, of primary ions per path length are given for minimum-ionising
particles. For example, in argon 29.4 primary electron—ion pairs are generated with a
total energy expenditure of 2.44 keV, hence on average about 83 eV per primary pair. A
part of the energy is lost for excitation of atoms, another part is converted into kinetic
energy of the liberated charge carriers, mainly of the electrons. The kinetic energy T
of the electrons follows approximately a 1/T? distribution according to (3.46) (see also
fig. 3.11(b)).

Secondary ionisation. A part of the electrons has sufficient energy for generating
more ions. This secondary ionisation leads to a total number ny. of generated electron—
ion pairs per path length which can be multiples of the number n,, of primary electron—
ion pairs. For the example of argon nge is 94/cm and thus about three times more than
np. The primary ionisations are Poisson-distributed along the particle track. However,
the secondary ionisation causes the charges to be produced in ionisation clusters with a
gas-specific distribution of cluster sizes. A discussion of cluster distributions obtained
from experimental data can be found in [217].

Table 7.1 also contains the energy w; which has on average to be provided for the
production of one electron—ion pair:

AFE

w; =

dE
ith AE=(— ) Azx. .
wit < o > x (7.7)

Ntot

For example, table 7.1 lists for argon w; = 26 €V. This energy is distinctly higher than
the threshold energy for ionisation, F;,, = 15.8 V. The difference is due to additional
energy loss processes, for example, energy transfer by atomic excitations or energy
dissipation by elastic scattering.
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178 Chapter 7: Gas-filled detectors

Table 7.2 Different types of electron attachment reactions.

Mode Reaction Example

radiative e” +X = X +hv e~ + 02 = 05 +hv
dissociative e” +XY X" +Y e +0,—-0"+0
three-body collision e +X+Y X" +Y e~ +Ne+ Oz = O; + Ne

When choosing a drift gas it is important to reach a high ionisation density but
at the same time one wants to minimise multiple scattering (see section 3.4) which
increases with the atomic number Z. In table 7.1, helium, for example, has a large
radiation length and thus experiences only little multiple scattering, but on the other
hand it has a very low ionisation density. A counterexample presents xenon with the
opposite behaviour. Favourable in this sense are argon, COs or CHy. Nevertheless,
sometimes also gases with high Z, like xenon, are used for the detection of X-ray
photons, for example in transition radiation detectors (see chapter 14).

7.3.2 Recombination and electron attachment

For the operation of proportional and drift chambers it is important that as many
electrons as possible reach the anode wire where they are amplified. Recombination of
electrons with positive ions and attachment to electronegative components of the gas
can lead to losses. For gas amplification it is primarily important to avoid the loss of
positive ions near the amplification region because in the high field region ions deliver
the largest contribution to the signal (see section 5.3.2).

Recombination. Recombination of electrons with positive ions often proceeds as a
radiative process:
Xt 4em = X+ hv. (7.8)

The excess energy can also be transferred in collisions with other molecules of the
gas. In particular, recombination is not avoidable if the detector geometry causes the
electrons to drift predominantly along the ionisation trace.

The photons emitted in radiative recombination are problematic, in particular if
they are produced in large numbers in an avalanche. The photons can lead to un-
wanted additional ionisations and, without countermeasures, to runaway discharges.
For further discussion of the subject, see section 7.5.

Electron attachment. Atoms and molecules with nearly complete shells can attach
electrons under the release of energy. The binding energy liberated by the attachment
and the kinetic energy of the electrons can be dissipated by radiation, dissociation of
the molecule or in collisions (see table 7.2).

Electronegative additions to drift gases, for example oxygen or halogens, are nor-
mally undesired since they reduce the signal. However, sometimes electronegative com-
ponents are added on purpose to proportional chamber gases in order to quench signals
and thus avoid uncontrolled discharges.

The attachment loss of electrons drifting towards the anode can best be parametrised
by the electron range in the drift direction. We therefore define an absorption length
Aq or the inverse, the absorption coeflicient 7,. For a drift velocity of v{ they are given
by

d=i )= () mm g (79)
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Fig. 7.6 Cross sections as a function of electron energy e for electron attachment of the
polyatomic gases CO2, CH4 and CF4, for which the scattering cross sections have already
been shown in fig. 4.7. Additionally the dissociation cross section for oxygen is plotted. The
data have been retrieved from the website [756]. The used databases are: Hayashi database
for CH4 and CFy; Itikawa database for CO2; Biagi-v8.9 for Os.

The term 1/(c4n,) is the definition of the mean free path according to (3.7) where in
this case o, is the—in general energy dependent—attachment cross section and n, the
molecule density. The average absorption time (¢,) has to be determined by averaging
over the respective energy distribution.

In general, A, is dependent on the drift gas, the partial pressure of the electronega-
tive additive and the drift field. Usually a precise determination of )\, is accomplished
by employing a simulation program (e.g. MAGBOLTZ [196]) for averaging the at-
tachment cross sections over the energy distribution. In fig. 7.6 such cross sections are
shown for the polyatomic gases CO2, CH4 and CFy4 for which scattering cross sections
are already contained in fig. 4.7. The attachment proceeds for these gases through var-
ious dissociation reactions which exhibit resonance-like behaviour above the respective
thresholds. The resonances lie mostly above the usual energy distributions of the elec-
trons in the drift gas and thus do not lead to harmful losses during the drift even over
long drift passes. However, the electrons pass these energies in the region of gas am-
plification (section 7.4.1) which then leads to signal losses. This effect is particularly
noticeable for CF, featuring high absorption around 7€V (fig. 7.6).

The dissociation cross section of oxygen is additionally shown in fig. 7.6. The cross
section for three-body collisions, which are important for electron loss in oxygen at
low energies, is not shown because it is dependent on the density or partial pressure,
respectively, of the oxygen in the gas mixture and is thus not easily representable. As
an example one finds for an admixture of 1% Og in argon at a field of 1kV/cm an
average range for electrons of A\, ~ 5cm.
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Fig. 7.7 Model of the development of an ionisation avalanche at the anode wire of a propor-
tional tube or chamber (adapted from [849]). (a) In the drift volume an electron and an ion
are created which drift to their respective electrode. (b) Near the wire the electron reaches
such a high field that it can initiate secondary ionisation which leads to an avalanche. (c)
The charges generated in the avalanche are separated by the electric field. (d) Because of the
lateral diffusion of the electrons, which is much stronger than that of the ions (see section
4.6), the avalanche spreads out around the whole circumference of the wire and the positive
charge cloud forms the shape of a drop. (e) The electrons from the avalanche very quickly
reach the anode, within a few nanoseconds, while the ions drift over a longer period (up to
milliseconds) to the cathode.

7.4 Gas amplification and operation modes
7.4.1 Gas amplification

If the electric field is strong enough, for example near the anode of a wire chamber, the
drifting electrons can be accelerated such that they can initiate secondary ionisations.
Then an avalanche develops (fig. 7.7) and thus the ionisation charge is amplified with
typical amplification factors of 104-10° (see section 7.4.2). Beginning at field strengths
of about 10-50kV /cm the energy gain over a free path length between two collisions
becomes sufficient for ionisation of the gas. The number « of ions generated per path
length, the so-called first Townsend coefficient, is given by

1
)\ion ’

O = CijonN = (7.10)
where 0., and Ao, are the cross section for ionisation and the mean free path between
ionisations, respectively. Analogously to the field strength in (4.113) this quantity can
be normalised to the particle density or the pressure (at fixed temperature):

a/n = i or a/p X Gion - (7.11)

Figure 7.8(a) shows the first Townsend coeflicient as a function of the electron energy
for various noble gases. In general the electrons have an energy distribution which is
given by the applied electric field (see e.g. fig. 4.8). Hence it is more informative to plot
an effective Townsend coefficient as a function of the field strength, as in fig. 7.8(b)
where «/p is displayed as a function of the reduced field strength E/p.

The increase dN of the number of electron—ion pairs over a path length ds is

dN = o/ (E) Nds. (7.12)
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Fig. 7.8 The ionisation cross section and the first Townsend coefficient for electrons in various
noble gases (a) as a function of the electron energy and (b) as a function of the electric field
(top axis) and reduced electric field (bottom axis), respectively (from [849]).

It follows that N
N(sa) = Ny exp (/ a(E(s)) ds) , (7.13)
s0
where N is the number of unamplified electrons at s = sg, where the amplification
starts, and N(s,) the number of electrons which reach the anode at s = s,. The ratio
of both numbers defines the gas amplification G:

G stz)a) — exp (/S:aoz(E(s))ds> . (7.14)

If o does not depend on s this yields
G = exp (a(sa — $0)) - (7.15)

In general, however, « is energy dependent. The energy distribution varies with the
electric field which in turn is position dependent. Then the amplification has to be
calculated using (7.14) which is in general only possible numerically. For practical
purposes parametrisations of the gas amplification as a function of the applied voltage
have been developed for which we give an example later in this section.

In the regime where the amplified signal is proportional to the original ionisation
charge (see section 7.4.2) G lies between about 10® and 10°. We can estimate the
number of collisions necessary to obtain such an amplification by assuming that the
number of electrons duplicates at each collision:

G=2"=n=1320. (7.16)

In this estimate half of all charges in the avalanche are created on the last mean free
path length X\;,, =~ 1—2 um. Hence most of the electrons have a vanishingly small drift
path to the anode while the ions have to traverse a long way to the cathode. This
plays an important role in signal formation at the anode (see section 5.3.2).
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The gas amplification cannot become arbitrarily large because space charges screen
the field near the anode (Raether limit) [803]; see also the discussion on streamer
and spark formation on page 186. Empirically, the avalanche development reaches a
saturation at an amplification of the primary electron number Ny of about

Gmaz No = 108 (7.17)

Then the current pulse at the electrode becomes independent of the primary ionisation.
Counters which just trigger on ionising particles passing the detector, like a Geiger
counter, work in this operation mode. Upon further increase of the voltage, it results
in discharges; see details in section 7.4.2.

Amplification in cylinder geometry. In the following the gas amplification in a
cylindrical device like the counting tube introduced in section 7.2.2 will be discussed.
A cylindrical geometry has a more general applicability. If the gas amplification takes
place at a cylindrical anode wire of a detector with otherwise quite arbitrary geometry,
one can assume a 1/r behaviour of the field in the amplification region very near to
the wire, as in a counting tube. For the case of a 1/r field various parametrisations
of the gas amplification as a function of the applied voltage exist which are based
on different assumptions. Here we introduce the derivation of the so-called Diethorn
formula [354].

To begin with, the path integral over the Townsend coefficient in (7.14) can be
rewritten as an integral over the field strength. With the expression for the field of a
counting tube (7.5) one obtains

b
dr = —p? e

B(r) = — =

ring

_@ dr 5 (718)

where V is the voltage between the electrodes and a, b are the radii of the electrodes.
Inserting this into (7.14) and substituting dr = —ds yields the integral

G = exp (V /E(a) o(B) dE> . (7.19)

lng Enin E?
The integration limits are the minimal field strength F,,;, at which the multiplication
of the electrons starts and the field strength F(a) on the anode surface.

With the knowledge of a(F) the integral can at least be solved numerically. In
order to obtain an analytic solution Diethorn [354] made the assumption that the
Townsend coefficient is proportional to the field strength,' which is in the relevant
region of low field strength quite well fulfilled:

a(E)=FkE, (7.20)

where k is the proportionality constant. Then the integral (7.19) yields:

WV [ E(a)
InG = @ In (Emln> . (721)

LAn alternative, dating back to Rose and Korff, is the assumption that the Townsend coefficient
depends linearly on the electron energy [833,630], see for example also [849].
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The parameter k can be related to the energy w; (table 7.1) which has on average
to be spent for one ionisation. This is the energy which the electron has to acquire
by traversing a potential difference AV’; thus we get w; = eAV. It follows that the
number of multiplication steps in a potential difference A¢ is

A¢

where A¢ is the potential difference over the amplification region:

Ag = /:(Emi") E(r)dr = —~—In <E(a)) . (7.23)

In g Emin

With the assumption G = 2™ (duplication at each collision) as in (7.16) and the
relation (7.22) one finds

mG=ming— 02 ln<E(a)> (729 W1n<E(a)) = k:lAn—é. (7.24)

b ) b .
In @ AV Emzn In “ Emzn

This yields an expression for the gas amplification G as a function of the voltage V'
with the parameters AV (= w;/e) and E,,;;,, which depend on the gas properties. While
E(a) is fixed for a given voltage,

E(a) = , (7.25)

E,,in is obtained from the condition that an electron is accelerated over a free path just
as much that it can ionise. Since the free path is inversely proportional to the pressure
(or the particle density of the gas) we can additionally include into the parametrisation
the gas pressure dependence by

Emin(p) = Emin(po) L, (7.26)
Po

where pg is a reference pressure. Then the equation for the amplification as a function
of the tube voltage, named the Diethorn formula, becomes

mG =12 ( 4 ) (7.27)

= n
lngAV a lngEm-n(po)];l0

The so-called Diethorn parameters AV and E,,;,(po) can be found tabulated for some
common gases, see for example [217,616]. They are determined from measurements of
the gas amplification as a function of the voltage. This is usually done employing an
external radiation source with constant intensity, for example an X-ray tube, for the
measurement of the current amplification with increasing voltage. When ramping up
the current, care has to be taken that it does not become too high in order to avoid
space charge effects that reduce the field in the amplification region.

As an example, fig. 7.9 shows measurements of the gas amplification in two drift
tubes with different diameters but otherwise equal properties. In fig. 7.9(a) the Di-
ethorn formula was fit to the measurements with the 10-mm-diameter tubes. The fit
yields the parameters AV = 53.8V, E,,;, = 39.2kV/cm. Similar results were found
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Fig. 7.9 Measurement of gas amplification in drift tubes (honeycomb structure as in fig. 7.35)
with 5 and 10 mm diameter, both with 25 um thick anode wires (adapted from [877]). For
these measurements a CF4/CH4 mixture in the ratio 80:20 was used as a drift gas. (a)
Dependence of the amplification on the anode—cathode voltage for both drift tubes. The fit
to the measurement points of the 10-mm-diameter tube was done with the Diethorn formula
(7.27). (b) This picture demonstrates that the curves for the drift tubes with the two different
diameters fall nearly on top of each other if one plots the amplification versus the field strength
on the anode surface. This results from the Diethorn formula (7.27) if only the outer diameter
2b of the counting tube varies but the other parameters are kept the same (see explanation
in the text).

for the same gas in [477]. The formula describes the measurements above 1kV quite
well; however, at lower voltages the function does not have the flexibility to turn into
a constant (=1).

The plot in fig. 7.9(b) shows that the amplification in two counting tubes with
different cathodes but equal anode diameters are the same when plotted as a function
of the field strength on the anode surface. According to (7.27) the voltage has to be
scaled in the ratio of the logarithms In(b/a) (a fixed) to obtain the same amplification.
In the example of fig. 7.9 this ratio is 1.13, which for V(5 mm) = 2000V yields a value
of V(10 mm) = 2260 V.

7.4.2 Operation modes of gaseous detectors

Figure 7.10 displays the principal dependence of the gas amplification on the anode—
cathode voltage for a counting tube with a thin anode wire. The dependence on the
voltage V' of the gas amplification G can be very different depending on the elec-
trode arrangement and the used gas. The choice of the operation mode depends on
the intended application and various constraints, for example, from technical or safety
considerations. Referring to fig. 7.10 the following amplification regimes can be distin-
guished:

Recombination region, G < 1. In the region of low field strengths the primary
electrons and ions recombine with increased probability if they are not sufficiently
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Fig. 7.10 Schematic represen-
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quickly separated (section 7.3.2). Therefore the output signal increases with the voltage
until a saturation of the charge collection sets in at which ideally the whole charge
reaches the electrodes.

Ionisation chamber region, G = 1. The saturation of the output signal without
amplification defines the regime in which ionisation chambers are operated. This op-
eration mode is suited for measurements of particle fluxes, as for example done with
dosimeters (see fig. 7.3 in section 7.2.1). However, it is not suited for the detection of
single particles since without amplification the signal charge of single particles is too
small for detection (in the range of 0.01 fC/cm for minimum-ionising particles).

Proportional region, G =~ 103-10°. If in a strong field electrons gain sufficient
energy between two collisions to produce secondary electrons, a charge avalanche de-
velops, as described in section 7.4.1. With increasing operation voltage the amplified
charge remains over a wide voltage range proportional to the primary charge. There-
fore, as can be seen in fig. 7.10, in this proportional regime the curves for different
primary ionisations have equal distances, meaning that the amplification is indepen-
dent of the primary ionisation. In this operation mode a charge measurement in com-
bination with a momentum measurement can be used for particle identification (see
chapter 14, section 14.2.2).

Region of limited proportionality, G ~ 105-108. With increasing voltage the
proportionality of the output signal to the primary ionisation will be limited by space
charge effects. At sufficiently high amplification an ion cloud builds up at the anode
which only slowly drifts away because of the relatively small mobility of the ions. This
charge cloud diminishes the field locally around the anode wire. The regime of limited
proportionality will be reached earlier the higher the primary ionisation.

Saturation and Geiger region, G > 108. With further increasing gas ampli-
fication the output signal finally becomes independent of the primary ionisation. A
detector which works according to this principle ‘counts’ ionising particles or quanta
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independent of their type. The positive and negative charges of an avalanche, which
drift away from each other, start to neutralise in the inner region of the avalanche
because of the higher recombination probability at high charge density. The recom-
bination leads to the emission of photons which can produce further electrons by the
photoelectric effect in the counting gas or the chamber walls and thus initiate new
avalanches. How far this formation of avalanches extends depends on the cross sec-
tion for photoionisation in the counting gas. In the Geiger mode the charge avalanche
spreads out over the whole wire of a counting tube. At the time of invention of the
Geiger counter at the beginning of the twentieth century the resulting high current
signal was essential for the electronic signal registration. The discharge at the anode
wire will be stopped by the screening effect of the avalanche charge and/or by a voltage
drop over a shunt resistor connected in series to the power supply (self-quenching).

However, the disadvantage of a high current signal is a correspondingly long dead
time after each pulse, about 50-100 pus, which limits the use of Geiger counters to rates
below 10%-10% Hz. In proportional counters one tries to suppress avalanche expansion
by adding to the counting gas (typically argon or CO3) an organic gas as a quench-
ing gas which absorbs UV photons. Such quenchers are for example methane (CHy),
isobutane (C4Hyg) or methylal ((OCH3)2CHs). It is also possible to tune the pho-
toabsorption with the choice of the mixture such that the expansion of the avalanche
remains restricted to a fraction of the anode wire, say about 1 cm, in order to decrease
the dead time while keeping a relatively high signal. This operation mode is called the
limited Geiger mode.

Discharge region, above G ~ 108 — 10%. At very high voltages self-sustaining
discharges occur, either spontaneously or triggered by ionising particles. In a dis-
charge both electrodes become connected through a conducting plasma tube. Before
the plasma tube reaches the electrodes a spatially limited streamer builds up in the
region between the electrodes (see next paragraph). The transitions between a sat-
urated avalanche, the formation of a streamer and discharges, like glow, corona or
spark discharges, are floating and strongly dependent on the electrode geometry, the
gas properties (composition, pressure, temperature, humidity, . ..) and the resistance of
the electrical current circuit. The discharge regime can also be interesting for particle
detection because very high signals can be obtained. However, with modern readout
electronics this is only a criterion in special cases.

Operating a detector in the discharge regime always requires a mechanism for
the controlled termination of a discharge (or for stopping a streamer). For example,
discharges can be disrupted by:

— increasing space charge which limits avalanche formation;

— active interruption of the high voltage;

— applying a voltage pulse onto the electrodes for a short time only, usually initiated
by a particle trigger;

— passive reduction of the high voltage below the amplification threshold by conducting
the signal current through a resistor causing a voltage drop.

These mechanisms, or combinations thereof, also serve when operating in the propor-

tional regime as a protection of the detectors against destructive sparking.

The transition avalanche—streamer—spark. There is a wealth of investigations
of discharge phenomena in gases with a lot of related literature, often in view of
the high voltage safety of electrical apparatuses and of electrical phenomena in the
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Fig. 7.11 Evolution of a charge avalanche in a strong electric field into a streamer (adapted
from [816,817], with kind permission of IOP): (a) primary ionisation; (b) formation of an
avalanche by gas amplification; (c¢) build-up of a counter-field in the avalanche, recombination
in the neutral region of the avalanche and subsequent photoemission; (d) generation of new
avalanches by photoionisation; (e) fusion of the avalanches to a streamer.

atmosphere (see e.g. [704,804, 803]). Here we want to concentrate on the transition
from an avalanche to a discharge spark which is important for detector operation.

This transition is sketched in fig. 7.11 based on a simplified model [816,817]. Start-
ing with the generation of an electron—ion pair (a) in a strong electric field initially
an avalanche develops (b). The avalanche quickly spreads out in the direction of the
anode leaving the slower ions behind. Because of the stronger diffusion of the electrons
(section 4.6) a drop-shaped charge distribution forms with a positive charge tip and a
broader negative front, as already displayed in fig. 7.7. Between the separating charges
an electric field arises which is opposed to the external field, while simultaneously the
field between the charge fronts of the avalanche and the electrodes becomes stronger.
At gas amplification in the range of 10® the field within the avalanche becomes so
strong that it compensates the external field. In the thus forming neutral region inside
the avalanche the probability is increased that electrons and ions recombine, thereby
emitting a photon (c). The photons generate new charge pairs in the surroundings
of the avalanche which create new avalanches (d). The avalanches form particularly
strongly in the regions with high field between the original avalanche and the elec-
trodes, thereby favouring the expansion towards the electrodes. The velocity of the
expansion of about 10°m/s is determined by the photons and is thus about an order
of magnitude faster than that of the original avalanche, which is determined by the
electron drift. The growing avalanches begin to merge (e) and form a so-called streamer
which quickly grows towards the electrodes while glowing due to photoemission. When
the streamer reaches the electrodes they become connected via a conducting plasma
through which the electrodes discharge in the form of a spark.

The condition under which an avalanche, after having reached saturation (see
(7.17)), develops into a streamer and then into a discharge is called the Raether or
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also Raether-Meek condition [803,704].2 It states that without a discharge the gas
amplification in an avalanche is limited to about 108-10° which at constant electric

field corresponds to
ad = 18-20 (7.28)

secondary ionisations (« is the Townsend coefficient (7.10) and d is the length of
the avalanche). These values can only be regarded as a rough rule of thumb because
more precise values depend on various factors, like the diffusion of the charge cloud,
photoabsorption in the gas and the nature of the electrodes [804].

By early shutting-off or lowering the voltage, the possibility that the streamer
reaches the electrodes can be avoided. Used in this way, the streamer mode for detectors
offers some advantages as compared to operation as a spark chamber (see section 7.7).
Detectors using the streamer mode are streamer tubes, streamer chambers and resistive
plate chambers, as described in the sections 7.6.3, 7.7.2 and 7.7.3, respectively. In
homogeneous fields, for example between parallel plates, streamers can be initiated
at arbitrary positions if the field is sufficiently strong. In cylindrical counting tubes
they develop from the avalanche near the wire. In this geometry it is possible to stop
streamer evolution by the developing space charge if a suitable gas with sufficient
photon absorption is chosen. This operation mode is referred to as the self-quenching
streamer or limited streamer mode. In this case the streamer mode differs from the
limited Geiger mode (see above) by the fact that the highest charge density of the
streamer is distinctly separated from the wire because the streamer grows into the
direction of the cathode [295,551].

7.5 Choice of chamber gases

In this section we will discuss general criteria for the choice of chamber gases following
the corresponding discussion in [849]. The main criteria for the gas choice are:
— high ionisation density;

— little charge loss;

— low voltage at the required amplification;

— stable operation, safety against spark discharge;

— proportionality between ionisation and output signal;

— low diffusion (in particular for detectors with position resolution);

— suitable drift velocity (again for detectors with position resolution);

— rate tolerance and low or minor dead time (low space charge accumulation);
— radiation resistance;

— safety: non-inflammable, non-toxic, environmentally acceptable;

— costs.

Ionisation and charge loss. The ionisation density in table 7.1 on page 177 is
very good for the noble gases argon, krypton, xenon as well as for the molecular gases
COg, the hydrocarbons (except for methane), CF4 and DME and best for krypton and
xenon. Because of charge losses, electronegative gases, in particular oxygen, cannot be
considered as main components of a chamber gas.

2Note that what we called the ‘Raether limit’ given by (7.17) is the limitation of amplification due
to saturation caused by space charge. Here we are discussing the transition to a discharge.
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High voltage and gas amplification. In order to minimise sparking and leakage
currents, which occur in particular near the mounts of electrodes, the potential dif-
ferences between electrodes should be as low as possible. A high amplification at a
relatively low voltage is provided by the noble gases helium, neon, argon, krypton and
xenon, whose thresholds for gas amplification lie at field strengths of about 70 kV /cm.
Krypton and xenon have the disadvantage of high costs and for track detectors the
short radiation length is also disadvantageous because of the increased multiple scat-
tering affecting the reconstruction precision. On the other hand, exactly because of
the short radiation length, both gases are employed for the detection of photons, for
example for the detection of X-ray photons in a transition radiation detector (chap-
ter 12). In most cases helium and neon are less suited because of their low ionisation
density. However, because of their long radiation length, they are employed for the
detection of particles with low momenta in order to reduce multiple scattering. The
deficit in ionisation density can be balanced by an admixture of DME (table 7.1) which
also has a long radiation length but a high ionisation density. The light noble gases
are also employed for detectors operating in the discharge mode because there the
ionisation density is less important. For example, helium-neon mixtures are used in
spark chambers.

But in general argon is the preferred gas for detectors with gas amplification in the
proportional regime. Pure argon, however, exhibits some unfavourable properties, in
particular a very strong diffusion (high characteristic energy, see section 4.6.4.5 and
fig. 4.12 on page 117) and an unstable behaviour of the gas amplification. Therefore
argon is practically only used together with admixtures, as will be further discussed
in the following paragraphs.

Photoabsorption and quenching gases [849]. Pure noble gases exhibit an un-
stable behaviour in detectors with gas amplification because the photons which are
produced in the amplification process cannot be absorbed. In contrast to polyatomic
molecules which can absorb UV photons over a wide spectral band because of the
multitude of excitation levels, noble gases have only few discrete levels (see e.g. fig. 4.7
on page 110).

In the gas amplification process atoms and molecules are ionised and excited. For
example, an excited argon atom can only fall back into the ground state by emitting
a photon with a minimal energy of 11.6eV. This energy lies far above the ionisation
potential of copper of 7.7 €V so that such a photon, once it hits a copper cathode, can
extract an electron which initiates another amplification avalanche. A new avalanche
can also be initiated when an argon ion becomes neutralised at the cathode. The
released energy will be either radiated by a photon which can again ionise, or can be
used for the extraction of an electron from the cathode. In all cases this leads to a
delayed avalanche or at higher gas amplification to a permanent discharge.

The solution of the problem consists of adding to the noble gas, mostly argon, a
quencher. Usually one uses the hydrocarbons from methane to isobutane and, though
with worse quenching properties, also COy (the influence of these gases on the drift
velocity and other transport parameters is discussed in section 4.6). These molecules
have a broad spectrum of rotational and vibrational states which can be excited by
absorption of photons but which release the excitation energy preferentially in non-
radiative processes (collisions). The quenching properties of gases improve with an
increasing number of atoms per molecule.

Frequently used mixtures of argon with a quenching gas are for example:
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Argon—ethane 50: 50,
Argon—methane 90:10,
Argon-isobutane 75:25,
Ar-COo,-CHy 90:9:1.

The mixing ratios are given for guidance only. They can be varied in order to optimise
different detector properties.

Under high radiation load the problem arises that hydrocarbons cause undesired
depositions of polymerisates on the electrodes, which can lead to a complete failure
of a detector (see details in section 7.11). In this regard mixtures of argon with CO4
are much safer though more unstable at high amplification. In this case, however,
often a third component is added to strengthen the quenching, as for example in the
combination Ar-COo—CHy in the list above.

The gases CF, and DME (table 7.1) also possess quenching properties which,
however, are also used as the main component of a mixture for other reasons. For CF,
the reason can be the high drift velocity and for DME the high ionisation density at
large radiation length and little diffusion (see the detailed discussion of gases for drift
chambers in section 7.10.5).

Diffusion and drift velocity. The polyatomic gases are primarily employed as
quenchers for the absorption of photons. At the same time the molecules have the
capability of damping the heating of the electrons through the electric field by ab-
sorbing energy in inelastic collisions from the electrons and distributing that energy
preferentially in non-radiative processes to other molecules. A high cross section with
large inelasticity leads, as explained in section 4.6.4.3, to a small characteristic energy
(eq. (4.112)) and a small diffusion coeflicient (eq. (4.111)); see also fig. 4.12. The drift
velocity is in some range tunable by choosing the relative fraction of the quencher in
the gas (fig. 4.10) and reaches with increasing field strength a maximum followed by a
decline. This saturation behaviour is exploited for drift chambers in order to keep the
drift velocity, which is a function of the reduced field strength E/p or E/n (see eq.
(4.113)), stable against fluctuations of field strength, pressure and temperature. There-
fore the mixing ratio of noble gas and quencher is an essential optimisation parameter
for drift chambers (section 7.10) which use the drift time for position measurements.

Electronegative additions. In order to stop unwanted discharges, in particular
at high amplifications, one adds to the chamber gas electronegative gases, such as
halogenated hydrocarbon (e.g. CBrF3 or C3HsBr), sulfur tetrafluoride (SF4) or also
oxygen. These molecules adsorb electrons thus becoming negative ions which do not
contribute to the amplification because of their much lower mobility. In detectors
with longer drift paths these additions cannot be employed because this could cause
inefficiencies in particle detection.

Additions to prevent polymerisation. A main reason for a limited lifetime of
a gas-filled detector are deposits of polymerisates on electrodes caused by the hydro-
carbons which are employed as quenchers (section 7.11.2). Additives which do not
tend to polymerise but still have good quenching properties are alcohols, for example
propanol (C3HgO) and methylal (C3HgOs2). The problem with alcohols is, however,
that the saturation vapour pressure at normal temperatures is very low (for propanol
20hPa at 20°C), which means that high concentrations cannot be reached under reg-
ular conditions. But also with small additions of alcohol, from a tenth of a per cent
to some per cent, a positive effect for the lifetime of a chamber can be reached which
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is due to a charge exchange mechanism between the ions of the main gas component
and the additives. Since the additives have a lower ionisation potential the charge is
very effectively transferred from the quencher to the alcohol molecules. Thus the non-
polymerising molecules finally neutralise at the cathode, leading to a longer lifetime
of the chamber.

In order to increase the conductivity of the deposits on the electrodes one can add
minor portions of water to the gas (see also section 7.11). Low water concentrations
can be obtained by bubbling the gas through a water bottle (bubbler) at constant
temperature. For example, a 0.7% water concentration is obtained at a temperature of
0°C and a pressure of 1bar, corresponding to the saturation vapour pressure at this
temperature.

7.6 Operation of counting tubes

Counting tubes with cylindrical geometry, as in fig. 7.4, are the basis for most detector
types which measure ionisation with gas amplification (see also section 7.2.2). A land-
mark development was the Geiger—Miiller counter about a century ago [454]. While
this counter type employs the Geiger mode, counting tubes employing the propor-
tional mode subsequently became the rule because developments in electronics offered
increasingly more sensitive signal processing.

In the following we describe operation and applications of counting tubes in dif-
ferent operation modes: proportional, Geiger and streamer mode. The choice of the
respective gas filling follows the criteria discussed in the previous section and specifi-
cally the same criteria as for multiwire proportional chambers (section 7.8.3). In most
cases the counting gas consists of a main component determining the ionisation den-
sity, a quencher gas for the absorption of photons and optionally an electronegative
admixture preventing after-pulsing by fast removal of electrons. Typical gas mixtures
have argon as main component and methane, ethane or isobutane as quencher, and
possibly also an alcohol additive.

7.6.1 Proportional counter tubes

With modern electronics it is well possible to measure the generation of single electron—
ion pairs in a gas with proportional gas amplification in a counter tube, as shown
in fig.7.4. A single electron yields at a gas amplification of 10* a charge of about
1£C at the anode, which provides a sufficiently large signal if read out by low-noise
electronics (chapter 17). The signal formation in cylindrical counting tubes is described
in section 5.3.2. Operated in the proportional mode the detectors have practically
no dead time and thus work at much higher counting rates than those operated at
saturated amplification.

In contrast to the operation in a saturated mode (discharge, Geiger or streamer
mode) the operation with proportional gas amplification offers the possibility to deter-
mine the energy deposition in the gas, which can be exploited for particle identification
(section 14.2.2). In dosimetry a proportional counter can distinguish different kinds of
radiation, for example 5 and « radiation. Also the characteristic lines of v radiation
can be made visible. Figure 3.41 shows the two lines of an ®*Fe source corresponding
to the photoeffect and the escape peak which are often used for calibration of the gas
amplification. With the knowledge of the average energy required for the generation of
an electron—ion pair, the measured average charge of a gamma line yields the amplifi-
cation factor and the line width yields the resolution. In addition, the proportionality
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of the amplification can be controlled by observing the ratio of the distance of the
lines to the distance from the zero point.

A typical application of proportional counters is radiation measurement. A special
example is the measurement of 5 decays of radioisotopes which are generated by
solar neutrinos in the corresponding neutrino detectors; see details in section 16.6.1.
Proportional counters are also used for the detection of slow neutrons; see details
in section 14.5 and fig. 14.28(b) on page 574. The principle of proportional counters
has opened the way for the development of multiwire proportional chambers with
which position measurements can be performed by arranging parallel wires in a plane
(section 7.8).

7.6.2 Geiger—Miiller counter

The Geiger—Miiller counter, or simply Geiger counter, operates in the Geiger mode
(corresponding to the plateau at high amplification in fig. 7.10, see also description on
page 185) as a trigger counter, meaning that the output signals are independent of the
deposited energy. The signals are large enough that they can be registered without
further amplification, for example as sound from a loudspeaker.

The Geiger discharge, which spreads over the whole wire, will only be stopped
when the ion cloud moving towards the cathode has sufficiently reduced the electric
field in the amplification region. A renewed ignition of the gas discharge due to the
ions hitting the tube wall is suppressed through the addition of a quencher to the
counting gas. The amplification in the Geiger mode produces so much charge that
the neutralisation takes a relatively long time during which the counter tube has no
or reduced efficiency. This dead time, in the range of milliseconds, is an essential
reason why the Geiger mode is not used much nowadays in the research area (see also
section 17.9 on detector dead times).

7.6.3 Streamer tube

Streamer tubes and limited streamer tubes are counter tubes run in the streamer
mode [551], as described in section 7.4.2. Applying a very high voltage to the electrodes
the streamer mode is evolving as sketched in fig. 7.11. Relatively thick anode wires (50—
100 um) and a quenching gas (e.g. isobutane in the usual mixture argon—isobutane),
which inhibits the expansion of the UV photons, distinguishes this operation mode
from the Geiger mode. The streamer will be quenched by the space charge of the ion
cloud (self-quenching, limited streamer mode).

Streamer tubes are often employed as relatively cost-efficient, robust solutions for
large detector areas at relatively low counting rates, for example for muon detectors
(see section 14.3). The large areas are achieved by tightly concatenating many parallel
tubes to form a plane. Figure 7.12 schematically shows the structure of a typical
streamer tube system. The plastic walls of the tubes form the cathode, which is made
conductive by a resistive coating. The resistive coating is made of a soot-doped epoxy
resin or another synthetic material. The required area resistivity can be adjusted by
the amount of soot addition. The quadratic cross section of the cathodes permits cost-
efficient manufacture from extruded plastic: first, the upper side of the tubes is left
open such that a comb structure is obtained which will be closed after the wires have
been strung.

Usually the signals which are induced onto the conductive strips attached to the
outside of the tubes are read out. In the fig. 7.12 two independent coordinates are read
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Fig. 7.12 Typical layout of a
streamer tube system (adapted
from [551], with kind permission
of Elsevier). In plastic profiles
with quadratic cross section and

1-2 cm edge length anode wires
with a diameter of 50—-100 pm
are strung. The inner walls of
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out via strips at the top and bottom of the tubes, but none of the electrodes (sometimes
the anode is read out as well). Because of the high signals at amplifications of up to 10**
the strips can be relatively long, several metres, with a resulting high capacitance (the
effect of the detector capacitance on the readout electronics is discussed in chapter 17).

7.7 Sparks and streamers in parallel-plate systems

Until the 1940s the only detectors with which particle tracks could be made visible
were cloud chambers and photoemulsions (chapter 6) which, however, cannot be read
out electronically. The possibilities to register particle tracks electronically, for exam-
ple by arranging many Geiger counters together, was at that time still very limited. For
the coverage of large detection volumes, the principle of gas amplification was applied
for the first time at the beginning of the 1950s when spark chambers were developed
(section 7.7.1), which provided photographic pictures of sparks along a particle track.
Compared to bubble chambers, which were introduced at about the same time, they
have the advantage that they can be triggered by traversing particles with the aid of
external counters. But they have the disadvantage that information on the ionisation
density, which is exploited in bubble chambers for particle identification, is lost in the
spark formation. The most important disadvantage of spark chambers, however, is the
long recovery time after a discharge. In the 1960s this was partly remedied by the
introduction of detectors working in streamer mode (section 7.7.2). However, both de-
tector types have been replaced nearly everywhere by gaseous detectors which operate
in the proportional regime and are thus virtually dead-time-free. Higher gas amplifi-
cation modes are now only employed for specific applications, such as spark chambers
for demonstration purposes (fig. 7.13) or streamer discharges over short distances with
high time resolution (as in resistive plate chambers, section 7.7.3).

In the following, spark and streamer chambers will only be dealt with briefly be-
cause they are mostly of historical interest. However, spark chambers are still fre-
quently used for demonstration purposes (as in fig. 7.13(b)) because of their impres-
sive optical and acoustic presentation of particle tracks and because of their relatively
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scintillator
coincidence

scintillation
counter
(a) (b)

Fig. 7.13 (a) Typical layout of a spark chamber system with several parallel plates between
which the sparks form (adapted from [816,817]). In the initial state the capacitor C is charged
up by the applied high voltage. At the passage of an ionising particle a coincidence of scin-
tillation counters triggers the discharge of the capacitor onto the plates by firing a spark gap
(SG). (b) Between the plates sparks become visible along the ionisation trace. This detector
was set up for demonstration purposes in order to visualise particles from cosmic radiation,
mostly muons. Source DESY.

simple construction. Resistive plate chambers will be discussed in some more detail
because they are employed in modern experiments for fast triggering and for time
measurements.

7.7.1 Spark chambers

Figure 7.13(a) shows a typical layout of a spark chamber system with several paral-
lel plates between which high voltage is applied leading to sparks between the plates
when ionising particles have passed. The chambers are filled with noble gases, typi-
cally a helium—neon mixture (30:70) resulting in red-violet glowing sparks. The particle
passage is registered by fast detectors, typically plastic scintillators (see chapter 13)
connected to a coincidence circuit. The coincidence signal triggers a switch which initi-
ates the injection of a charge pulse stored on a capacitor at high voltage (about 10-20
kV) onto the plates. For the fast switching of very high, short current pulses, trig-
gerable spark gaps® are employed. Figure 7.13(b) shows how a particle track becomes
visible through the sparks.

For scientific applications the sparks are photographed from different directions,
allowing for three-dimensional reconstruction of the track. Another readout method
exploits the fact that a spark discharge always generates a heated plasma from which
sound waves emanate. The track coordinates can be reconstructed by electronically
measuring the arrival times of the sound by two or more microphones at different
positions. Compared to photography this acoustic method has the advantage that
fully electronic registration of events is possible.

Another possibility for electronic registration is the so-called magnetostrictive read-
out which is schematically depicted in fig. 7.14. The method implies that the plates

3Spark gaps are electronic devices which are used for fast switching of high voltage pulses. They
work like a spark plug in a combustion engine.
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separate planes
Fig. 7.14 Magnetostrictive readout of a
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where the sparking occurs are replaced by wire planes (wire spark chamber) with typ-
ical wire separations of 1-2 mm in the plane and about 1cm between the planes. A
spark generates a current pulse on the wire which will be routed over an electrically
insulated magnetostrictive wire* stretched along the border of the chamber. In this
wire a mechanical wave is generated by the magnetic field of the current pulse. In
the reverse process current pulses will be generated in pick-up coils at the wire ends.
The comparison of the arrival times of the pulses at both ends of the magnetostric-
tive wire yields the localisation of the hit signal wire and thus of the passing track
in one coordinate. Through the oriention of the signal wires in different directions in
the various planes the particle trajectory can be spatially reconstructed. This readout
method avoids the electronic complexity connected to a readout of individual wires,
although at the expense of a reduced resolution.

The time constant for the charging of a spark chamber lies in the microsecond range,
a time span in which the ionisation charges between the plates are still remaining.
In contrast the time constant for recharging the capacitor by which the chamber is
charged (C in fig. 7.13(a)) lies in the order of milliseconds leading to correspondingly
large dead times. Another disadvantage of spark chambers is the loss of information
on the primary ionisation due to the operation in discharge mode.

7.7.2 Streamer chambers

In a streamer chamber [358,817] the development of a spark is avoided (see fig.7.11
with the corresponding description in the text) by applying very short high voltage
pulses to the electrodes with duration in the range of 10ns. Thus streamers can be
kept so short, with lengths of less than a millimetre, that they effectively provide
points in three dimensions on the particle track. Because of this feature the geometry
of a streamer chamber is basically different from that of a spark chamber. In streamer
chambers a high voltage is also applied between parallel plates, in this case with sen-
sitive volumes of up to several cubic metres. However, here the preferential direction
of the particles is parallel to the plate electrodes and thus perpendicular to the elec-
tric field. Hence the streamers preferentially develop perpendicularly away from the

4Magnetostriction: change in length in a magnetic field.
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Fig. 7.15 Recording of a reaction
between a sulfur and a gold nucleus
at a total energy of 6.4 TeV [720]. The
picture was taken with the streamer
chamber of the heavy ion experiment
NA35 at the SPS (CERN). Source:
CERN.

track. The registration of streamers is only possible optically, similar to bubble cham-
bers (section 6.2). In contrast to a bubble chamber, however, the photographs can be
selectively triggered.

A streamer chamber is filled with a gas that has mostly neon as main component,
often with a fraction of helium (typically 80-90% neon, 10-20% helium), and a small
admixture of electronegative gas, for example freon or SF¢ (see explanations in section
7.5). In neon the streamers are particularly bright [358] with a maximal intensity at
wavelengths around 640nm. For example, the streamer chamber of the heavy ion
experiment NA35 at CERN (fig. 7.15) used the gas mixture He-Ne (20:80) with 0.25%
isobutane and 0.05 ppm SFg. With the small additions of isobutane as quencher and
SFg as electron absorber the chamber achieved dead times of only about 10 us.

The photograph of a heavy ion reaction in fig.7.15 demonstrates that streamer
chambers are able to image very high particle densities, which is not achievable to
this extent in spark chambers because there the discharge current is concentrated on
the spark that developed first. The charge of a single streamer is saturated and hence
carries no information on the initiating primary ionisation. However, the streamer
density along a track is proportional to the primary ionisation density and can thus
be used for particle identification. This is a further advantage of the streamer mode
as compared to the spark discharge mode.

7.7.3 Plate electrodes with high resistivity

Discharges in a homogeneous electric field between parallel plates with a narrow gap
have very small time fluctuations, in the order of only few multiples of 10 ps. While in
a counting tube the signal only develops after the electrons have drifted into the high
field regions near the anode, in a homogeneous field the avalanche can be initiated
at any point, thus avoiding fluctuations arising from the drift time. In normal spark
chambers, however, this good time resolution cannot be exploited because they are
operated in a pulsed mode where the start time of the spark development depends on
the externally triggered high voltage pulse. In continuous operation with constant high
voltage, on the other hand, uncontrolled discharges with subsequent dead times would
make a chamber very inefficient. Therefore, in order to be able to exploit the potentially
good time resolution in parallel plate geometries, methods of discharge limitation (see
list on page 186) have been developed, as we will discuss in the following.
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7.7.3.1 Pestov counter

In the early 1970s the so-called Pestov counter was introduced [761] which could be
operated in a continuous mode, indeed reaching time resolutions of 25ps [780]. A
Pestov counter consists of two parallel plates about 100 wm apart in a gas volume.
The gas is kept under a pressure of about 10bar in order to increase the ionisation
probability of traversing tracks. Voltages of about 10kV are applied to the plates such
that a spark or streamer develops when an ionising particle passes the gas volume.
It is essential for continuous operation that at least one of the two electrodes has a
high resistance such that a discharge current over the resistor leads to a voltage drop,
thereby terminating the discharge. See also the corresponding discussion of (7.29)
on page 199. Pestov counters are constructed using glass plates with a resistivity of
109-10 Qem [761,211] (Pestov glass, a glass with semiconductor properties). Thanks
to the high resistivity of the plates the signals can be extracted by induction onto
conducting strips outside of the plates (as for the streamer tubes, fig. 7.12).

7.7.3.2 Resistive plate chambers

Pestov counters are very delicate to construct and operate, not least because of the
small tolerances for the plate distance and the operation at high pressure. A further de-
velopment has led to resistive plate chambers (RPCs) [847] with reduced requirements
on construction and operation. The key point of operation is a sufficiently high electric
field such that instant avalanche multiplication sets in at any point of the gas volume
with negligible drift before, thus fulfilling the conditions for high time resolutions and
fast trigger decisions. Meanwhile RPCs are established as a cost-efficient solution for
large-area particle detection with good time resolution. They are used in many exper-
iments at accelerators, for example at the LHC [4,298,10,87], in detectors for cosmic
radiation [138] and in neutrino experiments [186,175]. In particular, they are employed
for the measurement of muons and for triggering with them (e.g. in ATLAS [4] and
CMS [298]) as well as for time-of-flight measurements (e.g. in ALICE [10]).

Different to Pestov counters, RPCs mostly operate at ambient pressure. The gaps
between the plates are larger, typically ranging between 0.3 mm for time critical ap-
plications and 2mm for applications requiring a high detection efficiency. Bakelite,
a phenol formaldehyde resin, has proven to be a robust and easy to machine plate
material with high resistivity.®

Single-gap RPC. We begin with the discussion of an RPC with a single gas gap
(single-gap RPC) for triggering applications. The principle is shown in fig. 7.16. The
plates are made of a high-ohmic material with a resistivity of 108-1012 Qcm (e.g. glass
or bakelite) and have a typical distance of about 2mm. A high voltage of about 10kV
is applied between the plates. On the sides facing away from the gas volume the plates
are coated with low-conductivity graphite with a surface resistivity® of Rg =~ 10° Q.

5To avoid sparking the surface has to be microscopically smooth which is achieved by a treatment
of the surface with linseed oil.

6The surface resistivity (also called sheet resistance) Rp is the resistivity (also called specific
resistance) p divided by the thickness of a (homogeneous) layer: Rg = p/d. This quantity can be
measured as the resistance of a quadratic area between two parallel edges. Since the resistance is
proportional to the distance of the edges and reversely proportional to the lengths of the edges, which
for a square have the same lengths, the measurement is independent of the size of the square. Therefore
the surface resistivity has the dimension ohms, sometimes also expressed as ‘ohms per square’ (©2/00)
in order to indicate that surface resistivity is meant.
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Fig. 7.16 Layout of an
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for illustration (adapted
from [664]).

The readout planes on the outside are separated from the conducting graphite coating
by insulating layers. The readout plane picks up the induction signals of the discharges
in the gas volume. It is usually subdivided into parallel conducting strips, which can be
oriented on both sides in different directions in order to obtain a position measurement.
The induction signals reach through to the readout strips because of the relatively low
conductivity of the graphite layer. The readout electrodes are decoupled from the high
voltage and can be put, for example, on ground potential such that the subsequent
electronics can be operated at low voltages.

RPCs can be operated in streamer mode or, with somewhat reduced voltage, in
avalanche mode (see section 7.4.2 on page 186) with different performance properties,
in particular what their rate and timing capability is concerned. Gas additives can
additionally suppress streamer formation when operation in avalanche mode is desired.
In streamer mode operation, the signals typically range from 100 pC to some nC; in
avalanche mode they are typically one order of magnitude smaller. Due to the smaller
signal charge generated in avalanche mode the rate capability is distinctly better than
in streamer mode (see discussion below). However, in the homogeneous electric field an
avalanche can start at any point in the gap, which makes gas amplification in this mode
dependent on the distance of the primary ionisation from the anode according to (7.15).
The typically small numbers of ionisation clusters in the narrow gap correspondingly
lead to (large) signal fluctuations and possible efficiency loss. In streamer mode this
is less of a problem since the charges of the signals are saturated anyway.

Regarding the choice of RPC gas mixtures, high ionisation density and sufficient
quenching power of the avalanche or the streamer are very important. Initially, RPCs
were operated mostly with argon gas, optionally with an electronegative addition [847].
For the RPCs of the LHC experiments, mixtures based on the freon tetrafluoroethane
(CoHoFy, code name R134a) with isobutane as quencher and SFg as electronegative
addition are common (e.g. in ATLAS: 94.7% CyHsFy4, 5% i-C4H1g, 0.3% SF¢ [4,418]).
In [856] the primary ionisation density of tetrafluoroethane is estimated to be n, =
8.2/mm and thus much higher than that of argon with n, = 2.9/mm (table 7.1).
Tetrafluoroethane is not flammable at abient temperatures and does not attack the
ozone layer of the atmosphere, but it is a relatively strong greenhouse gas. Since
this gas may be banned in the future because of its environmental impact, intensive
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Table 7.3 Properties of materials used as electrodes in Pestov counters or RPCs
(p = resistivity, e = relative permittivity, 7 = recovery time).

Material p (Qcm) € T (s)
glass ~ 102 4.4-5.4 ~ 0.5
bakelite ~ 100 7.6-8 ~ 0.01
Pestov glass (Schott S8900) [211] ~ 101! 6-8 ~0.1

searches for ‘eco-friendly’ replacements are underway (see e.g. [856,123]). See also the
discussion of ageing effects for RPCs in section 7.11.1.

For streamer quenching, as well as to prevent streamers occuring in avalanche
mode, the following mechanisms contribute [272]:

— local ‘switching off” of the field around the point of discharge achieved from the
voltage drop over the high electrode resistance;

— absorption of UV photons by gas additives to the gas (often isobutane) to prevent
secondary discharges;

— capture of electrons from the discharge by an electronegative component in the gas,
usually sulfur hexafluoride (SFg), in order to confine the extent of the discharge.

Recovery time after a discharge. Because of the high resistivity of the (bakelite
or glass) electrodes the charge drain is delayed and therefore a counter-field builds
up, limiting the discharge in time and strength, an effect which is referred to as self-
quenching. The duration of the discharge is typically about 10ns. The time for the
restoration of the electric field in the region of discharge, however, can last up to a
second, that is, the time for the charge created near the glass or bakelite electrode to
‘decay away’. It is characterised by the electric properties of the electrode material (p
and ) and the gas gap.

The development of the charge ‘decay’ between the initial charging at a point
on the resistive layer and its final spreading over the entire layer has been studied
in [667,821]. An estimate of the characteristic time constant 7 can also be obtained
from the capacitances and resistances involved. With R = pd; /A, where p,d; and A
are resistivity, thickness of the electrode layer and (charged) area, respectively, and
with the capacitance C' = C; + C5, formed by the electrode layer and by the gas gap,
7 = RC becomes

T=p&, (sl + dleg) , (7.29)
dy

where di 5 and €12 are thicknesses and permittivities of electrode (bakelite or glass)
and gas gap, respectively. Note that the area A cancels out in the product RC' so that
it need not be specified. Assuming typical values of d; = 3mm and a gap width ds
= 0.3mm, £, =8, e = 1, and p = 10'2Qcm one obtains 7 = 1.6s. More detailed
calculations in [821] yield ‘decay times’ between 0.8s and 1.6s.

For some materials, table 7.3 shows the recovery times during which the electrical
field around the position of large charge deposit is reduced. This introduces a local low
efficiency area with a typical size of about 0.1cm? for a streamer signal [194]. Since
the other regions of the RPC remain fully efficient, the detector can thus tolerate rates
of the order of 10 Hz/cm?.

The rate tolerance is determined by the average current (I) through the electrodes
leading to a drop of the external voltage V., over the resistive layer:
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AV = Vezt - thas =R <I> 5 (730)

which should remain negligible as compared to the voltage over the gas gap V4. Obvi-
ously, this voltage drop depends on the electrode resistivity p (for two electrode layers)
and the discharge current, given by the average charge (@) produced per avalanche or
streamer and the particle rate per unit area f4:

AV = p(2d1) (Q) fa. (7.31)

The rate tolerance, definable as fa/AV [66], can hence be increased by lower-
ing the electrode resistivity (table 7.3) and thickness, but also by reducing the gas
amplification, that is, changing the operation mode.

Originally RPCs were operated in streamer mode with correspondingly large sig-
nals and fewer demands on the readout electronics and the accuracy of the electrode
distance. The operation in avalanche mode offers better rate tolerance and less age-
ing problems (see section 7.11) but requires electronic amplification and more elab-
orate readout electronics as well as fine-tuning of the gas amplification. Dedicated
developments—amongst others of special gas mixtures—accomplished RPCs operat-
ing in avalanche mode with gap widths in the millimetre range that could reach near
100% efficiencies at particle rates of up to some kHz/cm?. Examples are the RPCs of
the LHC experiments ATLAS [4] and CMS [298].

In the ATLAS experiment single-gap RPCs are employed as trigger detectors for
muons covering an area of 3650m? in three layers, each with two single gap planes [4].
For trigger detectors the detection efficiency is the essential criterion, whereas the time
resolution is usually less important. In collider experiments the latter must only be
better than the time difference between beam crossings (25ns at LHC). Operated in
avalanche mode the ATLAS RPCs reach detection efficiencies of 98.5% at particle rates
of about 1kHz/cm?. The position resolution is about 1cm, achieved by subdividing
the electrodes into strips.

Time resolution of RPCs. The time stamp of a signal is set when it exceeds the
threshold of a discriminator. The time until which the signal amplitude reaches the
threshold varies with the time fluctuations of the avalanche formation. While in cylin-
drical geometries an avalanche will always develop at the wire, in the homogeneous
field of an RPC an avalanche can form anywhere in the gas gap. The gas amplification
G = e*® (eq. (7.15)) depends on the distance s of the ionisation from the anode. The
Townsend coefficient « (ion—electron pairs per path length, eq. (7.10)) is constant in
a homogeneous field. The gas amplification is adjusted such that primary ionisation
occurring up to a certain distance from the cathode delivers a signal above the thresh-
old. Hence at least one charge cluster has to lie within this distance for a signal to
be registered. For example, if a detection efficiency of 98% is aimed at, the average
number of clusters in the region near the cathode has to be four.”. The cluster density
of 3-4/mm in typical chamber gases can be increased by employing respective gases
with higher ionisation density or by increasing the pressure (as done in Pestov coun-
ters). For example, the cluster density of Freon 13B1® (CF3Br) is about 10/mm [286].

7 According to Poisson statistics the probability to have no cluster in this region is p(0) = e~ for
an expectation value A of the number of clusters. For an efficiency of 98%, that is, p(0) = 0.02, one
obtains A = 4.

8In the past, Freon CF3Br was also used, in particular as an electronegative additive. However, it
is no longer produced because of its high potential for ozone reduction in the atmosphere.
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Tetrafluoroethane (R134a), which is the main component of the RPC gas used in LHC
experiments, has a cluster density of 8.2/mm [856].

In an avalanche the characteristic time 7, = 1/(c v ) between multiplication steps
is given by the Townsend coefficient o and the drift velocity v, of the electrons.
Effectively, a is reduced by attachment of electrons to the molecules of the chamber
gas. The relevant quantity is the effective Townsend coefficient o — 1, where 7 is the
attachment coefficient (see eq. (7.9) on page 178).

The time evolution of RPC signals is treated in [690] and in [825] on the basis of the
physical properties of avalanche formation in gases for different chamber parameters
(see section 7.4.1). Each electron created by ionisation in the chamber gap can start an
avalanche with some probability or can be attached to a gas molecule and is hence lost.
If amplified, the induced signal, which determines the timing precision, is given by the
avalanche cloud started from an initial charge size @)y of a given ionisation cluster. If
multiple clusters are generated within a gap thickness their contribution must be folded
in. The dominant contribution to the time evolution of an (induced) signal is governed
by the avalanche development until its arrival at the electrode plane (¢ < z/vy). With
(7.15) for the gas amplification, the exponential growth of the avalanche charge for a
given drift velocity v, can be written as

Q1) = Qe @~ Mot (7.32)

Other time contributions to the signal development, like for example the time needed
for the (position-independent) development of the induced signals on the electrodes,
can be neglected in comparison. For a first order estimate one can adopt the view
that the initial charge size Qg in (7.32) is given by primary ionisation charges which
are immediately multiplied by avalanche processes initiated from every electron. The
main fluctuations of Q(t) at some fixed time ¢ arise from primary fluctuations at the
beginning of the avalanche process when the number of electrons is still small. Later in
the avalanche, when much larger numbers of electrons govern the exponential growth,
the development of Q(t) becomes increasingly smoother and the initial fluctuations
can be absorbed in the charge starting value Qg which itself follows a statistical distri-
bution. It is shown in [825] that the probability distribution of Qq follows a decaying
exponential function with an average value Qf":

1
o
In order to examine the time resolution we look for fluctuations in time occurring
when a signal crosses a given threshold Q.. With (7.32) we obtain

Q(t) = chr = t(Q07 chr) = (a _177) - anQtzr ’

P(Qo) =

exp (—Qo/Q5") - (7.33)

(7.34)

with the characteristic time ((a — ) v,) " for avalanche formation (average time be-
tween secondary ionisations). Using (7.33) that Qo is exponentially distributed around
some average, one can derive the time-stamp distribution as [825]:

Pt) = (a—n)vof (e —n) vpt)  with  f(z) =e  @Texp(=2)) = (735

given here such that the maximum of the distribution has been shifted to ¢t = 0.
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Surprisingly, the shape of the distribution is independent of the threshold and the
average signal, since a different threshold merely corresponds to a time shift. The
function f(x) is asymmetric, resembling in shape the Landau distribution function
(see eq. (3.55)). The variance of f(z) about the mean value is 0% = (1.28)2, that is, in
the order of one. Thus the time resolution is

1.28

e (7.36)

o ~

RPC efficiency. One can estimate the hit efficiency on an RPC by making some
simplifications. Following [825] we assume that the RPC ‘fires’ if the first ionisation
cluster creates an avalanche exceeding the threshold, if the first cluster is lost (at-
tached) and the second cluster exceeds the threshold or if both first and second cluster
are lost and the third fires the RPC, and so on. We further assume that the clusters
contain only one electron and neglect avalanche fluctuations. Then, a primary electron
created at position z in a gap starting at x = 0 with thickness d will induce a charge

Quna(w) = By —— (elemm (=) _ 1) (7.37)
o=

on the readout electrode, where E,, is the weighting field as introduced in section 5.3.1
(for unstructured electrodes E,, = 1/d is a constant) and « and 7 are the respective
coefficients for amplification and attachment, as used above. For a set threshold Q-
an avalanche is detected if for some x;p,- the induced charge is larger than the threshold:
Qind(x) > Qtpr. This means that the distance d — z4p, to the collecting electrode must
be large enough for sufficient amplification; solving (7.37) this is for

In (1 + i%(a - n)) . (7.38)

d — Tipr >
thr Ew

We can assume that a primary ionisation cluster does not depend on the previous ion-
isation. Hence the distance dx between ionisation clusters for a given mean ionisation
length A is exponentially distributed:

P(5z) = Xe*%”” . (7.39)

The probability that an electron is attached before it can be amplified is n/a and,
correspondingly, the probability that the electron is amplified (i.e. not attached) is
1 —n/a. Then the probability that the first electron induces a signal above threshold
is obtained by integrating the probability distribution (7.39) from zero to xp,, defined
in (7.38). Accounting for the amplification and attachment probabilities we obtain

N Tehr 1 @y
P=[(1--—= —e A . 4
1 ( a) /0 \ € dZEl (7 O)

The probability that the first cluster does not reach the electrode, but the second one
does and is above threshold, then is

Tthr T2 n 1 = n 1 _z2—m1
— LA A — =] = A . .
P, /0 /0 (a )\e (1 a) 3 e dxq dxo (7.41)
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Section 7.7: Sparks and streamers in parallel-plate systems 203

Table 7.4 Typical parameters for trigger and timing RPCs together with the resulting values
for the time resolution and the efficiency as derived from (7.36) and (7.43). For the trigger
RPC an average cluster size of 2 has been assumed for illustration, halving A.

E A o n Up d chr Ot €
Type () )  (55) (5s) (5) (mm) (fC) | (ns) (%)
trigger RPC 50 0.06 13.3 3.5 140 2 100 1 99
timing RPC 100 0.1 123 10.5 210 0.3 20 0.05 78

Continuing the series, the probability for the nth cluster to be above threshold and
one before, the (n-1)th cluster, to be attached is

Po= (1) (1=1) (1=K [Fmn)) with K fron) = Zk (r.42)

The efficiency then is given by the sum of all probabilities P,,:

1
:anzl,e 1-2% <1+ E_"Q;h’)m. (7.43)

This formula agrees quite well with Monte Carlo simulations [825], although it under-
estimates the true efficiencies somewhat since accumulating cluster contributions are
not accounted for.

In conclusion, note that the time resolution (7.36) depends only on the difference
a—n of the gas-dependent Townsend and attachment coefficients and the drift velocity
vp, but not on the detection threshold Q1. because each primary cluster contributing
to the time measurement is by definition above the threshold and each avalanche con-
tributes with the same time dependence. The detection efficiency € in (7.43), however,
depends on « and 7 separately as well as on Qyyy, d and A.

As a rule, depending on the particular application, the efficiency e (for trigger
RPCs) or the time resolution o; (for timing RPCs) are optimised. Table 7.4 shows
typical parameters for both cases as well as the resulting time resolutions and efficien-
cies as calculated using the derived formulae [825]. The good time resolution of RPCs
with small gap width is achieved because of the strong electric field leading to large
values of av, and correspondingly small time-scales which determine the timing pre-
cision. However, the efficiency of timing RPCs is distinctly lower than that for trigger
RPCs. This results from the small gap and fewer ionisation clusters in combination
with a reduction by space charge effects [824, 666].

Multi-gap RPCs. In order to further improve the time resolution and the efficiency
of RPCs, so-called multi-gap RPCs have been proposed [286] with multiple avalanches
inducing signals on the same readout strip. The layout of an RPC with several gas gaps
is shown in fig. 7.17. The high voltage is applied through the graphite coating of the
two outer plates, while the intermediate plates separating the gas gaps are electrically
not connected and their potential is free floating. If no current flows to and from the
intermediate layers a linear potential drop over all inner layers will be maintained.
Because of current conservation in the stationary case, the incoming and outgoing
currents must be equal, which requires equal gas amplification in neighbouring gas
gaps thus stabilising the linear potential drop [286]. The time resolution improves
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Fig. 7.17 Typical layout of a
multi-gap RPC. This RPC vari-

high-resistive

plates ant offers superior time resolution
(floating) at higher efficiency. See text for
details.
graphite [ Thsulator ] J_
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with the number of gaps n, although not according to a simple 1//n law since the
resolution is rather dominated by the gap with the largest signal. For n ~ 10 intrinsic
time resolutions of 20 ps are achievable [665].

In the ALICE experiment multi-gap RPCs are employed as time-of-flight detectors
for particle identification (see also section 14.2.1 on page 548). With the choice of
very thin gas gaps of 250 um width and precisely positionable glass plates as resistive
electrodes the experiment reaches time resolutions of about 85ps at efficiencies of
99% [80,10]. Such resolutions can also be reached employing organic scintillators with
photomultiplier readout (section 13.2), however, at appreciably higher costs.

7.8 Multiwire proportional chambers (MWPCs)

A multiwire proportional chamber (MWPC) principally functions like proportional
counter tubes that are arranged in a plane side by side. Such an arrangement provides
spatial resolution perpendicular to the wires for particles passing the wire plane. With
several MWPC planes stacked behind each other the trajectories of charged particles
can be electronically registered (in contrast, for example, to bubble chambers which are
read out photographically). The MWPC was developed by George Charpak at CERN
in the late 1960s [296]. This detector type and variants of it, like the drift chamber,
have been crucial for progress in particle physics until today. George Charpak received
the Nobel Prize in 1992 ‘for his invention and development of particle detectors, in
particular the multiwire proportional chamber’ [290].

Important for the development was the realisation that a mechanical separation
between the anode wires, for example by grounded walls, is not mandatory in order to
clearly separate the signal from the wire where the avalanche occurs from those of the
neighbouring wires (see e.g. [291]). Thus every wire can be considered as an individual
detector, like a proportional counter tube. This can be understood by noting that
the signal charge is only generated very near to the anode wire and that the highest
signals are induced by drifting ions near the amplification region (see section 5.3.2).
In this region the weighting fields of neighbouring wires are small and lead to positive
induced signals, in contrast to the negative pulses on the central wire. The situation
roughly corresponds to the weighting fields very near a strip anode in fig. 5.14. For a
typical MWPC the positive signals are about 1/5 of the negative signals and can be
discarded by appropriate electronic thresholds. Hence the walls of the counting tubes
can be omitted thereby saving construction material. The development of MWPCs,
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Fig. 7.18 Perspective
view of a typical MWPC
(schematic). In the shown
version the cathodes consist

of two parallel conducting
planes at a distance of 2d.
The anode wires with radii a
(drawn strongly magnified)

By 7777

V

are stretched parallel in the

Kolanoski, Wermes 2015

middle plane between the

cathodes with a pitch s.
R Rhv Typical values for a, s and d
are given in (7.44).

signal Viy

Table 7.5 Typical properties of wires which are used as anodes or cathodes, respectively.
In order to apply a constant, reproducible tensile stress to a wire, a mass (last column) is
attached to the wire running over a deflector pulley.

Material example Diameter Tensile stress Mass
anode: gold-coated tungsten 20-30 pm ~ 500 MPa ~20g
cathode: Cu-Be alloy ~ 100 pm ~ 100 MPa ~60g

with which large detector volumes can be filled, made the fully electronic detection
of complex high energy reactions possible for the first time. An essential advantage
compared to spark chambers (section 7.7.1) is the much shorter dead time due to the
fact that the small signals in the proportional regime cause little voltage drops and
correspondingly short recharging times of the electrodes. In return the signal has to
be amplified at each individual wire. The large number of electronic readout channels
only became possible when electronic components became more compact.

7.8.1 Layout of MWPCs

A typical multiwire proportional chamber (fig. 7.18) consists of a plane of anode wires
which is sandwiched between two cathode planes with a distance 2d between the
cathodes. The wires are stretched in parallel with a pitch s, typically with s ~ 2mm.
The distance d between the anode and the cathode planes is typically three to four
times the distance s between the anode wires. The cathodes could be made of smooth
metal plates, for example copper, or could also be formed by wires. Common wire
materials with typical diameters and the applied tensile stress they are tensioned
with, are listed in table 7.5. A typical set of parameters which we want to refer to in
the following is (see fig. 7.18):

a=00lmm, s=2mm, d=8mm. (7.44)

The electrostatic forces which arise due to the voltage between anode and cathode
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Fig. 7.19 Electrostatic instability in MWPCs. The
anodes lie on the same potential and thus repel each

other. At a critical length of the wire the mechanical

A tensile stress does not suffice to keep the wires in

their nominal positions. A new stable configuration
C is found when neighbouring wires are deflected in

opposite directions.

Fig. 7.20 Typical behaviour
of potential and field lines in an
MWPC (using the approximation

for line charges in free space
corresponding to (7.46)).

have to be compensated by the mechanical tension of the wires. Between the wires of
a plane repulsive forces act which lead to instabilities if the wire tension is insufficient
or the wires are too long. As shown in fig. 7.19, the system finds a stable state again
if the wires are deflected in alternate directions out of the plane. Since the mechanical
tension should not exceed the elastic limit (yield point), a maximal free length of
the wire results which for the anodes is about 80 cm. For longer wires intermediate
supports are necessary, for example by nylon threads stretched perpendicular to the
electrode wires. The support frame for the wires has to be very stable in order to hold
the mechanical tension forces. Often this frame also serves as gas container and has
therefore to be made gas tight with as little material as possible in the sensitive area
where the particles pass the detector.

7.8.2 Electrostatics

Applying a high voltage between the anodes and cathodes leads to an electrostatic field
which near the anode almost has the same behaviour as in a cylinder capacitor and
turns near the cathode into a nearly homogeneous field, as in a parallel plate capacitor
(fig. 7.20). The high voltage is chosen such that in the region near the anode a field
strength is reached which is necessary for the required gas amplification (typically
>100kV/cm on the anode surface).

Calculation of the electric field of an MWPC. Assuming that the electrodes
extend infinitely in the z direction, the direction of the wires, the electric field E(z,y)
has only components in the (z,y) plane. The field is determined by solving the two-

dimensional potential equation
Ag(z,y) =0 (7.45)

in the space outside of the conductors with boundary values ¢; on each conductor 1.
In the following we choose the z-axis in the wire plane and perpendicular to the wires
with the origin in the centre of a wire and the y-axis perpendicular to the wire plane
(fig. 7.18).

Since the potential problem can only be solved numerically we want to derive an
approximate solution which exhibits the essential properties of the exact solution. Ini-
tially we consider line charges in free space instead of the wires, that is, without the
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cathode planes. Let the arrangement in the plane of the line charges be infinitely ex-
tended, thus resulting in infinitely many, infinitely long line charges. The (line) charge
per length is A = dg/dz and the grid spacing is s. The potential of this arrangement
can be calculated analytically (see e.g. eq. (10.2.30) in [718]):

In {2\/Sin2 ™% 4 sinh? 7ry} . (7.46)
s s

¢0(xay) -

2me,

This potential has the following properties which allow us to approximately fulfil
the boundary condition of an MWPC electrode arrangement:

(1) For y > s the potential ¢g becomes approximately independent of z:

A LTy ATy
QSO(‘T, y) — o (y) e, n ( S s ) 2me, S ( )

This means that the planes with constant y are approximately equipotential
planes. Placing the cathode planes at y = +d (d > s > 0), we can set their
potential to ¢ = 0 by adding to the potential ¢y a constant:

A d

5 3 - 5 . 7.48
bo(z,y) = d(z,y) = ¢o(z,y) + e s (7.48)
Hence the potential
A d
d(z,y) = [W —1In (2\/sin2 ™% 4 sinh? W)} (7.49)
2me, | S S S

approximately fulfils the boundary condition ¢(z, £d) = 0.

(2) For small values of y and |x — m s| (with m = 0,+£1,... defining a specific wire)
we find that ¢ becomes azimuthally symmetric around each wire m if in the
expansion of sin and sinh only the first term in each case is picked up:

o) = o |- (T ) | = o). @0

2mey | s

with
r=+/(x—ms)?+y2.

Thus this approximation yields ¢ = ¢(r), which means that the anode wire sur-
face r = a constitutes approximately an equipotential surface where a boundary

value can be given:
bla) ~ = {”d —In (mﬂ . (7.51)

2me, | S S

Hence with this approximation one can replace the line charge A by an anode
wire with radius a, such that A obtains the meaning of a surface charge per length
on the wire. Then the electric field is azimuthally symmetric close to the wire:

. 99 _

B(r) = ~ 2 la

——€, ~ ———¢,
or 2me, T

(7.52)
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If the potential on the cathode surface is predefined, here by ¢(x,d) = 0, then the
boundary value on the anode will be fixed by the voltage V| applied between anode
and cathode corresponding to the potential difference:

Vo= d(zy)|,_, — dla,d) = = [”d “n <2m)] . (7.53)

2mey | s s

For a given voltage, the charge induced per length on the anode, A\, depends on the
capacitance of the arrangement:
A=CV,. (7.54)

The capacitance C per length for a single wire is obtained by substituting A into (7.53):

2me,
C=—F———/—+—+——. 7.55
d In (27ra) ( )

s s
For an anode area with a large number n of wires the capacitance C,, = nC can
be compared with the capacitance C'p; of a respective planar capacitor consisting of a
continuous anode plane between two cathode planes:

27e, 2€,8 2me,
md _ |n (2Tra) pr="n d " xd

S S

C,=n

(7.56)

The inequality arises because in general s > 2ma, yielding the logarithm in the left
hand side equation to be negative. With the values for a typical MWPC (7.44) one
obtains for example for one cell (n = 1): C = 3.5pF/m. A corresponding planar
capacitor has the somewhat larger capacitance per cell of Cp; = 4.4 pF/m.

The calculation of electrostatic fields in detectors with arbitrary electrode arrange-
ments is in general done using computer programs for the solution of the potential
equation with given boundary conditions. An often used program is Garfield [959,958].
Garfield can calculate two-dimensional configurations analytically employing methods
of complex potential theory (as also discussed in appendix B); however, in the general
case it can resort to numerical methods. Analytical solutions, if available, are prefer-
able because they are less time-consuming, in particular when used in simulations of
charge carrier transport.

7.8.3 Operation of MWPCs in experiments
7.8.3.1 Choice of the chamber gas

The choice of the gas for the operation of an MWPC follows the general criteria
discussed in section 7.5. As a gas with good amplification and quenching properties
the so-called magic gas, composed of 75% argon + 24% isobutane + 0.5% freon, has
proven successful. The three components fulfil the tasks described in section 7.5: argon
takes care of the high gas amplification at a relatively low field strength, isobutane
acts as quencher, thereby damping the electron motion and absorbing photons, and
the electronegative freon makes for the clean decay of the signal.

7.8.3.2 Detection efficiency

The probability that a particle traversing an MWPC is detected essentially depends
on the following parameters:

£20Z 1290100 £0 U0 Jasn Ateigi NYID Aq GH9€/500q/woo dno olwapeoe//:sdiy woly papeojumoq



Section 7.8: Multiwire proportional chambers (MWPCs) 209

100% F - === -=mm e Fig. 7.21 Typical behaviour of a high
voltage curve (also called efficiency curve)
of an MWPC. Fraction of signals recorded
by a chamber plane relative to the number
of all passing particles as a function of the

operation high voltage applied to the electrodes (the

electronic signal threshold is kept fixed).
=3-4kV i

— lonisation statistics: How much charge contributes to the signal depends on the
number of electron—ion pairs produced and on possible charge losses on the way to
the electrodes.

— Gas amplification and sensitivity of the electronics: Using modern low-noise elec-
tronics it is possible to become sensitive to femtocoulombs corresponding to a single
electron at a gas amplification of 10%.

— Dead time of the detector and the electronics: At high particle rates, high primary
ionisation or high gas amplification, detector dead times or times with reduced
efficiency can arise due to space charges screening the electrodes. The strength of
the effect is determined by the delay of the charge equalisation by ion motion and
the time constant of the voltage supply.

Multiwire proportional chambers reach efficiencies for minimum-ionising tracks of
close to 100% per detector layer. At a typical ionisation density of about 100/cm and
a path length in the gas of more than 8 mm the ionisation statistics virtually do not
contribute to an efficiency loss. In order to set a sufficiently high gas amplification at
minimal voltage necessary for full efficiency one usually measures high voltage curves
where the fraction of detected particles from all passing particles is plotted versus
the high voltage. The passing particles are usually determined by other detectors, for
example scintillation counters as in fig. 7.25(a). Figure 7.21 shows a typical efficiency
curve of an MWPC. During the measurement the signal threshold is kept fixed at a
value which sufficiently reduces background noise. At a characteristic threshold voltage
the rate increases relatively fast from zero to a plateau value close to 100% which is
retained over a certain range. At further voltage increase the recorded rate can go
beyond 100% due to spontaneous discharges and other effects. In order to ensure an
efficient and at the same time stable operation the working point is set to a value not
too far behind the beginning of the plateau.

At each particle passage the released charges are transported to the electrodes
so that the voltage between anode and cathode would drop if the charges were not
compensated by the high voltage supply (HV). This charge compensation proceeds
with a time constant 7 = Rpgy Cpe: where Rpy is the resistance of the voltage
source and Cpe; the detector capacitance (see fig. 7.1). As a protection against spark
discharges this time constant is chosen much larger than the time constant for the
formation of a discharge. Then a discharge current reduces the voltage for a time long
enough to stop the discharge, at least in most cases. For example, for a resistance
Ryy = 10MS and a detector capacitance of 100 pF the recharge time constant would
be 7 = 1ms.

In order that the voltage drop due to a current over Rygy does not reduce the
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Fig. 7.22 Response of several neighbour-
ing wires at non-perpendicular passage of a
particle through an MWPC plane (cluster
formation).

detection efficiency the rate has to be small compared to 1/7. The achievable rates
can be estimated from the voltage decrease and the subsequent decrease of the gas
amplification. The working point set on the high voltage curve (fig.7.21) determines
which voltage decrease is still tolerable.

7.8.3.3 Resolutions

Resolution of the coordinate perpendicular to the anode wire. We consider
an anode plane as in fig. 7.18 where the x-axis lies in the anode plane perpendicular
to the wires. If upon the passage of a particle exactly one wire with the coordinate z,
fires, then the point of passage must lie within z, £ s/2, meaning within an interval
Ax = s, the wire spacing. If all passage points near a wire occur with equal frequency
(uniform distribution) then the standard deviation, corresponding to the resolution of
the measurement device, is given by (see appendix E, eq. (E.4)):

Az
o Nivh (7.57)
At a wire spacing of s = 2mm the resolution then becomes o ~ 0.6 mm, a typical
value for MWPCs.

Often several wires respond, in particular if a track does not pass perpendicular to
the detector plane (fig. 7.22). In order to assign an x coordinate of the crossing point
of the track with the anode plane, the centre of gravity of the x coordinates of the hit
wires, called cluster centre of gravity, is calculated. With appropriate algorithms even
better resolutions than with a single wire are reached (see also appendix E).

Two-dimensional position resolution. There are different methods to determine
the second coordinate (z coordinate in fig. 7.18), for example:

— Combination of anode planes with different wire orientations, referred to as stereo
layers;

— readout of the induction signal on the cathodes which are then usually segmented
as strips or pads (the strips with another orientation than the anode wires);

— charge division: The anodes are read out from both wire ends, comparing the mea-
sured charges yields the position along the anode wire (the discussion of charge
division in the context of drift chambers on page 227 is also here applicable).

Stereo layers. With the arrangement of stereo layers, ambiguities in the reconstruc-
tion of space points are avoided. While for the spatial resolution perpendicular wire
orientations are most favourable, this leads to ambiguities if more than one particle is
registered in the same event. In fig. 7.23(a) this is demonstrated for two tracks. The
combinations of the two hit wires lead to four possible space points and in general, n
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(a) region around a hit wire (b)
. penetration region of a track

D wrong wire combination

Fig. 7.23 The pictures show perpendicular top views of two and three anode planes, respec-
tively, with different wire orientations stacked behind each other. The grey stripes are the
+s5/2 regions around hit wires. the dark areas mark the area containing the actual crossing
point of a track, the light areas mark the false wire combination. (a) Ambiguities arising from
the spatial reconstruction of the crossing points of particles if only orthogonal coordinates
are measured. (b) Example of three stereo layers (0°, £30°) arranged in a way to prevent
ambiguities in track reconstruction. The crossing points of the tracks lie in the overlap region
of +s/2 regions. This example does not contain any false assignment.

tracks lead to n? space points. Hence, for example, four tracks already lead to 12 false
combinations.

In principle these ambiguities can be removed with the aid of a third, independent
wire orientation. For example, in fig. 7.23(a) an additional wire plane, rotated by 45°
would largely resolve the ambiguities. Figure 7.23(b) shows three anode layers with
relative wire orientations 0°, +30°. Because of construction considerations this variant,
with its symmetry relative to the 0° layer, is often preferred. Small stereo angles can
also be advantageous for the construction, for example if the tensile stress of the wires
can only be supported from two sides or if the electronic readout can only be placed
on one side of the chamber.

In fig. 7.23(b) the passing points of tracks lie in regions in which the +s/2 stripes
around the hit wires cross. The resolution is in general given by a polygon which is
formed by the overlap of three stripes (fig. 7.23(b)). The coordinate along a hit wire is
determined by a hit on a crossing wire with a resolution proportional to 1/sin o, where
a is the cutting angle between the two wires. For perpendicular wires 1/sina =1 and
thus the best resolution is obtained. But for small wire rotations 1/sin « can be rela-
tively large as compared to the resolution perpendicular to the wires (for o = 30° it is
a factor of 2). This is acceptable if the resolution requirements for the different coordi-
nates are not the same. For example, the coordinate which determines the deflection
of a track in a magnetic field, and thus the momentum resolution, should generally
be measured more precisely than the coordinate orthogonal to that. If the resolution
should be equal in all directions the optimum is reached by rotating three wire planes
by 60° to each other.
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Fig. 7.24 Principle of a readout of (a) cathode strips and (b) cathode pads.

Cathode readout. A cathode strip readout (fig. 7.24(a))provides a further coordi-
nate in addition to the one provided by the anode readout. In this case the signal
induced by the charge avalanche on a strip is recorded.” For typical widths of cathode
strips in the millimetre range a resolution of fractions of a millimetre can be reached.
The resolution can be improved if the cluster centre of gravity can be determined by
measuring the signal heights on each strip (see appendix E).

The direct measurement of space points is possible if the cathode is formed by small
conducting areas called cathode pads (fig.7.24(b)). A pad structure is beneficial if the
space point is to be used for a fast trigger or if the background is very high so that a
space point reconstruction from projections would yield too many false combinations
(see discussion above). For example, pad structures are employed in photosensitive
MWPCs for the determination of Cherenkov rings (RICH detectors, see chapter 11)
and in MWPCs for the readout of time projection chambers (section 7.10.10).

Time resolution. Because of the varying distances of the tracks from the anode
wire and because of the statistical distribution of the electron drift times, the signal
times lie typically in an interval of 100 ns after the particle has passed the layer. This
time is particularly important for the employment of MWPCs in a trigger logic (see
section 7.8.4) which possibly already includes a coarse track recognition. If necessary
the time span estimated above could be shortened by forming a logical OR of signals
from neigbouring layers and using as time stamp the time of the earliest hit. In this
way resolutions around 10ns have been reached, but a more typical value is about
60 ns.

7.8.4 Example of an MWPC detector arrangement with
electronics

A simple arrangement of planar MWPCs with three chambers, each with three stereo
layers, is shown in fig. 7.25(a). Together with the scintillation counters (Scil,2 in the
diagram) such an assembly could be employed for measurements of cosmic radiation.
The scintillation counters provide signals for fast coincidences (coincidence widths
<10ns) for the suppression of background. For this set-up fig. 7.25(b) shows the prin-
ciple of an MWPC readout and a scheme how the chambers can be incorporated into
the trigger logic.

9This is similar to the readout of the streamer tubes in fig. 7.12. There, however, the readout strips
are independent from the cathodes which have a high surface resistivity making it transparent for the
induction signals.
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Fig. 7.25 (a) Simple arrangement of MWPCs as is often used in test experiments. Three
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Kolanoski, Wermes 2015

chambers, each with three layers (with different stereo angles), are positioned between two
scintillation counters. The scintillators provide a fast coincidence signal indicating the passage
of a particle. (b) Schematic of simple readout and trigger electronics for the example of the
MWPC set-up in (a) (description in the text).

Readout. The signals from the anodes are fed into a preamplifiers (PA) which are
mounted directly at the detector, thereby avoiding long cables which would add addi-
tional capacitances and noise sources. As a rule, bipolar output signals of the pream-
plifiers are sent via twisted pair cables (see section 17.8.1) to a main amplifier (MA).
The (analog) output signals of the main amplifier are converted by a discriminator
into logical signals which are registered in a storage unit upon the occurrence of a
trigger. At the same time the logical signals can be deployed for further processing
in a trigger logic. With modern integrated electronics the functions of pre- and main
amplifier can be combined in a chip directly at the chamber.

Trigger. An example for a simple trigger is depicted in the dashed rectangle in
fig. 7.25(b). The logical OR of all signals of a chamber is routed to an AND coin-
cidence together with the signals of both scintillation counters. Thus this schematic
incorporates an OR of the three layers of a chamber leading to a time resolution of
better than about 60ns (see above). In order to exploit the better time resolution of
the scintillation counters the circuit can be set up such that the time stamp of the
trigger (e.g. the leading edge of the signal) is always formed by the same scintillation
counter.

7.8.5 Applications of MWPCs

In particle physics the MWPCs have largely been replaced by drift chambers (see
section 7.10) which offer the advantage of having a better position resolution at less
readout channels. However, there are special applications, also outside particle physics,
where MWPCs provide the optimal detector choice:

— Because of their fast response MWPCs are employed as trigger chambers in particle
experiments (e.g. in the H1 experiment [34]).

— MWPCs are employed as spatially resolving photodetectors for the detection of pho-
ton radiation in particle physics, medicine or material research and control (see also
chapter 10). Important examples in particle physics are the detection of Cherenkov
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radiation ranging from the visible light to the UV region (chapter 11) and of transi-
tion radiation in the X-ray region (chapter 12). The photon conversion takes place
either in the gas (e.g. heavy noble gases like xenon or krypton for X-ray detection)
or at a photosensitive cathode (e.g. coated with CsI). The choice of the converter
depends on the absorption in the relevant spectral region. For the detection of Che-
renkov radiation organic gas mixtures are also used (chapter 11).

— In apparatus for atomic physics MWPCs can be run at low gas pressure for the
detection of slow ions which would have insufficient range at normal pressure (see
e.g. [797]).

7.9 Micro pattern gas detectors

In experiments with high particle fluxes, as for example at the LHC, care has to be
taken that the hit rate per readout channel does not become too high. A measure for
the hit rate is the occupancy defined as the average probability to register a hit in a
channel within the readout window. With increasing occupancy a single hit increas-
ingly loses information; in the extreme case of 100% occupancy a registered hit does
not contain any information. For a given particle flux the occupancy is less the smaller
the sensitive area of a readout channel. In gaseous detectors with signal wires, how-
ever, the sensitive area cannot be made arbitrarily small (a) because the generation of
sufficient ionisation charge requires a sufficiently long path of the particles through the
gas and (b) because the wires cannot be arbitrarily short. Therefore the minimal cell
diameters are in the range of millimetres, the wire lengths in the centimetre range and
the ion collection times in the millisecond range. In contrast, semiconductor detectors
(chapter 8) can reach electrode dimensions in the 10 pm range and charge collection
times in the few-nanoseconds range.

Since the 1980s, gas-filled detectors with micro-structured readout planes, micro
pattern gas detectors (MPGDs), have been developed which are able to exploit—even
at high particle fluxes—the favourable properties of gaseous detectors, like relatively
low cost and little disturbing material. By a smart arrangement of the electrodes the
ion collection times can also be shortened. The micro-structuring of gas-filled detectors
was introduced for the first time in 1988 [743], exploiting technologies known from sili-
con microstrip detectors. In these devices, instead of using wires, the gas amplification
is achieved with microstrips on printed boards with widths in the range 10-100 pm.
With such detectors particle rates of up to 2.3 MHz/cm? have been measured.

Subsequently, other structures generating high field strengths for gas amplification
were also successfully developed, as will be discussed in the following sections for three
examples. The concepts and techniques for MPGD construction as well as the signal
readout with highly integrated electronics using custom-made chips (see section 17.6)
have largely been adopted from the development of semiconductor microstrip detectors
(section 8.5). An overview of the different MPGD variants can be found for example in
[854,787]. While MPGDs are well suited as autonomous detectors for charged particles,
they are also of interest for the measurement of the drift of electrons in time projection
chambers (see section 7.10.10).

Gas mixtures for MPGDs. Conceptually MPGDs usually have small gas volumes
so that the generated charges can be quickly collected. In order not to compromise
the efficiency by fluctuations of the ion statistics the mean number n, of primary
ionisation clusters should be as high as possible. A frequently used gas is dimethyl
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Fig. 7.26 Microstrip gas chamber (MSGC): (a) cross section, (b) electrode arrangement
on the anode plane, (c) electrical field lines (from [853], with kind permission of Cambridge
University Press), (d) perspective view of a chamber module (from [225], with kind permission
of Elsevier).

ether (DME) with a primary ionisation density more than twice as large as that of
argon (see table 7.1). DME also has good quenching properties and shows no or minor
ageing effects under radiation exposure (in contrast to isobutane which otherwise offers
an even higher ionisation density). It is also not sensitive to background from X-ray
and gamma radiation because of the relatively long radiation length. In order to reduce
the anode voltage required to obtain the necessary gas amplification, the DME filling
in MPGDs is usually mixed with noble gases, mostly argon or neon. As described
in section 7.9.3, mixtures of DME with CF4 (10-20%) [292] are also used which are
‘faster’, that is, the drift velocity is higher.

7.9.1 Microstrip gas chamber

The first realisation of micro-structured detectors with gas as detector medium was
the microstrip gas chamber (MSGC) [743]. The principle is shown in fig. 7.26. The
gas volume with a thickness of some millimetres is enclosed between a thin cathode
plane (‘drift cathode’ in fig. 7.26(a)) and an insulating carrier substrate (e.g. glass)
(fig. 7.26(d)). The narrow, gas amplifying anode strips are photolithographically ap-
plied to the substrate. In order to quickly suck off the ions generated in the avalanche
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near the anode, additional cathode strips (C) are placed between the anode strips (A)
(fig. 7.26(b)).

The majority of the ions drift along the field lines (fig. 7.26(c)) to the cathode
strips which are only 50-60 pm away from an anode strip. With this electrode geom-
etry much higher particle rates can be coped with than with conventional multiwire
chambers, about two orders of magnitude more (fig. 7.27). Space charges caused by the
slowly moving ions, which would change the electric field for the subsequently arriving
electrons, are strongly reduced by the cathode strips being close to the anodes.

In order to cover larger detector areas, MSGC systems are built in a modular way,
usually assembled with overlaps to avoid dead regions. Modularity offers a simplified
production of the microstructures. Moreover, a limitation of the strip lengths to about
10-20 cm helps to minimise the detector capacitance and thus the electronic noise
(section 17.10.3). Low noise allows one to minimise the gas amplification, hence po-
tentially prolonging the lifetime of an MSGC (see the discussion below on uncontrolled
discharges in MSGCs).

MSGCs obtain position resolutions in the range of 30 um, hence about 10-20 times
better than with conventional MWPCs. Deploying additional readout strips on the
back side of the substrate, orthogonal or tilted with respect to the anode strips, two-
dimensional position information is obtained. Alternatively the readout electrodes can
be structured as pads two-dimensionally.

In test set-ups gas amplifications of more than 10° have been reached with MSGCs.
However, this performance usually cannot be obtained at high radiation levels, as was
discovered during the development work for high-rate experiments, for example for
CMS and HERA-B. Although some of the problems could be solved, they finally
prevented the deployment of MSGCs in these experiments, at least using the original
MSGC layout.

Part of the problem is related to the insulating substrate surface between the an-
ode and the cathode strips. At high rates, positively charged ions are collected on
the surface which cannot be neutralised fast enough because of the insufficient surface
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