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imaging is described in D. Xu, Z. He, C.E. Lehner, and F. Zhang, Proc. of SPIE 5540, 144 (2004).

(Cover drawing illustrating the imaging device under development known as Polaris courtesy of
W. Wang and F. Zhang, University of Michigan.)
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Preface to the Fourth Edition

Over the decade that has passed since the publication of the 3rd edition of this text, technical
developments continue to enhance the instruments and techniques available for the detection and
spectroscopy of ionizing radiation. Two of the more important that are included in this 4th edition in
Chapters 8 and 10 are the many new materials that are emerging as scintillators that can achieve
energy resolution that is better by a factor of two compared with traditional materials, and the
increasing use of digital techniques in the processing of pulses from detectors in Chapters 16,17, and
18. Other changes include an introduction to ROC curves in Chapter 3, a discussion of micropattern
gas detectors in Chapter 6, new sensors for scintillation light and introduction of the excess noise
factor in Chapter 9, new configurations of semiconductor detectors in Chapters 11, 12, and 13, thick
film semiconductor layers in Chapter 13, updated information on neutron detectors in Chapters 14
and 15, a revised introduction to pulse processing and a new discussion of ASICs in Chapter 16, a
revised coverage of TLDs and cryogenic spectrometers in Chapter 19, extended discussion of
radiation backgrounds in Chapter 20, addition of the VME standard to Appendix A, and many
other updates of topics from the prior edition. A few outdated discussions have been dropped.
Citations to the published literature have been updated where appropriate to help guide online
searches for more detailed information. As in the case of prior editions, instructors using this book
as a textbook for university courses again must be selective in choosing reading assignments that are
most appropriate to fit the objectives of the specific course. Those familiar with the previous edition
should be aware that the ordering of some topics in Chapters 16 and 17 has been changed, and that
some problems at the end of those chapters have been relocated between chapters.

I would like to thank a number of individuals who have made important contributions to this
edition. John Valentine and Paul Barton deserve special recognition, since without their vital input
and assistance, this project might not have been undertaken. They provided important drafts of new
material in several areas and helped organize its integration into the existing text. Robert Redus
contributed several sections to the new discussion of pulse processing techniques. Others who
provided original material include Gary Alley, Chuck Britton, Stephan Friedrich, Nolan Hertel,
Yigal Horowitz, Valentin Jordanov, Alfred Klett, Stephen McKeever, Don Miller, Paul Sellin, and
Chris Wahl. Individuals who were helpful in providing new figures, updating tables, or proofing new
sections include John Engdahl, Walter Gilboy, Sonal Joshi, Ron Keyser, Doug McGregor, Bill
Moses, David Ramsden, Bob Runkle, Fabio Sauli, Kanai Shah, Crystal Thrall, and Maxim Titov. I
would like to acknowledge faculty colleagues Zhong He and David Wehe who have taught courses
on our campus using the book and provided valuable feedback from their experiences. Finally,
much of the new material in this edition was reviewed by Ayman Hawari, Richard Lanza, Kanai
Shah, and Chris Wang. I thank them for helpful comments and suggestions, many of which have
been incorporated into the text.

The person most responsible for giving me my start in radiation measurements, Prof. John
S. King, died on August 30, 2007. He served as my doctoral supervisor, academic department
chairman, and faculty colleague. To the extent that this book conveys the importance of under-
standing the basic physics underlying the operation of instruments, it carries on the values that he
personified throughout his career. I hope that it can serve to help honor the positive influence that
he had on the many students who came his way.
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Website
The website for this textbook is www.wiley.com/college/knoll. The following resources are available
to instructors:
Solutions Manual Solutions to the homework problems in the textbook.
Image Gallery Illustrations from the book, suitable for use in preparation of lecture slides.
These resources are available only to instructors who adopt this book for their course. Please visit
the instructor section of the book website at www.wiley.com/college/knoll to register for a password

to access these resources.

Glenn F. Knoll



Preface to the Third Edition

In the 20 years since the first edition of this book was published, the methods for the detection and
measurement of ionizing radiation have undergone significant evolution. Techniques that were
unknown several decades ago, such as the cryogenic devices described in Chapter 19, have provided
new alternatives as sensors of radiation. In contrast, some common detectors such as the sodium
iodide scintillators discussed in Chapters 8 through 10 are quite similar to those that first appeared
following their widespread introduction in the 1950s. The changes that are included in this third
edition reflect some of the recent additions to the field, and only a few topics have been dropped
from the second edition. As a result the book has grown somewhat longer, and it is even more
important that instructors using it as a textbook make selective reading assignments.

Some of the more substantial additions are the inclusion of fluence-to-dose data in Chapter 2,
the concept of minimum detectable activity in Chapter 3, tissue equivalent proportional counters
and microstrip gas chambers in Chapter 6, the “time-to-first-count” technique in Chapter 7, new
scintillation materials and fiber scintillators in Chapter 8, position-sensing and hybrid pho-
tomultiplier tubes in Chapter 9, use of silicon diodes for X-ray spectroscopy and dose measurement
in Chapter 11, new sections on pixel detectors and charge coupled devices, together with an
expanded discussion of room-temperature semiconductor materials in Chapter 13, the capture-
gated neutron spectrometer in Chapter 15, a new section on digital pulse processing in Chapter 17,
discussion of high-pressure xenon ion chambers, recently-developed cryogenic spectrometers,
optically-stimulated luminescence dosimeters, and superheated drop detectors in Chapter 19,
and new appendices on Poisson statistics and the Shockley-Ramo theorem for induced charge
calculations. There are also many smaller changes in each chapter to update individual topics. The
references to current literature have been supplemented with more recent publications, and nearly a
hundred figures have been added or revised. A small number of new problems appear at the end of
chapters, largely limited to material that was added following the second edition.

I am grateful for the assistance provided in the preparation of the manuscript by many
individuals. Significant technical contributions and suggestions were provided by the reviewers
of the manuscript and their students, John Valentine of Georgia Tech and Walter Gilboy of the
University of Surrey. Faculty colleagues David Wehe, Zhong He, and Doug McGregor also were of
great assistance in providing valuable technical input. Graduate students Jim LeBlanc, Eric Smith,
and Yangfeng Du produced graphical and tabular data that appear in several of the chapters.
Valentin Jordanov, Ron Keyser, and Richard Helmer helped in supplying descriptions and/or
figures that added greatly to the timeliness of the coverage. Pat Moore, Beth Seibert, and Peter
Skrabis from the University of Michigan, together with Cecelia Musselman and Susannah Green of
Argosy, were very helpful in the manuscript preparation. My wife Gladys provided countless hours
of reading and checking the proofs without complaint. To all, you have my sincere thanks.

This is also an opportunity to acknowledge some of those individuals who have had a strong
personal influence early in my career on understanding of the broad topic covered in this text. They
include John King, William Parkinson, Jacob Trombka, Joachim Janecke, Geza Gyorey, Karl
Beckurts, Walter Gilboy, and Les Rogers. Others whose published work has been instrumental to
me in clarifying and extending the state-of-the-art in radiation measurements include W. J. Price,
P. R. Bell, Kai Siegbahn, J. B. Birks, Emilio Gatti, D. H. Wilkinson, Veljko Radeka, Fred Goulding,
John Walter, Ed Fairstein, Paul Siffert, J. W. Miiller, Josef Kemmer, Marek Moszynski, Steve
Derenzo, Hobie Kraner, Fabio Sauli, and Amos Breskin. It is also axiomatic at universities that
one usually learns more from graduate students than vice versa. I would like to acknowledge the
following former Ph.D. students whose research and intellectual exchanges were particularly
relevant to topics in this book: Bernie Snyder, Ken Wanio, Don Oliver, Marty Dresser, Dave
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Gilliam, Mike Flynn, Bill Stephany, Larry Emmons, Mark Davis, Hadi Bozorgmanesh, John
Engdahl, Jay Williams, Warren Snapp, Dan Grady, George Baldwin, Merzhad Mahdavi, Yung
Lai, Ken Zasadny, Eiping Quang, Doug McGregor, Valentin Jordanov, Jeff Martin, Nestor
Tsirliganis, Manos Christodoulou, Jun Miyamoto, and David Stuenkel.

Glenn F. Knoll



Preface to the Second Edition

In this second edition, I have maintained the dual objective of the original: to serve as a textbook for
those new to the field and to provide sufficient substance so that the book may also be helpful to
those actively involved in radiation measurements. In the decade since the first edition was
published, there has been significant development in most areas of the subject matter. As a result,
those familiar with the original will notice modifications, additions, and updates throughout this
version. Inevitably, there have been more additions than deletions, reflecting the growing breadth of
topics important in radiation measurements. Therefore, it is even more important that the instructor
using this book as a text provide guidance to the students on which sections are most essential for the
purposes of the course. The illustrative problems at the ends of the chapters have been doubled, and
the companion solutions manual should be helpful in the tutorial use of the book.

The organization by chapters has remained unchanged, with one exception. The sequencing of
the chapters on statistics and detector general properties (Chapters 3 and 4) is reversed from the first
edition. This change was made to facilitate the use of statistical concepts in the discussions
throughout Chapter 4.

The most extensive changes will be found in Chapter 12, reflecting the replacement of Ge(Li)
detectors by the newer HPGe type. Developments in scintillation materials and in the use of
photodiodes to convert the scintillation light have led to significant revisions in Chapters 8 and 9.
Elsewhere in this edition, pulse-type ion chambers, long in dormancy, are now described more fully
because of their enhanced importance in heavy ion measurements. A section has been added on the
self-quenched streamer mode of operation in gas detectors. The description of silicon detectors now
emphasizes the fully depleted configurations, and the discussions of CdTe and Hgl, detectors have
been expanded. Activation counters used in pulsed fast neutron measurements are now described,
and a section has been added on developmental cryogenic and superconducting detectors.

In the areas that are related to pulse processing, full derivations are now provided for the pulse
shape from coaxial germanium detectors and from proportional counters. Reflecting a growing
interest in high counting rate applications, discussions of reset preamplifiers, gated integrators, and
fast pulse-processing methods are now included. A section on the pile-up contribution to recorded
spectra also is new. Because of the increasing interest in position-sensitive detectors in many
applications, more attention has been given to techniques for determining the location of the
radiation interaction in the major detector types. Finally, many small updates and refinements were
made throughout the book.

References to the literature have been updated where needed to keep up with current practice.
The citations are intended to lead to more detailed descriptions than are possible in this text and to
provide starting points for literature searches. No attempt has been made to compile a compre-
hensive bibliography.

I acknowledge a number of individuals who provided significant assistance in the preparation of
the second edition. Don Miller of Ohio State University contributed substantially to an update of
the discussion of reactor instrumentation in Chapter 14, and also to Chapter 4. Dennis Persyk of
Siemens Gammasonics and Mario Martini of EG&G ORTEC provided critical reviews of early
drafts of Chapters 9 and 12, respectively, and made many suggestions that have now been
incorporated. The Japanese translators of the first edition, Itsuru Kimura of Kyoto University
and the late Eiji Sakai of JAERI, corrected a number of errors and provided valuable points of
clarification throughout the text. Detailed reviews of the manuscript by Stephen Binney of Oregon
State University, Gary Catchen of Penn State, and Bradley Micklich of Illinois caught many errors
and made helpful suggestions for improvements. Faculty colleague David Wehe, departmental
students Tim DeVol, Alison Stolle, Yuji Fujii and Richard Kruger, and my son Tom Knoll were also
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extremely helpful during stages of the manuscript preparation. Finally, many authors have been
kind enough to provide original art for figures that have been taken from previously published
articles. To all, I express sincere thanks.

The loving support of my wife Gladys throughout this endeavor has been essential and greatly
appreciated.

Glenn F. Knoll



Preface to the First Edition

This book serves two purposes. First, as a textbook, it is appropriate for use in a first course in
nuclear instrumentation or radiation measurements. Such courses are taught at levels ranging from
the junior undergraduate year through the first year of graduate programs and are an important part
of most curricula in nuclear engineering or radiation physics. Students in health physics, radiation
biology, and nuclear chemistry often will also include a similar course in their program. Substantially
more material is included, however, than can possibly be covered in the usual one-term course. I
have intentionally done so in order that the book remain useful to the student after completion of
the course, and so that it may also serve its second purpose as a general review of radiation detection
techniques for scientists and engineers actively involved in radiation measurements. The instructor
using this book as a text will therefore need to select only those portions deemed most relevant to
the purposes of the course. I feel that this inconvenience is offset by the larger scope and more
lasting value of the book. Problems intended as student exercises are provided at the end of most
chapters.

The level of the discussions assumes an elementary background in radioactivity, radiation
properties, and basic electrical circuits. Some topics from these categories are reviewed in the first
two chapters, but only in the limited context of laboratory radiation sources and the more important
interaction mechanisms. Readers who would like information beyond the scope of the text are
referred to the current scientific literature that is cited at the end of each chapter. These references
have largely been limited to fairly recent publications, and I apologize in advance to my colleagues
whose important but older work may not be referenced.

The important detection techniques for ionizing radiations with energies below about 20 MeV
are covered in various chapters of the book. These are the radiations of primary interest in fission
and fusion energy systems, as well as in medical, environmental, and industrial applications of
radioisotopes. I have concentrated on the basic detector configurations most frequently encoun-
tered by the typical user and excluded more complex or specialized detection systems that may be
found in many research laboratories. Also not included are the instruments such as bubble
chambers, spark chambers, and calorimeters of principal use in high-energy particle physics
research. The sections on electronic components and pulse processing aspects of detector signals
are based on functional descriptions rather than detailed circuit analyses. This approach reflects the
usual interests of the user rather than those of the circuit designer.

Although illustrative applications are included, the discussions emphasize the principles of
operation and basic characteristics of the various detector systems. Other publications are available
to the reader who seeks more detailed and complete description of specific applications of these
instruments. A good example is NCRP Report No. 58, “A Handbook of Radioactivity Measure-
ment Procedures,” published by the National Council on Radiation Protection and Measurements,
Washington, DC, in 1978 [a second edition of this report published in 1985 is now available].

The SI system of units is used throughout the text. Many traditional radiation units familiar to
experienced users are destined to be phased out, so that those not familiar with the newer SI units of
activity, gamma-ray exposure, absorbed dose, and dose equivalent should review the definitions as
introduced in Chapters 1 and 2.

I have been primarily responsible for teaching nuclear instrumentation courses at the Univer-
sity of Michigan since 1962. Parts of the manuscript have evolved from lecture notes developed over
this time, and a preliminary version of the text has been in use for several semesters. This book
therefore reflects considerable student feedback that has been essential in improving the clarity of
presentation in many areas. I particularly thank present and former graduate students George
Baldwin, Hadi Bozorgmanesh, John Engdahl, Dan Grady, Bill Halsey, Bill Martin, Warren Snapp,
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and Jay Williams, who provided valuable input in many forms. I also thank those faculty colleagues
who reviewed portions of the manuscript and offered many helpful comments and suggestions:
David Bach, Chihiro Kikuchi, John Lee, Craig Robertson, and Dieter Vincent, and also Lou
Costrell and Ron Fleming of the National Bureau of Standards. Pam Hale carried out the
formidable task of typing the manuscript with great skill and patience.

I owe a special debt to Jim Duderstadt who provided the initial encouragement that trans-
formed good intentions into a definite commitment toward this project. The steadfast support,
understanding, and help of my wife Gladys and sons Tom, John, and Peter throughout the several
years required for its completion have been an essential contribution for which I will always be
grateful.

Glenn F. Knoll



Credits

Many figures and tables in this text have been reproduced from previously published and
copyrighted sources. The cooperation of the publishers in granting permission for the use of
this material has been a major contribution.

Except for those sources directly acknowledged in captions and footnotes, most are identified
by citing a reference in a scientific journal where the table or figure first appeared. A compilation of
these citations, arranged by publication, is given below.

Nuclear Instruments and Methods in Physics Research

Copyright © by Elsevier Science, Amsterdam. Figures 1.6,1.12,2.3,2.4,2.7,2.9,2.12,2.14,2.15,
2.16,2.17,5.4,5.13,6.11,6.12, 6.13,6.16, 6.17, 6.20, 6.21, 6.25, 6.27, 6.28, 6.29, 6.30, 6.32, 8.3, 8.4, 8.11,
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10.16, 10.17,10.18, 10.21, 10.24, 10.28, 10.29, 10.32, 10.33, 11.14, 11.16, 11.18, 12.5, 12.6, 12.9, 12.11,
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19.10, 19.24,20.1, 20.2, 20.3, 20.4, 20.5, 20.6, 20.7, 20.8, 20.9, 20.11, 20.12, C.2. Tables 1.6, 6.1, 6.2, 8.2,
10.1, 11.2, 12.3, 12.4, 13.1, 13.2, 13.3, 15.1, 19.1, 194, 20.1, 20.2.

IEEE Transactions on Nuclear Science

Copyright © by The Institute of Electrical and Electronics Engineers, Inc., New York. Figures
6.5, 6.7, 8.8, 8.10, 9.3, 9.4, 9.11, 9.12, 9.25, 10.20, 10.23, 10.25, 11.2, 11.10, 11.19, 11.20, 12.8, 12.10,
12.15,12.17,12.19,12.28,12.30, 13.8, 13.17, 13.22, 13.25, 13.31, 13.37, 13.42, 17.6, 17.31, 17.35, 17.36,
17.37, 17.40, 19.4, 19.5. Tables 13.3, 13.5.

International Journal of Applied Radiation and Isotopes
Copyright © by Pergamon Press, Elsevier Science, Amsterdam. Figures 1.10, 1.13, 1.14a, 1.14b,
1.14c. Table 1.7.

Health Physics
Copyright © by Pergamon Press, Elsevier Science, Amsterdam. Figures 1.7, 1.14d, 5.12, 7.11.

Annals of the ICRP
Copyright © by Pergamon Press, Elsevier Science, Amsterdam. Tables 2.2 and 2.3.

Nuclear Science and Engineering
Copyright © by the American Nuclear Society, LaGrange Park, Illinois. Figures 1.11 and 14.8.

American National Standard ANSI/ANS-6.1.1-1991
Copyright © by the American Nuclear Society, LaGrange Park, Illinois. Figures 2.22a and
2.22b.

Transactions of the American Nuclear Society
Copyright © by the American Nuclear Society, LaGrange Park, Illinois. Figure 15.2.
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Review of Scientific Instruments
Copyright © by the American Institute of Physics, New York. Figures 5.2, 8.5.

Physical Review
Copyright © by the American Physical Society, New York. Figures 1.4a, 1.4b.

Reviews of Modern Physics
Copyright © by the American Physical Society, New York. Figure 2.2.

Journal of Applied Physics
Copyright © by the American Institute of Physics, New York. Figure 13.21.

Nuclear Data Tables
Copyright © by Academic Press, Inc., Orlando. Figure 2.11.

Atomic and Nuclear Data Tables
Copyright © by Academic Press, Inc., Orlando. Table 1.3.

Applied Physics Letters
Copyright © by American Institute of Physics, New York. Figure 19.9.

IEEE Transactions on Applied Superconductivity
Copyright © by The Institute of Electrical and Electronics Engineers, Inc., New York.
Figure 19.11.

In addition, a number of figures and tables were obtained from publications of various
government laboratories or agencies. These include Figures 1.3, 1.9, 6.6, 6.22, 10.5, 10.11, 10.30,
11.15,12.21,12.22,12.25,14.7,14.14,14.16, 14.18,15.3,15.4, A.1, A.2. Tables 1.4, 1.5, 12.1, and 12.2.
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Chapter 1

Radiation Sources

The radiations of primary concern in this text originate in atomic or nuclear processes. They
are conveniently categorized into four general types as follows:

Charged particulate radiation Fast electrons _
Heavy charged particles

Uncharged radiation {Electromagnetlc radiation

Neutrons

Fast electrons include beta particles (positive or negative) emitted in nuclear decay, as well as
energetic electrons produced by any other process. Heavy charged particles denote a category
that encompasses all energetic ions with mass of one atomic mass unit or greater, such as alpha
particles, protons, fission products, or the products of many nuclear reactions. The electro-
magnetic radiation of interest includes X-rays emitted in the rearrangement of electron shells of
atoms, and gamma rays that originate from transitions within the nucleus itself. Neutrons
generated in various nuclear processes constitute the final major category, which is often further
divided into slow neutron and fast neutron subcategories (see Chapter 14).

The energy range of interest spans over six decades, ranging from about 10 eV to 20 MeV.
(Slow neutrons are technically an exception but are included because of their technological
importance.) The lower energy bound is set by the minimum energy required to produce ionization
in typical materials by the radiation or the secondary products of its interaction. Radiations with
energy greater than this minimum are classified as ionizing radiations. The upper bound is chosen to
limit the topics in this coverage to those of primary concern in nuclear science and technology.

The main emphasis in this chapter will be the laboratory-scale sources of these radiations,
which are likely to be of interest either in the calibration and testing of radiation detectors
described in the following chapters or as objects of the measurements themselves. Natural
background radiation is an important additional source and is discussed separately in Chapter 20.

The radiations of interest differ in their “hardness” or ability to penetrate thicknesses of
material. Although this property is discussed in greater detail in Chapter 2, it is also of
considerable concern in determining the physical form of radiation sources. Soft radiations,
such as alpha particles or low-energy X-rays, penetrate only small thicknesses of material.
Radioisotope sources must therefore be deposited in very thin layers if a large fraction of these
radiations is to escape from the source itself. Sources that are physically thicker are subject to
“self-absorption,” which is likely to affect both the number and the energy spectrum of the
radiations that emerge from its surface. Typical thicknesses for such sources are therefore
measured in micrometers. Beta particles are generally more penetrating, and sources up to a
few tenths of a millimeter in thickness can usually be tolerated. Harder radiations, such as
gamma rays or neutrons, are much less affected by self-absorption, and sources can be
millimeters or centimeters in dimension without seriously affecting the radiation properties.

1



2 Chapter1 Radiation Sources
I. UNITS AND DEFINITIONS

A. Radioactivity

The activity of a radioisotope source is defined as its rate of decay and is given by the
fundamental law of radioactive decay

dN
e (1.1)

decay

where N is the number of radioactive nuclei and \ is defined as the decay constant.! The
historical unit of activity has been the curie (Ci), defined as exactly 3.7 x 10'° disintegrations/
second, which owes its definition to its origin as the best available estimate of the activity of 1
gram of pure *°Ra. Its submultiples, the millicurie (mCi) or microcurie (u.Ci), generally are
more suitable units for laboratory-scale radioisotope sources.

Although still widely used in the literature, the curie is destined to be replaced gradually by
its SI equivalent, the becquerel (Bq). At its 1975 meeting, the General Conference on Weights
and Measures (GCPM) adopted a resolution declaring that the becquerel, defined as one
disintegration per second, has become the standard unit of activity. Thus

1Bq=2.703 x 1071 Ci

Radioactive sources of convenient size in the laboratory are most reasonably measured in
kilobecquerels (kBq) or megabecquerels (MBq).

It should be emphasized that activity measures the source disintegration rate, which is not
synonymous with the emission rate of radiation produced in its decay. Frequently, a given radiation
will be emitted in only a fraction of all the decays, so a knowledge of the decay scheme of the
particular isotope is necessary to infer a radiation emission rate from its activity. Also, the decay of a
given radioisotope may lead to a daughter product whose activity also contributes to the radiation
yield from the source. A complete listing of radioisotope decay schemes is tabulated in Ref. 1.

The specific activity of a radioactive source is defined as the activity per unit mass of the
radioisotope sample. If a pure or “carrier-free”” sample is obtained that is unmixed with any
other nuclear species, its specific activity can be calculated from

activity AN A,

— - 1.2
mass NM/A, M (12)

specific activity =

where M = molecular weight of sample

A, = Avogadro’s number (= 6.02 x 10* nuclei/mole)
N = radioisotope decay constant (= In 2/half-life)

Radioisotopes are seldom obtained in carrier-free form, however, and are usually diluted in a
much larger concentration of stable nuclei of the same element. Also, if not prepared in pure
elemental form, additional stable nuclei may be included from other elements that are
chemically combined with those of the source. For sources in which self-absorption is a
problem, there is a premium on obtaining a sample with high specific activity to maximize

'One should be aware that Eq. (1.1) represents the decay rate only, and the net value of dN/dt may be altered by other
production or disappearance mechanisms. As one example, the radioisotope may be produced as the daughter product of the
decay of a parent species also present in the sample. Then a production term is present for the daughter that is given by the
decay rate of the parent multiplied by the fraction of such decays that lead to the daughter species. If the half-life of the parent
is very long, the number of daughter nuclei increases until the daughter activity reaches an equilibrium value (after many
daughter half-lives have passed) when the production and decay rates are equal, and dN/dt =0 for the number of daughter
nuclei.
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the number of radioactive nuclei within a given thickness. From Eq. (1.2), high specific activity
is most readily obtained using radionuclides with large \ (or small half-life).

B. Energy

The traditional unit for measurement of radiation energy is the electron volt or eV, defined as
the kinetic energy gained by an electron by its acceleration through a potential difference of 1
volt. The multiples of kiloelectron volt (keV) and megaelectron volt (MeV) are more common
in the measurement of energies for ionizing radiation. The electron volt is a convenient unit
when dealing with particulate radiation because the energy gained from an electric field can be
easily obtained by multiplying the potential difference by the number of electronic charges
carried by the particle. For example, an alpha particle that carries an electronic charge of +2 will
gain an energy of 2 keV when accelerated by a potential difference of 1000 volts.

The SI unit of energy is the joule (J). When dealing with radiation energies, the submultiple
femtojoule (fJ) is more convenient and is related to the electron volt by the conversion

leV=1.602x10""]J
or 1f1(=10751J) = 6.241 x 10° eV

It is unlikely that the electron volt will be phased out in future usage, because its physical basis
and universal use in the literature are strong arguments for its continued application to
radiation measurements.

The energy of an X- or gamma-ray photon is related to the radiation frequency by

E=hv (1.3)

where h = Planck’s constant (6.626 x 107*J -s, 0or4.135 x 107 eV - )
v = frequency

The wavelength \ is related to the photon energy by

~ 1.240x 10°°

A
E

where A\ is in meters and E is in eV.

II. FAST ELECTRON SOURCES
A. Beta Decay

The most common source of fast electrons in radiation measurements is a radioisotope that
decays by beta-minus emission. The process is written schematically

4X - ,AY +B +7 (1.4)

where X and Y are the initial and final nuclear species, and 7 is the antineutrino. Because
neutrinos and antineutrinos have an extremely small interaction probability with matter, they
are undetectable for all practical purposes. The recoil nucleus Y appears with a very small recoil
energy, which is ordinarily below the ionization threshold, and therefore it cannot be detected
by conventional means. Thus, the only significant ionizing radiation produced by beta decay is
the fast electron or beta particle itself.

Because most radionuclides produced by neutron bombardment of stable materials are
beta-active, a large assortment of beta emitters are readily available through production in a
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Table 1.1 Some ‘“Pure’” Beta-Minus Sources

Nuclide Half-Life Endpoint Energy (MeV)
H 1226y 0.0186

e 5730y 0.156

2p 14.28d 1.710

3p 244d 0.248

353 87.9d 0.167

%Cl 3.08 x 10°y 0.714
$Ca 165 d 0.252

O3N;j 2y 0.067

0sr /N0y 27.7y/64h 0.546/2.27
PTc 212 x10°y 0.292
4Tpm 262y 0.224
204 381y 0.766

Data from Lederer and Shirley.!

reactor flux. Species with many different half-lives can be obtained, ranging from thousands of
years down to as short a half-life as is practical in the application. Most beta decays populate an
excited state of the product nucleus, so that the subsequent de-excitation gamma rays are
emitted together with beta particles in many common beta sources. Some examples of nuclides
that decay directly to the ground state of the product and are therefore “‘pure beta emitters’ are
shown in Table 1.1.

Each specific beta decay transition is characterized by a fixed decay energy or Q-value.
Because the energy of the recoil nucleus is virtually zero, this energy is shared between the beta
particle and the “invisible’” neutrino. The beta particle thus appears with an energy that varies
from decay to decay and can range from zero to the “beta endpoint energy,” which is
numerically equal to the Q-value. A representative beta energy spectrum is illustrated in
Fig. 1.1. The QO-value for a given decay is normally quoted assuming that the transition takes
place between the ground states of both the parent and daughter nuclei. If the transition
involves an excited state of either the parent or daughter, the endpoint energy of the
corresponding beta spectrum will be changed by the difference in excitation energies. Since
several excited states can be populated in some decay schemes, the measured beta particle
spectrum may then consist of several components with different endpoint energies.

Relative
yield

%CI (3.08 x 10%)

Endpoint energy
=0.714 MeV

Figure 1.1 The decay scheme
36, 0 0.2 0.4 0.6 Mev  of *°Cl and the resulting beta
Beta particle energy particle energy distribution.
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B. Internal Conversion

The continuum of energies produced by any beta source is inappropriate for some applications.
For example, if an energy calibration is to be carried out for an electron detector, it is much
more convenient to use a source of monoenergetic electrons. The nuclear process of internal
conversion can be the source of conversion electrons, which are, under some circumstances,
nearly monoenergetic.

The internal conversion process begins with an excited nuclear state, which may be formed
by a preceding process—often beta decay of a parent species. The common method of de-
excitation is through emission of a gamma-ray photon. For some excited states, gamma
emission may be somewhat inhibited and the alternative of internal conversion can become
significant. Here the nuclear excitation energy E.y is transferred directly to one of the orbital
electrons of the atom. This electron then appears with an energy given by

Fi= Bug—Eg (1.5)

where Ej is its binding energy in the original electron shell.

An example of a conversion electron spectrum is shown in Fig. 1.2. Because the conversion
electron can originate from any one of a number of different electron shells within the atom, a
single nuclear excitation level generally leads to several groups of electrons with different
energies. The spectrum may be further complicated in those cases in which more than one
excited state within the nucleus is converted. Furthermore, the electron energy spectrum may
also be superimposed on a continuum consisting of the beta spectrum of the parent nucleus
that leads to the excited state. Despite these shortcomings, conversion electrons are the only
practical laboratory-scale source of monoenergetic electron groups in the high keV to MeV
energy range. Several useful radioisotope sources of conversion electrons are compiled in
Table 1.2.

C. Auger Electrons

393 keV

Auger electrons are roughly the analogue of internal conversion electrons when the excitation
energy originates in the atom rather than in the nucleus. A preceding process (such as electron
capture) may leave the atom with a vacancy in a normally complete electron shell. This vacancy
is often filled by an electron from one of the outer shells of the atom with the emission of a
characteristic X-ray photon. Alternatively, the excitation energy of the atom may be trans-
ferred directly to one of the outer electrons, causing it to be ejected from the atom. This electron

Conversion
electron
relative
yield K—shell
conversion
100 min Ty}
: m & 113m | L—she‘H
| conversion
|
| Intern:'al . .
| conversion Figure 1.2 The conversion
| electron spectrum expected
¥ I | from internal conversion of the
13y, 300 365 389  keV isomeric level at 393 keV in
Electron energy 13my,
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Table 1.2 Some Common Conversion Electron Sources

Parent Parent Decay Decay Transition Energy of Conversion Electron
Nuclide Half-Life Mode Product Decay Product (keV) Energy (keV)

19¢q 453d EC 109m A o 88 62
84
1380 115d EC 13myp 393 365
389
B37¢s 302y B~ 137TmBa 662 624
656
¥Ce 137d EC 139m] g 166 126
159
570 482
27Bj 38y EC 207m py, 554
1064 976
1048

Data from Lederer and Shirley.!

is called an Auger electron and appears with an energy given by the difference between the
original atomic excitation energy and the binding energy of the shell from which the electron
was ejected. Auger electrons therefore produce a discrete energy spectrum, with different
groups corresponding to different initial and final states. In all cases, their energy is relatively
low compared with beta particles or conversion electrons, particularly because Auger electron
emission is favored only in low-Z elements for which electron binding energies are small.
Typical Auger electrons with a few keV initial energy are subject to pronounced self-absorption
within the source and are easily stopped by very thin source covers or detector entrance
windows.

III. HEAVY CHARGED PARTICLE SOURCES
A. Alpha Decay

Heavy nuclei are energetically unstable against the spontaneous emission of an alpha particle
(or “He nucleus). The probability of decay is governed by the barrier penetration mechanism
described in most texts on nuclear physics, and the half-life of useful sources varies from days to
many thousands of years. The decay process is written schematically as

A A—4 4
72X = 75Y +ra

where X and Y are the initial and final nuclear species. A representative alpha decay scheme is
shown in Fig. 1.3, together with the expected energy spectrum of the corresponding alpha
particles emitted in the decay.

The alpha particles appear in one or more energy groups that are, for all practical purposes,
monoenergetic. For each distinct transition between initial and final nucleus (e.g., between
ground state and ground state), a fixed energy difference or Q-value characterizes the decay.
This energy is shared between the alpha particle and the recoil nucleus in a unique way, so that
each alpha particle appears with the same energy given by Q(A — 4)/A. There are many
practical instances in which only one such transition is involved and for which the alpha
particles are therefore emitted with a unique single energy. Other examples, such as that shown
in Fig. 1.3, may involve more than one transition energy so that the alpha particles appear in
groups with differing relative intensities.
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Table 1.3 lists some properties of the more common radioisotope sources of alpha particles.
It is no accident that most alpha particle energies are limited to between about 4 and 6 MeV.
There is a very strong correlation between alpha particle energy and half-life of the parent
isotope, and those with the highest energies are those with the shortest half-life.

Beyond about 6.5 MeV, the half-life can be expected to be less than a few days, and therefore
the source is of limited utility. On the other hand, if the energy drops below 4 MeV, the barrier
penetration probability becomes small and the half-life of the isotope is very large. If the half-life
is exceedingly long, the specific activity attainable in a practical sample of the material becomes
very small and the source is of no interest because its intensity is too low. Probably the most
common calibration source for alpha particles is *!Am, and an example of its application to the
calibration of silicon solid-state detectors is shown in Fig. 11.15.

Because alpha particles lose energy rapidly in materials, alpha particle sources that are to
be nearly monoenergetic must be prepared in very thin layers. In order to contain the
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Table 1.3 Common Alpha-Emitting Radioisotope Sources

Alpha Particle Kinetic Energy

Source Half-Life (with Uncertainty) in MeV Percent Branching
48Gd 93y 3.182787 +0.000024 100
232Th 1.4 x 10'% 4.012 +0.005 77
3.953 +0.008 23
28y 45 x 10y 4.196 +0.004 77
4.149 +0.005 23
By 71 x 108y 4.598 +0.002 4.6
4.401 +0.002 56
4374 +0.002 6
4.365 +0.002 12
4.219 +0.002 6
26y 24 x10"y 4.494 4+0.003 74
4.445 +0.005 26
20Th 7.7 x 10*y 4.6875 +0.0015 76.3
4.6210 +0.0015 23.4
24y 25x10°y 4.7739 4+0.0009 72
4.7220 +0.0009 28
21py 32 x 10%y 5.0590 +0.0008 11
5.0297 +0.0008 20
5.0141 4+0.0008 25.4
4.9517 +0.0008 22.8
2¥py 2.4 x 10*y 5.1554 +0.0007 733
5.1429 4+0.0008 15.1
5.1046 4+0.0008 11.5
240py 6.5x 10y 5.16830 4+0.00015 76
5.12382 +0.00023 24
25 Am 74 x10%y 52754 +0.0010 87.4
5.2335 +0.0010 11
210pg 138d 5.30451 +0.00007 99+
21 Am 433y 5.48574 +0.00012 85.2
5.44298 +0.00013 12.8
2%py 88y 5.49921 +0.0002 71.1
5.4565 +0.0004 28.7
24Cm 18y 5.80496 +0.00005 76.4
5.762835 40.00003 23.6
23Cm 30y 6.067 +0.003 1.5
5.992 +0.002 5.7
5.7847 +0.0009 732
5.7415 +0.0009 11.5
22Cm 163 d 6.11292 +0.00008 74
6.06963 +0.00012 26
24mEg 276d 6.4288 +0.0015 93
23Es 20.5d 6.63273 +0.00005 90
6.5916 +0.0002 6.6

Data from Rytz.?
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radioactive material, typical sources are covered with a metallic foil or other material that must
also be kept extremely thin if the original energy and monoenergetic nature of the alpha
emission are to be preserved.

B. Spontaneous Fission

The fission process is the only spontaneous source of energetic heavy charged particles with mass
greater than that of the alpha particle. Fission fragments are therefore widely used in the
calibration and testing of detectors intended for general application to heavy ion measurements.

All heavy nuclei are, in principle, unstable against spontaneous fission into two lighter
fragments. For all but the extremely heavy nuclei, however, the process is inhibited by the large
potential barrier that must be overcome in the distortion of the nucleus from its original near-
spherical shape. Spontaneous fission is therefore not a significant process except for
some transuranic isotopes of very large mass number. The most widely used example is
252Cf, which undergoes spontaneous fission with a half-life (if it were the only decay process) of
85 years. However, most transuranic elements also undergo alpha decay, and in 2>2Cf the
probability for alpha emission is considerably higher than that for spontaneous fission. There-
fore, the actual half-life for this isotope is 2.65 years, and a sample of 1 microgram of 2>2Cf will
emit 1.92 x 107 alpha particles and undergo 6.14 x 10° spontaneous fissions per second.

Each fission gives rise to two fission fragments, which, by the conservation of momentum, are
emitted in opposite directions. Because the normal physical form for a spontaneous fission source
is a thin deposit on a flat backing, only one fragment per fission can escape from the surface,
whereas the other is lost by absorption within the backing. As described later in this chapter, each
spontaneous fission in 22Cf also liberates a number of fast neutrons and gamma rays.

The fission fragments are medium-weight positive ions with a mass distribution illustrated
in Fig. 1.4a. The fission is predominantly asymmetric so that the fragments are clustered into a
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Figure 1.4a The mass distribution of 22Cf spontaneous fission fragments. Also shown is the

corresponding distribution from fission of U induced by thermal neutrons. (From Nervik.*)
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“light group” and ‘“‘heavy group,” with average mass numbers of 108 and 143. The fragments
appear initially as positive ions for which the net charge approaches the atomic number of the
fragment. As the fragment slows down by interacting with the matter through which it passes,
additional electrons are picked up by the ion, reducing its effective charge.

The energy shared by the two fragments averages about 185 MeV. The distribution of this
energy is also asymmetric with the light fragment receiving the greater fraction. A plot of their
initial energy distribution is shown in Fig. 1.4b. Because the fragments also lose energy readily
in solid materials, self-absorption and energy loss of the fragments are important considerations
unless the source is prepared in a very thin layer. The type of degradation of a fission fragment
energy spectrum observed from thicker sources (for the case of neutron-induced 2> U fission) is
illustrated in Fig. 14.8.

IV. SOURCES OF ELECTROMAGNETIC RADIATION

A. Gamma Rays Following Beta Decay

Gamma radiation is emitted by excited nuclei in their transition to lower-lying nuclear levels. In
most practical laboratory sources, the excited nuclear states are created in the decay of a parent
radionuclide. Four common examples widely used as gamma-ray calibration sources are
illustrated in the decay schemes in Fig. 1.5. In each case, a form of beta decay leads to the
population of the excited state in the daughter nucleus. For the examples shown, the beta decay
is a relatively slow process characterized by a half-life of hundreds of days or greater, whereas
the excited states in the daughter nucleus have a much shorter average lifetime (typically of the
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order of picoseconds or less). De-excitation takes place through the emission of a gamma-ray
photon whose energy is essentially equal to the difference in energy between the initial and final
nuclear states. The gamma rays therefore appear with a half-life characteristic of the parent
beta decay but with an energy that reflects the energy level structure of the daughter nucleus.
For example, although “°Co gamma rays” decrease in intensity with the 5.26-year half-life
characteristic of ®°Co, they actually arise from transitions in the **Ni nucleus. Decay schemes of
the type shown in Fig. 1.5 are compiled for all radioactive nuclei in Ref. 1. From the
probabilities of various de-excitation transitions (or ‘‘branching ratios”) given in these decay
schemes, the number of gamma-ray photons per disintegration of the parent nucleus can be
deduced. Some specific radionuclide gamma-ray sources useful in the precise energy calibration
and efficiency calibration of gamma-ray detectors are listed in Tables 12.1 and 12.2.

Because nuclear states have very well-defined energies, the energies of gamma rays emitted
in state-to-state transitions are also very specific. The gamma rays from any one transition are
nearly monoenergetic, and the inherent line width of the photon energy distribution is nearly
always small compared with the energy resolution of any of the detectors described later in this
text. A measurement of the detector response is therefore indicative of its own limiting
resolution rather than of any variation in the incident gamma-ray energy.'

The common gamma-ray sources based on beta decay are generally limited to energies
below about 2.8 MeV. One nuclide that can be useful® as a potential source for gamma rays of
higher energy is *°Co. The decay scheme of this isotope, which includes both electron capture
and B decay, gives rise to a complex spectrum of gamma rays whose energies extend to as high
as 3.55 MeV. The short half-life of >*Co (77 days), however, largely limits its use to facilities with

fA rare exception may occur if the emitting nuclei have large velocities. The Doppler effect can then introduce an energy
spread that may be significant in detectors with excellent energy resolution. An example is given later in this chapter in which
gamma rays are emitted from nuclei that are still moving after being formed in a nuclear reaction.
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access to accelerators necessary to carry out its production through the °Fe(p, n) reaction.
Another possible radioisotope for high-energy callbratlons is 1°N, with gamma rays
of 6.13 and 7.11 MeV emitted through its B~ decay to '°O. Agaln the very short half-life
of just over 7 seconds requires the local production of this 1sotope in reactors or accelerators,
which can be employed with a continuous circulation loop’ to provide a steady-state source
of this radionuclide.

Gamma-ray reference sources are an essential accessory in any radiation measurements
laboratory in which gamma-ray measurements are carried out. They normally consist of
samples of radioisotopes of a few microcuries (around 10° Bq) encased in plastic disks or
rods. The thickness of the encapsulation is generally large enough to stop any particulate
radiation from the decay of the parent nucleus, and the only primary radiation emerging from
the surface is the gamma radiation produced in the daughter decay. However, secondary
radiations such as annihilation photons or bremsstrahlung can be significant at times (see
below). Although the radiation hazard of such sources is minimal, the gamma-ray emission rate
is sufficiently high to permit ready energy calibration of most types of gamma-ray detectors.

If the sources are to be used to carry out accurate efficiency calibration, their absolute
activity must also be known. In these cases, the radioisotope deposits are generally prepared on
much thinner backings with a minimum of overlying cover to reduce gamma-ray attenuation
and scattering within the source structure. External absorbers must then be used to eliminate
any particulate emission if its presence will interfere with the application.

B. Annihilation Radiation

When the parent nucleus undergoes B* decay, additional electromagnetic radiation is gener-
ated. The origin lies in the fate of the positrons emitted in the primary decay process. Because
they generally travel only a few millimeters before losing their kinetic energy (see Chapter 2),
the inherent encapsulation around the source is often sufficiently thick to fully stop the
positrons. When their energy is very low, near the end of their range, they combme with
normal negative electrons in the absorbing materials in the process of annihilation.! The
original positron and electron disappear and are replaced by two oppositely directed 0.511 MeV
electromagnetic photons known as annihilation radiation. This radiation is then superimposed
on whatever gamma radiation may be emitted in the subsequent decay of the daughter product.
For example, in the decay of Na, shown in Fig. 1.5, photons of both 0.511 and 1.274 MeV
energy are emitted from encapsulated sources.

C. Gamma Rays Following Nuclear Reactions

If gamma rays with energies higher than those available from beta-active isotopes are needed,
some other process must lead to the population of higher-lying nuclear states. One possibility is
the nuclear reaction

ja +3Be — 2C* +ln

where the product nucleus 2C is left in an excited state. Its decay gives rise to a gamma-ray
photon of 4.44 MeV energy. Unfortunately, the average lifetime of this state is so short (61 fs)
that the recoil carbon atom does not have time to come to rest before the gamma ray is emitted.
The resulting photon energies are therefore broadened by Doppler effects, depending on the
relative orientation of the recoil atom velocity and the photon direction, and there is an

This step can take place either directly or through an intermediate stage in which the positron and electron form a quasistable
combination, known as positronium, which may exist for a few nanoseconds.
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inherent spread of about 1% in the gamma-ray energies. This line width is adequate for many
calibration purposes, but it is too large for detectors with very good energy resolution (such as
the germanium detectors of Chapter 12). Neutrons are also emitted in this reaction, and the
number of 4.44 MeV gamma rays per neutron has been measured® to be about 0.59 for typical
sources based on radioisotope alpha particle emitters mixed with beryllium.

Another possibility is the reaction

grx + 12C — 1860* —I—(l)n

Here the product nucleus '°O can be formed in an excited state at 6.130 MeV above the
ground state and with a lifetime of about 2 x 10~ s. This lifetime is sufficiently long to
eliminate almost all Doppler effects, and the resulting 6.130 MeV gamma-ray photons are
essentially monoenergetic.

Both of the above reactions can be exploited by combining a radioisotope that decays by
alpha emission with the appropriate target material (either °Be or *C). Because sources of
this type are more commonly used to produce neutrons, further discussion of the choice of alpha
emitter and other aspects of the source design will be postponed until the following section on
neutron sources. Because most alpha particles donotlead to a reaction before losing their energy
in the target material, large activities of the alpha emitter must be used to produce a gamma-ray
source of practical intensity. For example, a tgpical source’ fabricated from 6 x 10° Bq of
28Pu0, and 200 mg of isotopically separated °C produces a 6.130 MeV gamma-ray yield of
770 photons/second.

Gamma rays are also commonly emitted following the absorption of thermal neutrons by
typical nuclei. Sources of thermal neutrons used in the production of gamma rays can be
intense beams from nuclear reactors!® or accelerator facilities, or weaker fluxes from
moderated radioisotope sources of neutrons.!''? These ‘“neutron-capture gamma rays”
typically have energy ranging as high as 9 MeV, and data on the probabilities of emission
per neutron capture that can be useful for detector calibrations are available from various
sources (e.g., Ref. 13).

D. Bremsstrahlung

When fast electrons interact in matter, part of their energy is converted into electromagnetic
radiation in the form of bremsstrahlung. (This process is discussed in somewhat more detail in
Chapter 2.) The fraction of the electron energy converted into bremsstrahlung increases with
increasing electron energy and is largest for absorbing materials of high atomic number. The
process is important in the production of X-rays from conventional X-ray tubes.

For monoenergetic electrons that slow down and stop in a given material, the bremsstrah-
lung energy spectrum is a continuum with photon energies that extend as high as the electron
energy itself. The shape of a typical spectrum produced by monoenergetic electrons is shown in
Fig. 1.6. The emission of low-energy photons predominates, and the average photon energy is a
small fraction of the incident electron energy. Because these spectra are continua, they cannot
be applied directly to the energy calibration of radiation detectors.

The shape of the energy spectrum from an X-ray tube can be beneficially altered by filtration or
passage through appropriate absorber materials. Through the use of absorbers that preferentially
remove the lower-energy photons, a peaked spectrum can be produced that, although far from
monoenergetic, can be useful in the energy calibration of detectors whose response changes only
gradually with energy. Some examples of filtered spectra from X-ray tubes are plotted in Fig. 1.7.
Atlower energies, the abrupt change in filter transmission at its K-absorption edge (see Chapter 2)
can produce a prominent peak at the corresponding energy in the filtered spectrum.'®

Bremsstrahlung is also produced by other sources of fast electrons, including beta particles.
Therefore, some bremsstrahlung photons are generated by any beta-active isotope encapsulated
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to stop the beta particles. Some examples of bremsstrahlung spectra from specific isotopes are
plotted in Fig. 10.5.

In addition to bremsstrahlung, characteristic X-rays (see the following section) are also
produced when fast electrons pass through an absorber. Therefore, the spectra from X-ray
tubes or other bremsstrahlung sources also show characteristic X-ray emission lines super-
imposed on the continuous bremsstrahlung spectrum.

E. Characteristic X-Rays

If the orbital electrons in an atom are disrupted from their normal configuration by some
excitation process, the atom may exist in an excited state for a short period of time. There is a
natural tendency for the electrons to rearrange themselves to return the atom to its lowest energy
or ground state within a time that is characteristically a nanosecond or less in a solid material. The
energy liberated in the transition from the excited to the ground state takes the form of a
characteristic X-ray photon whose energy is given by the energy difference between the initial and
final states. For example, if the vacancy is temporarily created in the K shell of an atom, then a
characteristic K X-ray is liberated when that vacancy is subsequently filled. If that electron comes
from the L shell, then a K,, photon is produced whose energy is equal to the difference in binding
energies between the K and L shells. If the filling electron originated in the M shell instead, then a
K photon is produced with slightly larger energy, and so on. The maximum K-series photon is
produced when the vacancy is filled by a free or unbound electron, and the corresponding photon
energy is then simply given by the K shell binding energy. Vacancies created in outer shells by the
filling of a K shell vacancy are subsequently filled with the emission of L-, M-, . .. series
characteristic X-rays.

Because their energy is greatest, the K-series X-rays are generally of most practical
significance. Their energy increases regularly with atomic number of the element and is, for
example, about 1 keV for sodium with Z=11, 10 keV for gallium with Z =31, and 100 keV for
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radium with Z =88. The L-series X-rays do not reach 1 keV until Z=28 and 10 keV at Z="74.
Extensive tables of precise characteristic X-rays can be found in Ref. 1. Because the energy of
the characteristic X-ray is unique to each individual element, they are often used in the
elemental analysis of unknown samples (see Fig. 13.17).

For an atom in an excited state, the ejection of an Auger electron is a competitive process to
the emission of characteristic X-rays. The fluorescent yield is defined as the fraction of all cases
in which the excited atom emits a characteristic X-ray photon in its de-excitation. Values for the
fluorescent yield are often tabulated as part of spectroscopic data.

A large number of different physical processes can lead to the population of excited atomic
states from which characteristic X-rays originate. In general, the relative yields of the K, L, and
subsequent series will depend on the excitation method, but the energy of the characteristic
photons is fixed by the basic atomic binding energies. We list below those excitation mecha-
nisms that are of most practical importance for compact laboratory sources of characteristic
X-rays.
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1. EXCITATION BY RADIOACTIVE DECAY

In the nuclear decay process of electron capture, the nuclear charge is decreased by one unit by
the capture of an orbital electron, most often a K-electron. The resulting atom still has the right
number of orbital electrons, but the capture process has created a vacancy in one of the inner
shells. When this vacancy is subsequently filled, X-rays are generated that are characteristic of
the product element. The decay may populate either the ground state or an excited state in the
product nucleus, so that the characteristic X-rays may also be accompanied by gamma rays from
subsequent nuclear de-excitation.

Internal conversion is another nuclear process that can lead to characteristic X-rays. As
defined earlier in this chapter, internal conversion results in the ejection of an orbital electron
from the atom leaving behind a vacancy. Again, it is the K-electrons that are most readily
converted, and therefore the K-series characteristic X-rays are the most prominent. Because
gamma-ray de-excitation of the nuclear state is always a competing process to internal
conversion, radioisotope sources of this type usually emit gamma rays in addition to the
characteristic X-rays. The conversion electrons may also lead to a measurable bremsstrahlung
continuum, particularly when their energy is high.

In Table 13.2, some examples are given of radioisotopes that involve either electron capture
or internal conversion and are possible sources of characteristic X-rays. In all these examples,
high-energy gamma rays from a nuclear transition are emitted along with the characteristic
X-rays. If a pure X-ray source free of gamma-ray contamination is required, a radioisotope that
decays by electron capture leading directly to the ground nuclear state of the daughter must be
chosen. Table 1.4 gives some examples for the lower energy range. Of these, >>Fe is most widely
used because of its convenient half-life and high available specific activity. It is very nearly a
pure source of manganese K-series X-rays at about 5.9 keV, and the inner bremsstrahlung
associated with the electron capture process is very weak.

Self-absorption is a significant technical problem in the preparation of radioisotope X-ray
sources. As the thickness of the radioisotope deposit is increased, the X-ray flux emerging from
its surface approaches a limiting value because only those atoms near the surface can contribute
photons that escape. The number of emitting atoms within a given distance of the deposit

Table 1.4 Some Radioisotope Sources of Low-Energy X-Rays

Weighted K, Fluorescent Other
Nuclide Half-Life X-Ray Energy Yield Radiations
Ar 35.1d 2.957 keV 0.086 Some IB?
“Ca 8 x 10y 3.31 0.129 Pure
“Ti 48y 4.508 0.174 v Rays at 68 and 78 keV
Py 330d 4.949 0.200 1B
SFe 2.60y 5.895 0.282 Weak IB

“IB represents inner bremsstrahlung.
Data primarily from Amlauer and Tuohy.!”

Electron capture can lead to another form of continuous electromagnetic radiation known as inner bremsstrahlung. In the
decay process, an orbital electron is captured by the nucleus and therefore must undergo some acceleration. From classical
theory, an accelerated charge must emit electromagnetic radiation. Because the acceleration may vary over a wide range
depending on the specifics of the capture process, the resulting emission spectrum is a continuum ranging up to a maximum
photon energy given by the Q-value of the electron capture decay (the maximum energy available in the nuclear transition).
Inner bremsstrahlung therefore adds a continuous electromagnetic spectrum to the other radiations normally expected as a
product of the electron capture decay, although in many cases the intensity of this spectrum may be negligibly small.
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Figure 1.8 General method for the generation of characteristic
X-rays from a specific target element. The exciting radiation can be
Target X-rays, electrons, alpha particles, or any other ionizing radiation.

surface is maximized by increasing the specific activity of the radioisotope, and carrier-free
samples will exhibit the maximum attainable source intensity per unit area.

2. EXCITATION BY EXTERNAL RADIATION

The general scheme sketched in Fig. 1.8 may also be used to generate characteristic X-rays.
There an external source of radiation (X-rays, electrons, alpha particles, etc.) is caused to strike
a target, creating excited or ionized atoms in the target through the processes detailed in
Chapter 2. Because many excited atoms or ions in the target subsequently de-excite to the
ground state through the emission of characteristic X-rays, the target can serve as a localized
source of these X-rays.

The energy of the X-rays emitted depends on the choice of target material. Targets with low
atomic number result in soft characteristic X-rays, and high-Z targets produce harder or higher
energy X-rays. The incident radiation must have a higher energy than the maximum photon
energy expected from the target, because the excited states leading to the corresponding atomic
transition must be populated by the incident radiation.

As one example, the incident radiation may consist of X-rays generated in a conventional
X-ray tube. These X-rays may then interact in the target through photoelectric absorption, and
the subsequent de-excitation of the target ions creates their characteristic X-ray spectrum. In
that case, the process is called X-ray fluorescence. Although the characteristic X-ray spectrum
can be contaminated by scattered photons from the incident X-ray beam, this component can
be kept below about 10 or 20% of the total photon yield with proper choice of target and
geometry. !

As an alternative to bulky X-ray tubes, radioisotopes that emit low-energy photons may
also be used as the source of the excitation. An example is **' Am, in which gamma rays of 60
keV energy are emitted in 36 % of the decays. Characteristic X-ray sources using this isotope for
excitation of targets in the geometry shown in Fig. 1.9 are currently available using up to 10 mCi
of 2! Am activity.

Another method of exciting the target is through the use of an external electron beam. For
targets of low atomic number, acceleration potentials of only a few thousand volts are required
so that relatively compact electron sources can be devised. In the case of electron excitation, the
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Table 1.5 Alpha Particle Sources Useful for Excitation of Characteristic X-Rays

210p,, 2440
Half-life 138 d 17.6y
Alpha emissions 5.305 MeV 5.81,5.77 MeV
(100 %)
Gamma rays 803 keV 43 keV (0.02 %)
(0.0011 %) 100 keV (0.0015 %)

150 keV (0.0013 %)
262keV (1.4 x 107 %)
590keV (2.5 x 107 %)

820 keV (7 x 107> %)

X-rays Pb characteristic Pu characteristic
L and M (trace) Land M

Data from Amlauer and Tuohy.?’

characteristic X-ray spectrum from the target will be contaminated by the continuous brems-
strahlung spectrum also generated by interactions of the incident electrons in the target.
For thin targets, however, the bremsstrahlung photons are preferentially emitted in the forward
direction, whereas the characteristic X-rays are emitted isotropically.'® Placing the exit window
at a large angle (120-180°) with respect to the incident electron direction will therefore
minimize the bremsstrahlung contamination.

The incident radiation in Fig. 1.8 can also consist of heavy charged particles. Again, the
interactions of these particles in the target will give rise to the excited atoms necessary for the
emission of characteristic X-rays. For compact and portable sources, alpha particles emitted
by radioisotope sources are the most convenient source of the incident particles. Of the
various potential alpha emitters, the most useful are *'°Po and ***Cm because of their
convenient half-lives and relative freedom from contaminant electromagnetic radiation (see
Table 1.5). Alpha particle excitation avoids the complication of bremsstrahlung associated
with electron excitation and is therefore capable of generating a relatively ‘“‘clean” charac-
teristic X-ray spectrum. A cross-sectional diagram of a typical source of this type is shown in
Fig. 1.9. The X-ray yields into one steradian solid angle per mCi (37 MBq) of 2**Cm ranges
from 1.7 x 10° photons/second for a beryllium target to about 10 photons/second for targets
of higher Z (Ref. 17).

F. Synchrotron Radiation

Another form of radiation is produced when a beam of energetic electrons is bent into a circular
orbit. From electromagnetic theory, a small fraction of the beam energy is radiated away during
each cycle of the beam. Originally considered to be something of a nuisance by high-energy
accelerator designers, this synchrotron radiation has turned out over the past several decades to
be a very useful form of electromagnetic radiation. When extracted from the accelerator in a
tangential direction to the beam orbit, the radiation appears as an intense and highly directional
beam of photons with energy that can span the range from visible light (a few eV) through X-ray
energies (~10% eV). Monochromators can be used to produce nearly monoenergetic photon
beams with a very high intensity. A number of high-energy accelerators (typically producing
electrons with energy of 500 MeV or more) have since been built that are dedicated to the
production of synchrotron radiation. Although limited to large-scale centralized user facilities,
this unique form of electromagnetic radiation has proven to be very useful because of the high
intensity and tunable energy of the available source.
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V.NEUTRON SOURCES

Although nuclei created with excitation energy greater than the neutron binding energy can
decay by neutron emission, these highly excited states are not produced as a result of any
convenient radioactive decay process. Consequently, practical isotope sources of neutrons do
not exist in the same sense that gamma-ray sources are available from many different nuclei
populated by beta decay.’ The possible choices for radioisotope neutron sources are much more
limited and are based on either spontaneous fission or on nuclear reactions for which the
incident particle is the product of a conventional decay process.

A. Spontaneous Fission

Many of the transuranic heavy nuclides have an appreciable spontaneous fission decay
probability. Several fast neutrons are promptly emitted in each fission event, so a sample of
such a radionuclide can be a simple and convenient isotopic neutron source. Other products of
the fission process are the heavy fission products described earlier, prompt fission gamma rays,
and the beta and gamma activity of the fission products accumulated within the sample. When
used as a neutron source, the isotope is generally encapsulated in a sufficiently thick container
so that only the fast neutrons and gamma rays emerge from the source.

The most common spontaneous fission source is >>Cf. Its half-life of 2.65 years is long enough to
be reasonably convenient, and the isotope is one of the most widely produced of all the transuranics.
The dominant decay mechanism is alpha decay, and the alpha emission rate is about 32 times that for
spontaneous fission. The neutron yield is 0.116 n/s per Bq, where the activity is the combined alpha
and spontaneous fission decay rate. On a unit mass basis, 2.30 x 10° n/s are produced per microgram
of the sample. Compared with the other isotopic neutron sources described below, 22Cf sources
involve very small amounts of active material (normally of the order of micrograms) and therefore
can be made in very small sizes dictated only by the encapsulation requirements."”

The energy spectrum of the neutrons is plotted in Fig. 1.10. The spectrum is peaked
between 0.5 and 1 MeV, although a significant yield of neutrons extends to as high as 8 or
10 MeV. The shape of a typical fission spectrum is approximated by the expression

dN
E = \/EE:‘_E/T (16)

For the spontaneous fission of 2>2Cf, the constant T in Eq. (1.6) has a value of 1.3 MeV
(Ref. 20). In addition to about 3.8 neutrons on average, each fission in 22Cf also results in
an average of about 8 emitted gamma-ray photons.>! Most of these (> 85%) are relatively

high-energy prompt gamma rays that are emitted within the first nanosecond following the
fission event.

B. Radioisotope (a, n) Sources

Because energetic alpha particles are available from the direct decay of a number of convenient
radionuclides, it is possible to fabricate a small self-contained neutron source by mixing an
alpha-emitting isotope with a suitable target material. Several different target materials can

"The specific beta decay with the longest half-life that leads to an excited state that does de-excite by neutron emission is

$7Br — SKr* + -

8TKr* 5 %Krin

Because the half-life of this beta decay is only 55 s, 8Br is not practical as a laboratory neutron source.
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lead to (a, n) reactions for the alpha particle energies that are readily available in radioactive
decay. The maximum neutron yield is obtained when beryllium is chosen as the target, and
neutrons are produced through the reaction

4 +3Be — 2C + {n

which has a Q-value of +5.71 MeV.

The neutron yield from this reaction when a beam of alpha particles strikes a target that is
thick compared with their range is plotted in Fig. 1.11. Most of the alpha particles simply are
stopped in the target, and only 1 in about 10* reacts with a beryllium nucleus. Virtually the same
yield can be obtained from an intimate mixture of the alpha particle emitter and beryllium,
provided the alpha emitter is homogeneously distributed throughout the beryllium in a small
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Table 1.6 Characteristics of Be(a, n) Neutron Sources

Neutron Yield per 106 Percent Yield

E Primary Alpha Particles with £, < 1.5 MeV
Source Half-Life (MeV) Calculated  Experimental Calculated Experimental
2%Pu/Be 24,000 y 5.14 65 57 11 9-33
210pg /Be 138d 5.30 73 69 13 12
23%8pu /Be 87.4y 5.48 79° — — —
24 Am/Be 433y 5.48 82 70 14 15-23
2Cm/Be 18y 5.79 100° - 18 29
22Cm/Be 162d 6.10 118 106 22 26
226Ra/Be 1602 y Multiple 502 — 26 33-38

+ daughters

221 Ac/Be 21.6y Multiple 702 — 28 38

+ daughters

“From Anderson and Hertz.?®> All other data as calculated or cited in Geiger and Van der Zwan.?*
®Does not include a 4% contribution from spontaneous fission of >**Cm.

relative concentration. All the alpha emitters of practical interest are actinide elements, and
investigations have shown that a stable alloy can be formed between the actinides and beryllium
of the form MBe,3, where M represents the actinide metal. Most of the sources described below
therefore are metallurgically prepared in the form of this alloy, and each alpha particle has an
opportunity to interact with beryllium nuclei without any intermediate energy loss.

Some of the common choices for alpha emitters and properties of the resulting neutron
sources are listed in Table 1.6. Several of these isotopes, notably ?Ra and **Ac, lead to long
chains of daughter products that, although adding to the alpha particle yield, also contribute a
large gamma-ray background. These sources are therefore inappropriate for some applications
in which the intense gamma-ray background interferes with the measurement. Also, these Ra-
Be and Ac-Be sources require more elaborate handling procedures because of the added
biological hazard of the gamma radiation.

The remaining radioisotopes in Table 1.6 involve simpler alpha decays and the gamma-ray
background is much lower. The choice between these alternatives is made primarily on the basis
of availability, cost, and half-life. Because the physical size of the sources is no longer negligible,
one would like the half-life to be as short as possible, consistent with the application, so that the
specific activity of the emitter is high.

The **Pu/Be source is probably the most widely used of the (a, n) isotopic neutron sources.
However, because about 16 g of the material is required for 1 Ci (3.7 x 10'® Bq) of activity,
sources of this type of a few centimeters in dimension are limited to about 107 n/s. In order to
increase the neutron yield without increasing the physical source size, alpha emitters with higher
specific activities must be substituted. Therefore, sources incorporating >’ Am (half-life of 433
years) and 2®Pu (half-life of 87.4 years) are also widely used if high neutron yields are needed.
Sources utilizing 2**Cm (half-life of 18 years) represent a near ideal compromise between
specific activity and source lifetime, but the isotope is not always widely available.

The neutron energy spectra from all such alpha/Be sources are similar, and any differences
reflect only the small variations in the primary alpha energies. A plot of the spectrum from a
29Pu /Be source is shown in Fig. 1.12. The various peaks and valleys in this energy distribution can
be analyzed in terms of the excitation state in which the '2C product nucleus is left.>*?° The alpha
particles lose a variable amount of energy before reacting with a beryllium nucleus, however, and
their continuous energy distribution washes out much of the structure that would be observed if
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the alpha particles were monoenergetic. For sources that contain only a few grams of material, the
spectrum of neutrons that emerges from the source surface is essentially the same as that created in
the (a, n) reactions. For larger sources, the secondary processes of neutron scattering within the
source, (n, 2n) reactions in beryllium, and (n, fission) events within the plutonium or other actinide
can introduce some dependence of the energy spectrum on the source size.”

Because large activities of the actinide isotope are involved in these neutron sources,
special precautions must be taken in their fabrication to ensure that the material remains safely
encapsulated. The actinide-beryllium alloy is usually sealed within two individually welded
stainless steel cylinders in the arrangement shown in Fig. 1.13. Some expansion space must be
allowed within the inner cylinder to accommodate the slow evolution of helium gas formed
when the alpha particles are stopped and neutralized.

When applied to the efficiency calibration of detectors, some caution must be used in
assuming that the neutron yield for these sources decays exactly as the half-life of the principal
actinide alpha emitter. Small amounts of contaminant alpha activity, present in either the
original radioisotope sample or produced through the decay of a precursor, can influence the
overall neutron yield. For example, many >**Pu/Be sources have been prepared from plutonium
containing small amounts of other plutonium isotopes. The isotope 241Pu is particularly sig-
nificant, because it beta decays with a half-life of 13.2 years to form 2*! Am, an alpha emitter.
The neutron yield of these sources can therefore gradually increase with time as the 2! Am
accumulates in the source. An original 2*'Pu isotopic fraction of 0.7% will result in an initial
growth rate of the neutron yield of 2% per year.”’

A number of other alpha-particle-induced reactions have occasionally been employed as neutron
sources, but all have a substantially lower neutron yield per unit alpha activity compared with the
beryllium reaction. Some of the potential useful reactions are listed in Table 1.7. Because all the O-
values of these reactions are less than that of the beryllium reaction, the resulting neutron spectra
shown in Fig 1.14 have a somewhat loweraverage energy. In particular, the "Li (o, n) reaction with its
highly negative O-value leads to a neutron spectrum with a low 0.5 MeV average energy that is
especially useful in some applications. Details of this spectrum shape are given in Ref. 29.

)
5 1%!! Stainless steel
‘s iy
HE
i ; ik
5 b EEE Active component
11$ ‘%m;j Figure 1.13 Typical double-walled construction for

Be (e, n) sources. (From Lorch.?%)
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Table 1.7 Alternative (a, n) Isotopic Neutron Sources

Neutron Yield

Target Reaction O-Value per 10° Alpha Particles
Natural B 0B (a, n) +1.07 MeV 13 for 2! Am alpha particles

1B(q, n) +0.158 MeV
F YF(a, n) —-1.93 MeV 4.1 for 2! Am alpha particles
Isotopically separated *C BC(a, n) +2.2 MeV 11 for Z8Pu alpha particles
Natural Li "Li(a, n) —2.79 MeV
Be (for comparison) 'Be(a, n) +5.71 MeV 70 for ! Am alpha particles

Data from Lorch? and Geiger and Van der Zwan.?®
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Figure 1.14 Neutron energy

10, .
. / Fan)  \ spectra from alternative (o, n)
Li{ce,n) 7L- d f Gei
5 : | , i s 4 | sources. ('Li data from Geiger
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Neutron energy (MeV) remainder from Lorch.?%)

C. Photoneutron Sources

Some radioisotope gamma-ray emitters can also be used to produce neutrons when combined
with an appropriate target material. The resulting photoneutron sources are based on supplying
sufficient excitation energy to a target nucleus by absorption of a gamma-ray photon to allow
the emission of a free neutron. Only two target nuclei, Be and 2H, are of any practical
significance for radioisotope photoneutron sources. The corresponding reactions can be written

Q
aBe +hv — §Be +in  —1.666 MeV
H4+hv— H+n ~2.226 MeV

A gamma-ray photon with an energy of at least the negative of the Q-value is required to make
the reactions energetically possible, so that only relatively high-energy gamma rays can be
applied. For gamma-ray energies that exceed this minimum, the corresponding neutron energy
can be calculated from

M(E,+0) Eyy/@mM)(m + M) (Ey + 0) Y

Ea®) = — 7 (m + MY 1.7)




24 Chapter1 Radiation Sources

Neutron flux

10°

10™

1072

where = angle between gamma photon and neutron direction

0
E, = gamma energy (assumed << 931 MeV)
M = mass or recoil nucleus x c?

m = mass of neutron x c2

One decided advantage of photoneutron sources is that if the gamma rays are monoenergetic,
the neutrons are also nearly monoenergetic. The relatively small kinematic spread obtained
from Eq. (1.7) by letting the angle 6 vary between 0 and m broadens the neutron energy
spectrum by only a few percent. For large sources, the spectrum is also somewhat degraded by
the scattering of some neutrons within the source before their escape.

The main disadvantage of photoneutron sources is the fact that very large gamma-ray
activities must be used in order to produce neutron sources of attractive intensity. For the type
of source sketched in Fig. 1.15, only about 1 gamma ray in 10° or 10° interacts to produce a
neutron, and therefore the neutrons appear in a much more intense gamma-ray background.
Some of the more common gamma-ray emitters are 2°Ra, '2*Sb, ?Ga, *°La, and >*Na. Some
properties and energy spectra of corresponding photoneutron sources are shown in Table 1.8
and Fig. 1.16. For many of these sources, the half-lives of the gamma emitters are short enough
to require their reactivation in a nuclear reactor between uses.

Neutron — emitting target (Be or D)
shells (3.2 mm thick)

emitting
core
(2.38 cm dia.)

Aluminum
encapsulation  Figure 1.15 Construction of a simple spherical
photoneutron source.
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Table 1.8 Photoneutron Source Characteristics

Neutron Yield
Gamma-Ray Gamma Neutron (n/s) for 10'° Bq
Emitter Half-Life? Energy® (MeV) Target Energy” (keV) Activity©
%4Na 15.0h 2.7541 Be 967 340,000
2.7541 D 263 330,000
BAl 2.24 min 1.7787 Be 101 32,600
Bl 37.3 min 2.1676 Be 446 43,100
Mn 2.58h 1.8107 Be 129
2.1131 398 91,500
2.9598 1149
2.9598 D 365 162
2Ga 14.1h 1.8611 Be 174
2.2016 476 64,900
2.5077 748
2.5077 D 140 25,100
76
As 263 h 1.7877 Be 109
2.0963 383 } 3050
88
Y 107d 1.8361 Be 152
229,000
2.7340 949 } ’
2.7340 D 253 160
16m 54.1 min 2.1121 Be 397 15,600
124gp 60.2d 1.6910 Be 23 210,000
1401 9 403 h 2.5217 Be 760 10,200
2.5217 D 147 6600
134py 17.3 min 2.1856 Be 462 690

“Decay data from Ref. 1.

bCalculated for ® = /2, approximate midpoint of primary spectrum.

“Monte Carlo calculations for the source dimensions given in Fig. 1.15. Outer target shells are either metallic Be or deuterated
polyethylene. Core materials assumed to be NaF, Al, CCly, MnO,, Ga,;03, As;03, Y,03, In, Sb, La,03, and Pr,0s.
Source: G. F. Knoll, “Radioisotope Neutron Sources,” Chap. 2 in Neutron Sources for Basic Physics and Applications,
Pergamon Press, New York, 1983.

D. Reactions from A ccelerated Charged Particles

Because alpha particles are the only heavy charged particles with low Z conveniently available from
radioisotopes, reactions involving incident protons, deuterons, and so on must rely on artificially
accelerated particles. Two of the most common reactions of this type used to produce neutrons are

o
The D-D reaction %I—I P %H = %He +4n +3.26 MeV

The D-Treaction  fH+3H —3He+{n  +17.6MeV

Because the coulomb barrier between the incident deuteron and the light target nucleus is relatively
small, the deuterons need not be accelerated to a very high energy in order to create a significant
neutron yield. These reactions are widely exploited in “neutron generators” in which deuterium ions
are accelerated by a potential of about 100-300 kV. Because the incident particle energy is then small
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compared with the Q-value of either reaction, all the neutrons produced have about the same energy
(near 3 MeV for the D-D reaction and 14 MeV for the D-T reaction). A 1 mA beam of deuterons will
produce about 10° n/s from a thick deuterium target and about 10'! n/s from a tritium target.
Somewhat smaller yields are produced in compact neutron generators consisting of a sealed tube
containing the ion source and target, together with a portable high-voltage generator.

A number of other charged-particle-induced reactions that involve either a negative Q-
value or a target with higher atomic number are also applied to neutron generation. Some
common examples are *Be(d, n), "Li(p, n), and *H(p, n). For these reactions, larger accel-
erators are required to produce the higher charged particle energies needed for useful neutron

production, although there has been progress in reducing their size.

PROBLEMS

1.1 Radiation energy spectra can be categorized into two
main groups: those that consist of one or more discrete
energies (line spectra) and those that consist of a broad
distribution of energies (continuous spectra). For each of
the radiation sources listed below, indicate whether
“line” or “‘continuous” is a better description:

(a) Alpha particles

(b) Beta particles

(c) Gamma rays

(d) Characteristic X-rays
(e) Conversion electrons
(f) Auger electrons

(g) Fission fragments

(h) Bremsstrahlung

(i) Annihilation radiation

1.2 Which has the higher energy: a conversion electron
from the L shell or from the M shell, if both arise from the
same nuclear excitation energy?

1.3 By simultaneously conserving energy and momen-
tum, find the alpha-particle energy emitted in the decay
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of a nucleus with mass number 210 if the Q-value of the
decay is 5.50 MeV.

1.4 What is the lowest wavelength limit of the X-rays
emitted by a tube operating at a potential of 195 kV?

1.5 From a table of atomic mass values, find the approxi-
mate energy released by the spontaneous fission of U
into two equal-mass fragments.

1.6 Calculate the specific activity of pure tritium (CH)
with a half-life of 12.26 years.

1.7 What is the highest energy to which doubly ionized
helium atoms (alpha particles) can be accelerated in a dc
accelerator with 3 MV maximum voltage?

1.8 What is the minimum gamma-ray energy required to
produce photoneutrons in water from the trace heavy
water content?

1.9 By simultaneously conserving energy and momen-
tum, calculate the energy of the neutron emitted in the
forward direction by a beam of 150 keV deuterons under-
going the D-T reaction in a tritium target.
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Chapter 2

Radiation Interactions

The operation of any radiation detector basically depends on the manner in which the
radiation to be detected interacts with the material of the detector itself. An understanding
of the response of a specific type of detector must therefore be based on a familiarity with the
fundamental mechanisms by which radiations interact and lose their energy in matter. Many
general reference works are available concerning this broad topic; the classic text by Evans,' to
mention only one, has served as a standard reference for several decades.

To organize the discussions that follow, it is convenient to arrange the four major categories
of radiations introduced in Chapter 1 into the following matrix:

Charged Particulate Radiations Uncharged Radiations
Heavy charged particles = Neutrons
(characteristic distance 2 10~ m) (characteristic length = 10~ m)
Fast electrons = X-rays and gamma rays
(characteristic distance = 107> m) (characteristic length 2 10~ m)

The entries in the left column represent the charged particulate radiations that, because of
the electriccharge carried by the particle, continuously interact through the coulomb force with
the electrons present in any medium through which they pass. The radiations in the right
column are uncharged and therefore are not subject to the coulomb force. Instead, these
radiations must first undergo a ““catastrophic” interaction that radically alters the properties of
the incident radiation in a single encounter. In all cases of practical interest, the interaction
results in the full or partial transfer of the energy of the incident radiation to electrons or nuclei
of the constituent atoms, or to charged particle products of nuclear reactions. If the interaction
does not occur within the detector, these uncharged radiations (e.g., neutrons or gamma rays)
can pass completely through the detector volume without revealing the slightest hint that they
were ever there.

The horizontal arrows shown in the diagram illustrate the results of such catastrophic
interactions. An X- or gamma ray, through the processes described in this chapter, can transfer
all or part of its energy to electrons within the medium. The resulting secondary electrons bear a
close similarity to the fast electron radiations (such as the beta particle) discussed in Chapter 1.
Devices designed to detect gamma rays are tailored to promote such interactions and to fully
stop the resulting secondary electrons so that their entire energy may contribute to the output
signal. In contrast, neutrons may interact in such a way as to produce secondary heavy charged
particles, which then serve as the basis of the detector signal.

Also listed in the diagram are order-of-magnitude numbers for the characteristic distance
of penetration or average path length (range or mean free path) in solids for typical energy
radiations in each category.

29
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L. INTERACTION OF HEAVY CHARGED PARTICLES

A. Nature of the Interaction

Heavy charged particles, such as the alpha particle, interact with matter primarily through
coulomb forces between their positive charge and the negative charge of the orbital electrons
within the absorber atoms. Although interactions of the particle with nuclei (as in Ruther-
ford scattering or alpha-particle-induced reactions) are also possible, such encounters occur
only rarely and they are not normally significant in the response of radiation detectors.
Instead, charged particle detectors must rely on the results of interactions with electrons for
their response.

Upon entering any absorbing medium, the charged particle immediately interacts simulta-
neously with many electrons. In any one such encounter, the electron feels an impulse from the
attractive coulomb force as the particle passes its vicinity. Depending on the proximity of the
encounter, this impulse may be sufficient either to raise the electron to a higher-lying shell
within the absorber atom (excitation) or to remove completely the electron from the atom
(ionization). The energy that is transferred to the electron must come at the expense of the
charged particle, and its velocity is therefore decreased as a result of the encounter. The
maximum energy that can be transferred from a charged particle of mass m with kinetic energy
E to an electron of mass my in a single collision is 4 Enig/m, or about 1/500 of the particle energy
per nucleon. Because this is a small fraction of the total energy, the primary particle must lose
its energy in many such interactions during its passage through an absorber. At any given time,
the particle is interacting with many electrons, so the net effect is to decrease its velocity
continuously until the particle is stopped.

Representative paths taken by heavy charged particles in their slowing-down process are
schematically represented in the sketch below. Except at their very end, the tracks tend to be
quite straight because the particle is not greatly deflected by any one encounter, and
interactions occur in all directions simultaneously. Charged particles are therefore character-
ized by a definite range in a given absorber material. The range, to be defined more precisely
below, represents a distance beyond which no particles will penetrate.

The products of these encounters in the absorber are either excited atoms or ion pairs. Each
ion pair is made up of a free electron and the corresponding positive ion of an absorber atom
from which an electron has been totally removed. The ion pairs have a natural tendency to
recombine to form neutral atoms, but in some types of detectors, this recombination is
suppressed so that the ion pairs may be used as the basis of the detector response.

o
Source

Collimator

In particularly close encounters, an electron may undergo a large enough impulse that after
having left its parent atom, it still may have sufficient kinetic energy to create further ions.
These energetic electrons are sometimes called delta rays and represent an indirect means by
which the charged particle energy is transferred to the absorbing medium. Under typical
conditions, the majority of the energy loss of the charged particle occurs via these delta rays.
The range of the delta rays is always small compared with the range of the incident energetic
particle, so the ionization is still formed close to the primary track. On a microscopic scale, one
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effect of this process is that the ion pairs normally do not appear as randomly spaced single
ionizations, but there is a tendency to form many “clusters” of multiple ion pairs distributed
along the track of the particle.

B. Stopping Power

The linear stopping power S for charged particles in a given absorber is simply defined as the
differential energy loss for that particle within the material divided by the corresponding
differential path length:

_dE
dx

The value of —dE/dx along a particle track is also called its specific energy loss or, more casually,
its “‘rate” of energy loss.

For particles with a given charge state, S increases as the particle velocity is decreased. The
classical expression that describes the specific energy loss is known as the Bethe formula and is
written

S= (2.1)

dE _ 4me'z?
dx  mgv?

2mv? v2\ 12
(122

In these expressions, v and ze are the velocity and charge of the primary particle, N and Z are
the number density and atomic number of the absorber atoms, m is the electron rest mass, and
e is the electronic charge. The parameter I represents the average excitation and ionization
potential of the absorber and is normally treated as an experimentally determined parameter
for each element. For nonrelativistic charged particles (v <<c¢), only the first term in B is
significant. Equation (2.2) is generally valid for different types of charged particles provided
their velocity remains large compared with the velocities of the orbital electrons in the
absorbing atoms.

The expression for B in Eq. (2.2) varies slowly with particle energy. Thus, the general
behavior of dE/dx can be inferred from the behavior of the multiplicative factor. For a given
nonrelativistic particle, dE/dx therefore varies as 1/v%, or inversely with particle energy. This
behavior can be heuristically explained by noting that because the charged particle spends a
greater time in the vicinity of any given electron when its velocity is low, the impulse felt by the
electron, and hence the energy transfer, is largest. When comparing different charged particles
of the same velocity, the only factor that may change outside the logarithmic termin Eq. (2.2) is
z2, which occurs in the numerator of the expression. Therefore, particles with the greatest
charge will have the largest specific energy loss. Alpha particles, for example, will lose energy at
arate thatis greater than protons of the same velocity but less than that of more highly charged
ions. In comparing different materials as absorbers, dE/dx depends primarily on the product
NZ, which is outside the logarithmic term. This product NZ represents the electron density of
the absorber. High atomic number, high-density materials will consequently result in the
greatest linear stopping power.

The variation of the specific energy loss for a number of different charged particles is shown
in Fig. 2.1 over a wide energy range. This figure shows that the value of dE/dx for many different
types of charged particles approaches a near-constant broad minimum value at energies above
several hundred MeV, where their velocity approaches the velocity of light. This specific energy

NB (2.2)

where

B=Z7
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loss corresponds to about 2 MeV per g/cm? in light materials. Because of their similar energy
loss behavior, such relativistic particles are sometimes referred to as ‘“minimum ionizing
particles.” Fast electrons also fall into this category at energies as low as about 1 MeV because
their much lower mass results in relativistic velocities even at such modest energy.

The Bethe formula begins to fail at low particle energies where charge exchange between
the particle and absorber becomes important. The positively charged particle will then tend to
pick up electrons from the absorber, which effectively reduce its charge and consequent linear
energy loss. At the end of its track, the particle has accumulated z electrons and becomes a
neutral atom.

C. Energy Loss Characteristics
1. THE BRAGG CURVE

A plot of the specific energy loss along the track of a charged particle such as that shown in Fig. 2.2 is
known as a Bragg curve. The example is shown for an alpha particle of several MeV initial energy.
For most of the track, the charge on the alpha particle is two electronic charges, and the specific
energy loss increases roughly as 1/E as predicted by Eq. (2.2). Near the end of the track, the charge
is reduced through electron pickup and the curve falls off. Plots are shown both for a single alpha
particle track and for the average behavior of a parallel beam of alpha particles of the same initial
energy. The two curves differ somewhat due to the effects of straggling, to be discussed below.

_dE __| Single particle
dx

N

|

7 |
“ Parallel beam

|
\
Y

Distance of penetration —- Figure 2.2 The specific energy loss along an alpha track.
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Related plots showing —dE/dx versus particle energy for a number of different heavy
charged particles are given in Fig. 2.3. These examples illustrate the energy at which charge
pickup by the ion becomes significant. Charged particles with the greatest number of nuclear
charges begin to pick up electrons early in their slowing-down process. Note that in an aluminum
absorber, singly charged hydrogen ions (protons) show strong effects of charge pickup below
about 100 keV, but doubly charged *He ions show equivalent effects at about 400 keV.

2. ENERGY STRAGGLING

Because the details of the microscopic interactions undergone by any specific particle vary
somewhat randomly, its energy loss is a statistical or stochastic process. Therefore, a spread in
energies always results after a beam of monoenergetic charged particles has passed through a
given thickness of absorber. The width of this energy distribution is a measure of energy
straggling, which varies with the distance along the particle track.

Figure 2.4 shows a schematic presentation of the energy distribution of a beam of initially
monoenergetic particles at various points along its range. Over the first portion, the distribution

Figure 2.4 Plots of energy distribution of a beam of initially
monoenergetic charged particles at various penetration dis-
tances. E is the particle energy and X is the distance along the
track. (From Wilken and Fritz.%)
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becomes wider (and more skewed) with penetration distance, showing the increasing impor-
tance of energy straggling. Near the end of the range, the distribution narrows again because the
mean particle energy has been greatly reduced.

D. Particle Range
1. DEFINITIONS OF RANGE

In order to quantify the definition of particle range, we refer to the conceptual experiment
sketched in Fig. 2.5. Here a collimated source of monoenergetic alpha particles is counted by a
detector after passing through an absorber of variable thickness. (We later contrast the
behavior of other types of radiation when observed under similar conditions.) For alpha
particles, the results are also plotted in Fig. 2.5. For small values of the absorber thickness, the
only effect is to cause an energy loss of the alpha particles in the absorber as they pass through.
Because the tracks through the absorber are quite straight, the total number that reach the
detector remains the same. No attenuation in the number of alpha particles takes place until the
absorber thickness approaches the length of the shortest track in the absorbing material.
Increasing the thickness then stops more and more of the alpha particles, and the intensity of
the detected beam drops rapidly to zero.

The range of the alpha particles in the absorber material can be determined from this curve
in several ways. The mean range is defined as the absorber thickness that reduces the alpha
particle count to exactly one-half of its value in the absence of the absorber. This definition is
most commonly used in tables of numerical range values. Another version that appears in the
literature is the extrapolated range, which is obtained by extrapolating the linear portion of the
end of the transmission curve to zero.

The range of charged particles of a given energy is thus a fairly unique quantity in a specific
absorber material. In the early days of radiation measurement, experiments of the type
sketched in Fig. 2.5 were widely used to measure the energy of alpha particles indirectly by
determining the absorber thickness equivalent to their mean range. With the availability of
detectors that provide an output signal directly related to the alpha particle energy, such
indirect measurements are no longer necessary.

Some graphs of the mean range of various charged particles in materials of interest in
detectors are given in Figs. 2.6 through 2.8. As one obvious application of these curves, any
detector that is to measure the full incident energy of a charged particle must have an active
thickness that is greater than the range of that particle in the detector material.

2. RANGE STRAGGLING

Charged particles are also subject to range straggling, defined as the fluctuation in path length
for individual particles of the same initial energy. The same stochastic factors that lead to
energy straggling at a given penetration distance also result in slightly different total path
lengths for each particle. For heavy charged particles such as protons or alphas, the straggling
amounts to a few percent of the mean range. The degree of straggling is evidenced by the

il Figure 2.5 An alpha particle
™ fo transmission experiment. / is the
detected number of alpha parti-
Det cles through an absorber thick-
i | V== ness t, whereas I is the number
detected without the absorber.
The mean range R,, and
extrapolated range R, are
= indicated.

Source
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sharpness of the cutoff at the end of the average transmission curve plotted in Fig. 2.2.
Differentiating this curve leads to a peak whose width is often taken as a quantitative measure
of the importance of range straggling for the particles and absorber used in the measurement.

3. STOPPING TIME

The time required to stop a charged particle in an absorber can be deduced from its range and
average velocity. For nonrelativistic particles of mass m and kinetic energy E, the velocity is

PE [IE s 2E
TN TNV T (3'00 <10 ?) \/(931 MeV /amu)m4

where m, is the particle mass in atomic mass units and E is the particle energy in MeV. If we
assume that the average particle velocity as it slows down is (v) = Kv, where v is evaluated at
the initial energy, then the stopping time 7 can be calculated from the range R as

T— R R mc? R \/931 MeV/amu [my
() KcV2E  K(3.00 x 10° m/s) 2 V' E

If the particle were uniformly decelerated, then (v) would be given by v/2 and K would be 0.5.
However, charged particles generally lose energy at a greater rate near the end of their range,
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and K should be a somewhat higher fraction. By assuming K = 0.60, the stopping time can be

estimated as
T=12x107'R, /";; (2.3)

where T'is in seconds, R in meters, m 4 in amu, and £ in MeV. This approximation is expected to
be reasonably accurate for heavy charged particles (protons, alpha particles, etc.) over much of
the energy range of interest here. It is not, however, to be used for relativistic particles such as
fast electrons.

Using typical range values, stopping times calculated from Eq. (2.3) for charged particles
are a few picoseconds in solids or liquids and a few nanoseconds in gases. These times are
generally small enough to be neglected for all but the fastest-responding radiation detectors.

E. Energy Loss in Thin Absorbers

For thin absorbers (or detectors) that are penetrated by a given charged particle, the energy
deposited within the absorber can be calculated from

dE
AE = — (a)avgt (2.4)
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where ¢ is the absorber thickness and (—dE/dx),y, is the linear stopping power averaged over the
energy of the particle while in the absorber. If the energy loss is small, the stopping power does
not change much and it can be approximated by its value at the incident particle energy. Tabular
values for dE/dx for a number of different charged particles in a variety of absorbing media are
given in Refs. 5-10. Some graphs for materials of interest are shown in Figs. 2.9 through 2.11.
For absorber thicknesses through which the energy loss is not small, it is not simple to
obtain a properly weighted (—dE/dx),y, value directly from such data. In these cases, it is easier
to obtain the deposited energy in a way that makes use of range—energy data of the type plotted
in Figs. 2.6 through 2.8. The basis of the method is as follows: Let R; represent the full range of
the incident particle with energy E, in the absorber material. By subtracting the physical
thickness of the absorber ¢ from R;, a value R, is obtained that represents the range of those
alpha particles that emerge from the opposite surface of the absorber. By finding the energy
corresponding to R,, the energy of the transmitted charged particles E, is obtained. The
deposited energy AE is then given simply by Ey — E,. These steps are illustrated below:

Range
E, \ E, Ry =
- t
R, B A
Yy AE
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The procedure is based on the assumption that the charged particle tracks are perfectly linear in
the absorber, and the method does not apply in situations where the particle can be significantly
deflected (such as for fast electrons).

The combined effects of particle range and the decrease in dE/dx with increasing energy are
illustrated in Fig. 2.12. Here the energy loss of protons in a thin detector is plotted versus the
incident proton energy. For low energies, the proton range is less than the detector thickness.
Therefore, as the energy is increased, the energy deposited in the detector (which is just equal to
the incident energy) increases linearly. At a proton energy of 425 keV, the range is exactly equal to
the detector thickness. For higher energies, only a portion of incident energy is deposited, and the
transmitted proton carries off the remainder. Under these conditions, the energy deposited in the
detector is given by Eq. (2.4), or simply the product of the detector thickness and the average linear
stoppmg power. Because the stopping power continuously decreases with i 1ncreas1ng energy in this
region (see Fig. 2.3), the deposited energy therefore decreases with further increases in the incident
proton energy. The second curve in Fig. 2.12 plots the transmitted energy (E; on the diagram on the
preceding page) as recorded by a second thick detector.

F. Scaling Laws

Sometimes data are not available on the range or energy loss characteristics of precisely the
same particle-absorber combination needed in a given experiment. Recourse must then be
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made to various approximations, most of which are derived based on the Bethe formula
[Eq. (2.2)] and on the assumption that the stopping power per atom of compounds or mixtures is
additive. This latter assumption, known as the Bragg—Kleeman rule, may be written

1 (dE 1 (dE
%@, 2"%(Z), 23)

In this expression, N is the atomic density, d E/dx is the linear stopping power, and W; represents
the atom fraction of the ith component in the compound (subscript c¢). As an example of the
application of Eq. (2.5), the linear stopping power of alpha particles in a metallic oxide could be
obtained from separate data on the stopping power in both the pure metal and in oxygen. Some
caution should be used in applying such results, however, since some measurements'* > for
compounds have indicated a stopping power differing by as much as 10-20% from that
calculated from Eq. (2.5).

It can be shown'! that the range of a charged particle in a compound material can also be
estimated provided its range is known in all the constituent elements. In this derivation, it is
necessary to assume that the shape of the dE/dx curve is independent of the stopping medium.
Under these conditions, the range in the compound is given by

M.
Zni(Ai/Ri)

i

R, = (2.6)

where R; is the range in element i, n; is the number of atoms of element i in the molecule, A; is
the atomic weight of element i, and M, is the molecular weight of the compound.

If range data are not available for all the constituent elements, estimates can be made based
on a semiempirical formula (commonly called the Bragg—Kleeman rule as well)

R o povAL (2.7)
Ro  p1vAo

where p and A represent density and atomic weight, and subscripts 0 and 1 refer to different
absorbing materials. The accuracy of this estimate diminishes when the two materials are of
widely different atomic weights, so it is always best to use range data from a material that is as
close as possible in A to the absorber of interest.

Range data can also be generalized to different charged particles within a given absorber
material. By integration of Eq. (2.2), it can be shown that the range of a particle of mass m and
charge z can be represented by

R(v) = %F(v) (2.8)
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where F(v) represents a unique function of the particle initial velocity v. For particles of the
same initial velocity, this factor will be identical and therefore we can write

_ mezp?
mbzu2

R,(v) Ry(v) (2.9)
where the subscripts a and b refer to different charged particles. Thus, the range of a particle for
which data are not available can be estimated by calculating its initial velocity, finding the range of
any other particle of the same initial velocity in the same material, and applying Eq. (2.9). It should
be emphasized that these estimates are only approximate, because no account is taken of the
change in charge state of the particle as it nears the end of its path. Correction factors necessary to
compensate for this effect and predict the range more accurately are presented by Evans.!

G. Behavior of Fission Fragments

The heavy fragments produced as a result of neutron-induced or spontaneous fission of heavy
nuclei are energetic charged particles with properties somewhat different from those discussed up
to this point. Because the fragments start out stripped of many electrons, their very large effective
charge results in a specific energy loss greater than that encountered with any other radiations
discussed in this text. Because the initial energy is also very high (see Fig. 1.4b), however, the range
of a typical fission fragment is approximately half that of a S MeV alpha particle.

An important feature of a fission fragment track is the fact that the specific energy loss
(—dE/dx) decreases as the particle loses energy in the absorber. This behavior is in marked
contrast to the lighter particles, such as alpha particles or protons, and is a result of the
continuous decrease in the effective charge carried by the fragment as its velocity is reduced.
The pickup of electrons begins immediately at the start of the track, and therefore the factor z in
the numerator of Eq. (2.2) continuously drops. The resulting decrease in —dE/dx is large
enough to overcome the increase that normally accompanies a reduction in velocity. For
particles with much lower initial charge state, such as the alpha particle, electron pickup does
not become significant until near the end of the range.

H. Secondary Electron Emission from Surfaces

As charged particles lose their kinetic energy during the slowing-down process, many electrons
from the absorber are given a sufficient impulse to travel a short distance from the original track
of the particle. These include the delta rays mentioned earlier, whose energy is high enough to
ionize other absorber atoms, and also electrons whose kinetic energy of only a few eV is below
the minimum energy for further ionization. If an energetic charged particle is incident on or
emerges from a solid surface, some of these electrons may migrate to the surface and have
sufficient energy to escape. The term secondary electrons is conventionally applied to these
escaping low-energy electrons. (Note: The same term is often used to characterize the much
more energetic electrons formed in the gamma-ray interactions described later in this chapter —
a very different type of secondary electron.)

A single heavy ion such as a fission fragment can produce hundreds of these escaping
secondaries, whereas lighter alpha particles might typically result in 10 or fewer secondaries
per particle.'® Fast electrons such as beta particles are much less likely to create escaping
secondaries, and only a few percent will result in secondary emission. To a first approximation,
the yield of secondaries will be proportional to the energy lost within a near-surface layer whose
thickness represents the maximum distance an electron will tend to migrate from its point of origin
and still retain enough energy to escape from the surface. Thus, the dE/dx value of the particle is a
reasonable predictor of secondary yield from a given material. Those materials with a low work



42 Chapter2 Radiation Interactions

function and large escape distance will have the largest yield. Thin films of alkali halides, and cesium
iodide in particular, are observed to produce secondaries with high yield. Models of the electron
transport in alkali halides'” confirm their suitability as prolific sources of secondary electrons.

The energy spectrum of these escaping secondary electrons is a continuum with a mean value
that is very low compared with the primary particle energy. For example, the energy of secondaries
from a carbon surface averages 60—100 eV for alpha particles and 290 eV for fission fragments.'®
The energy of secondary electrons produced by lighter particles such as fast electrons is even
lower. Thus it is normally difficult or impossible to observe the secondaries since they are readily
reabsorbed even in air. If they are emitted into a vacuum or low-pressure gas, however, they can be
accelerated and easily guided by electric fields because of their low initial velocity. For example, an
electric field created by the application of 1000 V with respect to the surface would have a strong
influence on the trajectory of a 100 eV electron, but almost no effect on a 1 MeV fast electron. This
property has led to the successful use of secondary electron emission from surfaces as a means of
detecting the positions at which alpha or beta particles emerge from a surface'®>" and in
the imaging of X-rays and fast electrons.” Secondary electrons emitted from a thin foil and
directed to an external electron detector such as a microchannel plate have also served as the basis
for fast timing measurements with heavy ions.*’** One special application of the secondary
electron emission process will be detailed in Chapter 9, where a typical electron in a pho-
tomultiplier tube is accelerated to a few hundred eV before striking a solid surface, causing the
emission of 5-10 secondaries in a charge multiplication process.

ILI. INTERACTION OF FAST ELECTRONS

When compared with heavy charged particles, fast electrons lose their energy at a lower rate
and follow a much more tortuous path through absorbing materials. A series of tracks from a
source of monoenergetic electrons might appear as in the sketch below:

Large deviations in the electron path are now possible because its mass is equal to that of the
orbital electrons with which it is interacting, and a much larger fraction of its energy can be lost
in a single encounter. In addition, electron—nuclear interactions, which can abruptly change the
electron direction, sometimes occur.

A. Specific Energy Loss

An expression similar to that of Eq. (2.2) has also been derived by Bethe to describe the specific
energy loss due to ionization and excitation (the “collisional losses’’) for fast electrons:

_ (%)c _ z“zzgz (m ZIQ’EEVEEBZ) —(n2) (2\ /1-B2-1+ Bz)
+(1-p?) +% (1 _J1- 32)2) (2.10)

where the symbols have the same meaning as in Eq. (2.2) and B = v/c.
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Electrons also differ from heavy charged particles in that energy may be lost by radiative
processes as well as by coulomb interactions. These radiative losses take the form of brems-
strahlung or electromagnetic radiation, which can emanate from any position along the electron
track. From classical theory, any charge must radiate energy when accelerated, and the
deflections of the electron in its interactions with the absorber correspond to such acceleration.
The linear specific energy loss through this radiative process is

dE\ NEZ(Z +1)é* 2E 4
Y o 41 _2 11
(dx), 137mic* < N e 3> (211)

For the particle types and energy ranges of interest in this text, only fast electrons can have a
significant yield of bremsstrahlung. The yield from heavy charged particles is negligible
as indicated by the presence of the m3 factor in the denominator of the multiplicative term
in Eq. (2.11). The factors of E and Z? in the numerator of Eq. (2.11) show that radiative losses
are most important for high electron energies and for absorber materials of large atomic
number. For typical electron energies, the average bremsstrahlung photon energy is quite low
(see Fig. 1.6) and is therefore normally reabsorbed fairly close to its point of origin. In some
cases, however, the escape of bremsstrahlung can influence the response of small detectors.

The total linear stopping power for electrons is the sum of the collisional and radiative losses:

dE dE dE
e (El * (a), (212)

The ratio of the specific energy losses is given approximately by

(dE/dx), EZ
(dEJdx), ~ 700

1%

(2.13)

where E is in units of MeV. For the electrons of interest here (such as beta particles or
secondary electrons from gamma-ray interactions), typical energies are less than a few MeV.
Therefore, radiative losses are always a small fraction of the energy losses due to ionization and
excitation and are significant only in absorber materials of high atomic number.

B. Electron Range and Transmission Curves

®
Source

1. ABSORPTION OF MONOENERGETIC ELECTRONS

An attenuation experiment of the type discussed earlier for alpha particles is sketched in Fig.
2.13 for a source of monoenergetic fast electrons. Even small values of the absorber thickness
lead to the loss of some electrons from the detected beam because scattering of the electron
effectively removes it from the flux striking the detector. A plot of the detected number of
electrons versus absorber thickness therefore begins to drop immediately and gradually
approaches zero for large absorber thicknesses. Those electrons that penetrate the greatest

L
f\" l,IJ
Det.
L/ = ; Figure 2.13 Transmission curve
—-‘ L_ ‘ for monoenergetic electrons. R,
! is the extrapolated range.
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absorber thickness will be the ones whose initial direction has changed least in their path
through the absorber.

The concept of range is less definite for fast electrons than for heavy charged particles, because
the electron total path length is considerably greater than the distance of penetration along the initial
velocity vector. Normally, the electron range is taken from a transmission plot, such as that given in
Fig. 2.13, by extrapolation of the linear portion of the curve to zero and represents the absorber
thickness required to ensure that almost no electrons can penetrate the entire thickness.

For equivalent energy, the specific energy loss of electrons is much lower than that of heavy
charged particles, so their path length in typical absorbers is hundreds of times greater. As a
very crude estimate, electron ranges tend to be about 2 mm per MeV in low-density materials,
or about 1 mm per MeV in materials of moderate density.

Tabular data are given in Refs. 23 and 24 for the stopping power and range of electrons and
positrons in elements and compounds, covering a large region of energy. To a fair degree of
approximation, the product of the range times the density of the absorber is a constant for
different materials for electrons of equal initial energy. Plots of the range of electrons in two
common detector materials are given in Fig. 2.14.

2. ABSORPTION OF BETA PARTICLES

The transmission curve for beta particles emitted by a radioisotope source, because of the
continuous distribution in their energy, differs significantly from that sketched in Fig. 2.13 for
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monoenergetic electrons. The ““soft” or low-energy beta particles are rapidly absorbed even in
small thicknesses of the absorber, so that the initial slope on the attenuation curve is much
greater. For the majority of beta spectra, the curve happens to have a near-exponential shape
and is therefore nearly linear on the semilog plot of the type shown in Fig. 2.15. This exponential
behavior is only an empirical approximation and does not have a fundamental basis as does the
exponential attenuation of gamma rays [see Eq. (2.20)]. An absorption coefficient n is
sometimes defined by
1

—=e™ 2.14
L= (2.14)

where Iy = counting rate without absorber
I = counting rate with absorber
t = absorber thickness g/cm?
The coefficient 7 correlates well with the endpoint energy of the beta emitter for a specific
absorbing material. This dependence is shown in Fig. 2.16 for aluminum. Through the use of

such data, attenuation measurements can be used to identify indirectly endpoint energies of
unknown beta emitters, although direct energy measurements are more common.
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3. BACKSCATTERING

The fact that electrons often undergo large-angle deflections along their tracks leads to the
phenomenon of backscattering. An electron entering one surface of an absorber may undergo
sufficient deflection so that it re-emerges from the surface through which it entered. These
backscattered electrons do not deposit all their energy in the absorbing medium and therefore
can have a significant effect on the response of detectors designed to measure the energy of
externally incident electrons. Electrons that backscatter in the detector “‘entrance window”’ or
dead layer will escape detection entirely.

Backscattering is most pronounced for electrons with low incident energy and absorbers
with high atomic number. Figure 2.17 shows the fraction of monoenergetic electrons that are
backscattered when normally incident on the surface of various absorbers. Additional data for
materials commonly used as electron detectors are given in Table 10.1.

Backscattering can also influence the apparent yield from radioisotope sources of beta
particles or conversion electrons. If the source is deposited on a thick backing, electrons that are
emitted initially into this backing may backscatter and re-emerge from the surface of the source.

C. Positron Interactions

The coulomb forces that constitute the major mechanism of energy loss for both electrons and
heavy charged particles are present for either positive or negative charge on the particle.
Whether the interaction involves a repulsive or attractive force between the incident particle
and orbital electron, the impulse and energy transfer for particles of equal mass are about the
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same. Therefore, the tracks of positrons in an absorber are similar to those of normal negative
electrons, and their specific energy loss and range are about the same for equal initial energies.

Positrons differ significantly, however, in that the annihilation radiation described in
Chapter 1 is generated at the end of the positron track. Because these 0.511 MeV photons
are very penetrating compared with the range of the positron, they can lead to the deposition of
energy far from the original positron track.

III. INTERACTION OF GAMMA RAYS

Although a large number of possible interaction mechanisms are known for gamma rays in
matter, only three major types play an important role in radiation measurements: photoelectric
absorption, Compton scattering, and pair production. All these processes lead to the partial or
complete transfer of the gamma-ray photon energy to electron energy. They result in sudden
and abrupt changes in the gamma-ray photon history, in that the photon either disappears
entirely or is scattered through a significant angle. This behavior is in marked contrast to the
charged particles discussed earlier in this chapter, which slow down gradually through
continuous, simultaneous interactions with many absorber atoms. The fundamentals of the
gamma-ray interaction mechanisms are introduced here but are again reviewed at the begin-
ning of Chapter 10 in the context of their influence on the response of gamma-ray detectors.

A. Interaction Mechanisms
1. PHOTOELECTRIC ABSORPTION

In the photoelectric absorption process, a photon undergoes an interaction with an absorber
atom in which the photon completely disappears. In its place, an energetic photoelectron is
gjected by the atom from one of its bound shells. The interaction is with the atom as a whole and
cannot take place with free electrons. For gamma rays of sufficient energy, the most probable
origin of the photoelectron is the most tightly bound or K shell of the atom. The photoelectron
appears with an energy given by

Ee- = hv — Ey (2.15)

where E}, represents the binding energy of the photoelectron in its original shell. For gamma-
ray energies of more than a few hundred keV, the photoelectron carries off the majority of the
original photon energy.

In addition to the photoelectron, the interaction also creates an ionized absorber atom with a
vacancy in one of its bound shells. This vacancy is quickly filled through capture of a free electron
from the medium and/or rearrangement of electrons from other shells of the atom. Therefore,
one or more characteristic X-ray photons may also be generated. Although in most cases these
X-rays are reabsorbed close to the original site through photoelectric absorption involving less
tightly bound shells, their migration and possible escape from radiation detectors can influence
their response (see Chapter 10). In some fraction of the cases, the emission of an Auger electron
may substitute for the characteristic X-ray in carrying away the atomic excitation energy.

As an example of the complexity of these interactions, consider incident photons with energy
above 30 keV that undergo photoelectric absorption in xenon. About 86% interact through K-
shell absorptions in the xenon atom.”® Of these, 87.5% result in K-shell characteristic (or
“fluorescent”) X-rays (a mixture of K-a and K-B) and 12.5% de-excite through the emission
of Auger electrons. The remaining 14% of the incident photons that do not undergo K-shell
interactions are absorbed through photoelectric interaction with the L or M shells. These result in
much lower energy characteristic X-rays or Auger electrons that are very short range and, to first
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approximation, are reabsorbed very near the site of the original interaction. Another example of
such a “cascade sequence” is shown in Chapter 10 as Fig. 10.25.

The photoelectric process is the predominant mode of interaction for gamma rays (or X-
rays) of relatively low energy. The process is also enhanced for absorber materials of high
atomic number Z. No single analytic expression is valid for the probability of photoelectric
absorption per atom over all ranges of E, and Z, but a rough approximation is

n

T & constant X 73 (2.16)

Y

where the exponent » varies between 4 and 5 over the gamma-ray energy region of interest.!
This severe dependence of the photoelectric absorption probability on the atomic number of
the absorber is a primary reason for the preponderance of high-Z materials (such as lead) in
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gamma-ray shields. As further detailed in Chapter 10, many detectors used for gamma-ray
spectroscopy are chosen from high-Z constituents for the same reason.

A plot of the photoelectric absorption cross section for a popular gamma-ray detection
material, sodium iodide, is shown in Fig. 2.18. In the low-energy region, discontinuities in the curve
or “absorption edges” appear at gamma-ray energies that correspond to the binding energies of
electrons in the various shells of the absorber atom. The edge lying highest in energy therefore
corresponds to the binding energy of the K-shell electron. For gamma-ray energies slightly above
the edge, the photon energy is just sufficient to undergo a photoelectric interaction in which a K-
electron is ejected from the atom. For gamma-ray energies slightly below the edge, this process is
no longer energetically possible and therefore the interaction probability drops abruptly. Similar
absorption edges occur at lower energies for the L, M, . . . electron shells of the atom.

2. COMPTON SCATTERING

The interaction process of Compton scattering takes place between the incident gamma-ray
photon and an electron in the absorbing material. It is most often the predominant interaction
mechanism for gamma-ray energies typical of radioisotope sources.

In Compton scattering, the incoming gamma-ray photon is deflected through an angle 6
with respect to its original direction. The photon transfers a portion of its energy to the electron
(assumed to be initially at rest), which is then known as a recoil electron. Because all angles of
scattering are possible, the energy transferred to the electron can vary from zero to a large
fraction of the gamma-ray energy.

The expression that relates the energy transfer and the scattering angle for any given
interaction can simply be derived by writing simultaneous equations for the conservation of
energy and momentum. Using the symbols defined in the sketch below:

Recoil
Incident photon electron
{energy = hv) ®
B e

0

Scattered photon

{energy = Av')
we can show! that
W =—r hy (2.17)
1+ (1 —cosH)
moc?

where mc” is the rest-mass energy of the electron (0.511 MeV). For small scattering angles 6,
very little energy is transferred. Some of the original energy is always retained by the incident
photon, even in the extreme of 6 = 7. Equations (10.3) through (10.6) describe some properties
of the energy transfer for limiting cases. A plot of the scattered photon energy predicted from
Eq. (2.17) is also shown in Fig. 10.7.1

The probability of Compton scattering per atom of the absorber depends on the number of
electrons available as scattering targets and therefore increases linearly with Z. The depen-
dence on gamma-ray energy is illustrated in Fig. 2.18 for the case of sodium iodide and generally
falls off gradually with increasing energy.

"The simple analysis here neglects the atomic binding of the electron and assumes that the gamma-ray photon interacts with a
free electron. If the small binding energy is taken into account, the unique energy of the scattered photon at a fixed angle
predicted by Eq. (2.17) is spread into a narrow distribution centered about that energy (see Fig. 13.9).
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The angular distribution of scattered gamma rays is predicted by the Klein—Nishina formula
for the differential scattering cross section do/d():

do 1 > (14 cos? 0 a?(1 — cos )
aQ zrs (1 + a1 — cos 9)) ( 2 ) <1 * (14 cos?0)[1 + (1 — cos 0)]) (2.18)

where o = hv/mgc? and ry is the classical electron radius. The distribution is shown graphically
in Fig. 2.19 and illustrates the strong tendency for forward scattering at high values of the
gamma-ray energy.

3. PAIR PRODUCTION

If the gamma-ray energy exceeds twice the rest-mass energy of an electron (1.02 MeV), the
process of pair production is energetically possible. At gamma-ray energies that are only a few
hundred keV above this threshold, the probability for pair production is small. However, this
interaction mechanism becomes predominant as the energy increases into the many-MeV
range. In the interaction (which must take place in the coulomb field of a nucleus), the gamma-
ray photon disappears and is replaced by an electron—positron pair. All the excess energy
carried in by the photon above the 1.02 MeV required to create the pair goes into kinetic
energy shared by the positron and the electron. Because the positron will subsequently
annihilate after slowing down in the absorbing medium, two annihilation photons are normally
produced as secondary products of the interaction. The subsequent fate of this annihilation
radiation has an important effect on the response of gamma-ray detectors, as described in
Chapter 10.

No simple expression exists for the probability of pair production per nucleus, but its
magnitude varies approximately as the square of the absorber atomic number.! The importance
of pair production rises sharply with energy, as indicated in Fig. 2.18.

The relative importance of the three processes described above for different absorber
materials and gamma-ray energies is conveniently illustrated in Fig. 2.20. The line at the left
represents the energy at which photoelectric absorption and Compton scattering are equally
probable as a function of the absorber atomic number. The line at the right represents the
energy at which Compton scattering and pair production are equally probable. Three areas are
thus defined on the plot within which photoelectric absorption, Compton scattering, and pair
production each predominate.



Chapter 2 Interaction of Gamma Rays 51

T TTTIT rrrone T T T T T
120 —
100 =
= [~ Photoelectric effect Pair production =
2 80 dominant dominant  —
=]
ﬁ 60 - —  Figure 2.20 The relative importance of
: = Compton  effect —1  the three major types of gamma-ray in-
S0 Homi iy -1 teraction. The lines show the values of Z
% B “1 and Av for which the two neighboring
B | effects are just equal. (From The Atomic
5 AT A RN T A N1 TR Nucleus by R. D. Evans. Copyright 1955 by
0.01 005 O.1 05 1 5 10 50 100 the McGraw-Hill Book Company. Used
hv in MeV with permission.)

4. COHERENT SCATTERING

In addition to Compton scattering, another type of scattering can occur in which the gamma-ray
photon interacts coherently with all the electrons of an absorber atom. This coherent scattering
or Rayleigh scattering process' neither excites nor ionizes the atom, and the gamma-ray photon
retains its original energy after the scattering event. Because virtually no energy is transferred,
this process is often neglected in basic discussions of gamma-ray interactions, and we will also
ignore it in the discussions that follow. However, the direction of the photon is changed in
coherent scattering, and complete models of gamma-ray transport must take it into account.
The probability of coherent scattering is significant only for low photon energies (typically
below a few hundred keV for common materials) and is most prominent in high-Z absorbers.
The average deflection angle decreases with increasing energy, further restricting the practical
importance of coherent scattering to low energies.

B. Gamma-Ray Attenuation
1. ATTENUATION COEFFICIENTS

If we again picture a transmission experiment as in Fig. 2.21, where monoenergetic gamma rays
are collimated into a narrow beam and allowed to strike a detector after passing through an
absorber of variable thickness, the result should be simple exponential attenuation of the
gamma rays as also shown in Fig. 2.21. Each of the interaction processes removes the gamma-
ray photon from the beam either by absorption or by scattering away from the detector
direction and can be characterized by a fixed probability of occurrence per unit path length in
the absorber. The sum of these probabilities is simply the probability per unit path length that
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geometry” conditions.



52 Chapter2 Radiation Interactions

the gamma-ray photon is removed from the beam:
p = 7(photoelectric) + o(Compton) + k(pair) (2.19)

and is called the linear attenuation coefficient. The number of transmitted photons / is then given
in terms of the number without an absorber I, as
I
—=eM (2.20)
Iy
The gamma-ray photons can also be characterized by their mean free path \, defined as the
average distance traveled in the absorber before an interaction takes place. Its value can be
obtained from

J xe Mdx 1
A= = E (2.21)
e Mdx
)

and is simply the reciprocal of the linear attenuation coefficient. Typical values of A range from
a few mm to tens of cm in solids for common gamma-ray energies.

Use of the linear attenuation coefficient is limited by the fact that it varies with the density
of the absorber, even though the absorber material is the same. Therefore, the mass attenuation
coefficient is much more widely used and is defined as

mass attenuation coefficient = = (2.22)
p

where p represents the density of the medium. For a given gamma-ray energy, the mass
attenuation coefficient does not change with the physical state of a given absorber. For example,
it is the same for water whether present in liquid or vapor form. The mass attenuation
coefficient of a compound or mixture of elements can be calculated from

()26

where the w; factors represent the weight fraction of element i in the compound or mixture.

2. ABSORBER MASS THICKNESS

In terms of the mass attenuation coefficient, the attenuation law for gamma rays now takes the
form

I
2 — o (n/p)pt
i e (2.24)

The product pt, known as the mass thickness of the absorber, is now the significant parameter
that determines its degree of attenuation. Units of mass thickness have historically been
mg/cm?, and this convention is retained in this text. The thickness of absorbers used in radiation
measurements is therefore often measured in mass thickness rather than physical thickness,
because it is a more fundamental physical quantity.

The mass thickness is also a useful concept when discussing the energy loss of charged
particles and fast electrons. For absorber materials with similar neutron/proton ratios, a particle
will encounter about the same number of electrons passing through absorbers of equal mass
thickness. Therefore, the stopping power and range, when expressed in units of pz, are roughly
the same for materials that do not differ greatly in Z.
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3. BUILDUP

The gamma-ray attenuation experiment of Fig. 2.21, in which the gamma rays are collimated to
a narrow beam before striking the absorber, is sometimes characterized as a “narrow beam” or
“good geometry”’ measurement. The essential characteristic is that only gamma rays from the
source that escape interaction in the absorber can be counted by the detector. Real measure-
ments are often carried out under different circumstances (as sketched below) in which the
severe collimation of the gamma rays is absent.

N

Source Direct
Detector

\f‘ Scattered

by

Now the detector can respond either to gamma rays directly from the source, to gamma rays
that reach the detector after having scattered in the absorber, or to other types of secondary
photon radiation. Many types of detectors will be unable to distinguish between these
possibilities, so that the measured detector signal will be larger than that recorded under
equivalent “good geometry’” conditions. The conditions that lead to the simple exponential
attenuation of Eq. (2.20) are therefore violated in this “broad beam” or “bad geometry”
measurement because of the additional contribution of the secondary gamma rays. This
situation is usually handled by replacing Eq. (2.20) by the following:

I
I~ B(t, Ey)e ™™ (2.25)
where the factor B(¢, E,) is called the buildup factor. The exponential term is retained to
describe the major variation of the gamma-ray counting rate with absorber thickness, and the
buildup factor is introduced as a simple multiplicative correction. The magnitude of the buildup
factor depends on the type of gamma-ray detector used, because this will affect the relative
weight given to the direct and secondary gamma rays. (With a detector that responds only to the
direct gamma rays, the buildup factor is unity.) The buildup also depends on the specific
geometry of the experiment. As a rough rule of thumb, the buildup factor for thick slab
absorbers tends to be about equal to the thickness of the absorber measured in units of mean
free path of the incident gamma rays, provided the detector responds to a broad range of
gamma-ray energies.

IV.INTERACTION OF NEUTRONS

A. General Properties

In common with gamma rays, neutrons carry no charge and therefore cannot interact in matter
by means of the coulomb force, which dominates the energy loss mechanisms for charged
particles and electrons. Neutrons can also travel through many centimeters of matter without
any type of interaction and thus can be totally invisible to a detector of common size. When a
neutron does undergo interaction, it is with a nucleus of the absorbing material. As a result of
the interaction, the neutron may either totally disappear and be replaced by one or more
secondary radiations, or else the energy or direction of the neutron is changed significantly.

In contrast to gamma rays, the secondary radiations resulting from neutron interactions are
almost always heavy charged particles. These particles may be produced either as a result of
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neutron-induced nuclear reactions or they may be the nuclei of the absorbing material itself,
which have gained energy as a result of neutron collisions. Most neutron detectors utilize some
type of conversion of the incident neutron into secondary charged particles, which can then be
detected directly. Specific examples of the most useful conversion processes are detailed in
Chapters 14 and 15.

The relative probabilities of the various types of neutron interactions change dramatically
with neutron energy. In somewhat of an oversimplification, we will divide neutrons into two
categories on the basis of their energy, either ‘““fast neutrons” or “‘slow neutrons,” and discuss
their interaction properties separately. The dividing line will be at about 0.5 eV, or about the
energy of the abrupt drop in absorption cross section in cadmium (the cadmium cutoff energy).

B. Slow Neutron Interactions

For slow neutrons, the significant interactions include elastic scattering with absorber nuclei
and a large set of neutron-induced nuclear reactions. Because of the small kinetic energy of slow
neutrons, very little energy can be transferred to the nucleus in elastic scattering. Consequently,
this is not an interaction on which detectors of slow neutrons can be based. Elastic collisions
tend to be very probable, however, and often serve to bring the slow neutron into thermal
equilibrium with the absorber medium before a different type of interaction takes place. Much
of the population in the slow neutron energy range will therefore be found among these thermal
neutrons, which, at room temperature, have an average energy of about 0.025 eV.

The slow neutron interactions of real importance are neutron-induced reactions that can
create secondary radiations of sufficient energy to be detected directly. Because the incoming
neutron energy is so low, all such reactions must have a positive Q-value to be energetically
possible. In most materials, the radiative capture reaction [or (n, y) reaction] is the most
probable and plays an important part in the attenuation or shielding of neutrons. Radiative
capture reactions can be useful in the indirect detection of neutrons using activation foils as
described in Chapter 19, but they are not widely applied in active neutron detectors because the
secondary radiation takes the form of gamma rays, which are also difficult to detect. Instead,
reactions such as (n, o), (n, p), and (n, fission) are much more attractive because the secondary
radiations are charged particles. A number of specific reactions of this type are detailed in
Chapter 14.

C. Fast Neutron Interactions

The probability of most neutron-induced reactions potentially useful in detectors drops off
rapidly with increasing neutron energy. The importance of scattering becomes greater,
however, because the neutron can transfer an appreciable amount of energy in one collision.
The secondary radiations in this case are recoil nuclei, which have picked up a detectable
amount of energy from neutron collisions. At each scattering site, the neutron loses energy and
is thereby moderated or slowed to lower energy. The most efficient moderator is hydrogen
because the neutron can lose up to all its energy in a single collision with a hydrogen nucleus.
For heavier nuclei, only a partial energy transfer is possible [see Eq. (15.4) and the associated
discussion].

If the energy of the fast neutron is sufficiently high, inelastic scattering with nuclei can take
place in which the recoil nucleus is elevated to one of its excited states during the collision. The
nucleus quickly de-excites, emitting a gamma ray, and the neutron loses a greater fraction of its
energy than it would in an equivalent elastic collision. Inelastic scattering and the subsequent
secondary gamma rays play an important role in the shielding of high-energy neutrons but are
an unwanted complication in the response of most fast neutron detectors based on elastic
scattering.
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D. Neutron Cross Sections

For neutrons of a fixed energy, the probability per unit path length is a constant for any one of
the interaction mechanisms. It is conventional to express this probability in terms of the cross
section o per nucleus for each type of interaction. The cross section has units of area and has
traditionally been measured in units of the barn (10~2® m?). For example, each nuclear species
will have an elastic scattering cross section, a radiative capture cross section, and so on, each of
which will be a function of the neutron energy. Some examples of cross section plots are given in
Figs. 14.1 and 14.2.

When multiplied by the number of nuclei N per unit volume, the cross section o is
converted into the macroscopic cross section 3,

S, = No (2.26)

which now has dimensions of inverse length. 3, has the physical interpretation of the probability
per unit path length for the specific process described by the “microscopic’” cross section o.
When all processes are combined by adding together the cross sections for each individual
interaction

Etot = zscatter + zrad. capture S (227)

the resulting 2, is the probability per unit path length that any type of interaction will occur.
This quantity has the same significance for neutrons as the linear absorption coefficient for
gamma rays defined earlier. If a narrow beam attenuation experiment is carried out for
neutrons, as sketched earlier for gamma rays, the result will be the same: The number of
detected neutrons will fall off exponentially with absorber thickness. In this case the attenuation
relation is written

LI (2.28)

The neutron mean free path \ is, by analogy with the gamma-ray case, given by 1/3;. In solid
materials, A for slow neutrons may be of the order of a centimeter or less, whereas for fast
neutrons, it is normally tens of centimeters.

Under most circumstances, neutrons are not narrowly collimated so that typical shielding
situations involve broad beam or ““bad geometry’’ conditions. Just as in the case of gamma rays,
the exponential attenuation of Eq. (2.28) is no longer an adequate description because of the
added importance of scattered neutrons reaching the detector. A more complex neutron
transport computation is then required to predict the number of transmitted neutrons and their
distribution in energy.

When discussing the rate of reactions induced by neutrons, it is convenient to introduce the
concept of neutron flux. If we first consider neutrons with a single energy or fixed velocity v, the
product vZ, gives the interaction frequency for the process for which 3, is the macroscopic cross
section. The reaction rate density (reactions per unit time and volume) is then given by n(r)v3,
where n(r) is the neutron number density at the vector position 7, and n(r)v is defined as the
neutron flux (r) with dimensions of length 2 time . Thus, the reaction rate density is given by
the product of the neutron flux and the macroscopic cross section for the reaction of interest:

reaction rate density = ¢(r)3 (2.29)

This relation can be generalized to include an energy-dependent neutron flux ¢(r, E) and cross
section 2(E):

reaction rate density = J ¢(r, E)X(E)dE (2.30)
0
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V. RADIATION EXPOSURE AND DOSE

Because of their importance in personnel protection at radiation-producing facilities and in the
medical applications of radiation, the concepts of radiation exposure and dose play prominent
roles in radiation measurements. In the following sections, we introduce the fundamental
concepts that underlie the quantities and units of importance in this area. Precise definitions of
quantities related to radiation protection are continually evolving, and the reader is referred to
publications of the International Commission on Radiological Units and Measurements
(ICRU), the International Commission on Radiological Protection (ICRP), and the U.S.
National Council on Radiation Protection (NCRP) for up-to-date information. As examples,
Refs. 30, 31, and 32 are comprehensive reviews of the units and detailed issues that arise in the
monitoring of radiation exposures.

A. Gamma-Ray Exposure

The concept of gamma-ray exposure was introduced early in the history of radionuclide
research. Defined only for sources of X- or gamma rays, a fixed exposure rate exists at every
point in space surrounding a source of fixed intensity. The exposure is linear, in that doubling
the source intensity also doubles the exposure rate everywhere around the source.

The basic unit of gamma-ray exposure is defined in terms of the charge dQ due to ionization
created by the secondary electrons (negative electrons and positrons) formed within a volume
element of air and mass dm, when these secondary electrons are completely stopped in air. The
exposure value X is then given by dQ/dm. The SI unit of gamma-ray exposure is thus the coulomb
per kilogram (C/kg), which has not been given a special name. The historical unit has been the
roentgen (R), defined as the exposure that results in the generation of one electrostatic unit of
charge (about 2.08 x 107 ion pairs) per 0.001293 g (1 cm? at STP) of air. The two units are related by

1R =258 x 107* C/kg

The exposure is therefore defined in terms of the effect of a given flux of gamma rays on a test
volume of air and is a function only of the intensity of the source integrated over the
measurement time, the geometry between the source and test volume, and any attenuation
of the gamma rays that may take place between the two. Its measurement fundamentally
requires the determination of the charge due to ionization produced in air under specific
conditions. Inherent in the above definition is the obligation to track each secondary electron
created by primary gamma-ray interactions in the test volume under consideration, and to add
up the ionization charges formed by that secondary electron until it reaches the end of its path.
This requirement is often difficult or impossible to achieve in actual practice, and therefore
instruments that are designed to measure gamma-ray exposure usually employ approximations
that involve the principle of compensation introduced in Chapter 5.

The gamma-ray exposure is often of interest in radiation protection dosimetry. It is therefore
sometimes convenient to be able to calculate the exposure rate at a known distance from a point
radionuclide source. If we assume that the yield per disintegration of X- and gamma rays is
accurately known for the radioisotope of interest, the exposure rate per unit activity of the
source at a known distance can simply be expressed under the following conditions:

1. The source is sufficiently small so that spherical geometry holds (i.e., the photon flux
diminishes as 1/d?, where d is the distance to the source).

2. No attenuation of the X- or gamma rays takes place in the air or other material between
the source and measuring point.

3. Only photons passing directly from the source to the measuring point contribute to the
exposure, and any gamma rays scattered in surrounding materials may be neglected.
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Table 2.1 Exposure Rate Constant for Some Common
Radioisotope Gamma-Ray Sources

Nuclide r<
Antimony-124 9.8
Cesium-137 33
Cobalt-57 0.9
Cobalt-60 13.2
Iodine-125 ~0.7
Iodine-131 22
Manganese-54 4.7
Radium-226 8.25
Sodium-22 12.0
Sodium-24 18.4
Technetium-99m 1.2
Zinc-65 2.7

“The exposure rate constant I is in units of (R - cm?)/(hr - mCi).

Source: The Health Physics and Radiological Health Handbook,
Nucleon Lectern Associates, Olney, MD, 1984.

The exposure rate X is then

84
&
where a is the activity of the source, and I's is defined as the exposure rate constant for the
specific radionuclide of interest. The subscript & implies that the assumption has been made that
all X- and gamma rays emitted by the source above an energy 8 contribute to the dose, whereas
those below this energy are not sufficiently penetrating to be of practical interest. The value of

I's for a particular radionuclide can be calculated from its gamma-ray yield and the energy-
dependent absorption properties of air. Some particular values for 8 = 0 are listed in Table 2.1.

X =T; (2.31)

B. Absorbed Dose

Two different materials, if subjected to the same gamma-ray exposure, will in general absorb
different amounts of energy. Because many important phenomena, including changes in physical
properties or induced chemical reactions, would be expected to scale as the energy absorbed per
unit mass of the material, a unit that measures this quantity is of fundamental interest. The mean
energy absorbed from any type of radiation per unit mass of the absorber is defined as the
absorbed dose. The historical unit of absorbed dose has been the rad, defined as 100 ergs/gram.
As with other historical radiation units, the rad has been replaced by its SI equivalent, the gray
(Gy) defined as 1 joule/kilogram. The two units are therefore simply related by:

1 Gy =100rad

The absorbed dose is a reasonable measure of the chemical or physical effects created by a
given radiation exposure in an absorbing material. Careful measurements have shown that the
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absorbed dose in air corresponding to a gamma-ray exposure of 1 coulomb/kilogram amounts
to 33.8 joules/kilogram, or 33.8 Gy. If water is substituted for the air, its absorption properties
per unit mass do not differ greatly because the average atomic number of water is close to that
of air. For absorbing materials of greatly dissimilar atomic numbers, however, the interaction
mechanisms have different relative importance, and therefore the absorbed dose per unit
exposure would show greater differences.

In order to measure absorbed dose in a fundamental manner, some type of energy
measurement must be carried out. One possibility is a calorimetric measurement in which
the rate of rise of the temperature in a sample of absorber is used to calculate the rate of energy
deposition per unit mass. Because of their difficulty, these measurements are not commonplace
for routine application since the thermal effects created even by large doses of radiation are
very small. Instead, indirect determinations of absorbed dose are much more common, in which
its magnitude is inferred from ionization measurements carried out under proper conditions
(see Chapter 5).

C. Dose Equivalent

The process of ionization changes atoms and molecules and may thus damage cells. When the
effects of radiation on living organisms are evaluated, the absorption of equal amounts of
energy per unit mass under different irradiation conditions does not guarantee the same
biological effect. In fact, the extent of the effects can differ by as much as an order of magnitude
depending on whether the energy is deposited in the form of heavy charged particles
or electrons.

The severity and permanence of the biological damage created by ionizing radiation is
directly related to the local rate of energy deposition along the particle track, known as the
linear energy transfer' L. Those radiations with large values of L (such as heavy charged
particles) tend to result in greater biological damage than those with lower L (such as
electrons), even though the total energy deposited per unit mass is the same.

The concept of dose equivalent has therefore been introduced to more adequately quantify
the probable biological effect of the given radiation exposure. A unit of dose equivalent is
defined as that amount of any type of radiation that, when absorbed in a biological system,
results in the same biological effect as one unit of absorbed dose delivered in the form of low-L
radiation. The dose equivalent H for a given type of radiation is the product of the absorbed
dose D at a point in tissue and the quality factor Q at that point:

H=DQ (2.32)

The quality factor increases with linear energy transfer L as shown in Table 2.2.

For the fast electron radiations of interest in this text, L is sufficiently low so that Q is
essentially unity in all applications. Therefore, the dose equivalent is numerically equal to the
absorbed dose for beta particles or other fast electrons. The same is true for X-rays and gamma
rays because their energy is also delivered in the form of fast secondary electrons. Heavy
charged particles have a much higher linear energy transfer and the dose equivalent is larger
than the absorbed dose. For example, Q is approximately 20 for alpha particles of typical
energies. Because neutrons deliver most of their energy in the form of heavy charged particles,
their effective quality factor is also considerably greater than unity and varies significantly with
the neutron energy.

"The linear energy transfer is nearly identical to the specific energy loss (—dE/dx) defined earlier. The only differences arise
when a substantial portion of the radiation energy is liberated in the form of bremsstrahlung, which may travel a substantial
distance from the particle track before depositing its energy. The specific energy loss includes the bremsstrahlung as part of
the energy loss of the particle, but the linear energy transfer L counts only the energy that is deposited along the track and
therefore excludes the bremsstrahlung.
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Table 2.2 Quality Factors for Different Radiations

L in Water (keV/pm) (0]
<10 1
10-100 0.32L-22
> 100 300/vL

From ICRP.*

The units used for dose equivalent H depend on the corresponding units of absorbed dose D
in Eq. (2.32). If D is expressed in the historical unit of the rad, H is defined to be in units of the
rem. Historically, the rem (or millirem) was universally used to quantify dose equivalent. Under
the SI convention, D is instead expressed in grays, and a corresponding unit of dose equivalent
called the sievert (Sv) is now used. For example, an absorbed dose of 2 Gy delivered by radiation
with Q of 5 will result in a dose equivalent of 10 Sv. Because 1 Gy = 100 rad, the units are
interrelated by

1Sv=100rem

Guidelines for radiation exposure limits to personnel are quoted in units of dose equivalent in
order to place hazards from different types and energies of radiation on a common basis.

D. Fluence-to-Dose Conversion

For relatively penetrating radiations such as neutrons and gamma rays, it is sometimes
convenient to be able to estimate the dose equivalent to exposed personnel that results
from a given fluence of the radiation. The fluence is defined as ® = dN/da where dN represents
the differential number of gamma-ray photons or neutrons that are incident on a sphere with
differential cross-sectional area da. In terms of the neutron flux defined earlier in this chapter,
the fluence is the time integral of the flux over the exposure duration. For a monodirectional
beam, the fluence is simply the number of photons or neutrons per unit area, where the area is
perpendicular to the direction of the beam. The number of counts recorded from typical
radiation detectors is most easily interpreted in terms of the number of radiation-induced
interactions in the detector, and therefore is more closely related to fluence than to dose. So a
conversion between fluence and dose is usually carried out in interpreting measurements made
with pulse mode detectors to determine dose.

Because the attenuation of gamma rays or fast neutrons in air is negligible over small
distances, the direct (or unscattered) fluence often can be estimated from point sources by
assuming that ® = N/4wd?, where N is the number of photons or neutrons emitted by the source
and d is the distance from the source. More complicated geometries require the use of radiation
transport codes to predict the fluence and energy spectrum at a given location.

The conversion from fluence to dose must take into account the energy-dependent
probabilities of producing ionizing secondary particles from gamma-ray and/or neutron
interactions, the kinetic energy that is deposited by these particles, and the quality factor Q
that should be applied to convert deposited energy per unit mass to dose equivalent. By
assuming a physical model for the human body, gamma-ray and neutron transport codes can be
applied to calculate energy deposition and dose for the various tissues and organ systems. These
calculations will be sensitive to the direction of incidence of the radiation because of self-
shielding and attenuation effects within the body. Taking into account the differing radio-
sensitivity of various organs and tissues through the tissue-weighting factors recommended by
the ICRP (see the following section), the individual dose components can then be combined
into an effective dose E (see Ref. 34) to represent an estimate of the overall biological effect of a
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GAMMA RAYS

1.0E-11

Figure 2.22 Fluence-to-dose conversion factors
hg for uniform whole body exposures to

(a) gamma rays and (b) neutrons. The labels refer
to different assumed directions of the incident
particle flux: AP for frontal exposure of the body,
PA for rear exposure, LAT for exposure from
the side, ROT for uniform rotation of the body
about its axis, perpendicular to the directional
flux, and ISO for an isotropic incident flux.
Tabulated data and additional details are given in
Ref. 34, which is the source of these data.
(Copyright 1992 by the American Nuclear
Society, LaGrange Park, Illinois.)

uniform, whole body exposure to the assumed fluence. The effective dose is then written as

Hg = hg®

(2.33)

where hg is the fluence-to-effective-dose conversion coefficient. Values of Az for gamma rays
and neutrons are plotted as a function of energy in Fig. 2.22. These coefficients are multiplied by
the energy-dependent fluence incident on the body and integrated over energy to obtain the
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E. ICRP Dose Units

In ICRP Publication 60, the International Commission on Radiation Protection recommended
a set of definitions for use as protection quantities. In that report, the ICRP introduced the
quantity equivalent dose in an organ or in tissue T due to radiation R which is represented by the
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Table 2.3 Radiation Weighting Factors

Type and Energy Range Radiation Weighting Factor, wg
Photons, all energies 1
Electrons and muons, all energies 1
Neutrons, energy <10 keV 5
10 keV to 100 keV 10
> 100 keV to 2 MeV 20
> 2 MeV to 20 MeV 10
> 20 MeV 5
Protons, other than recoil protons, energy > 2 MeV 5
Alpha particles, fission fragments, heavy nuclei 20

From ICRP.*°

symbol Hrg. It is obtained from the absorbed dose Dt r averaged over a tissue or organ and
multiplied by a radiation weighting factor wg that accounts for the different biological effects of
various radiations:

Hrr =wr'DtR (2.34)

The equivalent dose, unlike the dose equivalent defined in Eq. (2.32), is not a point quantity but
an average over a tissue or organ. Values of wg are shown in Table 2.3 and are determined by
the energy of the incident radiation. Units for equivalent dose are sieverts when the absorbed
dose is expressed in grays. If there is a mix of radiations, then the total equivalent dose Hr is
given by a sum over all radiation types:

HT = ZHT’R = ZWR'DT,R (235)
R R

The effective dose E is defined as the sum over all tissues or organs with tissue weighting factors
wr as provided by the ICRP:

E=) wrHry (2.36)
T

The tissue-weighting factors are chosen to represent the relative damage to organs or tissues
resulting from uniform irradiation of the whole body. They sum to unity, so that a uniform
equivalent dose Hy of one sievert will result in an effective dose E of one sievert. In the framework
of the ICRP the effective dose E is the fundamental quantity for limiting purposes in radiological
protection. However, the quantity £ cannot be evaluated experimentally since the tissue-
weighting factors are biological rather than physical quantities. Therefore Equations (2.34) to
(2.36) cannot be used as a basis for measurements.

F. Operational Dose Quantities

Since the effective dose E is not a measurable quantity, the ICRU has defined operational
quantities for use in practical measurements.>® The operational quantities are defined sepa-
rately for strongly penetrating and for weakly penetrating radiation. Weakly penetrating
radiation is, for instance, beta radiation with energies below 2 MeV or photon radiations
with energies below 15 keV. Strongly penetrating radiation are photons at higher energies and
neutrons at all energies. The operational quantities are based on the dose equivalent at a point
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in a phantom or in the body. As such, they are dependent upon the type and energy of the
radiation at that point and can be calculated using the energy-dependent particle fluence at the
point.

External radiation incident on humans can be characterized as strongly penetrating
radiation or weakly penetrating radiation depending on which dose limits are relevant: those
for the body or those for the skin. Suitable estimates of the effective dose and for skin dose are
obtained by determining the dose equivalent in a phantom of ICRU soft tissue,’ in the body or
in a phantom at depths d = 10 mm or 0.007 mm, respectively. The dose quantities for area
monitoring of strongly penetrating radiation is called ambient dose equivalent H*(d) and for
weakly penetrating radiation directional dose equivalent H'(d, ().

The ambient dose equivalent H*(10) is the dose equivalent quantity most commonly used
for area monitoring of strongly penetrating radiations. It is based on the dose equivalent 10 mm
deepin a 30 cm diameter ICRU tissue sphere along a radius facing the source of radiation. Plots
of calculated fluence-to-dose conversion factors similar to those of Fig. 2.22 for this quantity can
be found in Ref. 35.

It should be emphasized that the estimation of the effect of a given exposure to ionizing
radiation is by its very nature an inexact science.>® Biological effects are not absolute physical
quantities that can be measured with high precision. The concepts of effective dose or effective
dose equivalent are intended only to provide guidance in approximating the potential effects of
a given exposure to radiation and should not be regarded as highly accurate or exactly

reproducible quantities.

PROBLEMS

2.1 Estimate the time required for a 5 MeV alpha particle
to slow down and stop in silicon. Repeat for the same
particle in hydrogen gas.

2.2 With the aid of Fig. 2.7, estimate the energy remaining
in a beam of 5 MeV protons after passing through 100 p.m
of silicon.

2.3 Using Fig. 2.10, find the approximate energy loss of 1
MeV alpha particles in a thickness of 5 pm of gold.

2.4 Estimate the range of 1 MeV electrons in aluminum
with the aid of Fig. 2.14.

2.5 Calculate the energy of a 1 MeV gamma-ray photon
after Compton scattering through 90°.

2.6 Give a rough estimate of the ratio of the probability
per atom for photoelectric absorption in silicon to that in
germanium.

2.7 Indicate which of the three major interaction pro-
cesses (photoelectric absorption, Compton scattering,
pair production) is dominant in the following situations:

(a) 1 MeV gamma rays in aluminum
(b) 100 keV gamma rays in hydrogen
(c) 100 keV gamma rays in iron

(d) 10 MeV gamma rays in carbon
(e) 10 MeV gamma rays in lead

2.8 (a) From Fig. 2.18, calculate the mean free path of 1
MeV gamma rays in sodium iodide (specific gravity =
3.67).

(b) What is the probability that a 600 keV gamma
ray undergoes photoelectric absorption in 1 cm of
sodium iodide?

2.9 Define the following terms:
(a) Absorber mass thickness
(b) Buildup
(¢) Neutron inelastic scattering
(d) Macroscopic cross section
(e) Neutron flux

2.10 For 140 keV gamma rays, the mass attenuation
coefficients for hydrogen and oxygen are 0.26 and (.14
cm?/g, respectively. What is the mean free path in water
at this energy?

2.11 How many 5 MeV alpha particles are required to
deposit a total energy of 1 J?

2.12 A beam of 1 MeV electrons strikes a thick target. For
a beam current of 100 microamperes (pA), find the power
dissipated in the target.

2.13 Using the data in Table 2.1, estimate the exposure
rate 5 m from a 1-Ci source of ®°Co.

'ICRU tissue is defined to be 76.2% oxygen, 11.1% carbon, 10.1% hydrogen, and 2.6% nitrogen by mass.>



2.14 Calculate the rate of temperature rise in a sample of
liquid water adiabatically exposed to radiation that results
in an absorbed dose rate of 10 mrad/h.

2.15 Using the data in Fig. 2.22b, estimate the effective
dose equivalent to an individual who spends an 8-hour

REFERENCES

NgmawNe

10.

11.

14.

15.
16.
17.
18.
19.

20.
21.
22.

R. D. Evans, The Atomic Nucleus, Krieger, New York, 1982.

. A. Beiser, Revs. Mod. Phys. 24, 273 (1952).

B. Wilken and T. A. Fritz, Nucl. Instrum. Meth. 138, 331 (1976).
D. J. Skyrme, Nucl. Instrum. Meth. 57, 61 (1967).
C.F. Williamson, J. P. Boujot, and J. Picard, CEA-R3042 (1966).

. C. Hanke and J. Laursen, Nucl. Instrum. Meth. 151, 253 (1978).

W. H. Barkas and M. J. Berger, National Academy of Sciences,
National Research Council, Publication 1133, 103 (1964).

. L. C. Northcliffe and R. F. Schilling, Nuclear Data Tables, A7,

233 (1970).

. J. F. Ziegler, The Stopping and Ranges of Ions in Matter,

Pergamon Press, New York, 1977.

“Stopping Powers and Ranges for Protons and Alpha Parti-
cles,” ICRU Report 49, ICRU, Bethesda (1993).

G. Cesini, G. Lucarini, and F. Rustichelli, Nucl. Instrum. Meth.
127, 579 (1975).

. P. D. Bourland and D. Powers, Phys. Rev. B 3, 3635 (1971).
13.

J. S.-Y. Feng, W. K. Chu, and M-A. Nicolet, Phys. Rev. B 10,
3781 (1974).

S. Matteson, E. K. L. Chau, and D. Powers, Phys. Rev. A 14,169
(1976).

D. I. Thwaites, Nucl. Instrum. Meth. B69, 53 (1992).

S. Saro et al., Nucl. Instrum. Meth. A381, 520 (1996).

A. Akkerman et al., J. Appl. Phys. 76(8), 4656 (1994).

L. Weissman et al., Nucl. Instrum. Meth. A452, 147 (2000).
Y. K. Dewaraja, R. F. Fleming, M. A. Ludington, and R. H.
Fleming, IEEE Trans. Nucl. Sci. 41(4), 871 (1994).

A. Breskin, Nucl. Phys. B. (Proc. Suppl.) 44, 351 (1995).

T. Odenweller et al., Nucl. Instrum. Meth. 198, 263 (1982).
W. Starzecki, A. M. Stefanini, S. Lunardi, and C. Signorini,
Nucl. Instrum. Meth. 193, 499 (1982).

Chapter2 References 63

day working at an average distance of 5 m from a 3 pg
252Cf fast neutron source (see discussion of spontaneous
fission sources in Chapter 1).

23,

24,
25.
26.
27.
28.

29.
30.

31

32.

33.

34.

35.

. M. J. Berger and S. M. Seltzer, National Bureau of Standards
Publication NBSIR 82-2550-A (1982).

L. Pages et al., Atomic Data 4, 1 (1972).

T. Mukoyama, Nucl. Instrum. Meth. 134, 125 (1976).

T. Baltakmens, Nucl. Instrum. Meth. 82, 264 (1970).

T. Baltakmens, Nucl. Instrum. Meth. 142, 535 (1977).

T. Tabata, R. Ito, and S. Okabe, Nucl. Instrum. Meth. 94, 509
(1971).

G. Zavattini et al., Nucl. Instrum. Meth. A401, 206 (1997).
“1990 Recommendations of the International Commission on
Radiological Protection,” The International Commission on
Radiological Protection, ICRP Publication 60, Pergamon Press,
Oxford, 1991.

“Quantities and Units in Radiation Protection Dosimetry,”” The
International Commission on Radiation Units and Measure-
ments, ICRU Report 51, ICRU, Bethesda, 1993.

“2007 Recommendations of the International Commission on
Radiological Protection,” ICRP Publication 103, Pergamon
Press, Oxford, 2007.

“Determination of Operational Dose Equivalent Quantities for
Neutrons,” The International Commission on Radiation Units
and Measurements, ICRU Report 66, ICRU, Bethesda, 2001.
“Neutron and Gamma-Ray Fluence-to-Dose Factors,” Ameri-
can National Standard ANSI/ANS-6.1.1-1991.

“Conversion Coefficients for Use in Radiological Protection
against External Radiation,” The International Commission on
Radiological Protection, ICRP Publication 74, Annals of the
ICRP, 26 (3-4), Pergamon Press, Oxford, 1996. Also issued as by
the International Commission on Radiation Units and Mea-
surements, ICRU Report 57, 1997.

36. W. K. Sinclair, Health Phys. 70(6), 781 (1996).



This page intentionally left blank



Chapter 3

Counting Statistics and Error Prediction

Radioactive decay is a random process. Consequently, any measurement based on observing
the radiation emitted in nuclear decay is subject to some degree of statistical fluctuation. These
inherent fluctuations represent an unavoidable source of uncertainty in all nuclear measure-
ments and often can be the predominant source of imprecision or error. The term counting
statistics includes the framework of statistical analysis required to process the results of nuclear
counting experiments and to make predictions about the expected precision of quantities
derived from these measurements.

The value of counting statistics falls into two general categories. The first is to serve as a
check on the normal functioning of a piece of nuclear counting equipment. Here a set of
measurements is recorded under conditions in which all aspects of the experiment are held as
constant as possible. Because of the influence of statistical fluctuations, these measurements
will not all be the same but will show some degree of internal variation. The amount of this
fluctuation can be quantified and compared with predictions of statistical models. If the
amount of observed fluctuation is not consistent with predictions, one can conclude that some
abnormality exists in the counting system. The second application is generally more valuable
and deals with the situation in which we have only one measurement. We can then use counting
statistics to predict its inherent statistical uncertainty and thus estimate an accuracy that should
be associated with that single measurement.

The distinctions made in the organization of this chapter are a critical part of the topic. The
confusion that often arises when the student is first introduced to counting statistics originates
more from a failure to keep separate the concepts presented in Sections I and II than from any
other single cause. In Section I we are careful to limit the discussion to methods used in the
characterization or organization of experimental data. We are not particularly concerned where
these data come from but rather are interested only in presenting the formal methods by which
we can describe the amount of fluctuation displayed by the data. In Section II, we discuss the
separate topic of probabilistic mathematical models, which can sometimes represent real
measurement systems. For purposes of the discussion in Section II, however, we are concerned
only with the structure and predictions of these models as mathematical entities. We reserve
until Section III the demonstration of how the statistical models can be matched to exper-
imental data, resulting in the two common applications of counting statistics mentioned above.
In Section IV, we examine how the predicted statistical uncertainties propagate through the
calculations typically needed to produce a quoted final result that is calculated from counting
data. The final three sections of the chapter illustrate some further examples of applications of
statistical principles in radiation measurements.

65
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I. CHARACTERIZATION OF DATA

We begin by assuming that we have a collection of N independent measurements of the same
physical quantity:
X1,X2,%3; .., Xiy . - ., XN

We further assume that a single typical value x; from this set can only assume integer values so that
the data might represent, for example, a number of successive readings from a radiation counter
for repeated time intervals of equal length. Two elementary properties of this data set are

N
Sum: 3=)x (3.1)
i=1
Experimental mean: X =3/N (3.2)

The experimental mean is written with the subscript to distinguish it from the mean of a
particular statistical model that will be introduced later.

It is often convenient to represent the data set by a corresponding frequency distribution
function F(x). The value of F(x) is the relative frequency with which the number appears in the
collection of data. By definition

__ number of occurences of the value x

F(x) = 33
(x) number of measurements (= N) (33)
The distribution is automatically normalized, that is,
o0
Y Fx)=1 (3.4)
x=0
Table 3.1 Example of Data Distribution Function
Data Frequency Distribution Function
8 14 F(3)=1/20 =0.05
5 3 F(4) = 0.00
1 8 F(5) = 0.05
F(6) =0.10
10 3 F(7) —0.10
13 9 F(8) =0.20
F9 =0.10
7 12 ©
F(10) =0.15
9 6 F(11) ~ 005
10 10 F(12) =0.10
6 8 F(13) = 0.05
F(14) =0.05
11 7 00
Z F(x) —1.00
x=0
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Figure 3.1 Distribution function for
the data given in Table 3.1.

As long as we do not care about the specific sequence of the numbers, the complete data
distribution function F(x) represents all the information contained in the original data set.

For purposes of illustration, Table 3.1 gives a hypothetical set of data consisting of
20 entries. Because these entries range from a minimum of 3 to a maximum of 14, the data
distribution function will have nonzero values only between these extreme values of the
argument x. The corresponding values of F(x) are also shown in Table 3.1.

A plot of the data distribution function for the example is given in Fig. 3.1. Also shown
directly above the plot is a horizontal bar graph of the original 20 numbers from which the
distribution was derived. These data show an experimental mean of 8.8, and the distribution
function is in some sense centered about that value. Furthermore, the relative shape of the
distribution function indicates qualitatively the amount of internal fluctuation in the data set.
For example, Fig. 3.2 shows the shape of the distribution functions corresponding to two
extreme sets of data: one with large amounts of scatter about the mean and one with little
scatter. An obvious conclusion is that the width of the distribution function is a relative
measure of the amount of fluctuation or scattering about the mean inherent in a given set of
data.

It is possible to calculate the experimental mean by using the data distribution function,
because the mean of any distribution is simply its first moment

T, = Zox F(x) (3.5)
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Figure 3.2 Distribution func-
tions for two sets of data with
differing amounts of internal
fluctuation.

It is also possible to derive another parameter, called the sample variance, which will serve
to quantify the amount of internal fluctuation in the data set. The first step is to define
the residual of any data point as the amount by which it differs from the experimental mean

value

(3.6)

To illustrate, the example of the 20 numbers given in Table 3.1 is shown as the bar graph of
Fig. 3.3a. The individual residuals of these values have been separately plotted in part (b) of the
figure. There must be an equal contribution of positive and negative residuals, so that

N
Y di=0
i=1

(a} (b) (c)
§ . §
g
> = =
0
3
i
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:
— :
3 =
9
: -
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X, -6 —4 -2  +2| +a +6 ? 10 20 30
d 2

(12

Figure 3.3 (a) Plot of

the data given in Table 3.1.
Corresponding values for the
residuals d and for d* are
shown in parts (b) and (c).
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If we take the square of each residual, however, a positive number will always result. These are
plotted for the example in Fig. 3.3c.

We next define the deviation of a given data point as the amount by which it differs from the
true mean value X

€ =Xi—X (37)

The deviation defined in this way is similar to the residual introduced above, except that the
distance from the true mean value X appears in the definition rather than the experimental
mean X.. We now can introduce the definition of the sample variance as the average value of
each of these deviations after squaring

— lN
EZ:NZ (3.8)

The sample variance is a useful index of the degree of the internal scatter in the data or as a
measure of how different a typical number is from another.

This definition presents a practical difficulty, since we can never know the exact value of the
true mean X without collecting an infinite number of data points. The best we can do is to use the
experimental mean value X, that we have measured, and thus use residuals rather than
deviations. But the process of using the experimental rather than the true mean value will
affect the calculated value of the sample variance, and we cannot simply substitute X, into
Eq. (3.8). Instead, the analysis given in Appendix B shows that the alternative expression

N
N (xi — %, ) (3.9)

N — 1{_1

is now valid when the experimental mean is used. The sum of squared residuals in the above
equation is divided by N — 1 rather than by N as in Eq. (3.8), a distinction that is significant only
when the number of measurements N is small. For large data sets, therefore, the sample
variance can be thought of as the mean squared value of either the residuals or the deviations.

The sample variance s* for the example of 20 numbers is shown graphically in Fig. 3.3c.
Because it is essentially a measure of the average value of the squared deviations of each point,
s? is an effective measure of the amount of fluctuation in the original data. A data set with a
narrow distribution will have a small typical deviation from the mean, and therefore the value
for the sample variance will be small. On the other hand, data with a large amount of fluctuation
will have a wide distribution and a large value for typical deviations, and the corresponding
sample variance will also be large. It is important to note that the sample variance is an absolute
measure of the amount of internal scatter in the data and does not, to first approximation,
depend on the number of values in the data set. For example, if the data shown in Fig. 3.3 were
extended by simply collecting an additional 20 values by the same process, we would not expect
the sample variance calculated for the extended collection of 40 numbers to be substantially
different from that shown in Fig. 3.3.

We can also calculate the sample variance directly from the data dlstrlbutlon function F(x).
Because Eq. (3.8) indicates that s? is simply the average of (x — ¥)*, we can write that same
average as

£ =Y (x—%°F(x) (3.10)
x=0

Equation (3.10) is not introduced so much for its usefulness in computation as for the parallel it
provides to a similar expression, Eq. (3.17), which will be introduced in a later discussion of
statistical models. An expansion of Eq. (3.10) will yield the well-known result

= x2 — (%) (3.11)
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We now end our discussion of the organization of experimental data with two important
conclusions:

1. Any set of data can be completely described by its frequency distribution function F(x).

2. Two properties of this frequency distribution function are of particular interest: the
experimental mean and the sample variance.

The experimental mean is given by Eq. (3.5) and is the value about which the distribution is
centered. The sample variance is given by Eq. (3.10) and is a measure of the width of the
distribution, or the amount of internal fluctuation in the data.

II. STATISTICAL MODELS

Under certain conditions, we can predict the distribution function that will describe the results
of many repetitions of a given measurement. We define a measurement as counting the number
of successes resulting from a given number of trials. Each trial is assumed to be a binary process
in that only two results are possible: Either the trial is a success or it is not a success. For
everything that follows, we also assume that the probability of success is a constant for all trials.

To show how these conditions apply to real situations, Table 3.2 gives three separate
examples. The third example indicates the basis for applying the theoretical framework that
follows to the case of counting nuclear radiation events. In this case a trial consists of observing
a given radioactive nucleus for a period of time ¢, the number of trials is equivalent to the
number of nuclei in the sample under observation, and the measurement consists of counting
those nuclei that undergo decay. We identify the probability of success of any one trial as p. In
the case of radioactive decay, that probability is equal to (1 — e™™), where \ is the decay
constant of the radioactive sample.

Three specific statistical models are introduced:

1. The Binomial Distribution. This is the most general model and is widely applicable to all
constant-p processes. It is, unfortunately, computationally cumbersome in radioactive
decay, where the number of nuclei is always very large, and is used only rarely in nuclear
counting applications.

2. The Poisson Distribution. This model is a direct mathematical simplification of the
binomial distribution under conditions that the success probability p is small and
constant. In practical terms, this condition implies that we have chosen an observation
time that is small compared with the half-life of the source. Then the number of
radioactive nuclei remains essentially constant during the observation, and the proba-
bility of recording a count from a given nucleus in the sample is small.

3. The Gaussian or Normal Distribution. The third important distribution is the Gaussian,
which is a further simplification if the average number of successes is relatively large
(say, greater than 25 or 30). This condition will apply for any situation in which we
accumulate more than a few counts during the course of the measurement. This is most

Table 3.2 Examples of Binary Processes

Trial Definition of Success Probability of Success = p
Tossing a coin Heads 1/2

Rolling a die A six 1/6

Observing a given The nucleus decays 1—e™
radioactive nucleus during the observation

for a time ¢
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often the case so that the Gaussian model is widely applicable to many problems in
counting statistics.

It should be emphasized that all the above models become identical for processes with a
small individual success probability p but with a large enough number of trials so that the
expected mean number of successes is large.

A. The Binomial Distribution

The binomial distribution is the most general of the statistical models discussed. If n is the
number of trials for which each trial has a success probability p, then the predicted probability
of counting exactly x successes can be shown! to be

PW) = o PP (312)

P(x) is the predicted probability distribution function, as given by the binomial distribution, and
is defined only for integer values of » and x.

We show one example of an application of the binomial distribution. Imagine that we have an
honest die so that the numbers 1 through 6 are all equally probable. Let us define a successful roll as
one in which any of the numbers 3, 4, 5, or 6 appear. Because these are four of the six possible
results, the individual probability of success p is equal to % or 0.667. We now roll a die a total of
10 times and record the number of rolls that result in success as defined above. The binomial
distribution now allows us to calculate the probability that exactly x out of the 10 trials will be
successful, where x can vary between 0 and 10. Table 3.3 gives the values of the predicted
probability distribution from Eq. (3.12) for the parameters p = % and n = 10. The results are also
plotted in Fig. 3.4. We see that 7 is the most probable number of successes from 10 rolls of the die,
with a probability of occurrence slightly greater than one out of four. From the value of P(0) we see
that only twice out of 100,000 tests would we expect to see no successes from 10 rolls of the die.

Table 3.3 Values of the Binomial Distribution
for the Parameters p = % or n=10

X P(x)
0 0.00002
1 0.00034
2 0.00305
3 0.01626
4 0.05690
5 0.13656
6 0.22761
7 0.26012
8 0.19509
9 0.08671
10 0.01734

10
Y. P(x) = 1.00000
x=0
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0.25—

P(x)

010

0.05—

0 2 4 6 8 10 +—> Figure 3.4 A plot of the binomial distribution for
p =%and n = 10.

Some properties of the binomial distribution are important. First, the distribution is
normalized:

i P(x)=1 (3.13)
x=0

Also, we know that the average or mean value of the distribution is given by

= Z xP(x) (3.14)
x=0

If we now substitute Eq. (3.12) for P(x) and carry out the summation, a remarkably simple
result is derived: _
X=pn (3.15)

Thus, we can calculate the expected average number of successes by multiplying the number of
trials n by the probability p that any one trial will result in a success. In the example just
discussed, we calculate an average number of successes as

x =pn = (3)(10) = 6.67 (3.16)

The mean value is obviously a very fundamental and important property of any predicted
distribution.

It is also important to derive a single parameter that can describe the amount of fluctuation
predicted by a given distribution. We have already defined such a parameter, called the sample
variance, for a set of experimental data as defined in Eq. (3.10). By analogy we now define a
predicted variance o*, which is a measure of the scatter about the mean predicted by a specific

statistical model P(x):
n

o?= Y (x—%P) (3.17)

x=0
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Conventionally, o? is called the variance, and we emphasize the fact that it is associated with a
predicted probability distribution function by calling it a predicted variance. It is also conven-
tional to define the standard deviation as the square root of ¢°. Recall that the variance is in
some sense a typical value of the squared deviation from the mean. Therefore, o represents a
typical value for the deviation itself, hence the name “standard deviation.”

Now if we carry out the summation indicated in Eq. (3.17) for the specific case of P(x) given
by the binomial distribution, the following result is obtained:

o =np(1—p) (3.18)

Because X = np, we can also write
o’ =%(1 -p) (3.19)
o=+x(1-p) (3.20)

We now have an expression that gives an immediate prediction of the amount of fluctuation
inherent in a given binomial distribution in terms of the basic parameters of the distribution, n
and p, where X = np.

Toreturn to the example of rolling a die, we defined success in such a way that p = % We also
assumed 10 rolls of the die for each measurement so that n = 10. For this example, the predicted
mean number of successes is 6.67 and we can proceed to calculate the predicted variance

o = np(1 — p) = (10)(0.667)(0.333) = 2.22 (3.21)

By taking the square root we get the predicted standard deviation:

c=Vo2=v222=149 (3.22)

The significance of the standard deviation is illustrated in Fig. 3.4. The mean value of the
distribution is shown as the dashed line, and one value of the standard deviation is shown on
either side of this mean. Because o is a typical value for the difference between a given
measurement and the true value of the mean, wide distributions will have large values for o and
narrow distributions will correspond to small values. The plot illustrates that the association of
o with the width of the distribution is not inconsistent with the example shown in Fig. 3.4.

B. The Poisson Distribution

Many categories of binary processes can be characterized by a constant and small probability
of success for each individual trial. Included are most nuclear counting experiments in which
the number of nuclei in the sample is large and the observation time is short compared with
the half-life of the radioactive species. Similarly, in a particle beam experiment, many
particles from an accelerator might strike a target for every recorded reaction product. Under
these conditions, the approximation holds that the success probability is small and constant,
and the binomial distribution reduces to the Poisson form shown below. For circumstan-
ces in which the observation is not short compared with the half-life of the source, the
simple Poisson shown below no longer holds and a modified Poisson distribution, outlined
in Appendix C, will apply.

It can be shown? that for a constant and small probability of success, the binomial
distribution reduces to the form

(pn)*e "

Plx) = x!

(3.23)
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Because pn = X holds for this distribution as well as for the parent binomial distribution,

(e

x!

P(x) = (3.24)

which is now the familiar form of the Poisson distribution.

Recall that the binomial distribution requires values for two parameters: the number of
trials n and the individual success probability p. We note from Eq. (3.24) that a significant
simplification has occurred in deriving the Poisson distribution—only one parameter is
required, which is the product of n and p. This is a very useful simplification because
now we need only know the mean value of the distribution in order to reconstruct its
amplitude at all other values of the argument. That is a great help for processes in which we
can in some way measure or estimate the mean value, but for which we have no idea of either
the individual probability or the size of the sample. Such is usually the case in nuclear
measurements.

Some properties of the Poisson distribution follow directly. First, it is also a normalized
distribution, or

i P(x) =1 (3.25)
x=0

We can also calculate the first moment or mean value of the distribution:

Xx= Z xP(x) =pn (3.26)

which is the intuitively obvious result also obtained for the binomial distribution. The predicted
variance of the distribution, however, differs from that of the binomial and can be evaluated
from our prior definition

= y (x —X)*P(x) = (3.27)
2

x=0

or noting the result from Eq. (3.26)

ol =% (3.28)

The predicted standard deviation is just the square root of the predicted variance, or
oc=Vx (3.29)

Thus, we see that the predicted standard deviation of any Poisson distribution is just the square
root of the mean value that characterizes that same distribution. Note that the corresponding
result obtained earlier for the binomial distribution [Eq. (3.20)] reduces to the above result in
the limit of p << 1 already incorporated into the Poisson assumptions.

We again illustrate with an example. Suppose we randomly select a group of 1000 people
and define our measurement as counting the number of current birthdays found among all
members of that group. The measurement then consists of 1000 trials, each of which is a success
only if a particular individual has his or her birthday today. If we assume a random distribution
of birthdays, the probability of success p is equal to 1/365. Because p is much less than one in this
example, we can immediately turn to the Poisson distribution to evaluate the probability
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031

P(x)

x Figure 3.5 The Poisson distribution for a mean
value x =2.74.

=|

distribution function that will describe the expected results from many such samplings of 1000
people. Thus, for our example,

p =1/365 = 0.00274 X=pn=274
n = 1000 o =vX=166
PO) )-cxe'—f _ @74)7e>™
x! x!
x P(x)
0 0.065
1 0.177
2 0.242
3 0.221
4 0.152
5 0.083
6 0.038
7 0.015

Recall that P(x) gives the predicted probability that exactly x birthdays will be observed
from a random sampling of 1000 people. The numerical values are plotted in Fig. 3.5 and show
that x = 2 is the most probable result. The mean value of 2.74 is also shown in the figure,
together with one value of the standard deviation of 1.66 on either side of the mean. The
distribution is roughly centered about the mean value, although considerable asymmetry is
evident for this low value of the mean. Again the size of the standard deviation gives some
indication of the width of the distribution or the amount of scatter predicted by the distribution.

C. The Gaussian or Normal Distribution

The Poisson distribution holds as a mathematical simplification to the binomial distribution in
the limit p << 1. If, in addition, the mean value of the distribution is large (say, greater than 25 or
30), additional simplifications can generally be carried out® that lead to the Gaussian
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distribution:

P(5) —==—pzp (- (x ;;)2) (3.30)

27X

This is again a pointwise distribution function defined only for integer values of x. It shares the
following properties with the Poisson distribution:

1. It is normalized:

Z P(x)=1
x=0
2. The distribution is characterized by a single parameter X, which is given by the product

np.
3. The predicted variance o” as defined in Eq. (3.17) is again equal to the mean value X.

We can again illustrate an example of a physical situation in which the Gaussian distribu-
tion is applicable. Suppose we return to the previous example of counting birthdays out of a
group of randomly selected individuals, but now consider a much larger group of 10,000 people.
For this example, p = % and »n = 10,000, so the predicted mean value of the distribution
X = np = 27.4. This mean value is now large enough so that the Gaussian approximation to the
Poisson distribution is close enough for purposes of estimating statistical properties and
uncertainties. Specifically, we seek to predict the distribution of the results of many measure-
ments, each of which consists of counting the number of birthdays found in independent groups

of 10,000 people. The predicted probability of observing a specific count x is then given by

1 (x —27.4)°
omo7a® (‘W) (3:31)

and the predicted standard deviation for the example is
c=vVi=v274=523 (3.32)

The results are shown graphically in Fig. 3.6a.
Two important observations can be made at this point about the Gaussian distribution:

P(x) =

1. The distribution is symmetric about the mean value X. Therefore, P(x) depends only on
the absolute value of the deviation of any value x from the mean, defined as e = |x — X]|.

2. Because the mean value X is large, values of P(x) for adjacent values of x are not greatly
different from each other. In other words, the distribution is slowly varying.

These two observations suggest a recasting of the distribution as an explicit function of the
deviation e (rather than of x) and as a continuous function (rather than a pointwise discrete
function). These changes are accomplished by rewriting the Gaussian distribution as

G(e) = \/% /= (3.33)

where G(e) de is now defined as the differential probability of observing a deviation in de about
e. Comparing Eq. (3.33) with Eq. (3.30), we note a factor of 2 that has entered in G(e) because
there are two values of x for every value of the deviation e.

Figure 3.6b shows the continuous form of the Gaussian distribution for the same example
chosen to illustrate the discrete case. Comparing Figs. 3.6a and 3.6b, the scale factors for each
abscissa are the same but the origin for Fig. 3.6b has been shifted to illustrate that a value of zero
for the deviation e corresponds to the position of the mean value X on Fig. 3.6a. If a factor of
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2 difference in the relative ordinate scale is included as shown, then the continuous distribution
G(e) represents the smooth curve that connects the pointwise values plotted in Fig. 3.6a.
Because we are now dealing with a continuous function, we must redefine some properties
of the distribution as shown in Fig. 3.7. It should be particularly noted that quantities of physical
interest now involve integrals of the distribution between set limits, or areas under the curve,
rather than sums of discrete values.
Discrete Continuous
Normalization: ZP(.':) =1 fG(dee =1
x=0 e=0
X2 Probability of €2 P:)obapilitv of1
observing a value ~ _ observing a value
ZP Gel= o % betgween fomdﬁ of € between
X=X, x, and x, & €, and ¢,
P(x) G{e)

Figure 3.7 Comparison of the
discrete and continuous forms

¢ of the Gaussian distribution.
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Figure 3.8 A plot of the general Gaussian curve.

Equation (3.33) can be rewritten in a more general form by incorporating several
observations. We have already seen that the standard deviation o of a Gaussian distribution
is given by o = /%, or ¥ = 2. With this substitution in Eq. (3.33), the value of the exponential

factor now depends only on the ratio of € to o. Formally defining this ratio as
€

(02

t

the Gaussian distribution can be rewritten in terms of this new variable

G(t) = G(e)% = G(e)o

G(t) = \/% e’/ (3.34)

where 0 <t < oo. We now have a universal form of the Gaussian distribution, shown in Fig. 3.8,
that is valid for all values of the mean X. Recall that ¢ is just the observed deviation € = |x — X|
normalized in units of the standard deviation o.

From the definitions illustrated in Fig. 3.7, the probability that a typical normalized
deviation ¢ predicted by a Gaussian distribution will be less than a specific value ¢, is given

Table 3.4 Probability of Occurrence of Given
Deviations Predicted by the Gaussian Distribution

€0 lo f(to)

0 0 0
0.674 o 0.674 0.500
g 1.00 0.683
1.64 o 1.64 0.900
1.96 o 1.96 0.950
2580 2.58 0.990

3.00c0 3.00 0.997
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by the integral
i)
| 6war=r(w

0

Tabulated values of this function can be found in most collections of statistical tables. Some
selected values are given in Table 3.4. The value of f(#y) gives the probability that a random
sample from a Gaussian distribution will show a normalized deviation #(= €/c) that is less than
the assumed value #,. For example, we can conclude that about 68% of all samples will deviate
from the true mean by less than one value of the standard deviation.

III. APPLICATIONS OF STATISTICAL MODELS

The first two sections of this chapter dealt with independent topics: the organization of exper-
imental data in Section I, and the structure of certain statistical models in Section II. The practical
uses of statistical analysis are now illustrated by bringing together these two separate topics.

There are two major applications of counting statistics in nuclear measurements. The first of
these, “Application A,” involves the use of statistical analysis to determine whether a set of
multiple measurements of the same physical quantity shows an amount of internal fluctuation
that is consistent with statistical predictions. This application usually is used to determine
whether a particular counting system is functioning normally. Although this is a useful
application, a far more valuable contribution of counting statistics arises in situations in which
we have only a single experimental measurement. In ““Application B’ we examine the methods
available to make a prediction about the uncertainty one should associate with that single
measurement to account for the unavoidable effects of statistical fluctuations.

Application A: Checkout of the Counting System to See Whether Observed Fluctuations
Are Consistent with Expected Statistical Fluctuation

A common quality control procedure in many counting laboratories is to periodically (perhaps
once a month) record a series of 20-50 successive counts from the detector system while
keeping all experimental conditions as constant as possible. By applying the analytical
procedures to be described here, it can be determined whether the internal fluctuation shown
by these multiple measurements is consistent with the amount of fluctuation expected if
statistical fluctuations were the only origin. In this way abnormal amounts of fluctuation can be
detected that could indicate malfunctioning of some portion of the counting system.

Figure 3.9 shows the chain of events that characterizes this application of counting statistics.
Properties of the experimental data are confined to the left half of the figure, whereas on the
right side are listed properties of an appropriate statistical model. We start in the upper-left
corner with the collection of NV independent measurements of the same physical quantity. These
might be, for example, successive 1-minute counts from a detector. Using the methods outlined
in Section I, we can characterize the data in several ways. The data distribution function F(x) as
defined in Eq. (3.3) can be compiled. From this distribution, the mean value X, and the sample
variance s* can be computed by the formulas given in Egs. (3.5) and (3.9). Recall that the mean
value %, gives the value about which the distribution is centered, whereas the sample variance s>
is a quantitative measure of the amount of fluctuation present in the collection of data.

We now are faced with the task of matching these experimental data with an appropriate
statistical model. Almost universally we will want to match to either a Poisson or Gaussian
distribution (depending on how large the mean value is), either of which is fully specified by its
own mean value X. What should we choose for X? We would be rather foolish if we chose any
value other than X,, which is our only estimate of the mean value for the distribution from which
the data have been drawn. Setting X = X, then provides the bridge from left to right in the figure,
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Figure 3.9 An illustration of
Application A of counting
statistics—the inspection of a
set of data for consistency with
a statistical model.

s2 The sample variance should

. ; a
approximate the predicted a2

{The ""x—squared Test” does this
comparison quantitatively)

so that we now have a fully specified statistical model. If we let P(x) represent the Poisson or
Gaussian distribution with X = ., then the measured data distribution function F(x) should be
an approximation to P(x) provided the statistical model accurately describes the distribution
from which the data have arisen. One method of carrying out a comparison at this level is simply
to make a superimposed plot of F(x) and P(x) and then to compare the shape and amplitude of
the two distributions.

But such a comparison of two functions is, as yet, only qualitative. It is desirable to extract
a single parameter from each distribution so that they can be compared quantitatively. The
most fundamental parameter is the mean value, but these have already been matched and are
the same by definition. A second parameter of each distribution is the variance, and we can
carry out the desired quantitative comparison by noting the predicted variance o* of the
statistical model and comparing with the measured sample variance s> of the collection of
data. If the data are actually characterized by the statistical model and show a degree of
internal fluctuation that is consistent with statistical prediction, these two variance values
should be about the same.

To illustrate the direct comparison of the data distribution function with the predicted
probability distribution function, we return to the example of data given in Table 3.1. In
Fig. 3.10 data distribution function has been replotted as the solid vertical bars. The mean value
for these data was calculated to be X, = 8.8, so the transition to the appropriate statistical model
is made by assuming its mean value to be X = 8.8. Because the mean value is not large, we are
prohibited from using the Gaussian distribution and we therefore use the Poisson as the
assumed statistical model. The points on Fig. 3.10 are the values of the predicted distribution
function of the Poisson distribution for a mean value of 8.8. Because the Poisson is defined only
for discrete values of x, the continuous curve is drawn only to connect the points for visual
reference.

At this point a comparison of the two distributions is difficult. Because relatively few data
points were obtained (20 measurements) the value of F(x) at each point is subject to rather large
fluctuations. One would expect that, if more data were gathered, the fluctuations would
diminish and the data distribution function F(x) would adhere more and more closely to
the predicted probability distribution function P(x), provided the data are indeed a true sample
from the predicted statistical model. From Fig. 3.10 we can only say that the experimental data
are not grossly at variance with the prediction.
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Figure 3.10 A direct comparison of experi-

mental data (from Table 3.1) with predictions

0 2 4 6 8 10 12 14 16 of a statistical model (the Poisson distribution
x for ¥ = 8.8).

To take the comparison one step further, we would now like to compare the value of the
sample variance and the predicted variance from the statistical model. The sample variance
calculated from Eq. (3.8) for the same set of data is found to be

s> =136

Because the assumed statistical model is the Poisson distribution, the predicted variance is
given by

o> =% =28.80

These two results show that there is less fluctuation in the data than would be predicted if the
data were a perfect sample from a Poisson distribution of the same mean. With a limited sample
size, however, one would not expect these two parameters to be precisely the same, and a more
quantitative test is required to determine whether the observed difference is really significant.
This function is provided by the ‘“‘chi-squared test.”

Chi-squared is simply another parameter of the experimental data distribution and is
defined as

,_ 1y =
=2 (- %) (3.35)

where the summation is taken over each individual data point x;. Chi-squared is closely related
to the sample variance, and the two are related by
2
X = (N_—l)s (3.36)
Xe

Now if the amount of fluctuation present in the data is closely modeled by the Poisson
distribution, then s? = ¢?. But we know that for the Poisson distribution, o? = %. Further-
more, we have chosen X to be equal to X,. Therefore, the degree to which the ratio 5% /Xe
deviates from unity is a direct measure of the extent to which the observed sample variance
differs from the predicted variance. Now referring to Eq. (3.36), the degree to which x?
differs from N -1 is a corresponding measure of the departure of the data from predictions
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Table 3.5 Portion of a Chi-Squared Distribution Table

Statistical Degrees Number of
of Freedom Measurements N p=0.8 0.7 0.6 0.5
18 19 12.85 14.44 15.89 17.33
19 20 13.72 15.35 16.85 18.33
20 21 14.58 16.26 17.80 19.34

of the Poisson distribution. Chi-squared distribution tables may be found (e.g. Ref. 3) that
are generally cast in the form shown in Table 3.5. The column on the left indicates the
number of statistical degrees of freedom in the system. (ThlS is one less than the number of
independent measurements used to derive the value of x> because X, has been calculated
from the same set of data.) Each column in the table is headed by a specific value of p,
defined as the probablllty that a random sample from a true Poisson distribution would have
alarger value of x* than the specific value shown in the table. Very low probabilities (say less
than 0.02) indicate abnormally large fluctuations in the data, whereas very high probabilities
(greater than 0.98) indicate abnormally small fluctuations. A perfect fit to the Poisson
distribution for large samples would yield a probability of 0.50, whereas the somewhat
arbitrary limits listed above indicate situations in which the counting system may be
displaying either abnormally large fluctuations (which is the usual type of malfunction)
or data that are too regular and show abnormally small fluctuations. Figure 3.11 gives a plot
of the x* distribution for a wider range of the parameters 1nvolved

For the illustrative example given above, we calculate a x* value of 15.89. From Table 3.5
for N =20 we find (by interpolation) a value of p = 0.66. Because that probability is neither
very large nor very small, we would conclude that the equipment used to generate the set of
numbers originally shown does not give rise to abnormal fluctuations.

\ [
1.5 P = 0.02
T F=0.10
2 VD
Tﬁe 1‘3 = 0.30
210 JF= 050
g — | T = 0.70
£ L —T Figure 3.11 A plot of the
§ = = F=090 chi-squared distribution. For
é / /——____...-—-""'___————"r L }I) - 0.98 eiclh Cuflve’ p givgs the proll)_
- / ’/" ability that a random sample
I _— of N numbers from a true
/ Poisson distribution would
have a larger value x*/v than
/ that of the ordinate. For data
for which the experimental
0 mean is used to calculate xz,
0 10 20 30 40 50 the number of degrees of

Degrees of freedom v freedomv=N-1.
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Application B: Estimation of the Precision of a Single Measurement

A more valuable application of counting statistics applies to the case in which we have only a
single measurement of a particular quantity and wish to associate a given degree of uncertainty
with that measurement. To state the objective in another way, we would like to have some
estimate of the sample variance to be expected if we were to repeat the measurement many
times. The square root of the sample variance should be a measure of the typical deviation of
any one measurement from the true mean value and thus will serve as a single index of the
degree of precision one should associate with a typical measurement from that set. Because we
have only a single measurement, however, the sample variance cannot be calculated directly but
must be estimated by analogy with an appropriate statistical model.

The process is illustrated in Fig. 3.12. Again, the left half of the figure deals only with
experimental data, whereas the right half deals only with the statistical model. We start in the
upper-left corner with a single measurement, x. If we make the assumption that the
measurement has been drawn from a population whose theoretical distribution function
is predicted by either a Poisson or Gaussian distribution, then we must match an appropriate
theoretical distribution to the available data. For either model we must start with a value for
the mean x of the distribution. Because the value of our single measurement x is the only
information we have about the theoretical distribution from which it has been drawn, we
have no real choice other than to assume that the mean of the distribution is equal to the
single measurement, or X = x. Having now obtained an assumed value for X, the entire
predicted probability distribution function P(x) is defined for all values of x. We can also
immediately find a value for the predicted variance o of that distribution. We can then use
the association that, if the data are drawn from the same distribution, an estimate of the
sample variance s* of a collection of such data should be given by 0. Through this process we
have therefore obtained an estimate for the sample variance of a repeated set of measure-
ments that do not exist but that represent the expected results if the single measurement were
to be repeated many times.

The conclusion we reach can then be stated as follows:

The expected 52 = g2 of the statistical model from which we think the
sample variance measurement x is drawn
=X provided the model is either Poisson or Gaussian
>~ x because x is our only measurement on which to

base an estimate of X
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Table 3.6 Examples of Error Intervals for a Single Measurement x = 100
Probability that the True

Interval Mean ¥ is Included
x +0.670 93.3-106.7 50%
xto 90.0 -110.0 68%
x + 1.640 83.6-116.4 90%
x +2.580 742 -125.8 99%

We therefore conclude that
V2 >0 =+/x

is our best estimate of the deviation from the true mean that should typify our single
measurement X.

This conclusion can be stated somewhat more quantitatively provided the assumed
probability distribution function is a Gaussian (x is large). Then the range of values x + o
or x + +/x will contain the true mean X with 68% probability. This conclusion follows directly
from earlier statements about the shape of the Gaussian curve. It is conventional to quote the
uncertainty or “‘error’’ of a single measurement as simply one value of the standard deviation o.
If we quote a larger uncertainty, then the probability of including the true mean within the
quoted interval is increased, and vice versa.

To illustrate, assume we have a single measurement x = 100. Then

o =+/x=+v100 =10

Because our best estimate of the mean value of the distribution from which this measurement
was drawn (the measurement itself) is large, we can assume that the parent distribution is a
Gaussian. From the shape of the Gaussian curve (see Table 3.4) we can then construct Table 3.6
for the specific example. The table gives various options available in quoting the uncertainty to
be associated with our single measurement. The conventional choice is to quote the measure-
ment plus or minus one value of the standard deviation o, or 100 = 10. This interval is expected
to contain the true mean value X with a probability of 68 %. If we wish to increase the probability
that the true mean is included, we can do so only by expanding the interval or error associated
with the measurement. For example, to achieve a 99% probability that the true mean is
included, the interval must be expanded to 2.58c, or the range 100 + 25.8 for our example.
Unless otherwise stated, the errors quoted with a particular nuclear measurement normally
represent one standard deviation.

The fractional standard deviation, defined as o/x, of a simple counting measurement is
given by 1/x/x, or 1/4/x. Thus, the total number of recorded counts x completely determines
the fractional error to be associated with that measurement. If 100 counts are recorded, the
fractional standard deviation is 10%, whereas it can be reduced to 1% only by increasing the
total counts recorded to 10,000. For events occurring at a constant rate, this relation implies
that the time required to achieve a given fractional error will increase as the inverse square
of the desired statistical precision.

"Technically, we can only say that the interval X + /X has a 68% probability of containing our single measurement x.
However, since the mean value has already been assumed to be large, we do not expect a large difference between X and any
typical measurement x. Thus, we can interchange X and x in the statement above without seriously affecting the general
conclusions.
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Figure 3.13 A graphical display of error bars associated
T—> with experimental data.

When a set of measurements is presented graphically, the estimated errors associated with
each measurement are often displayed on the same graph. Figure 3.13 gives a hypothetical set of
measurements of a quantity x as a function of some other variable or parameter z. The
measured data are presented as points, whereas the uncertainty associated with each point is
indicated by the length of the “‘error bar’’ drawn around each point. It is conventional to show
the length of the error bar equal to one value of o on either side of the point or the total length of
the error bar equal to 20. Under these conditions, if one were to attempt a fit of an assumed
functional behavior x = f(z), the fitted function should at best pass through 68% (or roughly
two-thirds) of all the error bars associated with the data.

All the conclusions we have drawn apply only to a measurement of a number of successes
(number of heads in coin tossing, number of birthdays, etc.). In radioactive decay or nuclear
counting, we may directly apply o = v/x only if x represents a counted number of successes, that
is, a number of events over a given observation time recorded from a detector. The vast
majority of mistakes made in the use of counting statistics results from the misapplication of the
above relation.

One cannot associate the standard deviation o with the square root of any quantity that is
not a directly measured number of counts. For example, the association does not apply to

1. Counting rates
2. Sums or differences of counts
3. Averages of independent counts
4. Any derived quantity
In all these cases the quantity is calculated as a function of the number of counts recorded in a

given experiment. The error to be associated with that quantity must then be calculated
according to the methods outlined in the next section.

IV. ERROR PROPAGATION

The distributions we have treated so far represent the direct results of counting experiments.
In typical applications, one is seldom interested in the unprocessed data consisting of the
number of counts over a particular time interval. More often the data are processed through
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multiplication, addition, or other functional manipulation to arrive at a derived number of
more immediate interest. The values that are produced by these processing steps will be
distributed in a way that is dependent on both the original distribution and the types of
operations carried out.

To illustrate, assume that measurements are made under conditions in which it is expected
that the “raw”” counts should follow the Gaussian distribution of Eq. (3.30). Only one parameter,
the mean value, is needed to fully specify the distribution, and the standard deviation is just the
square root of the mean. Now assume that these counts were recorded using a background-free
detector system that records only half of the quanta emitted by the source of the radiation, or, as
will be formally introduced in Chapter 4, the system has an absolute detection efficiency of 50%.
We would then multiply the number of counts by a factor of 2 to obtain a value for of the
number of quanta emitted by the source. If identical measurements were then repeated many
times, the multiplication process will produce a distribution of calculated emission numbers
that will follow a new distribution. Clearly its mean will be twice that of the average number of
counts, but what will be its shape and standard deviation?

The answer to this question is that a multiplication by a constant as in this example will
produce a new distribution that also has the shape of a Gaussian, but for which the standard
deviation o is no longer given by the square root of the mean value. Now it is necessary to
represent the distribution with two parameters, its mean and standard deviation. This form of
the continuous Gaussian distribution analogous to Eq. (3.30) is conventionally written as

-2
G(x)dx = %\/lz_ﬂexp <— ()CZ_T;)) dx

where G(x)dx is the probability of observing a value between x and x + dx. The shape of the
distribution is still described by Eq. (3.34):

G(t)dt = \[3 24y
I

_ x—%
o

where

and the properties of the distribution listed in Table 3.4 remain valid.

It turns out that many of the common manipulations when carried out on counting data that
were originally Gaussian distributed will produce derived values that also follow a Gaussian
shape. Such operations include multiplying or dividing the data by a constant, combining two
Gaussian-distributed variables through addition, subtraction, or multiplication, or calculating
the average of a series of independent measurements. While the mean value of the derived
distribution is simply predicted from the means of the original distributions, the standard
deviation values are not so obvious. This section describes the process that can be used to
predict these standard deviations. In the examples shown, the derived distribution will be of
Gaussian shape provided the distribution of the original data is also Gaussian. It can be shown’
that if the errors are individually small and symmetric about zero, a general result can be
obtained for the expected error to be associated with any quantity that is calculated as a
function of any number of independent variables. If x, y, z, . . . are directly measured counts or
related variables for which we know oy, o), 0, . . . then the standard deviation for any quantity
u derived from these counts can be calculated from

ou 2 ou\ 2 ou\ 2
2 =)+ (=) 2+ (—) ?+... 3.37
o, (ax> i+ (Gy) o, + (az) Lk (3.37)
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where u = u(x, y, z, . . .) represents the derived quantity. Equation (3.37) is generally known as
the error propagation formula and is applicable to almost all situations in nuclear measure-
ments. The variablesx, y, z, . . . , however, must be chosen so that they are truly independent in
order to avoid the effects of correlation. The same specific count should not contribute to the
value of more than one such variable. The use of Eq. (3.37) can be illustrated by application to
some simple cases.

Case 1. Sums or Differences of Counts

If we define
Uu=x+y or u=x-y
then
ou ou
a = 1 or a—y = :IZ].

Application of Eq. (3.37) yields

or

Oy = /0% + 03 (3.38)

In words, combining the standard distributions in this manner is frequently called “‘combining
in quadrature” or taking their ‘““‘quadrature sum.”

A common application of this case arises when counts resulting from a radioactive source
must be corrected by subtracting an appropriate background count. If we assume equal
counting times, then

net counts = total counts — background counts

or
Uu=x-y

Because both x and y are directly measured numbers of counts (or successes), the expected
standard deviation of each is known to be its own square root. The object is to deduce the
expected standard deviation of the net counts, a derived number. Because a simple difference is
involved, the answer will be given by Eq. (3.38).

To illustrate by example, suppose we have recorded the following data for equal counting
times

total counts = x = 1071
background counts = y = _ 521

then
net counts = u = 550

We know a priori

ox = /x = v1071
yz\/_:\/—l
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Thus
0y = fo}+03 = vEFy =vI592=399

We would then quote the result plus or minus one standard deviation as

net counts = 550 4 39.9

Case 2. Multiplication or Division by a Constant
If we define

u=Ax

where A is a constant (no associated uncertainty), then

Ou
A
Ox
and application of Eq. (3.37) gives
gy = A0y (3.39)
Similarly, if
,o X
B
where B is also a constant, then
Ox
oy =75 (3.40)

Note that, in either case, the final “fractional error” (o, /u or ¢,/v) is the same as the original
fractional error (o,/x). As we would expect intuitively, multiplying or dividing a value by a
constant does not change its relative error.

A familiar example of the above case is the calculation of a counting rate. If x counts are
recorded over a time ¢, then

. x
counting rate =r = N

The usual assumption is that the time is measured with very small uncertainty, so that ¢ can be
considered a constant. Then Eq. (3.40) can be used to calculate the expected standard deviation
in r corresponding to the known standard deviation in the number of counts x.

As an example, suppose

x=1120countsand¢t=5s

Then
p= 120 g
Ss
The associated standard deviation is
oy = Sr 1120 =6.7s!

t Ss
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Therefore, the counting rate is

r =224 + 6.7 counts/s

Case 3. Multiplication or Division of Counts
For the case

u=xy, Xy H_,
—y’ ax_y ay—

o;, = y*ol + x*0)

-6

Dividing both sides by u? = x?y?

Similarly, if
ou 1 6u_ X

=y wmTy

d
y

1\? x\?
- (e (-5)

Again, dividing both sides by u? = x*/y*

(o) 2 (o) 2 [0} &
(_u) _ (_x) " (_y) (3.41")
u X y
Thus, for either u = xy or u = x/y, the fractional errors in x and y (o,/x and o,/y) combine in
quadrature sum to give the fractional error in u.

As an example, suppose we wish to calculate the ratio of two source activities from
independent counts taken for equal counting times (background is neglected). Assume

counts from source 1 = Ny = 16,265

counts from source 2 = N, = 8192

activity ratio: R = %—; = % = 1.985
From Eq. (3.41")
() G (-
R Ny N> N?  N?
=1.835x107*
= =0.0135

and multiplying by the value of R
or = 0.027
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Therefore, the reported result would be

R =1.985 £ 0.027

Case 4. Mean Value of Multiple Independent Counts
Suppose we have recorded N repeated counts from the same source for equal counting times.
Let the results of these multiple counts be designated x1, x,, . . . , X, and their sum be 3. Then

S=x1+x2+---+xn
If we formally apply the error propagation formula [Eq. (3.37)] to find the expected error in 3,
we find 03,/0x; = 1 for all independent counts x;, and therefore
(r% =0')251 +0'1262+"'+0')2¢N
But because o,, = /x; for each independent count,
o3 =x1+x+...+xy=3

os =3 (3.42)

This result shows that the standard deviation expected for the sum of all the counts is the
same as if the measurement had been carried out by performing a single count, extending over
the entire period represented by all the independent counts.

Now if we proceed to calculate a mean value from these N independent measurements,

-3
== 43
=+ (3.43)
Equation (3.43) is an example of dividing an error-associated quantity (3) by a constant
(N). Therefore, Eq. (3.40) applies and the expected standard deviation of this mean value is
given by

o= \/§ (3.44)

Note that the expected standard deviation of any single measurement x; is

Ox, = Vi

Because any typical count will not differ greatly from the mean, x; = X, and we therefore
conclude that the mean value based on N independent counts will have an expected error that is
smaller by a factor v/N compared with any single measurement on which the mean is based. A
general conclusion is that, if we wish to improve the statistical precision of a given measurement
by a factor of 2, we must invest four times the initial counting time.

Case 5. Combination of Independent Measurements with Unequal Errors

If N independent measurements of the same quantity have been carried out and they do not all
have nearly the same associated precision, then a simple average (as discussed in Case 4) no
longer is the optimal way to calculate a single “best value.” We instead want to give more
weight to those measurements with small values for oy, (the standard deviation associated
with x;) and less weight to measurements for which this estimated error is large.
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Let each individual measurement x; be given a weighting factor a; and the best value (x)
computed from the linear combination
N

$

(x) == (3.45)

a;

ipa-

We now seek a criterion by which the weighting factors a; should be chosen in order to minimize
the expected error in (x).
For brevity, we write

=]
I
1=

af

so that

1 &
() = = Z a;x;

i=1

Now apply the error propagation formula [Eq. (3.37)] to this case:

Il
AT
R
~—

¥
Hq

oo =
W ol (3.46)
where

In order to minimize o), we must minimize (r from Eq. (3.46) with respect to a typical
weighting factor a;:

aB
2 = — 20 B
aU<x) 6a, aa] (3.47)
aa]- ot )
Note that . 3
W _q g
aa,- aaj 4
Putting these results into Eq. (3.47), we obtain
1
o (Za ajocy — 2043)
and solving for a;, we find 8 1

o
%
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If we choose to normalize the weighting coefficients,

or

N
B= (Z Ui2> (3.49)

Therefore, the proper choice for the normalized weighting coefficient for x;, is

et |

N
a; = % (Z Giz) (3.50)

i=1"%

We therefore see that each data point should be weighted inversely as the square of its own error.
Assuming that this optimal weighting is followed, what will be the resultant (minimum)
error in (x)? Because we have chosen a = 1 for normalization, Eq. (3.46) becomes

In the case of optimal weighting, B is given by Eq. (3.49). Therefore,

1 —_—

(3.51)

D=
|~

) i=1"X

From Eq. (3.51), the expected standard deviation o can be calculated from the standard
deviations o,, associated with each individual measurement.

V. OPTIMIZATION OF COUNTING EXPERIMENTS

The principle of error propagation can be applied in the design of counting experiments to
minimize the associated statistical uncertainty. To illustrate, consider the simple case of
measurement of the net counting rate from a long-lived radioactive source in the presence
of a steady-state background. Define the following:

S = counting rate due to the source alone without background

B = counting rate due to background

The measurement of S is normally carried out by counting the source plus background (at an
average rate of S + B) for a time T, 3 and then counting background alone for a time 7’5. The
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net rate due to the source alone is then

NN
Ts,p Tp

(3.52)

where N; and N, are the total counts in each measurement.
Applying the results of error propagation analysis to Eq. (3.52), we obtain

o () (3
o \/(ngg) ' (%)
%= \/ @jf) " (T%) (3.53)

If we now assume that a fixed total time 7 = Ts.p + Tp is available to carry out both
measurements, the above uncertainty can be minimized by optimally choosing the fraction
of T allocated to Ts,p (or Tg). We square Eq. (3.53) and differentiate
S+ B B
20,dos = —ZLdTS_Hg o
T
S+B B

dTp

and set dog = 0 to find the optimum condition. Also, because 7'is a constant, dTs,p + dTg = 0.
The optimum division of time is then obtained by meeting the condition

— = (3.54)

opt

A figure of merit that can be used to characterize this type of counting experiment is the
inverse of the total time, or 1/7, required to determine S to within a given statistical accuracy. If
certain parameters of the experiment (such as detector size and pulse acceptance criteria) can
be varied, the optimal choice should correspond to maximizing this figure of merit.

In the following analysis, we assume that the optimal division of counting times given by
Eq. (3.54) is chosen. Then we can combine Egs. (3.53) and (3.54) to obtain an expression
for the figure of merit in terms of the fractional standard deviation of the source rate, defined as
€ =og/S

2
1 =& 2 % (3.55)
r  (VJS¥B+VB)

Equation (3.55) is a useful result that can be applied to analyze the large category of radiation
measurements in which a signal rate S is to be measured in the presence of a steady-state
background rate B. For example, it predicts the attainable statistical accuracy (in terms of the
fractional standard deviation €) when a total time 7 is available to measure the signal plus
background and the background alone. The assumption has been made that this time is
subdivided optimally between the two counts. Note that, in common with simple counting
measurements, the time required varies as the inverse square of the fractional standard
deviation desired for the net signal rate precision. Cutting the predicted statistical error of a
measurement in half requires increasing the available time by a factor of 4.




94 Chapter3 Counting Statistics and Error Prediction

It is instructive to examine two extreme cases in the application of Eq. (3.55). If the source-

induced rate is much greater than the background, S >> B and Eq. (3.55) reduces to
1

In this limit, the statistical influence of background is negligible. The figure of merit 1/7 is
maximized simply by choosing all experiment parameters to maximize S, or the rate due to the
source alone.

The opposite extreme of a small source rate in a much larger background (S << B) is typical
of low-level radioactivity measurements. In this case, Eq. (3.55) reduces to

1 oS
_—= e —
T 4B
For such applications, the figure of merit is maximized by choosing experimental conditions so
that the ratio $%B is maximized. As an example of the application of Eq. (3.57), assume that
changing the detector configuration in a low-level counting experiment increases the rate due
to the source alone by a factor of 1.5, but also increases the background by a factor of 2.0. The
ratio $%/B is then (1.5)?/2.0 = 1.125 times its former value. Because this ratio exceeds unity, the

change will slightly improve the overall statistical accuracy of the net source rate determina-
tion if the total measurement time is held constant.

(3.57)

VI. LIMITS OF DETECTABILITY

There are a number of circumstances under which it is convenient to estimate performance
metrics for a counting system (e.g., the smallest signal intensity that can be detected reliably in
order to set a ““detection limit” for the counting system). In many applications it is critical to
have an understanding of both the probability of detecting a weak signal (detection probability,
Pp) and the probability that a system will erroneously indicate source detection due to
statistical fluctuations in the background or expected systematic fluctuations (false alarm
probability Pr,). In many cases, such system performance is characterized by Receiver
Operating Characteristic (ROC) curves. In addition, some regulatory agencies require that
a certain minimum detectable amount (MDA) of activity be measurable while monitoring
for the possible presence of radioactive contaminants. Both of these concepts are related
through the distributions of outcomes, more specifically the mean and standard deviation of
those distributions. As a result, these concepts can be discussed using a common framework.

For these metrics, performance is based on a binary (yes or no) decision whether a given detector
response is representative of background, or alternatively whether that output indicates presence of
asource above background. In the simplest case, a counting system is set up to detect the radiation of
interest and the total number of counts recorded for equal periods of time as different samples are
putin place. Let Nybe the number of counts recorded with a sample that is known to emit some level
of radiation and Ny be the number of recorded counts when a blank sample is substituted to
determine the background level. In this case, a frequency plot of repeated measurements of N-and
Np [or P(N7) and P(Npg)] would have the characteristics shown in Fig. 3.14a. In the simplest case
where these distributions are simply counts from a detector and thus are Poisson or Gaussian
distributed, they are fully described by their mean values N7 and Np [see Egs. (3.24) and (3.30),
respectively]. For this case, ROC curves and the MDA are developed in the following two sections.

A.ROC Curves

In the context of detecting a specific source in a characterized background environment, an ROC
curve will display the relationship between Pp and Pr4. First, we introduce the critical level L¢
(also referred to as a threshold or alarm level) such that if a subsequent measurement is made, one
would conclude that it was representative of background if the number of counts was below L but
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c) ROC Curve
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Figure 3.14 (a) Example plots of the probability distributions of observing a specific count N for
background (N ) and for the total count (N7) when a true source is present. (b) Plots of the probability of
observing a greater number of counts than N for the two example distributions shown in part (a). These
plots represent the area under the curves of part (a) that are to the right of any point along the horizontal
N scale. (c) The corresponding Receiver Operating Characteristic (ROC) curve for the distributions
shown in part (a). The horizontal axis is Pr,4, the probability of a false positive, and the vertical scale is
Pp, the probability of detecting a true source. The five points designate the results when different choices
are made for L., the minimum number of counts required to declare positive detection of a source.
These choices (C through G) are shown along the horizontal axis in parts (a) and (b).

would conclude that a source was present if the number of counts exceeded L. In the absence of
statistical fluctuations and other instrumental variations, L could be set at or just above N, and
any net counts above background could be interpreted as evidence of real activity. With the
statistical fluctuations that are inevitable in any counting measurement, however, there will be
many instances of counts greater than Np that will be observed even for samples with no activity
above background. To construct the ROC curve for the scenario represented by specific P(N7)
and P(N3p) distributions, Pp, is plotted as a function of Pg4 by varying L. from several standard
deviations below N3 to several standard deviations above N7. For an arbitrary L, Pp, is the area
under the N7 distribution shown in Fig. 3.14a above L

o
Pp = J P(N7)dNT
Lc

and Pr, is the area under the Ny distribution above L

Pra = J P(N3)dN
Lc
It should also be noted that the area under the Ny distribution below L
Lc
Py = J P(N7)dNt
0

is indicative of false negatives (i.e., no alarm when a source was present) and represents an
important system performance metric in many applications, although it is redundant to report
this value when Pp, is reported as it is simply 1 — Pp,.
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In Fig. 3.14b, the areas under the distributions are plotted for both the cases of background
only N and total counts N for a variable choice of L. along the horizontal N axis. The resulting
values for Pp and Pr4 then are plotted in Fig. 3.14c to give the ROC curve that corresponds to the
originally assumed distributions for both background and total counts with a source present. This
plot now allows the user to make a choice for L that trades off the probabilities of true detection
and false alarms that are most appropriate for the application of interest.

B. Minimum Detectable Amount (MDA)

The concept of MDA implies specific choices that are made for Pp and Pgy. One of the
most widely used definitions of MDA was first introduced by Currie® that is based on arbitrary
choices of Pp = 0.95 and Pg4 = 0.05. This definition thus incorporates the prediction that, with
the critical level L¢ (or alarm level) set as outlined below, 19 out of 20 cases when a source
larger than the MDA is present will be correctly declared as positive, while 1 case out of 20
when only background is present will trigger a false-positive declaration.

The shape of any ROC curve depends on the shape and degree of separation between the
distributions for Nz and Nz sketched in Fig. 3.14a. For arbitrary distributions, the ROC curve
will not in general pass through any prescribed point such as that represented by the
combination of Pp = 0.95 and Pg4 = 0.05 (not far from point E in Fig. 3.14c¢) called for by
the Currie definition of MDA. However, with the assumption that the distributions for Nz and
N7 are Gaussian in shape, the degree of separation between the two distributions needed to
force the ROC curve to pass through the prescribed point can be determined as derived below.
The value of L that corresponds to that point on the ROC curve then is the alarm point that
will result in the responses to background and sources at the MDA level that are prescribed in
the previous paragraph.

In the simplest case, a counting system is set up to detect the radiation of interest and the
total number of counts recorded for equal periods of time as different samples are put in place.
(In the analysis of Section V, it was shown that equal allocation of time to the sample and
background is the proper choice to minimize the uncertainty in the net counts when the source
is weak compared with background.) With N and N defined above, the net counts resulting
from the unknown are then calculated as

Ns=Nr—Ng (3.58)

Tomake a decision as to whether the sample containsactivity, Ngis then compared with the critical
level L that will be determined in the analysis that follows. A simple protocol is followed: If Ngis
lessthan L, itis concluded thatthe sample doesnot contain activity, whereas if Ngexceeds L, itis
assumed that some real activity is present. If we assume that the counting time is long enough so
that the total number of counts recorded in each of these measurements is large (say, > 30), then
both N7and Np should follow Gaussian distributions. When these two variables are subtracted to
determine Ng, the net counts should also follow a Gaussian whose mean is the true net number of
counts, and whose standard deviation can be predicted using Eq. (3.38):

cr%vs = U?VT + O'ZNB (3.59)

Case 1. No Real Activity Is Present

If there is no actual activity present in the sample, then the true mean values of Ny and N are
the same, and the mean value of Ny is zero. The expected distribution of Ny values is shown in
Fig. 3.15a. Since under these conditions oy, = oy,, the standard deviation of the Gaussian
distribution for Ng, from Eq. (3.59) is just

ons = /20%, = V20w, (3.60)
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P(Ng) NO REAL ACTIVITY
a) - Oy, Want to set L¢ high
enough to minimize
T false positives
-
b) 0 Ns
P(Ny) T
ACTIVITY PRESENT
Want to set Np high Figure 3.15 The distributions
Np enough to minimize expected for the net counts N for the
false negatives cases of (@) no activity present, and (b)
) a real activity present. L¢ represents
N the critical level or “trigger point” of
the counting system.

If the only significant fluctuations entering the measurement are from counting statistics, then
ONg = \/]V_B and ONg = \/ZNB.

Since no true activity is present, any positive indication will be a false positive. We therefore
want to set L¢ high enough to ensure that, under these conditions, the probability that a
particular measurement of Ng exceeds L is acceptably small. From Table 3.4, we note that the
probability that a random sample from a Gaussian distribution having a value within the
interval of the mean +1.640 is 90%. Since we are only concerned with positive deviations from
the mean (negative values of Ng are always interpreted as no source being present), there is a
95% probability that a random sample will lie below the mean plus 1.64c. Thus setting

Lc = 1.640'Ns = 1.64\/20’1\]3

(3.61)
Lc = 2330y,

ensures that a false-positive probability will be no larger than 5%. This choice is prescribed as
part of the Currie definition of MDA, has become a common basis for setting L.

Case 2. Real Activity Is Present
We now presume that the true mean value of Ng is a positive value, as shown in Fig. 3.15b.
Any conclusions that no activity is present are now false negatives. The question we address
is: How large must this mean value be so that false negatives are highly unlikely? Clearly, for
mean values of Ng equal to L, the false-negative rate will be 50% because the Gaussian
distribution is symmetric about its mean. We will define the MDA to be the source strength
necessary to produce a mean value of Ngthat is high enough to reduce the false-negative rate
to an acceptable level. Again, a 5% false-negative probability is assumed in the Currie
definition.

Let Np represent the minimum net value of Ng that meets this criterion. Np will therefore
become a numerical estimate of the mean number of net counts that correspond to the MDA.
To ensure that 95% of the area under the Ny distribution lies above L, we require that

Np =L¢c+ 1.640’ND (362)

where oy, represents the standard deviation of the Gaussian distribution of total counts shown
in Fig. 3.15b. If this width is due only to counting statistics, and Ngin Eq. (3.58) is set to Np, then
Eq. (3.59) predicts that the associated standard deviation is given by:

2 2
O-%VD = UIZVT + UIZVB = (V NT) + (V NB) (363)
O'%VD = Np +2Np
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So

ONp, = vNp +2Np (364)
Recall that from the development of Eq. (3.61):
Lc =1.64V20y, = 1.641/2Np (3.65)

Now substituting Eq. (3.64) and Eq. (3.65) into Eq. (3.62) gives

Np = 1.64(\/2NB ++/Np+ 2NB), (3.66)

and solving for Np results in

Np =4.65\/Ng+2.71. (367)

This is the frequently quoted “Currie equation.” * Np, as defined above can now be interpreted
as the minimum mean number of counts needed from the source to ensure a false-negative rate
no larger than 5% when the system is operated with a critical level (or ““trigger point”) of L¢
that, in turn, ensures a false-positive rate of no greater than 5%. The critical level was
previously chosen from Eq. (3.61) to be L¢ = 2.330, which, for simple counts, is equal to
2.33 times the square root of Np.

To convert Np in counts to minimum detectable activity «, the additional factors of
radiation yield per disintegration (f) and absolute detection efficiency (e) from Chapter 4 must
be taken into account:

Np

a= FeT (3.68)

where T is the counting time per sample.

C. Practical Limitations of ROC Curves and MDA

The following discussion is particularly important to ROC curves, but is also relevant to
MDA. While ROC curves provide valuable means of characterizing systems and account-
ing for operational considerations (e.g., using application specifics to select an appropriate
L), it is important to recognize a number of shortcomings. First, in a controlled laboratory
setting (i.e., with a stable background and reproducible source-to-detector geometry), the
distributions P(Np) and P(N7) can usually be accurately represented by the Poisson (N < 30
counts) or Gaussian (N > 30 counts) distributions defined in Egs. (3.24) and (3.30),
respectively. However, in a field environment where background may vary and other factors
may affect the shape of these distributions, ROC curves will not be accurately represented
by assuming pure Poisson or Gaussian background and source plus background distribu-
tions. Similarly, what is described above is based on counts only. The same principles can be
applied to systems that identify isotopes or detect other radiation signatures. In these cases
it will be rare that the frequency distributions P(Np) and P(N7) can be determined
analytically. As a result, these distributions will need to be characterized using experimental
data. A typical means for generating the experimental data necessary to determine an ROC
curve is to acquire an extensive set of background data that characterizes P(Np) and a more
limited set of data characterizing the source response. The latter is typically acquired in a
controlled laboratory setting where background is known and stable or by Monte Carlo



Chapter 3 Distribution of Time Intervals 99

simulations. Once both sets of data are available, an “‘injection study’’ can be conducted
where source counts are added to a random sampling of the background, thus generating
the source plus background distribution P(N7). Once the two distributions have been
determined, an ROC curve can be generated through a numerical analysis of the integrals
for Pp and Pr4. Direct experimental determination of an ROC curve under these conditions
is almost always impractical as it would require an extremely large number of experimental
measurements.

In some applications of ROC curves where the focus is on approaching P, ~ 1 and Pr4 ~ 0,
the tails of the Ng and N7 distributions have a significant influence on the ROC curve shape. In
such cases, one must be careful in the assumptions made regarding these distributions. For
example, while the Poisson distribution approaches the Gaussian distribution shape as the
mean value increases, significant differences in the tails of the distributions persist to mean
values as high as 50 or more. It is therefore safest to use the Poisson distribution unless the mean
value is much higher. When the tails also include systematic variations that are not sufficiently
characterized, small probabilities may be underestimated or overestimated by orders of
magnitude.

VIIL. DISTRIBUTION OF TIME INTERVALS

The time intervals separating random events are often of practical interest in radiation
measurements. We present some results that apply to any random process characterized by a
constant probability of occurrence per unit time. In statistical language, any such series of
events is called a Poisson random process. One of the characteristics of such a process is that
the system has no memory and the probability per unit time remains constant regardless of
past behavior. Neglecting ‘“dead time’’ (see Chapter 4), this model will usually be adequate
to describe the behavior of a radiation detector undergoing irradiation at a reasonable
distance from a steady-state or long-lived source of radiation. (The distance stipulation
minimizes possible perturbations caused by any parent-daughter correlated events origi-
nating from the same nucleus.) No known measurements have ever been substantiated that
contradict the fundamental assumption that nuclear decay is a Poisson random process.’ By
definition, the differential probability dp of occurrence of an event within a differential time
interval dt is given by rdt, where r is the average rate of occurrence. For a finite time interval
T, the average number of events occurring will simply be rT.

A. Intervals between Successive Events

In order to derive a distribution function to describe the time intervals between adjacent
random events, first assume that an event has occurred at time ¢ = 0. What is the differential
probability that the next event will take place within a differential time dr after a time interval of
length #? Two independent processes must take place: No events may occur within the time
interval from 0 to ¢, but an event must take place in the next differential time increment dt. The
overall probability will then be given by the product of the probabilities characterizing the two
processes, or

probability of next probability of probability
event taking place in = no events during x of anevent
dt after delay of ¢ time from 0 to ¢ during dt

I1(t) dt = P(0) X rdt (3.69)
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The first factor on the right side follows directly from the earlier discussion of the Poisson
distribution. We seek the probability that no events will be recorded over an interval of length ¢
for which the average number of recorded events should be rz. From Eq. (3.24)

(rt)oe_"
PO) ==, (3.70)
P(0) =e™

Substituting Eq. (3.70) into Eq. (3.69) leads to

I(t) dt = re "dt (3.71)

I,(t) is now the distribution function for intervals between adjacent random events. The plot
below shows the simple exponential shape of this distribution.

1,(t)

rie

Note that the most probable interval is zero. The average interval length is calculated by

j tl1(¢) dt j tre”" dt 1
=20 =0 == (3.72)

j I1(t) dt L 4
0

which is the expected result.

In some radiation applications, the counting rate is low enough so that each individual
count can be visually observed as the data are being collected. Experienced observers soon
learn what a true exponential interval distribution looks like and occasionally can spot a
malfunctioning detector by noting a deviation from an expected random input signal.

B. Time-to-Next-Event

In the above derivation of the exponential distribution of intervals, we started with the statement:
“first assume that an event has occurred at time ¢t = 0.”” Thus the result applies to time intervals that
begin and end with true events. But we could have started with the alternative initial assumption:
“select a random point in time,”” and the logic of Eq. (3.69) would not change. Therefore the time
from a random start to the next true event will follow the same exponential distribution as in Eq.
(3.71) and will have the same average value of 1/r. This fact is exploited in the ‘“‘time-to-first-
count” method of measuring r described on p. 219.

At first glance, the equivalence of these two time interval distributions appears puzzling.’ A
random point in time must always fall somewhere within an interval between true events that
has already begun, and it is tempting to think that therefore the average length of time to the
next true event must be shorter than the average length of intervals that both begin and end
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with true events. Intuitively, this difference might be expected to be a factor of 2, since a
randomly selected starting time would tend to fall, on the average, near the midpoint of the
interval between two events. This erroneous conclusion might be further defended by correctly
noting that the average time from the previous true event for the same random point in time is
also 1/r, since the logic of Eq. (3.69) also applies to this case.

The answer to this apparent dilemma is to note that selecting a random point in time is not
equivalent to randomly selecting an interval from the distribution of Eq. (3.71). A randomly
selected time will more likely fall within a long interval than a short one, so there is a bias
toward the selection of longer intervals. The distribution describing these selected intervals can
be obtained by noting that the intervals described by Eq. (3.71) are chosen with a weighting
factor that is proportional to their length, and given by ¢/t = rt. Thus the selected interval
distribution Iy(¢) is given by:

I(t) = rtly(t) = rPte™ (3.73)

Its average value is given by the first moment of this distribution:

i Jootls(t)dt )
=7 (3.74)

Thus the average selected interval is twice as long as the average random interval, and the
apparent dilemma is resolved.

C. Intervals between Scaled Events

There are some occasions in which a digital “scaler’’ may be employed to reduce the rate at
which data are recorded from a detector system. A scaler functions as a data buffer by
producing an output pulse only when N input pulses have been accumulated.

A general form for the distribution that describes scaled intervals can be derived using
arguments parallel to those given earlier for unscaled intervals. Again, two indepen-
dent processes must occur: A time interval of length ¢ must be observed over which exactly
N —1 events are presented to the scaler, and an additional event must occur in the increment dt
following this time interval. Under these conditions, a scaled interval of length within dr about ¢
will take place. The parallel expression to Eq. (3.69) then becomes

In(t)dt = P(N — 1)radt (3.75)

Again using the Poisson form for P(N - 1), Eq. (3.75) becomes

(r)Nlert

In(2) dt:m

rdt (3.76)

In(2) is the interval distribution for N-scaled intervals. A plot is given in Fig. 3.16 for various
scaling factors and shows the more uniform intervals that accompany larger values of N. The
average interval is

(3.77)
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Figure 3.16 Graphical repre-
sentation of the scaled interval
distribution In(t). (a) Four
distributions for scaling factors
of 1,2, 3 and 4. (b) Interval
distributions for N = 1 through

N = 10 normalized to the same
average interval N/r.

whereas the most probable interval is evaluated by setting

and leads to

f|

most probable —

dln (1)
dt

N -1
r

(3.78)

as the most probable length of an N-scaled interval.

PROBLEMS

3.1 A series of 100 measurements of a physical quantity
have been made that show a random fluctuation charac-
terized by a sample variance of 2% of the mean value. If
the series is lengthened to 1000 measurements made
under the same conditions, estimate the sample variance
of the larger set of data.

3.2 Find the probability that exactly 8 heads will occur in
12 tosses of a coin.

3.3 A given large population consists of 75% males.
Random samples of 15 people are taken from this popu-
lation and the number of males tallied for each sample.
Find the predicted mean, variance, and standard devia-
tion of the expected results.

3.4 Find the probability that no sixes turn up in 10 rolls of
a die.

3.5 A computer programmer averages one error per 60
program statements.

(a) Find the mean and standard deviation of the num-
ber of errors expected in a 250-statement program.

(b) Find the probability that a 100-statement program
is free of errors.

3.6 From the following list, single out those measure-
ments for which the square root of a typical measurement
is a proper estimate of the standard deviation of the
distribution from which the measurement is drawn:

(a) A 1-min count from a detector
(b) A 5-min count from a detector

(¢) The net counts from a detector over a 1-min period
after background subtraction.

(d) The counting rate expressed as counts per second
based on a 100-s measurement

(e) The average of five sequential 1-min counts
(f) The sum of five sequential 1-min counts

3.7 A source is counted for 1 min and gives 561 counts.
The source is removed and a 1-min background count
gives 410 counts. What is the net count due to the source
alone and its associated standard deviation?



3.8 A 10-min count of a source + background gives a total of
846 counts. Background alone counted for 10 min gives a
total of 73 counts. Whatis the net counting rate due tosource
alone, and what is its associated standard deviation?

3.9 The measurement described in Problem 3.8 is to be
repeated, but in this case the available 20 min is to be
subdivided optimally between the two separate counts.
Find the optimal allocation of time that minimizes the
expected standard deviation in the net source counting
rate. By what factor has the expected statistical error been
reduced from the situation of Problem 3.8?

3.10 In a given application, a 10-min measurement re-
sulted in a statistical uncertainty of 2.8%. How much
additional time must be allocated to reduce the statistical
uncertainty to 1.0%?

3.11 A designer has the choice in a specific application of
either doubling the signal from the source or reducing the
background by a factor of 2. From the standpoint of
counting statistics, which should be chosen under the
following conditions:

(a) The signal is large compared with background.
(b) The signal is small compared with background.

3.12 A flow counter shows an average background rate of
2.87 counts/min. What is the probability that a given 2-
min count will contain (a) exactly 5 counts and, (b) at least
1 count? What length of counting time is required to
ensure with > 99% probability that at least one count is
recorded?

3.13 The following data are obtained from sources A and
B of the same isotope:

Timing Period
Source A + background 251 counts 5 min
Source B + background 717 counts 2 min
Background 51 counts 10 min

What is the ratio of the activity of source B to source A,
and what is the percent standard deviation in this ratio?

3.14 The background count from a detector was meas-
ured to be 845 over a 30-min period. A source to be
measured increases the total counting rate to about 80
counts/min. Estimate the time the source should be
counted to determine the counting rate due to the source
alone to within a fractional standard deviation of 3%.

3.15 Thirty different students have measured the back-
ground counting rate with the same apparatus. Each used
the same procedure, consisting of recording the number
of counts in five 1-min intervals and taking their average.
A set of numbers from a typical student is shown below:

25 = count in first minute
35 = count in second minute
30 = count in third minute
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23 = count in fourth minute
27 = count in fifth minute

total = 140
mean = 140 — 28 () counts
5 : min

(a) Do these data seem reasonable assuming all the
fluctuations are statistical? Substantiate your conclu-
sion quantitatively.

(b) Based on the above data, what is the expected
standard deviation of the mean?

(c¢) Estimate the sample variance of the 30 numbers
representing a similar calculation of the mean back-
ground rate by each of the 30 students.

(d) Again assuming only statistical variations, estimate
the standard deviation of the final answer for the mean
obtained by averaging all 30 independent values.

3.16 The following set of 25 counts was recorded under
identical detector conditions and counting times. Apply
the chi-squared test to determine whether the observed
fluctuations are consistent with expectations from Poisson
statistics.

3626 3711 3677 3678 3465
3731 3617 3630 3624 3574
3572 3572 3615 3652 3601
3689 3578 3605 3595 3540
3625 3569 3591 3636 3629

3.17 An average of five sequential 2-min counts of a
constant source by Lab Group A gave a resulting value
of 2162.4 counts/min. Lab Group B then used the same
source and detector in identical conditions and arrived at
a value of 2081.5 counts/min based on four sequential 5-
min counts. Is the difference between these two results
statistically significant?

3.18 You are asked to calibrate the activity of a Cs-137
gamma-ray source by comparison with a standard Cs-137
reference source of approximately the same activity. The
standard source has a quoted activity of 3.50 £ 0.05 n.Ci
(% one standard deviation) and either source alone gives
rise to a counting rate of about 1000 per second in the
available counter. Background rates are negligible. As-
suming that each source is counted separately for equal
counting times, how much fotal time will be required to
determine the unknown activity to within a 2% expected
standard deviation?

3.19 A particular counting system has a stable average
background rate (measured over a long time) of 50
counts/min. A decaying radioisotope source was intro-
duced and a 10-min count showed a total of 1683 counts.
After a delay of 24 h, the 10-min count was repeated, this
time giving a total of 914 counts.

(a) What is the half-life of the source?

(b) What is the expected standard deviation of the
half-life value due to counting statistics?
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3.20 An engine wear test is to be carried out in which the
weight of radioactive piston ring particles in an oil sample
is to be determined. A sample of the used oil gives 13,834
counts over a 3-min period. A standard has been prepared
using exactly 100 pg of the same activity material which
gives 91,396 counts over a 10-min period. Background for
the detector has been determined to be 281 counts/min,
measured over a very long counting period (~24 h). Find
the weight of the particles in the sample and its expected
fractional standard deviation.

3.21 The decay constant A of a radioisotope sample is to
be determined by counting in a detector system with
negligible background. An approximate value A\’ is al-
ready known. The procedure will be to count for a short
time 7 at t = 0, wait a time At, and then count again for the
same time 7. Assuming that 1 << 1/)\/, what value of the
waiting time A¢ will minimize the expected statistical
error in the value of \ derived from these measurements?

3.22 The thickness of nominal 1-cm sheet aluminum is to
be monitored by noting the attenuation of a gamma-ray
parallel beam passing perpendicularly through the sheet.
The source and the detector are well shielded, so back-
ground and scattering into the detector are negligible.
Any given sample will spend 1 s in the beam. The detector
counting rate with no sheet in place has a mean value
(measured over a long time) of 10,000 per second.

(a) Find the optimum value of the linear attenuation
coefficient p that will minimize the uncertainty in the
derived sheet thickness value due to statistical fluctu-
ations. (What is the corresponding gamma-ray
energy?)

REFERENCES

1. R. D. Evans, The Atomic Nucleus, Krieger, New York, 1982,
Chaps. 26-28.

2. W. Feller, An Introduction to Probability Theory and Its Appli-
cations, 2nd ed., Wiley, New York, 1957.

3. P. R. Bevington, Data Reduction and Error Analysis for the
Physical Sciences, McGraw-Hill, New York, 1969.

(b) What is the lowest attainable fractional standard
deviation under these conditions?

3.23 At an average rate of 100 per second, what fraction
of the intervals between randomly occurring events are
shorter than 10 ms?

3.24 A measurement of possible 1*’Cs contamination on
an air filter is made on a daily basis. The measurement
consists of placing the filter in a counting system with an
absolute gamma-ray counting efficiency of 15% at 662
keV for a period of 30 min. A new uncontaminated filter is
then substituted in the counting system and another 30-
min background count recorded. The background count
averages 100 counts per minute.

(a) Where should the critical level L¢ be set (in units
of counts per 30-min measurement) to declare the
positive presence of contamination following the crite-
ria outlined in the MDA discussion?

(b) Under these conditions, find the minimum detect-
able amount (MDA) of *’Cs on the filter as defined in
the same discussion.

3.25 (a) A municipal bus system, when operating per-
fectly on schedule, provides a bus at any given bus
stop every 30 min. You arrive at a random time at a
bus stop. What is the average waiting time until the
next bus arrives?

(b) The buses become totally disorganized so that the
spacing between buses is made random (assume that
their arrival is a Poisson random process.) The same
number of buses are still in operation. You again
arrive at a bus stop at an arbitrary time. What is
the average waiting time under these circumstances?
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Chapter 4

General Properties of Radiation
Detectors

Before discussing the different types of radiation detectors individually, we first outline some
general properties that apply to all types. Included will be some basic definitions of detector
properties, such as efficiency and energy resolution, together with some general modes of
operation and methods of recording data that will be helpful in categorizing detector
applications.

I. SIMPLIFIED DETECTOR MODEL

We begin with a hypothetical detector that is subject to some type of irradiation. Attention is
first focused on the interaction of a single particle or quantum of radiation in the detector, which
might, for example, be a single alpha particle or an individual gamma-ray photon. In order for
the detector to respond at all, the radiation must undergo interaction through one of the
mechanisms discussed in Chapter 2. As indicated by Eq. (2.3), the interaction or stopping time
is very small (typically a few nanoseconds in gases or a few picoseconds in solids). In most
practical situations, these times are so short that the deposition of the radiation energy can be
considered instantaneous.

The net result of the radiation interaction in a wide category of detectors is the appearance
of a given amount of electric charge within the detector active volume.” Our simplified detector
model thus assumes that a charge Q appears within the detector at time ¢ = 0 resulting from the
interaction of a single particle or quantum of radiation. Next, this charge must be collected to
form the basic electrical signal. Typically, collection of the charge is accomplished through the
imposition of an electric field within the detector, which causes the positive and negative
charges created by the radiation to flow in opposite directions. The time required to fully collect
the charge varies greatly from one detector to another. For example, in ion chambers the
collection time can be as long as a few milliseconds, whereas in semiconductor diode detectors
the time is a few nanoseconds. These times reflect both the mobility of the charge carriers within
the detector active volume and the average distance that must be traveled before arrival at the
collection electrodes.

We therefore begin with a model of a prototypical detector whose response to a single
particle or quantum of radiation will be a current that flows for a time equal to the charge
collection time. The sketch below illustrates one example for the time dependence the detector
current might assume, where ¢, represents the charge collection time.

tStrictly true only for detectors such as ion chambers, proportional tubes, G-M tubes, or semiconductor diode detectors. The
discussion is also useful for detector types in which the charge is formed indirectly, as from a photomultiplier tube used with a
scintillation crystal.

105
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i(t)

Jtc i(t)dt=Q

Time — > L

The time integral over the duration of the current must simply be equal to Q, the total amount
of charge generated in that specific interaction.

In any real situation, many quanta of radiation will interact over a period of time. If the
irradiation rate is high, situations can arise in which current is flowing in the detector from more
than one interaction at a given time. For purposes of the present discussion, we assume that the
rate is low enough so that each individual interaction gives rise to a current that is distinguish-
able from all others. The magnitude and duration of each current pulse may vary depending on
the type of interaction, and a sketch of the instantaneous current flowing in the detector might
then appear as shown in the sketch below.

|

Time —

ift)

It is important to recall that, because the arrival of radiation quanta is a random phenomenon
governed by Poisson statistics, the time intervals between successive current pulses are also
randomly distributed.

II. MODES OF DETECTOR OPERATION

We can now introduce a fundamental distinction between three general modes of operation of
radiation detectors. The three modes are called pulse mode, current mode, and mean square
voltage mode (abbreviated MSV mode, or sometimes called Campbelling mode). Pulse mode
is easily the most commonly applied of these, but current mode also finds many applications.
MSV mode is limited to some specialized applications that make use of its unique character-
istics. Although the three modes are operationally distinct, they are interrelated through their
common dependence on the sequence of current pulses that are the output of our simplified
detector model.

In pulse mode operation, the measurement instrumentation is designed to record each
individual quantum of radiation that interacts in the detector. In most common applica-
tions, the time integral of each burst of current, or the total charge Q, is recorded since the
energy deposited in the detector is directly related to Q. All detectors used to measure the
energy of individual radiation quanta must be operated in pulse mode. Such applications
are categorized as radiation spectroscopy and are the subject of much of the remainder of
this text.

In other circumstances, a simpler approach may suit the needs of the measurement: All
pulsesabove a low-level threshold are registered from the detector, regardless of the value of Q.
This approach is often called pulse counting, and we will show various examples later in this
text. It can be useful in many applications in which only the intensity of the radiation is of
interest, rather than the incident energy distribution of the radiation.
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At very high event rates, pulse mode operation becomes impractical or even impossible.
The time between adjacent events may become too short to carry out an adequate analysis, or
the current pulses from successive events may overlap in time. In such cases, one can revert to
alternative measurement techniques that respond to the time average taken over many
individual events. This approach leads to the remaining two modes of operation: current
mode and MSV mode.

A. Current Mode

In the sketch below, we show a current-measuring device (an ammeter or, more practically, a
picoammeter) connected across the output terminals of a radiation detector.
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If we assume that the measuring device has a fixed response time 7, then the recorded signal
from a sequence of events will be a time-dependent current given by

I(t) = lr i(t)df (4.1)

t—T

Because the response time 7 is typically long compared with the average time between
individual current pulses from the detector, the effect is to average out many of the fluctuations
in the intervals between individual radiation interactions and to record an average current that
depends on the product of the interaction rate and the average charge per interaction.
In current mode, this time average of the individual current bursts serves as the basic signal
that is recorded.

At any instant of time, however, there is a statistical uncertainty in this signal due to the
random fluctuations in the arrival time of the event. In many ways, the integration time 7' is
analogous to the measurement time discussed in the statistical analysis of Chapter 3. Thus, the
choice of large 7 will minimize statistical fluctuations in the signal but will also slow the
response to rapid changes in the rate or nature of the radiation interactions.

The average current is given by the product of the event rate and the average charge
produced per event.

E
Iy = =r— 4.2
0o=rQ "W (4.2)
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where r = eventrate

Q = Eq/W = charge produced for each event

E = average energy deposited per event

W = average energy required to produce a unit charge pair (e.g., electron-ion pair)

=1.6x107°C

Q
|

For steady-state irradiation of the detector, this average current can also be rewritten as the
sum of a constant current / plus a time-dependent fluctuating component o,(¢), as sketched
below.

{63}

1

Here o(¢) is a random time-dependent variable that occurs as a consequence of the random
nature of the radiation events interacting within the detector.

A statistical measure of this random component is the variance or mean square value,
defined as the time average of the square of the difference between the fluctuating current 1(z)
and the average current /y. This mean square value is given by

) = lLT () — Iofdt = H,_T o2(¢)dt (43)

and the standard deviation follows as

—

a;(t) = /07 (1) (4.4)

Recall from Poisson statistics that the standard deviation in the number of recorded events
n over a given observation period is expected to be

o =+n (4.5)

Therefore, the standard deviation in the number of events occurring at a rate r in an effective
measurement time 7" is simply

o, =VrT (4.6)

If each pulse contributes the same charge, the fractional standard deviation in the measured
signal due to random fluctuations in pulse arrival time is given by

or(t) o, 1
o 4.7)

Here oy(¢) is the time average of the standard deviation in the measured current, 7 is the
response time of the picoammeter and /j is the average current read on the meter. This
result is useful in estimating the uncertainty associated with a given current mode
measurement.
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It should be noted that, in the derivation of Eq. (4.7), the charge produced in each event (Q)
is assumed to be constant. Therefore, the result accounts for only the random fluctuations in
pulse arrival time, but not for fluctuations in pulse amplitude. In some applications, however,
this second source of variance in the signal is small in comparison with the first, and the general
character of the results given remains applicable.'

B. Mean Square Voltage Mode

An extension of this discussion of the statistical properties of the signal in current mode leads us
to the next general mode of operation: the mean square voltage (MSV) mode. Suppose that we
send the current signal through a circuit element that blocks the average current I, and only
passes the fluctuating component o,(¢). By providing additional signal-processing elements,
we now compute the time average of the squared amplitude of o;(f). (The details of these
circuits are not important here; for further discussion see Ref. 2.) The processing steps are
illustrated below:

ton
chamber

Sq_uaring Averaging ‘ Output
circunt

The result corresponds to the quantity o2(¢) defined previously in Eq. (4.3). Combining
Egs. (4.2) and (4.7), we predict the magnitude of the signal derived in this way to be

2
70 ="2 48)

We see that this mean square signal is directly proportional to the event rate r and, more
significantly, proportional to the square of the charge Q produced in each event. An analysis
of this mode of operation was first given by Campbell,3 and the term Campbelling mode is
therefore substituted for MSV mode in some usage.

The MSV mode of operation is most useful when making measurements in mixed radiation
environments when the charge produced by one type of radiation is much different than that
from the second type. If simple current mode operation is chosen, the measured current will
linearly reflect the charges contributed by each type. In MSV mode, however, the derived signal
is proportional to the square of the charge per event. This operational mode will therefore
further weight the detector response in favor of the type of radiation giving the larger average
charge per event. As one example of the useful application of the MSV mode, in Chapter 14 we
describe its use with neutron detectors in reactor instrumentation to enhance the neutron signal
compared with the response due to smaller-amplitude gamma-ray events.

C. Pulse Mode

In reviewing various applications of radiation detectors, we find that current mode operation is
used with many detectors when event rates are very high. Detectors that are applied to
radiation dosimetry are also normally operated in current mode for reasons that will be
discussed in Chapter 5. MSV mode is useful in enhancing the relative response to large-
amplitude events and finds widespread application in reactor instrumentation. Most applica-
tions, however, are better served by preserving information on the amplitude and timing of
individual events that only pulse mode can provide. Consequently, the remainder of this
chapter deals with various aspects of pulse mode operation.
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The nature of the signal pulse produced from a single event depends on the input
characteristics of the circuit to which the detector is connected (usually a preamplifier).
The equivalent circuit can often be represented as shown below.

) —I— Fox R§ vit)
0 - T < '

Detector

Here R represents the input resistance of the circuit, and C represents the equivalent
capacitance of both the detector itself and the measuring circuit. For example, if a preamplifier
is attached to the detector, then R is its input resistance and C is the summed capacitance of the
detector, the cable used to connect the detector to the preamplifier, and the input capacitance of
the preamplifier itself. In most cases, the time-dependent voltage V(¢) across the load resistance
is the fundamental signal voltage on which pulse mode operation is based. Two separate
extremes of operation can be identified that depend on the relative value of the time constant of
the measuring circuit. From simple circuit analysis, this time constant is given by the product of
R and C, or 1 = RC.

CASE 1. SMALL RC (v < t,)

In this extreme the time constant of the external circuit is kept small compared with the charge
collection time, so that the current flowing through the load resistance R is essentially equal to
the instantaneous value of the current flowing in the detector. The signal voltage V(¢) produced
under these conditions has a shape nearly identical to the time dependence of the current
produced within the detector as illustrated in Fig. 4.1b. Radiation detectors are sometimes
operated under these conditions when high event rates or timing information is more important
than accurate energy information.

CASE2. LARGERC (v > t,)

It is generally more common to operate detectors in the opposite extreme in which the time
constant of the external circuit is much larger than the detector charge collection time. In this

i(t)
; Q= fi{t) dt
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g Figure 4.1 (a) The assumed current output from a

hypothetical detector. (b) The signal voltage V(¢) for
the case of a small time constant load circuit. (¢) The
signal voltage V(¢) for the case of a large time constant
t load circuit.
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case, very little current will flow in the load resistance during the charge collection time and the
detector current is momentarily integrated on the capacitance. If we assume that the time
between pulses is sufficiently large, the capacitance will then discharge through the resistance,
returning the voltage across the load resistance to zero. The corresponding signal voltage V(¢) is
illustrated in Fig. 4.1c.

Because the latter case is by far the most common means of pulse-type operation of
detectors, it is important to draw some general conclusions. First, the time required for the
signal pulse to reach its maximum value is determined by the charge collection time within the
detectoritself. No properties of the external or load circuit influence the rise time of the pulses.
On the other hand, the decay time of the pulses, or the time required to restore the signal
voltage to zero, is determined only by the time constant of the load circuit. The conclusion that
the leading edge is detector dependent and the trailing edge circuit dependent is a generality
that will hold for a wide variety of radiation detectors operated under the conditions in which
RC>>t.. Second, the amplitude of a signal pulse shown as Vy,.x in Fig. 4.1c is determined
simply by the ratio of the total charge QO created within the detector during one radiation
interaction divided by the capacitance C of the equivalent load circuit. Because this capacitance
is normally fixed, the amplitude of the signal pulse is directly proportional to the corresponding
charge generated within the detector and is given by the simple expression

Vmax = Q/C (4.9)

Thus, the output of a detector operated in pulse mode normally consists of a sequence of
individual signal pulses, each representing the results of the interaction of a single quantum of
radiation within the detector. A measurement of the rate at which such pulses occur will give
the corresponding rate of radiation interactions within the detector. Furthermore, the
amplitude of each individual pulse reflects the amount of charge generated due to each
individual interaction. We shall see that a very common analytical method is to record the
distribution of these amplitudes from which some information can often be inferred about the
incident radiation. An example is that set of conditions in which the charge Q is directly
proportional to the energy of the incident quantum of radiation. Then, a recorded distribu-
tion of pulse amplitudes will reflect the corresponding distribution in energy of the incident
radiation.

Asshown by Eq. (4.9), the proportionality between V ,,.x and O holds only if the capacitance
C remains constant. In most detectors, the inherent capacitance is set by its size and shape, and the
assumption of constancy is fully warranted. In other types (notably the semiconductor diode
detector), the capacitance may change with variations in normal operating parameters. In such
cases, voltage pulses of different amplitude may result from events with the same Q. In order to
preserve the basic information carried by the magnitude of O, a type of preamplifier circuit known
as a charge-sensitive configuration has come into widespread use. Asdescribed in Chapter 17, this
type of circuit uses feedback to largely eliminate the dependence of the output amplitude on
the value of C and restores proportionality to the charge O even in cases in which C may change.
For this preamplifier configuration, the simple RC representation shown in the sketch at the
start of this section is no longer accurate, but the principle of collecting the current pulse across
a capacitance that is discharged through a resistance remains valid.

Pulse mode operation is the more common choice for most radiation detector applications
because of several inherent advantages over current mode. First, the sensitivity that is
achievable is often many factors greater than when using current or MSV mode because
each individual quantum of radiation can be detected as a distinct pulse. Lower limits of
detectability are then normally set by background radiation levels. In current mode, the
minimum detectable current may represent an average interaction rate in the detector that is
many times greater. The second and more important advantage is that each pulse amplitude
carries some information that is often a useful or even necessary part of a particular application.
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In both current and MSV mode operations, this information on individual pulse amplitudes is
lost and all interactions, regardless of amplitude, contribute to the average measured current.
Because of these inherent advantages of pulse mode, the emphasis in nuclear instrumentation is
largely in pulse circuits and pulse-processing techniques.

III. PULSE HEIGHT SPECTRA

When operating a radiation detector in pulse mode, each individual pulse amplitude carries
important information regarding the charge generated by that particular radiation interaction
in the detector. If we examine a large number of such pulses, their amplitudes will not all be the
same. Variations may be due either to differences in the radiation energy or to fluctuations in
the inherent response of the detector to monoenergetic radiation. The pulse amplitude
distribution is a fundamental property of the detector output that is routinely used to deduce
information about the incident radiation or the operation of the detector itself.

The most common way of displaying pulse amplitude information is through the differen-
tial pulse height distribution. Figure 4.2a gives a hypothetical distribution for purposes of
example. The abscissa is a linear pulse amplitude scale that runs from zero to a value larger
than the amplitude of any pulse observed from the source. The ordinate is the differential
number dN of pulses observed with an amplitude within the differential amplitude increment
dH, divided by that increment, or dN/dH. The horizontal scale then has units of pulse
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amplitude (volts), whereas the vertical scale has units of inverse amplitude (volts™'). The
number of pulses whose amplitude lies between two specific values, H1 and H», can be obtained
by integrating the area under the distribution between those two limits, as shown by the cross-
hatched area in Fig. 4.2a:

H,
number of pulses with amplitude between H1 and H, = J Z—ZdH (4.10)
H,

The total number of pulses Ny represented by the distribution can be obtained by integrating
the area under the entire spectrum:

< dN
N =J —dH 411
o= | (@11)

Most users of radiation instrumentation are accustomed to looking at the shape of the
differential pulse height distribution to display significant features about the source of the
pulses. The maximum pulse height observed (Hs) is simply the point along the abscissa at which
the distribution goes to zero. Peaks in the distribution, such as at H,, indicate pulse amplitudes
about which a large number of pulses may be found. On the other hand, valleys or low points in
the spectrum, such as at pulse height H3, indicate values of the pulse amplitude around which
relatively few pulses occur. The physical interpretation of differential pulse height spectra
always involves areas under the spectrum between two given limits of pulse height. The value
of the ordinate itself (dN/dH) has no physical significance until multiplied by an increment of
the abscissa H.

A less common way of displaying the same information about the distribution of pulse
amplitudes is through the integral pulse height distribution. Figure 4.2b shows the integral
distribution for the same pulse source displayed as a differential spectrum in Fig. 4.2a. The
abscissa in the integral case is the same pulse height scale shown for the differential distribution.
The ordinate now represents the number of pulses whose amplitude exceeds that of a given
value of the abscissa H. The ordinate N must always be a monotonically decreasing function of
H because fewer and fewer pulses will lie above an amplitude H that is allowed to increase from
zero. Because all pulses have some finite amplitude, the value of the integral spectrum at H =0
must be the total number of pulses observed (Vp). The value of the integral distribution must
decrease to zero at the maximum observed pulse height (Hs).

The differential and integral distributions convey exactly the same information and one can
be derived from the other. The amplitude of the differential distribution at any pulse height H is
given by the absolute value of the slope of the integral distribution at the same value. Where
peaks appear in the differential distribution, such as Hy, local maxima will occur in the
magnitude of the slope of the integral distribution. On the other hand, where minima appear
in the differential spectrum, such as Hs, regions of minimum magnitude of the slope are
observed in the integral distribution. Because it is easier to display subtle differences by using
the differential distribution, it has become the predominant means of displaying pulse height
distribution information.

IV. COUNTING CURVES AND PLATEAUS

When radiation detectors are operated in pulse counting mode, a common situation often arises
in which the pulses from the detector are fed to a counting device with a fixed discrimination
level. Signal pulses must exceed a given level H,; in order to be registered by the counting
circuit. Sometimes it is possible to vary the level H; during the course of the measurement to
provide information about the amplitude distribution of the pulses. Assuming that H,; can be
varied between 0 and Hs in Fig. 4.2, a series of measurements can be carried out in which the
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4N
dH

number of pulses N per unit time is measured as H; is changed through a sequence of values
between 0 and Hs. This series of measurements is just an experimental determination of the
integral pulse height distribution, and the measured counts should lie directly on the curve
shown in Fig. 4.2b.

In setting up a pulse counting measurement, it is often desirable to establish an operating
point that will provide maximum stability over long periods of time. For example, small drifts in
the value of H,; could be expected in any real application, and one would like to establish
conditions under which these drifts would have minimal influence on the measured counts. One
such stable operating point can be achieved at a discrimination point set at the level Hs in
Fig. 4.2. Because the slope of the integral distribution is a minimum at that point, small changes
in the discrimination level will have minimum impact on the total number of pulses recorded. In
general, regions of minimum slope on the integral distribution are called counting plateaus and
represent areas of operation in which minimum sensitivity to drifts in discrimination level are
achieved. It should be noted that plateaus in the integral spectrum correspond to valleys in the
differential distribution.

Plateaus in counting data can also be observed with a different procedure. For a particular
radiation detector it is often possible to vary the gain or amplification provided for the charge
produced in radiation interactions. This variation could be accomplished by varying the
amplification factor of a linear amplifier between the detector and counting circuit, or in
many cases more directly by changing the applied voltage to the detectoritself. Figure 4.3 shows
the differential pulse height distribution corresponding to three different values of voltage
gain applied to the same source of pulses. Here the value of gain can be defined as the ratio of
the voltage amplitude for a given event in the detector to the same amplitude before some
parameter (such as amplification or detector voltage) was changed. The highest voltage gain
will result in the largest maximum pulse height, but in all cases the area under the differential
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distribution will be a constant. In the example shown in Fig. 4.3, no counts will be recorded for
a gain G = 1 because under those conditions all pulses will be smaller than H,. Pulses will
begin to be recorded somewhere between a gain G =1 and G =2. An experiment can be carried
out in which the number of pulses recorded is measured as a function of the gain applied,
sometimes called the counting curve. Such a plot is also shown in Fig. 4.3 and in many ways
resembles an integral pulse height distribution. We now have a mirror image of the integral
distribution, however, because small values of the gain will record no pulses, whereas large
values will result in counting nearly all the pulses. Again, plateaus can be anticipated in this
counting curve for values of the gain in which the effective discrimination pulse height H,
passes through minima in the differential pulse height distribution. In the example shown in
Fig. 4.3, the minimum slope in the counting curve should correspond to a gain of about 3, in
which case the discrimination point is near the minimum of the valley in the differential pulse
height distribution.

In some types of radiation detectors, such as Geiger—Mueller tubes or scintillation counters,
the gain can conveniently be varied by changing the applied voltage to the detector. Although
the gain may not change linearly with voltage, the qualitative features of the counting curve can
be traced by a simple measurement of the detector counting rate as a function of voltage. In
order to select an operating point of maximum stability, plateaus are again sought in the
counting curve that results, and the voltage is often selected to lie at a point of minimum slope
on this counting curve. We shall discuss these plateau measurements more specifically in
Chapters 6 and 7 in connection with proportional counters and Geiger—-Mueller detectors.

V.ENERGY RESOLUTION

In many applications of radiation detectors, the object is to measure the energy distribution of
the incident radiation. These efforts are classified under the general term radiation spectros-
copy, and later chapters give examples of the use of specific detectors for spectroscopy involving
alpha particles, gamma rays, and other types of nuclear radiation. At this point we discuss some
general properties of detectors when applied to radiation spectroscopy and introduce some
definitions that will be useful in these discussions.

One important property of a detector in radiation spectroscopy can be examined by noting
its response to a monoenergetic source of that radiation. Figure 4.4 illustrates the differential
pulse height distribution that might be produced by a detector under these conditions. This
distribution is called the response function of the detector for the energy used in the
determination. The curve labeled “Good resolution’ illustrates one possible distribution
around an average pulse height H,. The second curve, labeled “Poor resolution,” illustrates
the response of a detector with inferior performance. Provided the same number of pulses are
recorded in both cases, the areas under each peak are equal. Although both distributions are
centered at the same average value Hj, the width of the distribution in the poor resolution case
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Figure 4.5 Definition of detector resolu-
tion. For peaks whose shape is Gaussian with
standard deviation o, the FWHM is given by
H 2.350.

is much greater. This width reflects the fact that a large amount of fluctuation was recorded from
pulse to pulse even though the same energy was deposited in the detector for each event. If the
amount of these fluctuations is made smaller, the width of the corresponding distribution will
also become smaller and the peak will approach a sharp spike or a mathematical delta function.
The ability of a given measurement to resolve fine detail in the incident energy of the radiation
is obviously improved as the width of the response function (illustrated in Fig. 4.4) becomes
smaller and smaller.

A formal definition of detector energy resolution is shown in Fig. 4.5. The differential pulse
height distribution for a hypothetical detector is shown under the same assumption that only
radiation for a single energy is being recorded. The full width at half maximum (FWHM) is
illustrated in the figure and is defined as the width of the distribution at a level that is just half
the maximum ordinate of the peak. This definition assumes that any background or continuum
on which the peak may be superimposed is negligible or has been subtracted away. The energy
resolution of the detector is conventionally defined as the FWHM divided by the location of the
peak centroid Hy. The energy resolution R is thus a dimensionless fraction conventionally
expressed as a percentage. Semiconductor diode detectors used in alpha spectroscopy can have
an energy resolution less than 1%, whereas scintillation detectors used in gamma-ray spec-
troscopy normally show an energy resolution in the range of 3-10%. It should be clear that the
smaller the figure for the energy resolution, the better the detector will be able to distinguish
between two radiations whose energies lie near each other. An approximate rule of thumb is
that one should be able to resolve two energies that are separated by more than one value of the
detector FWHM.

There are a number of potential sources of fluctuation in the response of a given detector
that result in imperfect energy resolution. These include any drift of the operating character-
istics of the detector during the course of the measurements, sources of random noise within the
detector and instrumentation system, and statistical noise arising from the discrete nature of the
measured signal itself. The third source is in some sense the most important because it
represents an irreducible minimum amount of fluctuation that will always be present in the
detector signal no matter how perfect the remainder of the system is made. In a wide category of
detector applications, the statistical noise represents the dominant source of fluctuation in the
signal and thus sets an important limit on detector performance.

The statistical noise arises from the fact that the charge QO generated within the detector by
a quantum of radiation is not a continuous variable but instead represents a discrete number of
charge carriers. For example, in an ion chamber the charge carriers are the ion pairs produced
by the passage of the charged particle through the chamber, whereas in a scintillation counter
they are the number of electrons collected from the photocathode of the photomultiplier tube.
In all cases the number of carriers is discrete and subject to random fluctuation from event to
event even though exactly the same amount of energy is deposited in the detector.
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An estimate can be made of the amount of inherent fluctuation by assuming that the
formation of each charge carrier is a Poisson process. Under this assumption, if a total number
N of charge carriers is generated on the average, one would expect a standard deviation of VN
to characterize the inherent statistical fluctuations in that number [see Eq. (3.29)]. If this were
the only source of fluctuation in the signal, the response function, as shown in Fig. 4.5, should
have a Gaussian shape, because N is typically a large number. In this case, the Gaussian
function introduced in Chapter 3 is most conveniently written

2
G(H) = O_jz_ﬂ_ exp (— %) (4.12)

The width parameter o determines the FWHM of any Gaussian through the relation FWHM =
2.35¢. (The remaining two parameters, Hy, and A, represent the centroid and area,
respectively.)

The response of many detectors is approximately linear, so that the average pulse
amplitude Hy = KN, where K is a proportionality constant. The standard deviation o of the
peak in the pulse height spectrum is then o = Kv/N and its FWHM is 2.35Kv/N. We then
would calculate a limiting resolution R due only to statistical fluctuations in the number of
charge carriers as

_FWHM _235KVN 235

R =
Poisson limit H 0 KN \/N

(4.13)

Note that this limiting value of R depends only on the number of charge carriers N, and the
resolution improves (R will decrease) as NV is increased. From Eq. (4.13) we see that in order to
achieve an energy resolution better than 1%, one must have N greater than 55,000. An ideal
detector would have as many charge carriers generated per event as possible, so that this
limiting resolution would be as small a percentage as possible. The great popularity of
semiconductor detectors stems from the fact that a very large number of charge carriers
are generated in these devices per unit energy lost by the incident radiation.

Careful measurements of the energy resolution of some types of radiation detectors have
shown that the achievable values for R can be lower by a factor as large as 3 or 4 than the
minimum predicted by the statistical arguments given above. These results would indicate that
the processes that give rise to the formation of each individual charge carrier are not
independent, and therefore the total number of charge carriers cannot be described by simple
Poisson statistics. The Fano factor has been introduced in an attempt to quantify the departure
of the observed statistical fluctuations in the number of charge carriers from pure Poisson
statistics and is defined as

Fe=—_ observe.d Varlanc.e inN (4.14)
Poisson predicted variance(= N)

Because the variance is given by ¢°, the equivalent expression to Eq. (4.13) is now

2.35KV/NVF \/F
R == 2.35 ~ (4.15)

Statistical limit K

Although the Fano factor is substantially less than unity for semiconductor diode detectors and
proportional counters, other types such as many scintillation detectors appear to show a
limiting resolution consistent with Poisson statistics and the Fano factor would, in these cases,
be unity.

The fact that Fano factors of less than one are observed for some detectors can be
considered to be a consequence of the partitioning process of the original energy carried in
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by the incident particle. A simple argument” suffices to show that one would expect to observe a
Fano factor of less than unity in the outcome for sampling experiments of a general nature in
which there is a constraint on the total quantity that is subject to sampling. In the case of an
ionizing particle losing its energy in the detector material, a ‘““sample” represents the amount of
energy that goes into creating a charge carrier, and the assumption is made that this energy is
subject to sample-to-sample variation. This variation reflects differing amounts of energy that
are lost to thermal processes as individual charge carriers are formed along the particle track.
Adding the constraint that the sum of all energy losses must equal the initial particle energy, it is
then predicted that the number of charge carriers produced will fluctuate with a variance that is
less than that of a Poisson distribution.

Any other source of fluctuations in the signal chain will combine with the inherent statistical
fluctuations from the detector to give the overall energy resolution of the measuring system. It is
sometimes possible to measure the contribution to the overall FWHM due to a single
component alone. For example, if the detector is replaced by a stable pulse generator, the
measured response of the remainder of the system will show a fluctuation due primarily to
electronic noise. If there are several sources of fluctuation present and each is symmetric and
independent, statistical theory predicts that the overall response function will always tend
toward a Gaussian shape, even if the individual sources are characterized by distributions of
different shape. As a result, the Gaussian function given in Eq. (4.12) is widely used to represent
the response function of detector systems in which many different factors may contribute to the
overall energy resolution. Then the total FWHM will be the quadrature sum of the FWHM
values for each individual source of fluctuation:

2 2 2 2
(FWHM)overall . (FWHM)statistical + (FWHM)noise + (FWHM)drift +...

Each term on the right is the square of the FWHM that would be observed if all other sources of

fluctuation were zero.

VL. DETECTION EFFICIENCY

All radiation detectors will, in principle, give rise to an output pulse for each quantum of
radiation that interacts within its active volume. For primary charged radiation such as alpha or
beta particles, interaction in the form of ionization or excitation will take place immediately
upon entry of the particle into the active volume. After traveling a small fraction of its range, a
typical particle will form enough ion pairs along its path to ensure that the resulting pulse is
large enough to be recorded. Thus, it is often easy to arrange a situation in which a detector will
see every alpha or beta particle that enters its active volume. Under these conditions, the
detector is said to have a counting efficiency of 100%.

On the other hand, uncharged radiations such as gamma rays or neutrons must first undergo
a significant interaction in the detector before detection is possible. Because these radiations
can travel large distances between interactions, detectors are often less than 100% efficient. It
then becomes necessary to have a precise figure for the detector efficiency in order to relate the
number of pulses counted to the number of neutrons or photons incident on the detector.

It is convenient to subdivide counting efficiencies into two classes: absolute and intrinsic.
Absolute efficiencies are defined as

B number of pulses recorded
~ number of radiation quanta emitted by source

€abs

(4.16)

and are dependent not only on detector properties but also on the details of the counting
geometry (primarily the distance from the source to the detector). The intrinsic efficiency is
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defined as

B number of pulses recorded
~ number of radiation quanta incident on detector

(4.17)

€int

and no longer includes the solid angle subtended by the detector as an implicit factor. The two
efficiencies are simply related for isotropic sources by €jy; = €aps - (41/(2), where () is the solid
angle of the detector seen from the actual source position. It is much more convenient to
tabulate values of intrinsic rather than absolute efficiencies because the geometric dependence
is much milder for the former. The intrinsic efficiency of a detector usually depends primarily
on the detector material, the radiation energy, and the physical thickness of the detector in
the direction of the incident radiation. A slight dependence on distance between the source
and the detector does remain, however, because the average path length of the radiation
through the detector will change somewhat with this spacing.

Counting efficiencies are also categorized by the nature of the event recorded. If we accept all
pulses from the detector, then it is appropriate to use total efficiencies. In this case all interactions,
no matter how low in energy, are assumed to be counted. In terms of a hypothetical differential
pulse height distribution shown in Fig. 4.6, the entire area under the spectrum is a measure of the
number of all pulses that are recorded, regardless of amplitude, and would be counted in defining
the total efficiency. In practice, any measurement system always imposes a requirement that pulses
be larger than some finite threshold level set to discriminate against very small pulses from
electronic noise sources. Thus, one can only approach the theoretical total efficiency by setting this
threshold level as low as possible. The peak efficiency, however, assumes that only those
interactions that deposit the full energy of the incident radiation are counted. In a differential
pulse height distribution, these full energy events are normally evidenced by a peak that appears at
the highest end of the spectrum. Events that deposit only part of the incident radiation energy then
will appear farther to the left in the spectrum. The number of full energy events can be obtained by
simply integrating the total area under the peak, which is shown as the cross-hatched area in
Fig. 4.6. The total and peak efficiencies are related by the peak-to-total ratio r

y = Shedk (4.18)

€total

which is sometimes tabulated separately. It is often preferable from an experimental
standpoint to use only peak efficiencies, because the number of full energy events is not
sensitive to some perturbing effects such as scattering from surrounding objects or spurious
noise. Therefore, values for the peak efficiency can be compiled and universally applied to a
wide variety of laboratory conditions, whereas total efficiency values may be influenced by
variable conditions.
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To be complete, a detector efficiency should be specified according to both of the above
criteria. For example, the most common type of efficiency tabulated for gamma-ray detectors is
the intrinsic peak efficiency.

A detector with known efficiency can be used to measure the absolute activity of a radioactive
source. In the following discussion, we assume that a detector with an intrinsic peak efficiency e;,
has been used to record N events under the full-energy peak in the detector spectrum. For
simplicity, we also assume that the source emits radiation isotropically and that no attenuation
takes place between the source and detector. From the definition of intrinsic peak efficiency, the
number of radiation quanta S emitted by the source over the measurement period is then given by

S — N_ein (4.19)

where () represent the solid angle (in steradians) subtended by the detector at the source position.
The solid angle is defined by an integral over the detector surface that faces the source, of the form

cosa
Q= J S—dA (4.20)
AT

where r represents the distance between the source and a surface element dA, and a is the angle
between the normal to the surface element and the source direction. If the volume of the source is
not negligible, then a second integration must be carried out over all volume elements of the
source. For the common case of a point source located along the axis of a right circular cylindrical
detector, () is given by

Q=2m (1 —ﬁ) (4.21)

where the source—detector distance d and detector radius a are shown in the sketch below:

For d >> a, the solid angle reduces to the ratio of the detector plane frontal area A visible at the
source to the square of the distance:

A a?

= (4.22)
d d

Another commonly encountered circumstance, shown in the sketch below, involves a uniform
circular disk source emitting isotropic radiation aligned with a circular disk detector, both
positioned perpendicular to a common axis passing through their centers:

i

V -

Source

O~

Detector
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In terms of the dimensions shown on the sketch, it can be shown’ that the effective solid angle

averaged over the surface of the source is given by solving the integral

_dma J"C exp(—dk)J1(sk)J1(ak) dk
- S 0 k

Q

where the J;(x) are Bessel functions of x. This integral does not have an analytic solution, so it
can only be solved using numerical techniques. A useful approximate solution is

1 3 af

(1+B)? 8(1+p)7?
5 B 35 p?

16117 64(1+p)"
3 B 315 g 1155 @
T8 (118 25611 p) 7 1024 (11 p)oP

(&) o=@

This approximation becomes inaccurate when the source or detector diameters become too
large compared with their spacing, but it has been shown® to give very accurate results over a
wide range of dimensions.

Published values for () can sometimes be found for more complicated geometric arrange-
ments involving off-axis or volumetric sources, or detectors with more complex shapes. Some
specific examples of data or descriptions of algorithms useful in solid angle computations are
given in Refs. 7-20.

Q2 [1 — + o?[F1] — o [F2]]

Fl1 =

F2

where

VII. DEAD TIME

In nearly all detector systems, there will be a minimum amount of time that must separate
two events in order that they be recorded as two separate pulses. In some cases the limiting
time may be set by processes in the detector itself, and in other cases the limit may arise in the
associated electronics. This minimum time separation is usually called the dead time of
the counting system. Because of the random nature of radioactive decay, there is always
some probability that a true event will be lost because it occurs too quickly following a
preceding event. These “dead time losses’ can become rather severe when high counting
rates are encountered, and any accurate counting measurements made under these condi-
tions must include some correction for these losses. In this section we discuss some simple
models of dead time behavior of counting systems, together with two experimental methods
of determining system dead time. Reference 21 is an excellent presentation of more detailed
analyses of related topics that are beyond the present scope.

A. Models for Dead Time Behavior

Two models of dead time behavior of counting systems have come into common usage:
paralyzable and nonparalyzable response. These models represent idealized behavior, one
or the other of which often adequately resembles the response of a real counting system.
The fundamental assumptions of the models are illustrated in Fig. 4.7. At the center of the
figure, a time scale is shown on which six randomly spaced events in the detector are
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indicated. At the bottom of the figure is the corresponding dead time behavior of a detector
assumed to be nonparalyzable. A fixed time 7 is assumed to follow each true event that
occurs during the ““live period” of the detector. True events that occur during the dead
period are lost and assumed to have no effect whatsoever on the behavior of the detector.
In the example shown, the nonparalyzable detector would record four counts from the six
true interactions. In contrast, the behavior of a paralyzable detector is shown along the top
line of Fig. 4.7. The same dead time 7 is assumed to follow each true interaction that occurs
during the live period of the detector. True events that occur during the dead period,
however, although still not recorded as counts, are assumed to extend the dead time by
another period 7 following the lost event. In the example shown, only three counts are
recorded for the six true events.

The two models predict the same first-order losses and differ only when true event rates are
high. They are in some sense two extremes of idealized system behavior, and real counting
systems will often display a behavior that is intermediate between these extremes. The detailed
behavior of a specific counting system may depend on the physical processes taking place in the
detector itself or on delays introduced by the pulse processing and recording electronics.

In the discussion that follows, we examine the response of a detector system to a steady-
state source of radiation, and we adopt the following definitions:

n = true interaction rate
m = recorded count rate
7 = system dead time

We assume that the counting time is long so that both # and 7 may be regarded as average rates.
In general, we would like to obtain an expression for the true interaction rate » as a function of
the measured rate m and the system dead time 7, so that appropriate corrections can be made to
measured data to account for the dead time losses.

In the nonparalyzable case, the fraction of all time that the detector is dead is given simply
by the product m7. Therefore, the rate at which true events are lost is simply nmT. But because
n — m is another expression for the rate of losses,

n—m = nmr (4.23)
Solving for n, we obtain
. m Nonparalyzable
T — s (4.24)

In the paralyzable case, dead periods are not always of fixed length, so we cannot apply the same
argument. Instead, we note that rate m is identical to the rate of occurrences of time intervals
between true events that exceed 7. The distribution of intervals between random events
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occurring at an average rate n was previously shown [Eq. (3.71)] to be
P(T)dT = ne™"1dT (4.25)

where P1(T) dT is the probability of observing an interval whose length lies within d7 about 7.
The probability of intervals larger than T can be obtained by integrating this distribution
between T and oo

Py(r) = JOO P(T)dT =e™ (4.26)

The rate of occurrence of such intervals is then obtained by simply multiplying the above
expression by the true rate n

—nT Paralyzable ( 4 27)

=ik model

The paralyzable model leads to a more cumbersome result because we cannot solve explicitly
for the true rate n. Instead, Eq. (4.27) must be solved iteratively if # is to be calculated from
measurements of m and knowledge of .

A plot of the observed rate m versus the true rate » is given in Fig. 4.8 for both models.
When the rates are low the two models give virtually the same result, but the behavior at high
rates is markedly different. A nonparalyzable system will approach an asymptotic value for the
observed rate of 1/, which represents the situation in which the counter barely has time to
finish one dead period before starting another. For paralyzable behavior, the observed rate is
seen to go through a maximum. Very high true interaction rates result in a multiple extension of
the dead period following an initial recorded count, and very few true events can be recorded.
One must always be careful when using a counting system that may be paralyzable to ensure
that ostensibly low observed rates actually correspond to low interaction rates rather than very
high rates on the opposite side of the maximum. Mistakes in the interpretation of nuclear
counting data from paralyzable systems have occurred in the past by overlooking the fact that
there are always two possible true interaction rates corresponding to a given observed rate. As
shown in Fig. 4.8, the observed rate m; can correspond to either true rates n; or n,. The
ambiguity can be resolved only by changing the true rate in a known direction while observing
whether the observed rate increases or decreases.

|\
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of the true rate »n for two

| l observed rate m as a function
| |
/

n 1/t A »n models of dead time losses.
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For low rates (n << 1/7) the following approximations can be written:
me 1
" 1+nt

Paralyzable m=mne " ~n(l—nr) (4.29)

Nonparalyzable =~ n(1 — nt) (4.28)

Thus, the two models lead to identical results in the limit of small dead time losses.

If possible, one should avoid measurement conditions under which dead time losses are
high because of the errors that inevitably occur in making corrections for the losses. The value
of T may be uncertain or subject to variation, and the system behavior may not follow exactly
either of the models described above. When losses are greater than 30 or 40%, the calculated
true rate becomes very sensitive to small changes in the measured rate and the assumed system
behavior. Instead, the user should seek to reduce the losses by changing the conditions of the
measurement or by choosing a counting system with smaller dead time.

B. Methods of Dead Time Measurement

In order to make dead time corrections using either model, prior knowledge of the dead time 7
is required. Sometimes this dead time can be associated with a known limiting property of the
counting system (e.g., a fixed resolving time of an electronic circuit). More often, the dead time
will not be known or may vary with operating conditions and must therefore be measured
directly. Common measurement techniques are based on the fact that the observed rate varies
nonlinearly with the true rate. Therefore, by assuming that one of the specific models is
applicable, and by measuring the observed rate for at least two different true rates that differ by
a known ratio, the dead time can be calculated.

The common example is the two-source method. The method is based on observing the
counting rate from two sources individually and in combination. Because the counting losses are
nonlinear, the observed rate due to the combined sources will be less than the sum of the rates due to
the two sources counted individually, and the dead time can be calculated from the discrepancy.

To illustrate the method, let ny, n,, and ny, be the true counting rates (sample plus
background) with source 1, source 2, and the combined sources, respectively, in place. Let m,,
m,, and my, represent the corresponding observed rates. Also, let n;, and m,, be the true and
measured background rates with both sources removed. Then

i —np = (1 — np) + (np — np)
4.
np+np =n+nz (430)

Now assuming the nonparalyzable model [Eq. (4.24)] and substituting, we obtain

mi2 mp ma my
= 4.
1—m121'+1—mb1' 1—m1'r+1—m2~r (4.31)
Solving this equation explicitly for T gives the following result:
X(1-vi-Z)
T= Y (4.32)

where X = mimy — mpmy
Y = mimy(maz +mp) — mpmaz(my + my)
Y(my +my —mip — mp)

Z = 2
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Because the method is essentially based on observing the difference between two nearly
equal large numbers, careful measurements are required in order to get reliable values for the
dead time. The measurement is usually carried out by counting source 1, placing source 2
nearby and measuring the combined rate, and then removing source 1 to measure the rate
caused by source 2 alone. During this operation, care must be exercised not to move the source
already in place, and consideration must be given to the possibility that the presence of a second
source will scatter radiation into the detector that would not ordinarily be counted from the first
source alone. In order to keep the scattering unchanged, a dummy second source without
activity is normally put in place when the sources are counted individually. Best results are
obtained by using sources active enough to result in a fractional dead time m,7 of at least 20%.

A second method can be carried out if a short-lived radioisotope source is available.” In this
case the departure of the observed counting rate from the known exponential decay of the
source can be used to calculate the dead time. The technique, known as the decaying source
method, is based on the known behavior of the true rate n:

n=nge ™ +ny (4.33)

where ng is the true rate at the beginning of the measurement and \ is the decay constant of the
particular isotope used for the measurement.

In the limit of negligible background, a simple graphical procedure can be applied to
analyze the resulting data. Then Eq. (4.33) becomes

n = nge ™ (4.34)

By inserting Eq. (4.34) into Eq. (4.24) and carrying out some algebra, we get the following
relation for the nonparalyzable model:

meM = —ngtm + ng (4.35)
If we identify, as in Fig. 4.9a, the abscissa as m and the ordinate as the product me", then
Eq. (4.35) is that of a straight line. The experimental procedure consists of measuring the
observed rate m as a function of time ¢, and thus defining points that should lie on this line
starting from the right and moving left as the source decays. By fitting the best straight line to
the data, the intercept will give ny, the true rate at the beginning of the measurement, and the
negative slope will give the product of nyt. The dead time 7 then follows directly from the ratio
of the slope to the intercept.
For the paralyzable model, inserting Eq. (4.34) into Eq. (4.27) gives the following result:

M+ Inm = —ngre™ + Inng (4.36)

Again by choosing the abscissa and ordinate as shown in Fig. 4.9b, the equation of a straight line
results. In this case the intercept gives the value In ny, whereas the slope again gives the negative
of the product ngt. The dead time can simply be derived from these two values. The decaying
source method offers the advantage of not only being able to measure the value of the dead time
but also being able to test the validity of the assumed models. If a nonparalyzable model best
describes the counting system, the data will most closely fit a straight line for the format shown
in Fig. 4.9a. On the other hand, if a paralyzable model is more appropriate, the format shown in
Fig. 4.9b will result in a more nearly linear plot of the data. In order to be effective, the
measurements should be carried out for a time period at least equal to the half-life of the
decaying radioisotope, and the initial loss fraction mt should be at least 20%.

fFor laboratories with access to neutron irradiation facilities, a convenient isotope is 11*™In (half-life of 54.3 min), which is
readily produced by neutron absorption in an indium foil.
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If the background is more than a few percent of the smallest measured rate, the graphical
procedure can lead to significant errors. Although some improvement will result from
subtracting the observed background rate from all the measured m values, this correction is
not rigorous and an exact analysis can only be made by reverting back to Eq. (4.33). It then
becomes necessary to use numerical computation techniques to derive values for ng and T
which, when inserted in an assumed model of the dead time behavior, result in a best fit to the
measured data.

The methods described above are applicable to determine the dead time of simple
counting systems in which all pulses above a threshold amplitude are recorded. For
spectroscopic systems in which the pulse height spectrum is recorded from the detector,
other methods are available to deal with counting losses that are based on the mixture of
artificial pulses from a pulse generator into the signal processing chain. These pulser-based
techniques are treated later in Chapter 17.

C. Statistics of Dead Time Losses

When measuring radiation from steady-state sources, we normally assume that the true
events occurring in the detector follow Poisson statistics in which the probability of an event
occurring per unit time is a constant. The effect of system dead time is to remove selectively
some of the events before they are recorded as counts. Specifically, events occurring after
short time intervals following preceding events are preferentially discarded, and the interval
distribution [Eq. (3.71)] is modified from its normal exponential shape. Dead time losses
therefore distort the statistics of the recorded counts away from a true Poisson behavior. If
the losses are small (n7 less than 10 or 20% ), however, this distortion has little practical effect
on the validity of the statistical formulas for the prediction of statistical counting uncer-
tainties developed in Chapter 3.

If the dead time losses are not small, the deviations from Poisson statistics become more
significant. The discarding of events that occur after short time intervals causes the sequence of
recorded counts to become somewhat more regular, and the variance expected in repeated
measurements is reduced. Detailed analyses of the statistics of counts distorted by dead time
are beyond the present scope, but can be found in Refs. 22-25.

With either paralyzable or nonparalyzable behavior, there is some chance that more than
one true event is lost per dead period. A recorded count therefore can correspond to the
occurrence of any number of true events, from one to many. The relative probability that
multiple true events are contained in a typical dead period will increase as the true event rate
becomes higher. Because the true events still obey Poisson statistics, relatively simple analyses
can be made to predict the probability that a typical recorded count results from the
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combination of exactly x true events. These analyses are given later in this text, beginning on
p. 658 in connection with the closely related topic of pulse pile-up.

D. Dead Time Losses from Pulsed Sources

The analysis of counting losses due to detector dead time in the previous sections assumed that
the detector was irradiated by a steady-state source of constant intensity. There are many
applications in which the source of radiation is not continuous but instead consists of short
pulses repeated at a constant frequency. For example, electron linear accelerators used to
generate high-energy X-rays can be operated to produce pulses of a few microsecond width
with a repetition frequency of several kilohertz. In such cases, the results given previously may
not be applicable to correct properly for the effects of dead time losses. Substitute analytical
methods must now be applied that make use of some of the statistical principles introduced in
Chapter 3.

We confine our analysis to a radiation source that can be represented by the time-
dependent intensity sketched below:

~r

J Time
>
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~< 1/f

It is assumed that the radiation intensity is constant throughout the duration 7 of each pulse,
and that the pulses occur at a constant frequency f. Depending on the relative value of the
detector dead time T, several conditions may apply:

1. If 7 is much smaller than 7, the fact that the source is pulsed has little effect, and the
results given earlier in this section for steady-state sources may be applied with
reasonable accuracy.

2. If 7 is less than 7 but not by a large factor, only a small number of counts may be
registered by the detector during a single pulse. This is the most complicated circum-
stance and is beyond the scope of the present discussion. Detailed analysis of this case
may be found in Refs. 26 and 27.

3. If 7 is larger than T but less than the “off” time between pulses (given by 1/f - T), the
following analysis applies. Note that under these conditions, we can have a maximum of
only one detector count per source pulse. Also, the detector will be fully recovered at the
start of each pulse.

For the analysis that follows, it is no longer necessary that the radiation be constant over the
pulse length 7, but it is required that each radiation pulse be of the same intensity. We carry
through the following definitions:

7 = dead time of the detector system
m = observed counting rate

n = true counting rate(if T were 0)

T = source pulse length

f = source pulse frequency

Since there can be at most a single count per pulse, the probability of an observed count per
source pulse is given by m/f.

The average number of true events per source pulse is by definition equal to n/f. (Note that
this average can be greater than 1.) We can apply the Poisson distribution [Eq. (3.24)] to predict
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the probability that at least one true event occurs per source pulse:

P(>0) = 1— P(0)

=1—¢e"*

P (4.37)

Since the detector is ““live”’ at the start of each pulse, a count will be recorded if at least one true
event occurs during the pulse. Only one such count can be recorded, so the above expression is
also the probability of recording a count per source pulse. Equating the two expressions for this
probability, we obtain

ﬂ: 1 _e_n/f

or

rn:f@—m%”> (4.38)

A plot of this behavior is shown below:

sy

Under these conditions, the maximum observable counting rate is just the pulse repetition
frequency, since no more than a single count can be recorded per pulse. Also, neither the
specific length of the dead time nor the detailed dead time behavior of the system (whether it is
paralyzable or nonparalyzable) has any influence on the losses.

Under normal circumstances, we are more interested in a correction formula to predict
the true rate from the measured rate and the system dead time. Solving Eq. (4.38) for n, we
derive

n:fM(f§;> (4.39)

Recall that this correction is valid only under the conditions 7' <1 < (1/f — T).
In this case, the dead time losses are small under the condition m << f. Expanding the
logarithmic term above for this limit, we find that a first-order correction is then given by

m
1—m/2f

1%

n (4.40)

This result, because of its similarity to Eq. (4.24), can be viewed as predicting an effective
dead time value of 1/2f in this low-loss limit. Since this value is now one-half the source
pulsing period, it can be many times larger than the actual physical dead time of the detector
system.



PROBLEMS

4.1 Calculate the amplitude of the voltage pulse
produced by collecting a charge equal to that carried
by 10° electrons on a capacitance of 100 pF. (e = 1.602 x
107 ©)

4.2 Compare the characteristics of pulse, MSV, and cur-
rent mode operations as they are applied in radiation
measurement systems. Include a table that lists the advan-
tages and disadvantages of each.

4.3 Derive Eq. (4.8).

4.4 A detector with charge collection time of 150 ns is
used with a preamplifier whose input circuit can be
represented by the parallel combination of 300 pF and
10,000 ohms. Does this situation fall in the category of
small or large collection circuit time constant?

4.5 A scintillation counter operated at a given voltage
produces a differential pulse height spectrum as sketched

below:
AN

(a) Draw the corresponding integral pulse height
spectrum.

H

(b) Sketch the expected counting curve obtained by
varying the voltage to the detector while counting
above a fixed threshold.

4.6 Sketch both the differential and integral pulse height
spectra (using the same horizontal scale) for the following
cases:

(a) Pulses with single amplitude of 1 V

(b) Pulses uniformly distributed in amplitude between
Oand1V

(c) Pulses distributed around an average amplitude of
1.5 V with a pulse height resolution of 8%

4.7 A gamma-ray spectrometer records peaks corre-
sponding to two different gamma-ray energies of 435
and 490 keV. What must be the energy resolution of
the system (expressed as a percentage) in order just to
distinguish these two peaks?

4.8 In a detector with a Fano factor of 0.1 what should be
the minimum number of charge carriers per pulse to
achieve a statistical energy resolution limit of 0.5%?
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period of time shows a typical drift that broadens sin-
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Chapter 5

Ionization Chambers

Several of the oldest and most widely used types of radiation detectors are based on the effects
produced when a charged particle passes through a gas. The primary modes of interaction
involve ionization and excitation of gas molecules along the particle track. Although the excited
molecules can at times be used to derive an appropriate signal (as in the gas scintillators
discussed in Chapter 8), the majority of gas-filled detectors are based on sensing the direct
ionization created by the passage of the radiation. The detectors that are the topic of the
following three chapters (ion chambers, proportional counters, Geiger tubes) all derive, in
somewhat different ways, an electronic output signal that originates with the ion pairs formed
within the gas filling the detector.

Ion chambers in principle are the simplest of all gas-filled detectors. Their normal
operation is based on collection of all the charges created by direct ionization within the
gas through the application of an electric field. As with other detectors, ion chambers can be
operated in current or pulse mode. In most common applications, ion chambers are used in
current mode as dc devices, although some examples of pulse mode applications will be given
at the end of this chapter. In contrast, proportional counters or Geiger tubes are almost
always used in pulse mode.

The term ionization chamber has conventionally come to be used exclusively for the type of
detector in which ion pairs are collected from gases. The corresponding process in solids is the
collection of electron-hole pairs in the semiconductor detectors described in Chapters 11-13.
Direct ionization is only rarely exploited in liquids, although some developments of this type
are described in Chapter 19.

Many details that are omitted in the following discussions can be found in the classic books
on ionization chambers by Rossi and Staub! and by Wilkinson.? More specific descriptions of
chamber design and construction are included in other books, of which Refs. 3-5 are
representative examples.

I. THE IONIZATION PROCESS IN GASES

As a fast charged particle passes through a gas, the types of interaction detailed in Chapter
2 create both excited molecules and ionized molecules along its path. After a neutral
molecule is ionized, the resulting positive ion and free electron are called an ion pair,and it
serves as the basic constituent of the electrical signal developed by the ion chamber. Ions
can be formed either by direct interaction with the incident particle, or through a
secondary process in which some of the particle energy is first transferred to an energetic
electron or ““delta ray”’ (see Chapter 2). Regardless of the detailed mechanisms involved,
the practical quantity of interest is the total number of ion pairs created along the track of
the radiation.
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Table 5.1 Values of the Energy Dissipation per Ion Pair (the W-Value) for
Different Gases”

First Ionization EVEelGYjiompa)
Gas Potential (eV) Fast Electrons Alpha Particles
Ar 15.7 26.4 26.3
He 24.5 41.3 42.7
H, 15.6 36.5 36.4
N, 15.5 34.8 36.4
Air 33.8 351
0O, 12.5 30.8 322
CH, 145 27.3 29.1

“Values for W from ICRU Report 31, “Average Energy Required to Produce an Ion Pair,”
International Commission on Radiation Units and Measurements, Washington, DC, 1979.

A. Number of Ion Pairs Formed

At a minimum, the particle must transfer an amount of energy equal to the ionization energy of
the gas molecule to permit the ionization process to occur. In most gases of interest for radiation
detectors, the ionization energy for the least tightly bound electron shells is between 10 and
25 eV. However, there are other mechanisms by which the incident particle may lose energy
within the gas that do not create ions. Examples are excitation processes in which an electron
may be elevated to a higher bound state in the molecule without being completely removed.
Therefore, the average energy lost by the incident particle per ion pair formed (defined as the
W-value) is always substantially greater than the ionization energy. The W-value is in principle
a function of the species of gas involved, the type of radiation, and its energy. Empirical
observations, however, show that it is not a strong function of any of these variables and is a
remarkably constant parameter for many gases and different types of radiation. (This property
of gases is in contrast with the behavior observed for scintillation and semiconductor detector
media discussed later, both of which show large differences in the amount of signal generated by
different types of particles of the same energy.) Some specific data are shown in Table 5.1, and a
typical value is 25-35 eV/ion pair. Therefore, an incident 1 MeV particle, if it is fully stopped
within the gas, will create about 30,000 ion pairs. Assuming that W is constant for a given type of
radiation, the deposited energy will be proportional to the number of ion pairs formed and can
be determined if a corresponding measurement of the number of ion pairs is carried out.

B. The Fano Factor

In addition to the mean number of ion pairs formed by each incident particle, the fluctuation in
their number for incident particles of identical energy is also of interest. These fluctuations will
set a fundamental limit on the energy resolution that can be achieved in any detector based on
collection of the ions. In the simplest model, the formation of each ion pair will be considered a
Poisson process. The total number of ion pairs formed should therefore be subject to
fluctuations characterized by a standard deviation equal to the square root of the average
number formed. As discussed in Chapter 4, many radiation detectors show an inherent
fluctuation that is less than predicted by this simplified model. The Fano factor is introduced
as an empirical constant by which the predicted variance must be multiplied to give the
experimentally observed variance [see Eq. (4.14)].
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The Fano factor reflects to some degree the fraction of all the incident particle energy that is
converted into information carriers within the detector. If the entire energy of the incident
radiation were always converted into ion pairs, and the same amount of energy were required to
form each ion pair, then the number of pairs produced would always be precisely the same and
there would be no statistical fluctuation. Under these conditions the Fano factor would be zero.
The introduction of the Fano factor in the earlier discussion in Chapter 4 also points out the
importance of partitioning statistics when some of the particle energy is lost to processes that do
not result in ion pairs. If only a very small fraction of the incident radiation is converted,
however, then the ion pairs would be formed far apart and with a relatively low probability, and
there would be a good reason to expect that the distribution in their number should follow a
Poisson distribution. In gases, the Fano factor is empirically observed to be less than 1 so that
the fluctuations are smaller than would be predicted based on Poisson statistics alone.

The Fano factor has significance only when the detector is operated in pulse mode. We therefore
postpone further discussions of its magnitude in gases to the following chapter on proportional
counters, where pulse mode operation and good energy resolution are more important considerations.

C. Diffusion, Charge Transfer, and Recombination

The neutral atoms or molecules of the gas are in constant thermal motion, characterized by a
mean free path for typical gases under standard conditions of about 107°~10~8 m. Positive ions
or free electrons created within the gas also take part in the random thermal motion and
therefore have some tendency to diffuse away from regions of high density. This diffusion
process is much more pronounced for free electrons than for ions since their average thermal
velocity is much greater. A point-like collection of free electrons will spread about the original
point into a Gaussian spatial distribution whose width will increase with time. If we let o be the
standard deviation of this distribution as projected onto an arbitrary orthogonal axis (x, y, or z),
and ¢ be the elapsed time, then it can be shown that

o= V2Dt (5.1)

The value of the diffusion coefficient D in simple cases can be predicted from kinetic gas theory,
but in general, a more complex transport model is required to accurately model experimental
observations.®

Of the many types of collisions that will normally take place between free electrons, ions,
and neutral gas molecules, several that are important in understanding the behavior of gas-filled
detectors are shown schematically in Fig. 5.1. Charge transfer collisions can occur when a
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positive ion encounters another neutral gas molecule. In such a collision, an electron is
transferred from the neutral molecule to the ion, thereby reversing the roles of each. This
charge transfer is particularly significant in gas mixtures containing several different molecular
species. There will then be a tendency to transfer the net positive charge to the gas with the
lowest ionization energy because energy is liberated in collisions which leave that species as the
positive ion.

The free electron member of the original ion pair also undergoes many collisions in its
normal diffusion. In some species of gas, there may be a tendency to form negative ions by the
attachment of the free electron to a neutral gas molecule. This negative ion then shares many
properties with the original positive ion formed in the ionization process, but with opposite
electric charge. Oxygen is an example of a gas that readily attaches electrons, so that free
electrons diffusing in air are rapidly converted to negative ions. In contrast, nitrogen, hydrogen,
hydrocarbon gases, and noble gases all are characterized by relatively low electron attachment
coefficients, and therefore the electron continues to migrate in these gases as a free electron
under normal conditions.

Collisions between positive ions and free electrons may result in recombination in which the
electron is captured by the positive ion and returns it to a state of charge neutrality.
Alternatively, the positive ion may undergo a collision with a negative ion in which the extra
electron is transferred to the positive ion and both ions are neutralized. In either case, the
charge represented by the original pair is lost and cannot contribute further to the signal in
detectors based on collection of the ionization charge.

Because the collision frequency is proportional to the product of the concentrations of the
two species involved, the recombination rate can be written

dnt dn- "
_— - i 5.2
a ar " 52
where nt = number density of positive species

n~ = number density of negative species
o = recombination coefficient

The recombination coefficient is normally orders of magnitude larger between positive ions and
negative ions compared with that between positive ions and free electrons. In gases that readily
form negative ions through electron attachment, virtually all the recombination takes place
between positive and negative ions.

There are two general types of recombination loss: columnar recombination and volume
recombination. The first type (sometimes also called initial recombination) arises from the
fact that ion pairs are first formed in a column along the track of the ionizing particle. The
local density of ion pairs is therefore high along the track until the ion pairs are caused to
drift or diffuse away from their point of formation. Columnar recombination is most severe’
for densely ionizing particles such as alpha particles or heavy ions compared with fast
electrons that deposit their energy over a much longer track. This loss mechanism is
dependent only on the local conditions along individual tracks and does not depend on
the rate at which such tracks are formed within the detector volume. In contrast, volume
recombination is due to encounters between ions and/or electrons after they have left the
immediate location of the track. Since many tracks are typically formed over the time it
takes for ions to drift all the way to the collecting electrodes, it is possible for ions and/or
electrons from independent tracks to collide and recombine. Volume recombination
therefore increases in importance with irradiation rate. Thus charge separation and
collection should be as rapid as possible in order to minimize recombination, and high
electric fields are indicated for this purpose.
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II. CHARGE MIGRATION AND COLLECTION
A. Charge Mobility

If an external electric field is applied to the region in which ions or electrons exist in the gas,
electrostatic forces will tend to move the charges away from their point of origin. The net motion
consists of a superposition of a random thermal velocity together with a net drift velocity in a
given direction. The drift velocity for positive ions is in the direction of the conventional electric
field, whereas free electrons and negative ions drift in the opposite direction.

For ions in a gas, the drift velocity can be fairly accurately predicted from the relation

wé
V=— 5.3
- (5-3)
where v = drift velocity

& = electric field strength
p = gas pressure

The mobility p tends to remain fairly constant over wide ranges of electric field and gas pressure
and does not differ greatly for either positive or negative ions in the same gas. Tabulated values
for the mobility of ions in various gases can be found in Ref. 2. Typical values are between 1 and
1.5 x 107* m? atm/V - s for detector gases of medium atomic number. Therefore, at 1 atm
pressure, a typical electric field of 10* V/m will result in a drift velocity of the order of 1 m/s. Ion
transit times over typical detector dimensions of a centimeter will therefore be approximately
10 ms. By most standards, this is a very long time.

Free electrons behave quite differently. Their much lower mass allows a greater accelera-
tion between encounters with neutral gas molecules, and the value of the mobility in Eq. (5.3) is
typically 1000 times greater than that for ions. Typical collection times for electrons are
therefore of the order of microseconds, rather than milliseconds. In some gases, for example,
hydrocarbons and argon-hydrocarbon mixtures, there is a saturation effect in the electric drift
velocity (see Fig. 5.2). Its value approaches a maximum for high values of the electric field and
may even decrease slightly if the field is further increased. In many other gases (see Fig. 6.17),
the electron drift velocity continues to increase for the largest &/p values likely to be used in
gas-filled counters.

As the electrons are drifting through the gas under the influence of the electric field, they
will to first approximation follow the path of the electric field line that passes through their point
of origin (but in the reverse direction to the electric field vector). Random diffusion of the
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electrons will still be taking place, however, causing each individual electron to follow a slightly
different path. For strong electric field values, the increased average energy given to the
electron in the direction of the field results in different values of the diffusion coefficient [D in
Eq. (5.1)] for the directions that are parallel to or transverse to the field. Over the few
microseconds that are typically required for the electrons to reach a collecting electrode, the
diffusion in either direction might be of the order of a millimeter or less. While in most standard
detectors this charge spreading will have little practical effect, it does play a potential role in
limiting the position resolution attainable in ‘‘position-sensitive’ gas detectors that deduce the
location of the ionizing event through the position of arrival of the electrons at the anode, or
through measuring the electron drift time.

B. The Ionization Current

In the presence of an electric field, the drift of the positive and negative charges represented by
the ions and electrons constitutes an electric current. If a given volume of gas is undergoing
steady-state irradiation, the rate of formation of ion pairs is constant. For any small test volume
of the gas, this rate of formation will be exactly balanced by the rate at which ion pairs are lost
from the volume, either through recombination or by diffusion or migration from the volume.
Under the conditions that recombination is negligible and all the charges are efficiently
collected, the steady-state current produced is an accurate measure of the rate at which ion
pairs are formed within the volume. Measurement of this ionization current is the basic
principle of the dc ion chamber.

Figure 5.3 illustrates the basic elements of a rudimentary ion chamber. A volume of gas is
enclosed within a region in which an electric field can be created by the application of an
external voltage. At equilibrium, the current flowing in the external circuit will be equal to the
ionization current collected at the electrodes, and a sensitive ammeter placed in the external
circuit can therefore measure the ionization current.

The current-voltage characteristics of such a chamber are also sketched in Fig. 5.3.
Neglecting some subtle effects related to differences in diffusion characteristics between
ions and electrons, no net current should flow in the absence of an applied voltage because
no electric field will then exist within the gas. Ions and electrons that are created ultimately

/ Gas enclosure
Electrodes &, i

High irradiation rate

Low irradiation rate

Figure 5.3 The basic components of
an ion chamber and the corresponding
% current-voltage characteristics.
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disappear either by recombination or by diffusion from the active volume. As the voltage is
increased, the resulting electric field begins to separate the ion pairs more rapidly, and columnar
recombination is diminished. The positive and negative charges are also swept toward the
respective electrodes with increasing drift velocity, reducing the equilibrium concentration of
ions within the gas and therefore further suppressing volume recombination between the point
of origin and the collecting electrodes. The measured current thus increases with applied
voltage as these effects reduce the amount of the original charge that is lost. At a sufficiently
high applied voltage, the electric field is large enough to effectively suppress recombination to a
negligible level, and all the original charges created through the ionization process contribute to
the ion current. Increasing the voltage further cannot increase the current because all charges
are already collected and their rate of formation is constant. This is the region of ion saturation
in which ion chambers are conventionally operated. Under these conditions, the current
measured in the external circuit is a true indication of the rate of formation of all charges
due to ionization within the active volume of the chamber.

Provided recombination is negligible, it should be noted that the saturated current does not
change if the ionization electrons remain as free electrons during their drift, or are instead
attached to gas molecules to form negative ions. If attachment occurs, the drift velocity is now
thousands of times slower, but the equilibrium concentration of negative charges will then be
higher by the same factor. Since current depends on the product of the charge density and drift
velocity, the current remains the same as if free electrons were drifting.

C. Factors Affecting the Saturation Current

Several factors can detract from reaching saturation current in an ion chamber. The most
important of these is recombination, which is minimized by ensuring that a large value of the
electric field exists everywhere within the ion chamber volume. Columnar recombination along
the track of heavy charged particles (such as alpha particles or fission fragments) is particularly
significant, so that larger values of the applied voltage are required in these cases to achieve
saturation, compared with electron or gamma-ray irradiation. Also, the effects of volume
recombination are more important for higher intensity of the irradiation (and thus higher ion
currents), as illustrated in Fig. 5.4. Here the percentage by which the measured current falls
short of true saturation is seen to increase as a function of the measured ion current. At the
lower irradiation levels, the density of ions and electrons (or negative ions) is correspondingly
low, and from Eq. (5.2), the recombination rate is less significant than at high rates. Thus higher
voltages are required at high irradiation rates to approach the true saturated ion current. This
dependence is evident in the current-voltage characteristics shown in Fig. 5.3 and also is
apparent in the example of an ionization chamber used for neutron monitoring shown in
Fig. 14.15. In chambers operated with ambient air as the fill gas, increases in the humidity level
will also raise the volume recombination rate.'®
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If the production of ion pairs is uniform throughout the volume of the ion chamber, the drift
of positive charges toward the cathode and negative charges toward the anode will create some
imbalance in the steady-state concentrations of the two charge carriers. The concentration of
positive ions will be greatest near the cathode; the opposite is true for the negative charges.
Wherever a gradient exists for a species that is free to migrate, some net diffusion must take
place in the direction of decreasing concentration. The direction of diffusion is therefore
opposite that of the charge carrier flow caused by the electric field, and the effect can be to
reduce the measured ion current. From an analysis given by Rossi and Staub' the perturbation
in the measured ion current is given by

AI_ekT
I eV

where parallel planar electrodes have been assumed. In this expression,

(5.4)

e = ratio of the average energy of charge carrier with electric field
present to that without the electric field

k = Boltzmann constant

T = absolute temperature

e = electronic charge

V = applied voltage between electrodes

The size of this loss in the saturation current depends primarily on the applied voltage and the
size of the quantity e defined above. At room temperature, the factor k7/e is approximately
2.5 x 1072 V. For ions, € is not much larger than unity, and Eq. (5.4) therefore predicts that the
loss due to diffusion is negligible even for low values of the applied voltage. When the negative
charge is carried by free electrons, however, € can be of the order of several hundred and a
significant loss in saturation current due to electron diffusion is possible. Because e will tend
toward a limiting saturated value as the voltage V is raised to high values, the loss is minimized
by operating the chamber at high values of the applied voltage.

In many cases, losses due to diffusion and volume recombination can be reduced to
insignificant levels at reasonable values of the applied voltage. Columnar recombination is
more difficult to eliminate completely, and small losses may persist even at the highest available
voltages. It is then helpful to make a number of measurements of the ionization current as a
function of voltage in order to determine the true saturated current. It has been shown'! that
under these conditions a plot of 1/1 versus 1/V can be used to extrapolate the measurements to
zero on the 1/V axis (infinite electric field) to make an accurate prediction of the saturated
value of the current.

III. DESIGN AND OPERATION OF DC ION CHAMBERS

A. General Considerations

When an ion chamber is used in direct current mode, it is possible to collect the negative charges
either as free electrons or as negative ions. Therefore, virtually any fill gas can be used for the
chamber, including those that have high electron attachment coefficients. Although re-
combination is more significant when negative ions are formed, diffusion losses are less
important. Conditions of saturation can normally be achieved over dimensions of a few
centimeters using applied voltages that are no greater than tens or hundreds of volts. Air is
the most common fill gas and is one in which negative ions are readily formed. Air is required in
those chambers designed for the measurement of gamma-ray exposure (see p. 142). Denser
gases such as argon are sometimes chosen in other applications to increase the ionization
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density within a given volume. The fill gas pressure is often 1 atmosphere, although higher
pressures are sometimes used to increase the sensitivity.

The geometry chosen for an ion chamber can be varied greatly to suit the application,
provided the electric field throughout the active volume can be maintained high enough to lead
to saturation of the ion current. Parallel plate or planar geometry leads to a uniform electric
field between the plates. Also common is a cylindrical geometry in which the outer shell of the
cylinder is operated at ground potential and an axial conducting rod carries the applied voltage.
In this case, a field that varies inversely with radius is created. Analytical methods that can be
used to predict the current-voltage characteristics of chambers of various geometries are
described in Ref. 12.

B. Insulators and Guard Rings

With any design, some sort of supporting insulator must be provided between the two
electrodes. Because typical ionization currents in most applications are extremely small (of
the order of 10712 A or less), the leakage current through these insulators must be kept very
small. In the simple scheme of Fig. 5.3, any leakage through the insulator will add to the
measured ionization current and cause an unwanted component of the signal. In order to keep
this component below 1% of an ionization current of 10~'2 A for an applied voltage of 100 V,
the resistance of the insulator would need to be greater than 10'® ohms. Although it may be
possible to find materials with bulk resistivity sufficiently high to meet this criterion, leakage
paths across the surface of the insulator due to absorbed moisture or other contaminants almost
always represent a lower resistance. A different design is therefore often used in low-current
applications of ion chambers in which a guard ring is employed to reduce the effects of insulator
leakage.

A diagram illustrating the use of a guard ring is shown in Fig. 5.5. The insulator is now
segmented into two parts, one part separating the conducting guard ring from the negative
electrode and the other part separating it from the positive electrode. Most of the voltage drop
occurs across the outer segment in which the resulting leakage current does not pass through
the measuring instrument. The voltage drop across the inner segment is only the voltage
difference across the ammeter terminals and can be very small. Therefore, the component of
leakage current that is added to the signal is greatly reduced compared with the case without
the guard ring.

Insulators for applications that do not involve high radiation fields are normally manufactured
from one of the high-resistivity synthetic plastics. Care is taken to keep the surface smooth and as
free of defects as possible in order to minimize the amount of moisture absorption. Radiation
damage in these materials in high radiation applications (such as in reactor instruments) can lead
to rapid deterioration of the insulation properties. In such cases, inorganic materials such as
ceramics are preferred because of their higher resistance to radiation damage.

Figure 5.5 Cross-
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C. Measurement of the Ion Current

The magnitude of the ionization current under typical conditions is much too small to be
measured using standard galvanometer techniques. Instead, some active amplification of the
current must be carried out to allow its indirect measurement. An electrometer indirectly
measures the current by sensing the voltage drop across a series resistance placed in the
measuring circuit (see Fig. 5.6). The voltage developed across the resistor (typically with a value
of 10°-10'* ohms) can be amplified and serves as the basis for the measured signal. One
weakness of standard electrometer circuits is that they must be dc coupled throughout. Any
small drift or gradual change in component values therefore results in a corresponding change
in the measured output current. Thus, circuits of this type must frequently be balanced by
shorting the input and resetting the scale to zero.

An alternative approach is to convert the signal from dc to ac at an early stage, which then
allows a more stable amplification of the ac signal in subsequent stages. This conversion is
accomplished in the dynamic-capacitor or vibrating reed electrometer by collecting the ion
current across an RC circuit with long time constant, as shown in Fig. 5.7. At equilibrium, a
constant voltage is developed across this circuit, which is given by

V =1IR (5.5)
where I is the steady-state ionization current. A charge Q is stored on the capacitance, which is
given by

Q0=CV (5.6)

If the capacitance is now caused to change rapidly compared with the time constant of the
circuit, a corresponding change will be induced in the voltage across C given by

AV = %AC
AV = 1§Ac (5.7)

If the value of the capacitance is varied sinusoidally about an average value C, the amplitude of
the ac voltage that is induced is therefore proportional to the ionization current.
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Figure 5.6 Measurement of small ion currents through the use of a series resistance R and an
electrometer to record the resulting dc voltage Vg. The chamber capacitance plus any parallel stray
capacitance is represented by C. Provided the ion current does not change for several values of the
measurement time constant RC, its steady-state value is given by [ = Vg/R.
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lon chamber

Figure 5.8 Measurement of the total charge due to ionization AQ over a finite period of time by
integration of the current. The voltage across the chamber is initially set to Vj and the voltage source is
disconnected. By measuring V at a later time, the ionization charge is given by AQ = C AV, where AV =
Vo - V, and C is the capacitance of the chamber plus any parallel capacitance.

The average ionization current can also be measured over finite periods of time by
integration methods. If the value of R in Fig. 5.6 is made infinite, any ionization current
from the chamber is simply integrated across the capacitance C. By noting the change in the
voltage across the capacitance over the measurement period, the total integrated ionization
current or ionization charge can be deduced. If the amount of natural leakage across the
capacitance can be kept small, this integration technique has the potential of being able to
measure much smaller ionization currents than through direct dc current measurement.

Toillustrate, suppose that the ion chamber of Fig. 5.8 is originally charged to a voltage V). If
the leakage across the chamber insulators and external capacitor is negligible, this voltage
would be maintained at its original value indefinitely in the absence of ionizing radiation. If
radiation is present, the ions will act to partially discharge the capacitance and reduce the
voltage from its original value. If a charge AQ (defined either as the positive charge of the
positive ions or the negative charge of the electrons) is created by the radiation, then the total
charge stored on the capacitance will be reduced by AQ. The voltage will therefore drop from
its original value of V by an amount AV given by

AQ
AV = C (5.8)
A measurement of AV thus gives the total ionization charge or the integrated ionization current
over the period of the measurement.

D. The Electret

The previous section described the measurement of ionization current integrated over a period
of time by noting the drop in voltage measured across the chamber capacitance after an initial
charging to a known voltage. A similar measurement can be carried out by noting the drop in
surface voltage on an element known as an electret'>~'° that is placed inside an ion chamber. An
electret is a sample of dielectric material (commonly Teflon) that carries a quasi-permanent
electrical charge. A disk of the material of approximately 1-cm diameter and 1-mm thickness is
fabricated by heating in the presence of an electric field and then cooling to “freeze” electric
dipoles in place. A voltage of up to 1000 V may then appear between the opposite surfaces of
the electret. With proper encapsulation, this stored charge may be stable over periods of a year
or more, even in the presence of high humidity.

An electret placed with one of its surfaces in contact with the conducting walls of an ion
chamber will create an electric field throughout the chamber volume because of the voltage
difference on its opposite surface. Any ion pairs created by radiation within the chamber will
be separated and collected by this field, serving to partially neutralize the charge carried by the
electret. Measurements of the electret voltage before and after the exposure can then be
calibrated in terms of the total ionization charge produced in the chamber. Electrets serve as
the basis of the Electret Passive Environmental Radon Monitor (E-PERM), which is widely
used to measure the ionization created by the alpha particles produced in the decay of radon
that diffuses into the chamber.
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IV. RADIATION DOSE MEASUREMENT WITH ION CHAMBERS

A. Gamma-Ray Exposure

One of the most important applications of ion chambers is in the measurement of gamma-ray
exposure. An air-filled ion chamber is particularly well-suited for this application because
exposure is defined in terms of the amount of ionization charge created in air.! Under the
proper conditions a determination of the ionization charge in an air-filled ionization chamber
can give an accurate measure of the exposure, and a measurement of the ionization current will
indicate the exposure rate.

The task of measuring exposure is somewhat more complicated than it might first appear,
because it is defined in terms of the ionization created by all the secondary electrons generated
at the point at which the dose is to be measured. Strictly speaking, one would need to follow
each of these secondary electrons over its entire range and measure all the ionization created
along its track. Because the range in air of secondary electrons created by typical gamma-ray
energies can be several meters, it is impractical to design an instrument that would carry out
such a measurement directly. Instead, the principle of compensation is used.

If the test volume of air is surrounded by an infinite sea of equivalent air that is also subject
to the same exposure over the course of the measurement, an exact compensation will occur.
That is, all the ionization charge created outside the test volume from secondary electrons that
were formed within the volume is exactly balanced by charge created within the test volume
from secondary electrons formed in the surrounding air. This situation is illustrated in Fig. 5.9.

Figure 5.9 The principle of com-
pensation in the measurement of
gamma-ray exposure. If the density of
gamma-ray interactions is uniform,
the test volume will record an amount
of ionization that is just equal to that
produced along the extended tracks of
all the secondary electrons formed
within the test volume (such as tracks
® and @). The ionization produced by
these electrons outside the volume is
compensated by ionization within the
volume that is produced by tracks
originating elsewhere (such as tracks
® and @).

volume

'The fundamental SI unit of exposure corresponds to that amount of X-ray or gamma-ray radiation whose associated
secondary electrons create an ionization charge of 1 coulomb per kilogram of dry air at STP (see Chapter 2).
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One popular design based on this compensation is diagrammed in Fig. 5.10 and is called the
free-air ionization chamber. Each end of the chamber is rendered insensitive by grounding the
guard electrodes shown in the diagram. The parallel plate geometry creates electric field lines
that are perpendicular to the plates in the space between them, but only the volume defined by
the central electrode collects ionization current that is registered by the external circuit. The
incident gamma-ray beam is collimated so that it is confined to a region that is far from the
chamber electrodes, and secondary electrons created in the sensitive volume cannot reach
either electrode. Compensation is therefore not required in the vertical dimension but will take
place in the horizontal dimension, provided the intensity of the incident radiation beam is not
appreciably reduced in its passage through the chamber. Free-air ionization chambers are
widely used for accurate exposure measurements for gamma-ray energies below about 150 ke'V.

At higher energies, the larger range of the secondary electrons creates some difficulties. In
order to prevent ionization loss from secondary electrons reaching the electrodes, the dimen-
sions of the chamber must become impractically large.!® Therefore, gamma-ray exposure
measurements at higher energies are conventionally carried out in cavity chambers in which a
small volume of air is surrounded by a solid material (chosen because its properties are as
similar as possible to air).

To see how compensation can take place in such a situation, first consider the hypothetical
arrangement sketched in Fig. 5.11 in which a small volume of air is defined by ideal electrodes
that are transparent to both gamma rays and electrons. If this test volume is at the center of a
large volume of air that is subject to the same exposure, the compensation previously described

==L ==

Figure 5.11 Compensation in an ideal ion chamber on the left with fully transparent electrodes could
be accomplished by secondary electrons created outside the chamber. However, uniform irradiation
conditions seldom exist over the required large surrounding volume of air. On the right, the chamber is
provided with air equivalent solid walls that are thicker than the maximum secondary electron range.
Now compensation can take place from secondary electrons formed within the much smaller volume
of the walls.
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will take place. For gamma-ray energies greater than a few hundred keV, however, the
extended range of the secondary electrons makes the required surrounding volume of air
much too large. The test volume would have to be at the center of a room-sized volume of air
throughout which the exposure is the same as at the test volume itself. In practical situations
uniform exposure conditions seldom exist over such large volumes.

The situation could be improved by compressing the air surrounding the test volume into a
shell, which could then be no more than a centimeter or two in thickness. Because the same
number of air molecules would still be present, none of the compensation properties would
change and the test volume would still register an accurate measure of gamma-ray exposure.
Now the demands of uniformity could be greatly relaxed to require only that the exposure be
uniform over the much smaller volume defined by the shell of compressed air. Under these
conditions, all ionization lost from the test volume will be compensated by ionization from
secondary electrons created within the compressed air shell.

It is now only one step further to replace the hypothetical compressed air shell with a more
practical wall of solid material (see Fig. 5.11). The wall is said to be air equivalent if its
compensation properties are similar to those of an air layer. This condition will be met provided
the secondary electron yield and rate of electron energy loss per unit mass are similar to those of
air. Because both these phenomena depend largely on atomic number, it turns out that virtually
any material with atomic number close to that of air (such as aluminum or plastics) is reasonably
air equivalent.

If the walls are sufficiently thick compared with secondary electron ranges, a condition of
electronic equilibrium is established in which the flux of secondary electrons leaving the inner
surface of the wall becomes independent of the wall thickness. Neglecting attenuation of the
incident gamma-ray beam in the wall, the measured ion current from a chamber of constant air
volume will then be the same, independent of the wall thickness. Table 5.2 lists the minimum
air-equivalent wall thickness required to establish electronic equilibrium. For ordinary gamma-
ray energies, this thickness is 1 cm or less.

Table 5.2 Thicknesses of Ionization Chamber Walls Required
for Establishment of Electronic Equilibrium®

Photon Energy (MeV) Thickness® (g/cm?)

0.02 0.0008
0.05 0.0042
0.1 0.014
0.2 0.044
0.5 0.17
1 0.43
2 0.96
5 2.5

10 4.9

“From International Commission on Radiation Units and Measurements
Report ICRU #20 (1971).

>The thickness quoted is based on the range of electrons in water. The
values will be substantially correct for tissue-equivalent ionization chamber
walls and also for air. Half of the above thickness will give an ionization
current within a few percent of its equilibrium value.
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For an air-equivalent ion chamber, the exposure rate R in C/kg - s is simply given by the ratio
of the saturated ion current /; (in amperes) to the mass M (in kg) contained in the active volume:
I,
R=— 59
= (59)
The air mass M is normally calculated from a measurement of the chamber volume and the
density at STP,

kg P T
M=1. 293 Ve— 5.10
where V = chamber volume (in m?)
P = air pressure within the chamber

P, = standard pressure (760 mm Hg, or 1.013 x 10° Pa)
T = air temperature within the chamber
Ty = standard temperature (273.15 K)

In routine monitoring, exposure rates of the order of 10~ roentgens/hour (7.167 x 10711 C/kg - 5)
are of typical interest. For an ion chamber of 1000 cm’ volume, the saturated ion current at
standard temperature and pressure calculated from Egs. (5.9) and (5.10) is 9.27 x 1074 A.
Because this signal current is very low, sensitive electrometers and careful chamber design are
required to minimize leakage currents.

From Eg. (5.9), the ion current I; expected is simply proportional to the mass of the gas
within the chamber. Therefore it can only be enhanced by increasing either the chamber
volume or pressure. Thus ion chambers designed to measure very low exposure rates are
routinely filled to a high pressure to raise their sensitivity. Because of the increased frequency of
collisions in the gas at high pressures, argon is often then substituted for air to avoid the greater
recombination rate that accompanies negative ion formation.

B. Absorbed Dose

Gas-filled ionization chambers can also be applied indirectly to the measurement of absorbed
dose (the energy absorbed per unit mass) in arbitrary materials. The technique is based on
application of the Bragg—Gray principle, which states that the absorbed dose D,, in a given
material can be deduced from the ionization produced in a small gas-filled cavity within that
material as follows:

Dy = WS,P (5.11)

where W = average energy loss per ion pair formed in the gas
Sm = relative mass stopping power (energy loss per unit density) of
the material to that of the gas
P = number of ion pairs per unit mass formed in the gas

In order for the dose D,, to be measured in grays (J/kg), W must be expressed in J/ion pair and P
in ion pairs/kg. Equation (5.11) holds to good approximation for different types of radiation
provided several geometric conditions are met. The cavity should be small compared with the
range of the primary or secondary charged particles associated with the radiation so that its
presence does not greatly affect the particle flux. In the case of gamma rays, the solid medium
should also be large compared with the range of the secondary electrons so that electronic
equilibrium is established at the inner walls of the cavity.

For an ion chamber, the solid medium is the wall material and the cavity is its internal gas-
filled volume. If the gas is air and the wall is air-equivalent material, the factor S,,, in Eq. (5.11) is
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unity. These are the conditions necessary for measurement of absorbed dose in air, which is
equivalent to measurement of the gamma-ray exposure discussed in the previous section. If
other wall materials or gases are used, the absorbed dose in the wall can be calculated by
inserting appropriate values for W and S,, in Eq. (5.11). The dose in biological tissue is of
particular interest in radiation protection, so that ““tissue-equivalent’ ion chambers are widely
applied in which the wall is made from a material with an elemental composition similar to that
of tissue.

In some applications, there is a problem in keeping the cavity small enough so that the
Bragg—Gray principle applies. For example, if the spectrum of gamma rays under measurement
extends to very low photon energies, the corresponding secondary electron ranges will be short.
An ion chamber with small internal dimensions compared with these ranges would result in
very small ion currents, which may cause measurement difficulties. In these applications, use
can be made of the “extrapolation chamber,”” which consists of a pair of electrodes made from
the material of interest mounted with variable spacing between them. A series of measurements
can be carried out with different electrode spacings and the measured ion current per unit
volume extrapolated to the case of zero spacing. With a vanishingly small cavity, the Bragg—
Gray principle is once again applicable and the absorbed dose rate can be calculated from this
extrapolated ion current.

V. APPLICATIONS OF DCION CHAMBERS

A. Radiation Survey Instruments

Sensitivity

10

—
o

0.1

0.01

Portable ion chambers of various designs are commonly used as survey instruments for
radiation monitoring purposes. These typically consist of a closed air volume of several
hundred cm® from which the saturated ion current is measured using a battery-powered
electrometer circuit. Walls are approximately air equivalent and may be fabricated from
plastic or aluminum. These instruments give relatively accurate measurements of the exposure
for gamma-ray energies high enough to avoid significant attenuation in the walls or entrance
window of the chamber, but low enough so that electronic equilibrium is established in the
walls. Figure 5.12 shows calibration curves for two such instruments and illustrates the drop-off
in sensitivity for gamma-ray energies that are less than 50-100 keV due to window attenuation.

Other types of portable ion chambers used for dose measurements are based on the charge
integration principle. As described previously, the chamber is initially charged, placed in the
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radiation field for a period of time, and the resulting drop in chamber voltage is used as a
measure of the total integrated ionization charge. The “Condenser R-meter’ consists of a
charger-reader mechanism and several interchangeable ion chambers of different sizes and
wall thicknesses. Each is designed to cover a different range of gamma-ray energy and
maximum dose. When used in the proper range, these devices can give results that are accurate
to within a few percent. Another related instrument is a small-size ion chamber known as a
“pocket chamber.” These are often provided with an integral quartz fiber electroscope that can
be read on an internal scale by holding the pocket chamber up to the light. An initial charging of
the chamber zeros the scale of the electroscope. The pocket chamber is then worn during the
period of monitoring. The total integrated dose can be checked periodically simply by noting
the degree of discharge of the chamber as indicated on the electroscope. The ultimate
sensitivity of such devices is normally limited by leakage current, which inevitably occurs
across the insulator surface over long periods of time.

B. Radiation Source Calibrators

Many of the common applications of ion chambers take advantage of their excellent long-term
stability. When operated in the saturated region, the ion current depends only on the geometry
of the source and detector and can remain stable over very long periods of time. For example,
the standardization of gamma-ray emitters is often carried out by comparing the ion current
from an unknown source with that generated by a standard source under identical geomet
Typical operating characteristics can remain stable to within + 0.1% over several years,
eliminating the need for frequent recalibration.

One specific design of such a chamber is shown in Fig. 5.13. Typical chamber volumes are
several thousand cm?3 and the walls are usually made of brass or steel. The inner collecting elec-
trode is made of a thin foil of aluminum or copper to avoid unnecessary radiation attenuation.
The geometry is chosen to avoid low-field regions that could lead to changes in the effective
active volume with applied voltage. In such a chamber with a 10* cm® active volume, the
saturation current produced by 1 wCi (3.7 x 10% Bq) of ®°Co is on the order of 10~ A, about five
times the background current.?° If higher sensitivity is needed, the gas within the ion chamber
may be pressurized. Raising the pressure to 20 atm will increase the ion current by a factor of 20,
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but the total background arising from all sources will increase by a lesser factor. For large
chambers, the component of background arising from alpha activity of the chamber walls should
be independent of pressure, provided the alpha particles are already fully stopped within the gas.
Pressurizing the chamber, however, requires the use of relatively thick entrance windows, which,
although not usually a problem for gamma rays, can interfere with the extension of the
applications to include pure beta-emitting isotopes.

C. Measurement of Radioactive Gases

Radioactive gases can conveniently be measured by incorporating them as a constituent of the
fill gas of an ionization chamber. Entrance and exit ports are provided to the chamber volume to
allow introduction of the gas to be sampled on a continuous flow basis. Examples of specificion
chamber designs of this type are given in Refs. 9, 20, and 21.

The ionization current expected from a given quantity of radioactive gas within the
chamber is given by

I=—— (5.12)
where = ionization current (in A)
= average energy deposited in the gas per disintegration (in eV)
= total activity (in Bq)

= electronic charge (in C)
W = average energy deposited per ion pair in the gas (ineV)

® R M~

The quantity E is simple to predict only in the case of very small radiation energies that are
nearly always fully absorbed within the chamber gas. For example, the soft beta particles emitted in
the decay of tritium have an average energy of 5.65 keV, and E can be taken as equal to this value
for chambers that are large compared with the corresponding beta particle range in the gas.
Equation (5.12) then predicts a sensitivity of about 1 pA/uCi, or 2.7 x 1077 A/Bg. Once a beta
particle energy is large enough so that typical ranges are comparable to chamber dimensions, more
complex procedures are required to estimate the average energy deposited (e.g., see Ref. 22).

A common application is one in which samples of air that contain trace quantities of a
radioactive gas are to be continuously monitored. When the gas that flows through the chamber
is subject to atmospheric changes, a number of difficulties can arise. These perturbing influences
can include effects due to moisture, aerosols, ions, and smoke,” which may be found in the
sampled air. Prior treatment of the incoming air by filtration or electrostatic precipitation can
help to control many of these influences.”

The chamber will also be sensitive to the ambient gamma-ray background radiation. If
constant, this background can be eliminated by simple subtraction of the signal recorded when
the chamber is filled with pure air. In other situations in which the gamma-ray background may
change during the course of the measurement, a twin chamber filled with pure air can be used to
generate a compensating signal that is subtracted from that produced by the chamber through
which the sample gas is circulated.?’

D. Remote Sensing of Ionization

A novel application of ionization chambers has been demonstrated®*2° that exploits the fact
that positive and negative ions formed in air can survive for periods of seconds or minutes

The decrease in ionization current from an internal alpha particle source due to smoke particles is the operational basis of the
familiar ionization-type home smoke detector.
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before losing their charge to recombination. These ions can be entrained in a flow of air and, if
kept away from surfaces that enhance recombination, may be transported a substantial distance
from their point of formation. If a flow of air containing such ions is introduced into an ion
chamber, then a current will be observed resulting from the motion of these ions in its electric
field even if no ions are created within the volume of the ion chamber itself. No radioactivity
needs to be transported into the chamber, but the presence of the ions themselves in the air
stream introduced into a chamber is sufficient to create the signal.

This principle is the basis of an instrument called the long-range alpha detector (LRAD).
Samples of materials or equipment that might be contaminated by alpha particle emitters are
placed into a container through which there is a flow of air. Since the range of the alpha particles
is only a few centimeters in air, their direct detection would require bringing a suitable detector
very near to the surface, a process that may be impractical because of inaccessibility of the
surfaces. Instead, the air stream flowing past these surfaces will pick up some of the positive and
negative ions and transport them downstream through a conventional ion chamber. The drift of
the ions in the chamber electric field takes place over milliseconds, so the slower motion of the
air flow does not play an important role in the detected signal. This application illustrates that
the ion current results from the motion of the ions within the field of the ion chamber, regardless
of where these ions were originally formed.

VI. PULSE MODE OPERATION

A. General Considerations

Most applications of ionization chambers involve their use in current mode in which the
average rate of ion formation within the chamber is measured. Like many other radiation
detectors, ion chambers can also be operated in pulse mode in which each separate radiation
quantum gives rise to a distinguishable signal pulse. As outlined in Chapter 4, pulse mode
operation can offer significant advantages in sensitivity or ability to measure the energy of the
incident radiation. Pulse mode ion chambers are used to some extent in radiation spectroscopy,
although they have largely been replaced by semiconductor diode detectors (see Chapter 11)
for many such applications. However, pulse ion chambers remain important instruments in
certain specialized applications such as large-area alpha spectrometers or in neutron detectors
of the type described in Chapter 14.

The equivalent circuit of an ion chamber operated in pulse mode is shown in Fig. 5.14. The
voltage across the load resistance R is the basic electrical signal. In the absence of any ionization
charge within the ion chamber, this signal voltage is zero, and all the applied voltage V, appears
across the ionization chamber itself. When an ionizing particle passes through the chamber, the
ion pairs that are created begin to drift under the influence of the electric field. As will be shown
in the analysis below, these drifting charges give rise to induced charges on the electrodes of the
ion chamber that reduce the ion chamber voltage from its equilibrium value V. A voltage then

lon chamber
Figure 5.14 Equivalent circuit of an ion chamber
operated in pulse mode. Here C represents the
capacitance of the chamber plus any parallel

Vo capacitance. V is the output pulse waveform.
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appears across the load resistance, which is equal to the amount by which the chamber voltage
has dropped. When all charges within the chamber have been collected at the opposite
electrodes, this voltage reaches its maximum value. There then follows a slow return to
equilibrium conditions on a time scale determined by the time constant RC of the external
circuit. During this period, the voltage across the load resistance gradually drops to zero and the
chamber voltage returns to its original value V. If the time constant of the external circuit is
long compared with the time required to collect the charges within the chamber, a signal pulse is
produced whose amplitude indicates the magnitude of the original charge generated within the
ion chamber.

As indicated in the earlier discussion of electron and ion mobilities in gases, typical times
required to collect free electrons over several centimeters are a few microseconds. On the other
hand, ions (either positive or negative) drift much more slowly and typically require collection
times of the order of milliseconds. Therefore, if a signal that accurately reflects the total
contribution of both the ions and electrons is to be generated, the collection circuit time
constant and subsequent pulse-shaping time constants must be long compared with a milli-
second. Under these conditions, the ion chamber must be restricted to very low pulse rates to
avoid excessive pulse pile-up. Furthermore, the sensitivity of the output of the shaping circuits
to low frequencies makes the system susceptible to interference from microphonic signals
generated by mechanical vibrations within the ion chamber.

For these reasons, pulse-type ion chambers are more often operated in the electron-
sensitive mode. Here a time constant is chosen that is intermediate between the electron
collection time and the ion collection time. The amplitude of the pulse that is produced then
reflects only the drift of the electrons and will have much faster rise and fall times. Shorter
shaping time constants and much higher rates can therefore be tolerated. A significant sacrifice
has been made, however, in that the amplitude of the output pulse now becomes sensitive to the
position of the original radiation interaction within the chamber and no longer reflects only the
total number of ion pairs formed. The use of more complex gridded chambers, described in a
later section, can overcome this disadvantage to a large degree. The fill gas of any electron-
sensitive ion chamber must of course be chosen from those gases in which the electrons remain
as free electrons and do not form negative ions.

B. Derivation of the Pulse Shape

The shape of the pulse produced from the flow of charges within detectors of arbitrary geometry
is best addressed using the Shockley-Ramo theorem outlined in Appendix D. However, in the
simple case of an ion chamber with parallel plate electrodes that are separated by a small
spacing compared with the length and width of the plates, edge effects can be neglected and the
analysis can be assumed to involve only one variable: the position of the charges in the
dimension perpendicular to the plates. It is instructive to then follow a simplified derivation of
the pulse shape that invokes arguments based only on the conservation of energy. This
derivation gives the correct results and avoids the mathematical complexity that might obscure
some of the physical behavior that is important in determining the characteristics of the output
pulse expected under these conditions.

In the derivation that follows, we assume that a sufficient electric field is applied so that
electron—ion recombination is insignificant and also that the negative charges remain as free
electrons. We first derive an expression for the pulse shape for the case in which the collecting
circuit time constant is much longer than both the ion and electron collection times.

The pulse shape depends on the configuration of the electric field and the position at which
the ion pairs are formed with respect to the equipotential surfaces that characterize the field
geometry. To simplify the following analysis, we assume that the chamber electrodes are
parallel plates, for which the equipotential surfaces are uniformly spaced planes parallel to the
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electrode surfaces, and the constant electric field intensity is given by

= 7 (5.13)
Here V is the voltage across the chamber electrodes and d is their spacing. As a further
simplification, we assume that all ion pairs are formed at an equal distance x from the
positive electrode where the electric potential is equal to &x. This situation is sketched in
Fig. 5.15.

The pulse shape is most easily derived based on arguments involving the conservation
of energy. Because the time constant of the external circuit is assumed to be large, no
appreciable current can flow during the relatively short time required to collect the charges
within the ion chamber. Therefore, the energy required to move the charges from their
place of origin must come from the energy originally stored across the capacitance C,
represented by the ion chamber and associated stray capacitance. This energy is %CVOZ,
where V), is the applied voltage.

After a time ¢, the ions will have drifted a distance vt toward the cathode, where v* is the
ion drift velocity. Similarly, the electrons will have moved a distance v~ ¢ toward the anode. Both
of these motions represent the movement of charge to a region of lower electric potential, and
the difference in potential energy is absorbed in the gas through the multiple collisions the
charge carriers undergo with gas molecules during their motion. This energy is equal to QA¢ for
both the ions and electrons, where Q is the total charge and A¢ is the change in electric
potential. The charge O = ngpe, where ng is the number of original ion pairs and e is the electronic
charge. The potential difference A¢ is the product of the electric field & and the distance
traveled toward the electrode. Conservation of energy can therefore be written

original energy energy remaining
stored = absorbed +  absorbed + stored
energy by ions by electrons energy
1 1
3 CVE = nmedvt +  nmeebvt + 5 CVZ
1

EC(V% — V%) = noe(vt +v7)t

2C(WVo+ Ven) (Vo — V) = moe (%) Vv (5.14)
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The signal voltage is measured across R in Fig. 5.15 and is denoted as V. Its magnitude is
almost always small compared with Vj, and is given by V — V.. We can therefore make the
approximations

Vch ﬁ
d

Vo+ Ve =22Vy and p o

Putting these substitutions in Eq. (5.14), we obtain

lc(zvg)VR = noe(v )(v +v7)t

noe
Vi =

rrei R (5.15)
This result describes the initial portion of the signal pulse and predicts a linear rise with
time. It is valid only for the period that both the ions and electrons are drifting within the
chamber.

The concept of induced charge is sometimes used to describe the changes caused by the
drifting charge carriers. By drifting a distance v't, the ions cause the chamber voltage to drop by
an amount equal to ngev*t/dC. The same effect would be caused by the reduction of the charge
stored across the capacitance C by an amount ngev't/d. Therefore, the ion motion can be
thought of as inducing a charge of this magnitude. A similar induced charge is created by the
electron motion. It should be emphasized that the induced charge results only from the motion
of the charge carriers within the chamber volume and does not require their collection at either
electrode.

After a time t~ = x/v~, the electrons reach the anode. Their drift has then contributed the
maximum possible to the signal voltage, and the second term in Eq. (5.15) becomes a constant
equal to its value at ¢~. This constant value is ngev ™t~ /dC or npex/dC. For the next period of
time, only the ions are still drifting, and Eq. (5.15) takes the form

Vi = ”0"’ SE Wt +x) (5.16)

The ions reach the cathode after a time t* = (d — x)/v*t. At this point, the signal voltage no
longer increases, and Eq. (5.15) becomes

nge

V=3¢

—d—x)+x]
or
npe
Ve=— 517
R—"C (5.17)
The shape of the signal pulse predicted by Egs. (5.15), (5.16), and (5.17) is shown in
Fig. 5.16. When the collection circuit time constant is very large, or RC >>¢", the maximum
amplitude of the signal pulse is given by

npe

Vimax = " (5.18)

and is independent of the position at which the ion pairs were formed within the chamber.
Under these conditions, a measurement of the pulse amplitude V .« gives a direct indication of
the original number of ion pairs 7, that contributed to the pulse.

In electron-sensitive operation, however, the portion of the pulse derived above that
corresponds to drift of the ions is almost entirely lost by choosing a collection time constant that
is much shorter than the ion collection time. The pulse that remains then reflects only the drift
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of the electrons and will have an amplitude given by Eq. (5.16) (neglecting ion drift)

npe X

C d

The shape of this pulse is also sketched in Fig. 5.16. Only the fast-rising portion of the pulse

is preserved, and the amplitude is now dependent on the position x at which the electrons were
originally formed within the chamber.

In any real situation, the incident radiation creates ion pairs over a range of positions within

the chamber. The sharp discontinuities shown in Fig. 5.16 are then somewhat “washed out” in

the resulting pulse shape. Electron-sensitive operation will also lead to a situation in which a

range of pulse amplitudes will be produced for monoenergetic incident radiation, often a
decided disadvantage.

V|elec = (519)

C. The Gridded Ion Chamber

The dependence of the pulse amplitude on position of interaction in electron-sensitive ion
chambers can be removed through the use of an arrangement sketched in Fig. 5.17. There the
volume of the ion chamber is divided into two parts by a Frisch grid, named after the originator
of the design.”’ Through the use of external collimation or preferential location of the radiation
source, all the radiation interactions are confined to the volume between the grid and the
cathode of the chamber. Positive ions simply drift from this volume to the cathode. The grid is
maintained at an intermediate potential between the two electrodes and is made to be as
transparent as possible to electrons. Electrons are therefore drawn initially from the interaction
volume toward the grid. Because of the location of the load resistor in the circuit, neither the
downward drift of the ions nor the upward drift of the electrons as far as the grid produces any
measured signal voltage. However, once the electrons pass through the grid on their way to
the anode, the grid—anode voltage begins to drop and a signal voltage begins to develop across
the resistor. The same type of argument that led to Eq. (5.15) predicts that, for a circuit time
constant large compared with the electron collection time, the time-dependent signal voltage
across the resistor is

_me,
—dcC

where d is now the grid—anode spacing. This linear rise continues until the electrons reach the
anode (see Fig. 5.17b). The maximum signal voltage is therefore

Vi ~t (5.20)

npe
Vmax =

= (5.21)
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which is identical to Eq. (5.18). However, now the signal is derived only from the drift of
electrons rather than from the motion of both electrons and positive ions. The slow rise
corresponding to the drift of ions is eliminated, and the circuit time constant can therefore be set
at a much shorter value typical of the electron-sensitive mode of operation described in the
previous section. Since each electron passes through the same potential difference and
contributes equally to the signal pulse, the pulse amplitude is now independent of the position
of formation of the original ion pairs and is simply proportional to the total number of ion pairs
formed along the track of the incident particle.

D. Pulse Amplitude

The typical amplitude of an ion chamber pulse is relatively small. From the analysis given in the
previous sections, the maximum pulse amplitude to be expected from the creation of nj ion
pairs in either a standard or gridded ion chamber is given by

moe
C
If a 1 MeV charged particle loses all its energy within the chamber, 1y can be estimated as

Vinax = (5.22)

Ey . 10%V

_“U~ — 4
~ W ~ 35eV/ion pair 28610

o

For typical ion chambers and associated wiring, the capacitance C will be of the order of 10~°
farads. We then calculate a pulse amplitude of
~ (2.86 x 10*) (1.60 x 107°C)

max — =T =4.58 x 1075V
107F
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Signals of this size can be processed successfully but require the use of relatively
sophisticated preamplifiers and pulse-processing electronics to avoid loss of their inherent
resolution.

In ion chambers of ordinary size and pressure, pulses from fast electron or gamma-ray
interactions will be much smaller. The value of ng in the above example will be smaller by as
much as a factor of 100 because of the low dE /dx along the primary or secondary electron tracks
through the gas. It then becomes difficult or impossible to amplify these very small pulses
successfully without severe deterioration that results from various sources of noise in the signal
chain. For these reasons, the detectors described in the following two chapters, which take
advantage of internal gas multiplication of the charge, are usually preferred because of their
resulting larger signal pulses. Exceptions in which pulse-mode ion chambers can be applied to
gamma-ray measurements are given in Chapter 19 in which either a liquid or high-pressure fill
gas are of sufficient density to fully stop the secondary electrons and thus restore the value of n
to nearer that given in the example.

E. Statistical Limit to Energy Resolution

The theoretical limit to the energy resolution set by the statistics of charge carrier formation in
an ion chamber can be predicted from the discussion given in Chapter 4. As an example, let us
assume that alpha particles with energy of 5.5 MeV are fully stopped in a gas with W-value of
30 eV /ion pair and a Fano factor of 0.15. As a first step, we can calculate the expected average
number of ion pairs ny produced in the gas to be

E; 55x10%V

— = = 1.83 x 10’ ion pai
W 30eV/ion pair SR

ng =
The variance in this number is given by

n

0%, = Fng = 0.15(1.83 x 105) =275 x 10*

The standard deviation, or the square root of the variance, is then

On, = VFro = V2.75 x 10* = 166
For the expected Gaussian distribution describing ng, the full-width-at-half-maximum
(FWHM) is just the shape factor of 2.35 multiplied by o, leading to
FWHM(np) = 2.350,, = 390

Finally, since W units of energy are required to create one ion pair, the FWHM in units of
particle energy is

FWHM(E) = 2.356,,, - W = 390(30¢V) = 11.7 keV

For ion chambers, this figure would conventionally be quoted as the energy resolution.

Alternatively, the energy resolution could be quoted as a percentage by dividing the above

figure by the deposited energy

2350, W 117 x 10° eV
Eq 5.5x 10°eV

This excellent energy resolution is almost never achieved in practice (see next page) because
sources of electronic noise dominate over the statistical contributions.

R =0.213%
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F. Charged Particle Spectroscopy

There are applications in which pulse-type ion chambers can be used to good advantage for the
measurement of charged particle energies. Although it is much more common to use semi-
conductor detectors for this purpose (see Chapter 11), ion chambers offer features that may be
attractive in some circumstances. They can be constructed with almost arbitrary size and
geometry, and the gas pressure can be chosen to tailor the stopping power or effective thickness
of the active volume. Ion chambers are also far less subject to performance degradation due to
radiation damage than semiconductor detectors. Their design is generally quite simple, and
they can be fabricated by many users with standard workshop facilities.

Pulse-type ion chambers have found application in a number of circumstances where their
unrestricted size and other characteristics®’ have been exploited. They have proved useful in low-
level alpha particle measurements®>° where parallel-plate-type gridded ion chambers have been
constructed with cross-sectional areas up to 500 cm®. Even larger chambers can conveniently be
constructed by using cylindrical geometry. In order to achieve good energy resolution, a Frisch
grid is normally incorporated into the chamber design. Because of the small amplitude of typical
pulses, special care must be taken in choosing a low noise preamplifier and in minimizing
mechanical vibrations, which, by modulating the detector capacitance, can give rise to interfering
microphonic noise.*! Using standard techniques, one can achieve energy resolution for 5 MeV
alpha particles of 35-45 keV for such chambers.?’ By using a cooled preamplifier to reduce the
electronic noise, suppressing vibrations, and operating under carefully-controlled laboratory
conditions, an energy resolution has been demonstrated® of 11.5 keV for alpha particles. This
energy resolution is essentially at the limit set by charge carrier statistics and is comparable to the
best that currently can be achieved using silicon semiconductor detectors.

In the conventional configuration, an entrance window for the chamber is provided so that
the charged particles travel perpendicular to the electric field lines as shown in Fig. 5.17a. In
that case, all the electrons formed along a given track are approximately equidistant from the
grid, and each will have approximately the same drift time. The voltage pulse therefore has
the general characteristics shown in Fig. 5.17b and all particle tracks give signal pulses
of similar shape. It has been demonstrated® that there can be some advantage in designing
the chamber so that the particle tracks are parallel rather than perpendicular to the field lines.
Then the drift time of electrons to the grid will be different for those formed at the beginning
of the track compared with those near the end. The detailed shape of the rise of the output
pulse will therefore reflect the spatial distribution of ion pairs as they were formed along the
track of the incident particle. Because this spatial distribution is conventionally called a Bragg
curve (see p. 32), an analysis of the pulse shape to yield information on this spatial distribution
is conventionally called Bragg curve spectroscopy. This approach has proved to be very useful
in extending the information obtained from gridded ion chambers beyond a simple measure-
ment of the energy of the particle. Appropriate analysis of the pulse shape®*>’ can distinguish
between particles of different type (atomic number and/or charge state) through differences
in the shape of their Bragg curve.

PROBLEMS

5.1 Calculate the charge represented by the positive ions Voltage (V) Current (pA)
(or free electrons) created when a 5.5 MeV alpha particle

is stopped in helium. Find the corresponding saturated 10 18.72
current if 300 alpha particles per second enter a helium- 20 19'41
filled ion chamber. 50 19:93

5.2 The following data were taken from an ion chamber 100 20.12

under constant irradiation conditions:



Using the extrapolation procedure outlined on p. 138, find
the saturated ionization current. What minimum voltage
must be applied in order to reach a current within 0.5% of
saturation?

5.3 An air-equivalent pocket chamber having a capa-
citance of 75 pF is initially charged to a voltage of 25
V. If the active volume contains 50 cm® of air at STP, what
value of gamma-ray exposure will reduce the chamber
voltage to 20 V?

5.4 An ion chamber is constructed using parallel plate
electrodes with a spacing of 5.0 cm. It is filled with pure
methane gas at a pressure of 1 atm and operated at an
applied voltage of 1000 V. From the data given in Fig. 5.2,
calculate the maximum electron collection time.

5.5 An ion chamber of the type shown in Fig. 5.8 has an
associated capacitance of 250 pF. It is charged initially to a
voltage of 1000V, exposed to a gamma-ray flux for a
period of 30 min, at which time a second voltage
measurement indicates a value of 850 V. Calculate the
average current that would have been measured over the
exposure period under these conditions.

5.6 With the aid of Fig. 2.14, estimate the maximum
distance of penetration or “‘range” of an electron with
0.5 MeV initial energy in atmospheric air.

5.7 A free-air ionization chamber of the type sketched in
Fig. 5.10 has a sensitive volume of very small dimensions.
Estimate the minimum electrode spacing if true
compensation is to be maintained up to a maximum
gamma-ray energy of 5 MeV.

5.8 The average beta particle energy emitted by *C is 49
keV. Calculate the saturated ion current if 150 kBq of the
isotope in the form of CO; gas is introduced into a large-
volume ion chamber filled with pressurized argon.

5.9 Calculate the minimum current that must be
measured if a 1-liter ion chamber is to be used as a
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Chapter 6

Proportional Counters

The proportional counter is a type of gas-filled detector that was introduced in the late 1940s.
In common with the Geiger-Mueller tubes described in Chapter 7, proportional tubes are
almost always operated in pulse mode and rely on the phenomenon of gas multiplication to
amplify the charge represented by the original ion pairs created within the gas. Pulses are
therefore considerably larger than those from ion chambers used under the same conditions,
and proportional counters can be applied to situations in which the number of ion pairs
generated by the radiation is too small to permit satisfactory operation in pulse-type ion
chambers. One important application of proportional counters has therefore been in the
detection and spectroscopy of low-energy X-radiation (where their principal competitors are
the silicon-based detectors described in Chapter 13). Proportional counters are also widely
applied in the detection of neutrons, and specific examples are given in Chapters 14 and 15.

The general reference texts listed at the beginning of Chapter 5 also contain detailed
discussions of many topics dealing with the design and operation of proportional counters.
References 1 and 2 at the end of this chapter are journal articles that contain extensive reviews
of the early literature.

I. GAS MULTIPLICATION

A. Avalanche Formation

Gas multiplication is a consequence of increasing the electric field within the gas to a
sufficiently high value. At low values of the field, the electrons and ions created by the
incident radiation simply drift to their respective collecting electrodes. During the migration
of these charges, many collisions normally occur with neutral gas molecules. Because of their
low mobility, positive or negative ions achieve very little average energy between collisions.
Free electrons, on the other hand, are easily accelerated by the applied field and may have
significant kinetic energy when undergoing such a collision. If this energy is greater than the
ionization energy of the neutral gas molecule, it is possible for an additional ion pair to be
created in the collision. Because the average energy of the electron between collisions
increases with increasing electric field, there is a threshold value of the field above which this
secondary ionization will occur. In typical gases, at atmospheric pressure, the threshold field
is of the order of 10° V/m.

The electron liberated by this secondary ionization process will also be accelerated by
the electric field. During its subsequent drift, it undergoes collisions with other neutral gas
molecules and thus can create additional ionization. The gas multiplication process therefore
takes the form of a cascade, known as a Townsend avalanche, in which each free electron
created in such a collision can potentially create more free electrons by the same process.
The fractional increase in the number of electrons per unit path length is governed by the

159
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a Townsend Coefficient

Threshold for
gas multiplication

: Figure 6.1 A plot of the first Townsend
0 coefficient as a function of electric field for
Electric field strength a typical gas.

Townsend equation:

dan

Here a is a called the first Townsend coefficient for the gas. Its value is zero for electric field
values below the threshold and generally increases with increasing field strength above this
minimum (see Fig. 6.1). For a spatially constant field (as in parallel plate geometry), « is a
constant in the Townsend equation. Its solution then predicts that the density of electrons grows
exponentially with distance as the avalanche progresses:

n(x) = n(0)e** (6.2)

For the cylindrical geometry used in most proportional counters, the electric field increases in
the direction that the avalanche progresses, and the growth with distance is even steeper. In the
proportional counter, the avalanche terminates when all free electrons have been collected at
the anode. Under proper conditions, the number of secondary ionization events can be kept
proportional to the number of primary ion pairs formed, but the total number of ions can be
multiplied by a factor of many thousands. This charge amplification within the detector itself
reduces the demands on external amplifiers and can result in significantly improved signal-to-
noise characteristics compared with pulse-type ion chambers. The formation of an avalanche
involves many energetic electron-atom collisions in which a variety of excited atomic or
molecular states may be formed. The performance of proportional counters is therefore much
more sensitive to the composition of trace impurities in the fill gas than is the case for ion
chambers.

B. Regions of Detector Operation

The differences between various types of gas counters operated in pulse mode are illustrated in
Fig. 6.2. The amplitude of the observed pulse from the detector is plotted versus the applied
voltage or electric field within the detector. At very low values of the voltage, the field is
insufficient to prevent recombination of the original ion pairs, and the collected charge is less
than that represented by the original ion pairs. As the voltage is raised, recombination is
suppressed and the region of ion saturation discussed in Chapter S is achieved. This is the
normal mode of operation for ionization chambers. As the voltage is increased still further, the
threshold field at which gas multiplication begins is reached. The collected charge then begins to
multiply, and the observed pulse amplitude will increase. Over some region of the electric field,
the gas multiplication will be linear, and the collected charge will be proportional to the number
of original ion pairs created by the incident radiation. This is the region of true proportionality
and represents the mode of operation of conventional proportional counters, which are the
topic of this chapter. Under constant operating conditions, the observed pulse amplitude still
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indicates the number of ion pairs created within the counter, although their charge has been
greatly amplified.

Increasing the applied voltage or electric field still further can introduce nonlinear effects.
The most important of these is related to the positive ions, which are also created in each
secondary ionization process. Although the free electrons are quickly collected, the positive
ions move much more slowly and, during the time it takes to collect the electrons, they barely
move at all. Therefore, each pulse within the counter creates a cloud of positive ions, which is
slow to disperse as it drifts toward the cathode. If the concentration of these ions is sufficiently
high, they represent a space charge that can significantly alter the shape of the electric field
within the detector. Because further gas multiplication is dependent on the magnitude of the
electric field, some nonlinearities will begin to be observed. These effects mark the onset of the
region of limited proportionality in which the pulse amplitude still increases with increasing
number of initial ion pairs, but not in a linear fashion.

If the applied voltage is made sufficiently high, the space charge created by the positive ions
can become completely dominant in determining the subsequent history of the pulse. Under
these conditions, the avalanche proceeds until a sufficient number of positive ions have been
created to reduce the electric field below the point at which additional gas multiplication can
take place. The process is then self-limiting and will terminate when the same total number of
positive ions have been formed regardless of the number of initial ion pairs created by the
incident radiation. Then each output pulse from the detector is of the same amplitude and no
longer reflects any properties of the incident radiation. This is the Geiger—Mueller region of
operation, and detectors operated under these conditions are discussed in Chapter 7. A related
mode of operation, known as self-quenched streamer mode, is of interest in position-sensitive
detectors and is examined in Chapter 19.

C. Choice of Geometry

Typical proportional counters are constructed with the cylindrical geometry illustrated in
Fig. 6.3. The anode consists of a fine wire that is positioned along the axis of a large hollow tube
that serves as the cathode. The polarity of the applied voltage in this configuration is important,
because the electrons must be attracted toward the center axial wire. This polarity is necessary
from two standpoints:
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Cathode

Anode
wire

gk" Figure 6.3 Basic elements of a proportional counter.
v The outer cathode must also provide a vacuum-tight
|| enclosure for the fill gas. The output pulse is developed
[+ across the load resistance R;.

1. Gas multiplication requires large values of the electric field. In cylindrical geometry, the
electric field at a radius r is given by
Vv

80) = i (6.3)

where V = voltage applied between anode and cathode
a = anode wire radius
= cathode inner radius

Large values of the electric field therefore occur in the immediate vicinity of the anode
wire where r is small. Because electrons are attracted to the anode, they will be drawn
toward the high-field region.

To illustrate, suppose a voltage V of 2000 V is applied to a cylindrical counter with
a=0.008 cm and b = 1.0 cm. The electric field at the anode surface is then 5.18 x 10° V/m.
In parallel plate geometry, the field would be uniform between the planar electrodes.
With a spacing of 1.0 cm, an applied voltage of 51,800 V would be required to achieve the
same electric field. Such a high voltage is practically unworkable, and therefore small-
diameter anode wires are used in standard proportional counters to create the high field
required.

2. If uniform multiplication is to be achieved for all ion pairs formed by the original
radiation interaction, the region of gas multiplication must be confined to a very small
volume compared with the total volume of the gas. Under these conditions, almost all
primary ion pairs are formed outside the multiplying region, and the primary electron
simply drifts to that region before multiplication takes place. Therefore, each electron
undergoes the same multiplication process regardless of its original position of forma-
tion, and the multiplication factor will be same for all original ion pairs.

In Fig. 6.4, the electric field is plotted as a function of distance from the anode wire center.
The multiplication region begins only when this field becomes larger than the minimum
required to support avalanche formation and extends to the anode surface. In the previous
example, suppose that the threshold electric field for multiplication in the fill gas is 10° V/m.
From Eq. (6.3), the field exceeds this value only for radii less than 0.041 cm, or about five times
the anode radius. The volume contained within this radius is only about 0.17% of the total
counter gas volume.

The inward drift of an ionization-created electron toward the multiplication region in
theory induces a small signal, as does the drift of electrons in a pulse-mode ionization chamber.
However, this contribution is generally negligible compared with the much larger contribution
of the motion of the huge number of charges that are formed in the subsequent avalanche.
Thus there is a delay time between the ionization event and the start of its contribution to the
output pulse.
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From Egs. (5.3) and (6.3), the electron drift velocity as a function of its radial position is:
é TAY 1

YN T pmG/a) T (64

Assuming a constant mobility . (generally valid for modest electric field values), the electron drifts
with increasing velocity as it is drawn toward the multiplication region around the wire. With the
approximation that the wire radius a and the thickness of the multiplication region are both small
compared with the radius r at which the ionization occurred, the time required for this drift is then
r
d
t= J & _phbid (6.5)

aV 2nV

Putting in typical values for dimensions and mobilities, the drift times can be up to 10
microseconds or more. The 7° dependency results in the longest drift times for the largest
diameter tubes, all other factors being equal. Because ionization often occurs over an extended
particle track in the gas, there will be some variability in the drift time of each electron from the
same track. The individual avalanches then are not perfectly synchronized, an effect that can
contribute to the observed rise time of the output pulse.

To help visualize the avalanche formation in the neighborhood of the wire surface, Fig. 6.5
shows results obtained from a Monte Carlo modeling of the electron multiplication and

Figure 6.5 Orthogonal views of an avalanche triggered by a single
electron as simulated by a Monte Carlo calculation. The density of
the shading indicates the concentration of electrons formed in the
avalanche. (From Matoba et al.’)
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diffusion processes that are important in a typical avalanche. It was assumed that a single free
electron drifted into the vicinity of the wire. The resulting avalanche is confined to a small
distance along the length of the wire equivalent to only several times its diameter. As a
consequence, methods for sensing its position along the wire (discussed later in this chapter) can
accurately measure the axial position of the incident electron. The avalanche also covers only a
limited range of the wire circumference, oriented generally toward the incident electron
direction. Because the avalanche is restricted to a small region around the anode wire, the
counter is able to respond to other events that take place elsewhere along the wire before the
ions have cleared from the first event. For this reason, the dead time effects that are discussed in
Chapter 7 for Geiger—-Mueller tubes are much less limiting in proportional counters.

II. DESIGN FEATURES OF PROPORTIONAL COUNTERS

A. Sealed Tubes

BUSHING

A sketch of a proportional counter incorporating many common design features is shown in
Fig. 6.6. The thin axial wire anode is supported at either end by insulators that provide a
vacuum-tight electrical feedthrough for connection to the high voltage. The outer cathode is
conventionally grounded, so that positive high voltage must be applied to ensure that electrons
are attracted toward the high-field region in the vicinity of the anode wire. For applications
involving neutrons or high-energy gamma rays, the cathode wall can be several millimeters
thick to provide adequate structural rigidity. For low-energy gamma rays, X-rays, or particulate
radiation, a thin entrance “window” can be provided either in one end of the tube or at some
point along the cathode wall.

Good energy resolution in a proportional counter is critically dependent on ensuring that
each electron formed in an original ionization event is multiplied by the same factor in the gas
multiplication process. The most important mechanical effect that can upset this proportional-
ity is a distortion of the axially uniform electric field predicted by Eq. (6.3). One potential
source is any variation in the diameter of the anode wire along its length. Then the value of a in
Eq. (6.3) will no longer be constant everywhere along the length of the tube and the degree of
gas multiplication will vary from point to point. Because it is easier to make a large diameter
wire uniform to within a given fractional tolerance, this effect is minimized by avoiding the use
of extremely fine anode wires. However, there is some experimental evidence that the surface
roughness of commonly used gold-plated tungsten wire does not detract significantly from the
energy resolution even with diameters as small as 12.5 pm. Using an anode wire with as small a
diameter as permitted by the surface quality minimizes the high voltage required for a
particular gas multiplication value and also tends to promote good energy resolution by
minimizing avalanche fluctuations (see p. 177).

FILLER TUBE ADAPTER

FIELD TUBE

4

0.10 0.23 Figure 6.6 Cross-sectional

! view of a specific propor-

tional tube design used in fast
neutron detection. The anode

SEAL
CERAMIC

is a 0.025-mm-diameter
stainless steel wire. The field
i tubes consist of 0.25-mm-
L 8.25 B diameter hypodermic needles
- - fitted around the anode at
either end of the tube. (From
ALL DIMENSIONS IN CENTIMETERS Bennett and Yule.*)
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/ Figure 6.7 The fabrication of a straw tube from two foil
strips. Adhesive is used to bind the strips together into a rigid
tube. (From Marzec et al.”)

internal strip

Other common causes of field distortion are effects that occur near the ends of the tube.
The electric field can become extremely distorted near the point at which the anode wire
enters the insulator, due to the presence of the end wall of the tube or other conducting
structures in the vicinity. Unless precautions are taken to avoid these difficulties, ion pairs
created in these end regions will undergo a degree of gas multiplication different from those
created more generally throughout the volume of the tube.

The most common solution to the end effect problem is to design the counter so that events
occurring near the ends do not undergo any gas multiplication and so that an abrupt transition takes
place between these “dead” regions and the remainder of the active volume of the proportional
tube. One method of achieving this condition is through the use of field tubes. As illustrated in Fig.
6.6, field tubes consist of short lengths of conducting tubing (with a diameter many times greater than
that of the anode), which are positioned around the anode wire at each end of the counter. The
voltage applied to the field tube can be maintained at the anode voltage, but because its diameter is
large, no gas multiplication will take place in the region between the field tube and the cathode. The
end of the field tube then marks the beginning of the active volume of the proportional counter,
which can be some distance away from either end of the overall counter. Alternatively, the field tube
may be operated at an intermediate potential between that of the anode and cathode. By setting this
potential to that which would exist in its absence at the same radial position, the field within the
active volume of the counter is less disturbed by the presence of the field tube, and Eq. (6.3) will
describe the radial dependence of the electric field to a very good approsimation everywhere within
the active volume. Detailed analyses of the electricfield in the vicinity of the field tubes can be found
in Refs. 4 and 6. Other solutions to the end effect problem involve correction of the field through the
use of a semiconducting end plate’ or by conducting rings on an insulating end plate that are
maintained at the proper potential to avoid distortion of the field near the tube end.®

A unique type of proportional counter known as a straw tube has been widely exploited for
particle tracking in high-energy physics. The outer cathodes of small-diameter tubes up to
several meters in length are fabricated from metallic foil using a winding process to produce a
self-supporting tube similar to a soda straw as illustrated in Fig. 6.7. Conventional anode wires
are then located at the center of the tube, and the tubes are filled with an appropriate
proportional gas. The thin cathode wall is an advantage in many tracking applications to
minimize particle energy losses in the walls. Since large numbers of such tubes are typically
deployed to make up arrays for tracking applications, the relatively low cost of the fabrication
process is also an advantage.

B. Windowless Flow Counters

Another common configuration for the proportional counter is sketched in Fig. 6.8. There it is
assumed that the source of radiation is a small sample of a radioisotope, which can then be
introduced directly into the hemispherical counting volume of the detector. The great advan-
tage of counting the source internally is the fact that no entrance window need come between
the radiation source and active volume of the counter. Because window materials can seriously
attenuate soft radiations such as X-rays or alpha particles, the internal source configuration is
most widely used for these applications.
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Figure 6.8 Diagram of a 2w gas flow
proportional counter with a loop anode
wire and hemispherical volume. The
sample can often be inserted into the
chamber by sliding a tray to minimize the
amount of air introduced.

Gas
outlet

The counting geometry can also be made very favorable for this type of detector. In the
system shown in Fig. 6.8, virtually any quantum emerging from the surface of the source finds its
way into the active volume of the counter and can generate an output pulse. The effective solid
angle is therefore very close to 27, and the detector can have an efficiency that is close to the
maximum possible for sources in which the radiation emerges from one surface only.

Some means must be provided to introduce the source into the active volume of internal
source counters. In some designs, the base of the counter consists of a rotating table in which
several depressions or source wells are provided at regular angular intervals. The table can be
rotated so that one well at a time is placed directly under the center of the tube active volume.
At the same time, at least one other well is accessible from outside the chamber and can be
loaded with a new source to be counted. By rotating the table, the new source can be brought
into counting position and the prior sample removed. In other designs, the chamber may simply
be opened to allow insertion of the source. In either case, some air will enter the chamber and
must be eliminated. The counter is therefore purged by allowing a supply of proportional gas to
flow through the chamber for some time and sweep away the residual air. Most proportional
counters of this type are also operated as flow counters in which the gas continues to flow at a
slower rate through the chamber during its normal use.

Another useful geometry for proportional counters is the “pancake’detector, illustrated in
Fig. 6.9. Often used in systems intended to count alpha and beta activity, the sample is placed
near one of the flat surfaces of the detector to provide close to 27 counting geometry. This
design has some advantages over the hemispherical type in that it generally has smaller volume
and therefore lower background, and also limits the length of beta particle tracks in the gas to
minimize their pulse amplitude and thus maximize the separation in amplitude from alpha
particles. Pancake detectors also lend themselves to systems in which multiple tubes are
mounted to count a number of samples simultaneously. They can be operated with a
conventional thin entrance window as a sealed tube, or as a gas flow counter in which the
window is removed and a sample holding tray is sealed to the bottom of the chamber. It has
been demonstrated that there are beneficial effects of adding a third electrode to this type of

/ Removable window
(a)  Anode wire

|
Grid (stretched spring)

Figure 6.9 In part (a), the shape of the “pancake”
proportional tube is shown. The effect of the grid on

7 e improving the uniformity of the electric field around
Anode wire Cathode housing “Grid the anode wire is illustrated in part (b).

(W
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proportional counter design. A helical wire, much like a spring, is placed around the anode wire
and operated at an intermediate voltage between that of the anode and cathode. As illustrated
in Fig. 6.9, its function is to make the electric field around the anode wire more uniform in all
azimuthal directions. Without this element, the field strength will vary as a function of
azimuthal angle, and therefore the energy resolution of the chamber will suffer. The better
energy resolution obtainable with the helical element again aids in the separation of alpha- and
beta-induced events (see the following discussion on p. 185).

If the source is prepared on a backing that is thin compared with the range of the radiation
of interest, particles (or photons) may emerge from either surface. In that case, the 47 geometry
sketched in Fig. 6.10 can take advantage of the added counting efficiency possible from such
sources. The two halves of the chamber can be operated independently or in coincidence to
select preferentially only certain types of events.

C. Fill Gases

Because gas multiplication is critically dependent on the migration of free electrons rather than
much slower negative ions, the fill gas in proportional counters must be chosen from those
species that do not exhibit an appreciable electron attachment coefficient. Because air is not
one of these, proportional counters must be designed with provision to maintain the purity of
the gas. The gas can be either permanently sealed within the counter or circulated slowly
through the chamber volume in designs of the continuous flow type. Sealed counters are more
convenient to use, but their lifetime is sometimes limited by microscopic leaks that lead to
gradual contamination of the fill gas. Continuous flow counters require gas supply systems that
can be cumbersome but bypass many potential problems involving gas purity. The continuous
flow design also permits the flexibility of choosing a different fill gas for the counter when
desired. These systems may be of the ““once through” type, in which the exit gas is vented to the
atmosphere, or the gas may be recycled after passage through a purifier. The purifier must
remove traces of oxygen or other electronegative impurities, and in its most common form!°
consists of a heated porcelain tube filled with calcium turnings maintained at a temperature of
350°C. The influence of electronegative impurities is most pronounced in large-volume
counters and for small values of the electron drift velocity. In carbon dioxide, a gas with
relatively slow electron drift, it has been shown'! that an oxygen concentration of 0.1% results
in the loss of approximately 10% of the free electrons per centimeter of travel.
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Gas multiplication in the proportional counter is based on the secondary ionization created
in collisions between electrons and neutral gas molecules. In addition to ionization, these
collisions may also produce simple excitation of the gas molecule without creation of a
secondary electron. These excited molecules do not contribute directly to the avalanche but
decay to their ground state through the emission of a visible or ultraviolet photon. Under the
proper circumstances, these de-excitation photons could create additional ionization elsewhere
in the fill gas through photoelectric interactions with less tightly bound electron shells or could
produce electrons through interactions at the wall of the counter. Although such photon-
induced events are important in the Geiger—Mueller region of operation, they are generally
undesirable in proportional counters because they can lead to a loss of proportionality and/or
spurious pulses. Furthermore, they cause the avalanches to spread along the anode wire to some
extent, increasing possible dead time effects and reducing the spatial resolution in position-
sensing detectors. It has been found that the addition of a small amount of polyatomic gas, such
as methane, to many of the common fill gases will suppress the photon-induced effects by
preferentially absorbing the photons in a mode that does not lead to further ionization. Most
monatomic counter gases operated at high values of gas multiplication require the use of such a
polyatomic stabilizing additive. This component is often called the quench gas.

The noble gases, either pure or in binary mixtures, can be useful proportional gases
provided the gas multiplication factor is kept below about 100.!? Beyond this point, adding a
quench gas is helpful>'* in reducing instabilities and proportionality loss caused by propaga-
tion of ultraviolet photons. Because of cost factors, argon is the most widely used of the inert
gases, and a mixture of 90% argon and 10% methane, known as P—10 gas, is probably the most
common general-purpose proportional gas. When applications require high efficiency for the
detection of gamma-ray photons by absorption within the gas, the heavier inert gases (krypton
or xenon) are sometimes substituted. Many hydrocarbon gases such as methane, ethylene, and
so on are also suitable proportional gases and are widely applied where stopping power is not a
major consideration. In applications where the signal is used for coincidence or fast timing
purposes, gases with high electron drift velocities are preferred (see Fig. 6.17 later in this
chapter). Proportional counters used for thermal neutron detection are operated with BF; or
3He as the proportional gas (see Chapter 14), whereas proportional counters applied in fast
neutron spectroscopy are filled with hydrogen, methane, helium, or some other low-Z gas (see
Chapter 15). In dosimetry studies, it is often convenient to choose a fill gas that has the
approximate composition of biological tissue. For such purposes, a mixture consisting of 64.4%
methane, 32.4% carbon dioxide, and 3.2% nitrogen is recommended.”

Even though oxygen is electronegative, it has been shown'®!” that air can serve as an
acceptable proportional gas under special circumstances. If the distance that electrons must
travel is only 1-2 mm and the electric field is kept high in the drift region, enough electrons
escape attachment to form small but detectable avalanches. Alternatively, electrons may attach
to oxygen molecules in the air and drift slowly to near the anode, where some are detached
through collisions and multiplied by initiating avalanches near the wire.'®!° For stable
operation, ambient air must generally be purged of water vapor and organic vapors*® before
introduction into the counter volume. Small amounts of air (up to 10%) can also be introduced
into conventional proportional gases used in continuous flow to monitor radon or other
airborne radioactivity. With counter design chosen to minimize the electron drift distance,
usable performance®! can be achieved, although higher applied voltages are required to
compensate for electron loss to attachment to oxygen. These losses occur primarily during
the drift phase where the electron energy is low, and fewer are lost in the avalanches where
distances are much smaller and the electron energy is higher.

The basic properties of a fill gas can be changed significantly by small concentrations of a
second gas whose ionization potential is less than that of the principal component. One
mechanism, known as the Penning effect, is related to the existence of long-lived or metastable
excited states in the principal gas. If the excitation energy is larger than the ionization energy of
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the added component, then a collision between the metastable excited atom and a neutral
additive atom can ionize the additive. Because the excitation energy would otherwise be lost
without the additive, a greater number of ion pairs will be formed per unit energy lost by the
incident radiation. For example the W-value for argon can be reduced from 26.2 to 20.3 eV
through the addition of a small concentration of ethylene.”” Furthermore, because a greater
fraction of the incident radiation energy is converted into 1ons the relative fluctuation in the
total number of ions is decreased by as much as a factor of two.?? Because of the corresponding
improvement in energy resolution, fill gases that consist of Penning m1xtures are com-
monly chosen for proportional counters applied in radiation spectroscopy 328 Some values
for W and the Fano factor F for common proportional gases are given in Table 6.2 later in this
chapter. Other values measured for noble gases and their mixtures are reviewed and reported in
Refs. 29-32. It should be emphasized that these parameters are not to be regarded as universal
constants but that some mild dependence of W and F on particle type and/or energy is
experimentally observed. The energy dependence is often most evident for X-rays and gamma
rays in the energy region near the atomic shell absorption edges (see p. 47) of the fill gas.
The diffusion and drift characteristics of electrons can vary considerably depending on the
specific choice of the fill gas. Extensive experimental data are available on these parameters
(see Ref. 33), and an example of the differences in electron mobility for different gases is
illustrated later in this chapter in Fig. 6.17. Some considerations in choosing fill gas include
atomic number and density if gamma rays or X-rays are to be detected in the gas, high drift
velocities if fast-rising output pulses are needed, and small values of the electron diffusion
coefficient to minimize charge spreading for gas-filled devices in which the position of the
primary interaction is to be registered. Many of these parameters can be calculated with
reasonable accuracy,’ and a number of computer codes have been developed based on
numerical solutions of the transport equations that describe the electron motion in the gas.>

III. PROPORTIONAL COUNTER PERFORMANCE

A. Gas Multiplication Factor

A study of the multiplication process in gases is normally divided into two parts. The single-
electron response of the counter is defined as the total charge that is developed by gas
multiplication if the avalanche is initiated by a single electron originating outside the region
of gas multiplication This process can be studied experimentally by creating irradiation
conditions in which only one electron is liberated per interaction (e.g., by the photoelectrlc
interaction of incident ultraviolet photons). Multiplication factors of the order of 10° are
adequate to allow direct detection of the resulting pulses, and their amplitude distribution can
supply information about the gas multiplication mechanisms within the counter. Studies of this
type are described in Refs. 36-39. Results of these experiments are used later in this chapter
under the discussion of energy resolution of proportional counters.

If the single-electron response is known, the amplitude properties of pulses produced by
many original ion pairs can be deduced. Provided that space charge effects (discussed later in
this chapter) are not large enough to distort the electric field, each avalanche is independent,
and the total charge Q generated by ng original ion pairs is

Q = noeM (6.6)

where M is the average gas multzpllcatlon factor that characterizes the counter operatlon
Analyses have been carried out**** that attempt to derive a general expression for the
expected factor M in terms of the tube parameters and applied voltage. Physical assumptions
that are usually made for simplification are that the only multiplication process is through
electron collision (any photoelectric effects are neglected), that no electrons are lost to negative



170 Chapter 6 Proportional Counters

ion formation, and that space charge effects are negligible. The solution to the Townsend
equation [Eq. (6.1)] in cylindrical geometry must take into account the radial dependence of the
Townsend coefficient a caused by the radial variation of the electric field strength. In general,
the mean gas amplification factor M can then be written

I'c

InM = J o(r)dr (6.7)

a
where r represents the radius from the center of the anode wire. The integration is carried out
over the entire range of radii over which gas multiplication is possible, or from the anode radius
a to the critical radius 7, beyond which the field is too low to support further gas multiplication.
The coefficient « is a function of the gas type and the magnitude of the electric field, £(r), and
data on its behavior can be found in Ref. 45. Equation (6.7) is normally rewritten explicitly in
terms of the electric field as

& (re)

or
InM = Lﬂ@ o(6) o5 dé (6.8)

Now by introducing Eq. (6.3) for the shape of the electric field in cylindrical proportional tubes,
we can write

InM =

Vv r"(rc) @d_g (69)

ln(b/a) &(a) & &

Various analytic expressions that appear in the literature to relate the gas multiplication factor
to experimental parameters differ from each other in the form of the expression used for a(&).
A review of possible options is presented in Refs. 46-49.

By assuming linearity between o and &, Diethorn®® derived a widely used expression for M:

|4 ln2< |4

Fl = In(b/a) AV 5 paln(b/a

;= In K) (6.10)

where M = gas multiplication factor
V = applied voltage
a = anode radius
b = cathode radius
p = gaspressure

According to the model used in the derivation, AV corresponds to the potential difference
through which an electron moves between successive ionizing events, and K represents the
minimum value of §/p below which multiplication cannot occur. Both AV and K should be
constants for any given fill gas.

Studies have been conducted® on the applicability of this expression to a variety of
different counters in which the fill gas was either xenon—methane or a xenon-CO, mixture.
The gain versus voltage characteristics are shown in Fig. 6.11, and the same data are reduced
to the form of a Diethorn plot shown in Fig. 6.12. Studies®® also show the satisfactory
applicability of Eq. (6.10) to a number of other fill gases listed in Table 6.1. The correspond-
ing values for AV and K are shown in the table. The Diethorn approach treats the two
constants AV and K as empirically fitted parameters. This procedure is normally sufficient
to represent experimental data over limited ranges of voltage, pressure, and counter dimen-
sions. Introducing a third fitted parameter*®*’ can be justified on theoretical grounds and
leads to generalized models that can represent proportional counter behavior over much
wider ranges of operation.
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For a given proportional tube at constant gas pressure, Eq. (6.10) shows that the gas
multiplication increases rapidly with applied voltage V. Neglecting the slowly varying loga-
rithmic term, the multiplication M varies primarily as an exponential function of V. Propor-
tional counters must therefore be operated with extremely stable voltage supplies to prevent
changes in M over the course of the measurement.

B. Space Charge Effects

In the avalanche process on which proportional counters depend, both electrons and positive
ions are created. The electrons are collected relatively quickly (within a few nanoseconds) at
the anode, leaving behind the positive ions that move much more slowly and gradually diffuse
by drifting outward toward the tube cathode wall. The space charge represented by these net
positive charges can, under some circumstances, appreciably distort the electric field from its
value if the space charge were absent. Because the ions are formed preferentially near the
anode wire where most gas multiplication takes place, the effect of the space charge will be to
reduce the electric field at small radii below its normal value. If the magnitude of the effect is
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Table 6.1 Diethorn Parameters for Proportional Gases”
Gas Mixture K (10*V/cm - atm) AV (V) Reference
90% Ar, 10% CH,4 (P-10) 4.8 23.6 52
95% Ar, 5% CH,4 (P-5) 4.5 21.8 52
100% CH,4 (methane) 6.9 36.5 52
100% C3Hg (propane) 10.0 29.5 52
96% He, 4% isobutane 1.48 27.6 52
75% Ar, 15% Xe, 10% CO, 51 20.2 52
69.4% Ar,19.9% Xe, 10.7% CH4 5.45 20.3 52
64.6% Ar, 24.7% Xe, 10.7% CO, 6.0 183 52
90% Xe, 10% CH4 3.62 33.9 51
95% Xe, 5% CO, 3.66 31.4 51

“See Eq. (6.10).
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sufficiently large, it can have a measurable effect in reducing the size of the output pulse below
that which one would ordinarily expect. Furthermore, because the amount of the reduction is
likely to vary depending on the detailed geometry of each original ionizing event, the energy
resolution of the proportional counter may also be adversely affected by the space charge
nonlinearities.

There are two different categories of space charge effects. Self-induced effects arise
when the gas gain is sufficiently high so that positive ions formed during a given avalanche
can alter the field and reduce the number of electrons produced in further stages of the same
avalanche. This effect depends on the magnitude of the gas multiplication and the geometry
of the tube™ but does not depend on the pulse rate. The general space charge effect includes
the cumulative effect of positive ions created from many different avalanches. This effect can
be important at lower values of the gas multiplication and becomes more serious as the rate
of events within the tube is increased. The general problem of space charge in proportional
tubes is reviewed in Ref. 54, and an analytical formulation is presented that allows estimation
of the resulting nonlinear effects under a variety of conditions. In general, most authors
advocate using gas multiplication factors that are as low as possible consistent with signal-to-
noise requirements to avoid potential loss of energy resolution caused by space charge
effects within the tube. This recommendation is particularly significant for applications that
involve high counting rates.

If the gas multiplication is perfectly linear, one should be able to record exactly the same pulse
height spectrum from the detector by decreasing counter voltage and to offset the corresponding
drop in gas multiplication by increasing the gain of the amplifier in the subsequent electronics. If
space-charge-induced nonlinearities are significant, the large pulse amplitudes will be more
severely limited at the higher voltage, and the recorded shape of the spectrum will change.
This procedure can serve as a simple check to detect the presence of nonlinearities at the chosen
operating voltage of the chamber.

C. Energy Resolution
1. STATISTICAL CONSIDERATIONS

The charge O, which is developed in a pulse from a proportional counter in the absence of
nonlinear effects, can be assumed to be the sum of the charges created in each individual
avalanche. There will be ng of these avalanches, each triggered by a separate electron from the
npion pairs created by the incident radiation. In the following discussion, we let A represent the
electron multiplication factor for any one avalanche triggered by a single electron and
M represent the average multiplication factor from all the avalanches which contribute to a
given pulse:

1
M=2Ya,=% (6.11)
"o ;5
Also, because eA; is the charge contributed by the ith avalanche,
v=2
eng
or
Q = noeM (6.12)

From the discussions given in Chapter 4, the pulse amplitude from the detector normally
is proportional to Q. This amplitude is subject to fluctuation from pulse to pulse even in the
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case of equal energy deposition by the incident radiation because both ny and M in
Eq. (6.12) will show some inherent variation. Because these factors are assumed to be
independent, we can use the error propagation formula [Eq. (3.41)] to predict the expected

relative variance in Q
00\" _ (on 2+(U_M)2 (613)
0 no M

It is convenient to rewrite the second term in the above sum in terms of the variance of the
single-electron multiplication factor A. Again, because each avalanche is assumed to be
independent, we can apply the error propagation formula to Eq. (6.11) to obtain

a5 = ioﬁ (6.14)

where A represents the typical avalanche magnitude. Combining Egs. (6.13) and (6.14), we

obtain
(“_9)2 _ (%)2 L1 (“_A)z (6.15)
Q) \m ng \ A '
This expression now allows an analysis of the expected fractional variance of the pulse

amplitude (og/ Q)2 in terms of the separate contributions of ion pair fluctuations (o, /no)2
and single-electron multiplication variations (o4/A)>.

a. Variations in the Number of Ion Pairs The first term in Eq. (6.15) represents the relative
variance in the original number ny of ion pairs. These fluctuations were discussed at the
beginning of Chapter 5 and can be expressed in terms of the Fano factor F:

0'310 = Fno
or
2
(%) _r (6.16)
L) no

Estimates of the size of the Fano factor for proportional gases range from about 0.05 to 0.20, and
some specific values are given later in Table 6.2. The lowest values of F are generally observed
for binary gas mixtures in which the Penning effect is important (see the prior discussion of fill
gas properties).

b. Variations in Single-Electron Avalanches The second term in Eq. (6.15) represents the
contribution of the fluctuations in single electron avalanche magnitude, a topic that has been
the subject of considerable experimental and theoretical investigation. Some examples can be
found in Refs. 39 and 55-57. Reference 39 also contains a fairly complete citation of the earlier
literature on this topic.

A simple theoretical prediction for the single-electron avalanche distribution can be carried
out with the assumption th