Problem 1 [Poston Prob. 1.1]

Identify the decay products of the following nuclides given their mode of decay:

$$_{38}^{90}\mathrm{Sr}(\beta), _{92}^{238}\mathrm{U}(\alpha), _{61}^{147}\mathrm{Pm}(\beta), _{35}^{78}\mathrm{Br}(\beta^{+}), _{36}^{79}\mathrm{Kr}(\mathrm{EC}), _{86}^{222}\mathrm{Rn}(\alpha), _{43}^{99m}\mathrm{Tc}(\gamma), _{98}^{252}\mathrm{Cf}(\mathrm{SF})$$

Problem 2 [Poston Prob. 1.10]

¹³¹I has a radioactive half-life of 8 days and a liver excretion half-time of 55 min. Plot the effective decay rate fir 1 mCi of labeled material in the liver.

Problem 3 [Poston Prob. 1.11]

⁶⁴Cu decays by positron (β^+), internal conversion and electrons (β^-). Identify the decay products and the amounts accumulating over the life ($7T_{1/2}$) of the source.

Cu $(T_{1/2}=12.8 \text{ h})$

Branching ratios are: β^- 38%, β^+ 19%, CE 43%.

Problem 4 [Poston Prob. 1.13]

A geiger counter has a background count of 60 cpm. It is placed in a uniform γ radiation field. If the detection efficiency os 3%, calculate the minimum intensity required for a net count rate of five times the background.

Problem 5 [Poston Prob. 1.16]

Determine the relative intensities of the

- a) 1.29 and 1.098 MeV γ -ray emissions in the decay of 59 Fe,
- b) the 0.177 et 0.284 MeV lines of ^{131}I .

Problem 6 [Poston Prob. 1.17]

Matural antimony consists of ¹²¹Sb (57.25%, $\sigma_{n\gamma}=6b$) et ¹²³Sb (42.75%, $\sigma_{n\gamma}=4b$). Neutron activation produces ¹²²Sb ($T_{1/2}=2.8$ days) and ¹²⁴Sb ($T_{1/2}=60$ days).

Calculate the activities produced if a 5-g sample of antimony is exposed in a neutron flus of 1013 n/cm^2 -ses for

a) 2 hours

- b) 2 days
- c) 1 year

Determine in cas case how lont the sourcewould have to cool down in each case for the ¹²²Sb activity to constitute less that 10% of the total activity.

Problem 7 [Poston Prob. 1.2]

A given accelerator produces neutrons by the (d,n) reaction on beryllium. If the beam current is 50 milliamps and the conversion efficiency is 1%, calculate the neutron production rate.

Problem 8 [Poston Prob. 1.3]

A certain 238 Pu source has an activity of 50 millicuries. If all the alpha particles are self absorbed in the source material, calculate the heat production (alpha energy = 5.5 MeV)

Problem 9 [Poston Prob. 1.4]

In the previous question, estiate the amount of helium generated in the source in one year. If the source capsule has internal dimensions of 5 mm diameter by 2 mm thick and 5% void space, calculate the helium pressure after one year.

Problem 10 [Poston Prob. 1.5]

A 10 MBq 60 Co source consists of a thin wire 2 mm in length. Calculate the gamma-ray intensity at 30 cm and 2 m distance from that source.

Problem 11 [Poston Prob. 1.6]

Calculate the mass needed to produce an activity of 10 mCi of the following nuclides: 226 Ra, 131 I, 65 Zn, 24 Na

Problem 12 [Poston Prob. 1.7]

Calculate the amount of 99m Tc ($T_{1/2}$ =6 hours) that is present in a 50 mCi ^{99}Mo ($T_{1/2}$ =67 heures) a) 6 hours, b) 12 hours, c) 30 hr, d) 67 hours, e) 150 hours after the molybdenum source was freshly prepared.

Problem 13 [Poston Prob. 1.8]

A 100-mg silver foil is irradiated in a neutron fuls of 10^{13} neutrons/(cm².sec). ¹⁰⁹Ag has an abundance of 48.17% and cross sections of 4b and 88b, respectively, to produce ¹¹⁰Ag ($T_{1/2}$ =253 days) and ^{110m}Ag ($T_{1/2}$ =24sec). Calculate the activity of this foil after 5-min exposure and after 3-min and 3-hr cooling times.

Problem 14 [Turner Prob. 3.12]

- (a) Calculate the energy released by the alpha decay of $^{222}_{86}Rn$
- (b) Calculate the energy of the alpha particle
- (c) What is the energy of the recoil polonium atom?

Problem 15 [Turner Prob. 3.15]

The Q value for alpha decay of $^{239}_{94}$ Pu is 5.25 MeV. Given the masses of the ^{239}Pu and 4He atoms, 239.052174 AMU and 4.002603 AMU, calculate the mass of the $^{235}_{92}$ U atom in AMU.

Problem 16 [Turner Prob. 3.17]

- (a) Calculate the energy released in the beta decay of $^{32}_{15}P$.
- (b) If a beta particle has 650 keV, how much energy does the antineutrino have?

Problem 17 [Turner Prob. 3.20]

A $^{108}_{49}$ In source emits a 633 keV gamma photon and a 606 keV internal conversion electron from the K shell. What is the binding energy of the electron in the K shell?

Problem 18 [Turner Prob. 3.24]

Nuclide A decays into nuclide B by β^+ emission (24%) or by electron capture (76%). The major radiations, energies (in MeV), and frequencies per disintegration are:

```
\beta^+: 1.62 max (16%), 0.98 max (8%)

\gamma: 1.51 (47%), 0.64(55%), 0.511(48%,\gamma^{\pm})

Daughter X rays

e^-: 0.614
```

- (a) Draw the nuclear decay scheme, labeling type of decay, percentages and energies
- (b) What leads to the emission of the daughter X rays?

Problem 19 [Turner Prob. 3.27]

A parent nuclide decays by beta-particle emission into stable daughter. The major radiations, energies (in MeV), and frequencies per disintegration are:

```
\beta^-: 3.92 max (7%), 3.10 max (8%), 1.60 max (88%) \gamma: 2.32 (34%), 1.50(54%), 0.820(49%) e^-: 0.818,0.805
```

- (a) Draw the nuclear decay scheme.
- (b) What is the maximum energy that the antineutrino can receive in this decay?
- (c) What is the value of the internal conversion coefficient?
- (d) Estimate the L-shell electron binding energy of the daughter nuclide.
- (e) Would daughter X rays be expected also? Why or why not?

Problem 20 [Turner Prob. 3.29]

Refer to the decay scheme of $^{137}_{55}$ Cs. The binding energies of the K- and L-shell electrons of the daughter $^{137}_{56}$ Ba atom are 38 keV and 6 keV.

- (a) What are the energies of the internal conversion electrons ejected from these shells?
- (b) What is the wavelength of the K_{α} X ray emitted when an L-shell electron makes a transition to the K-shell?
- (c) What is the value of the internal conversion coefficient?

Problem 21 [Turner Problem 3.3]

What minimum energy would an alpha particle need in order to react witn a ^{238}U nucleus?

Problem 22 [Turner Prob. 3.30]

- (a) Calculate the Q value for the K orbital electron capture by the $^{37}_{18}$ Ar nucleus, neglecting the electron binding energy.
- (b) Repeat (a), including the binding energy, 3.20 keV, of the K-shell electron in argon.
- (c) What becomes of the energy released as a result of this reaction?

Problem 23 [Turner Prob. 3.31]

What is the maximum possible positron energy in the decay of $^{35}_{18}\text{Ar}$?

Problem 24 [Turner Prob. 3.36]

The isotope $^{126}_{53}$ I can decay by EC, β^- and β^+ transitions.

- (a) Calculate the Q values for the three modes of decay to the ground states of the daughter nuclei.
- (b) Draw the decay scheme.
- (c) What kind of radiation can one expect from a ¹²⁶I source?

Problem 25 [Turner Prob. 3.5]

Calculate the total binding energy of the alpha particle.

Problem 26 [Turner Prob. 3.8]

Calculate the binding energy per nucleon for the nuclide $^{40}_{19}K$

Problem 27 [Turner Prob. 4-10]

How many grams of ${}^{32}P$ are there in a 5 mCi source?

Problem 28 [Turner Prob. 4-12]

An encapsulated ²¹⁰Po radioisotope was used as a heat source, in which an implanted thermocouple junction converts heat into electricity with an efficiency of 15% to power a small transmitter for an early space probe.

- (a) How many curies of ²¹⁰Po are needed at launch time if the transmitter is to be supplied with 100 W of electricity 1 year after launch.
- (b) Calculate the number of grams of $^{210}\mathrm{Po}$ needed.
- (c) If the transmitter shuts off when the electrical power to it falls below 1 W, how long can it be expected to operate after launch?

Problem 29 [Turner Prob. 4-13]

The Cassini spacecraft went into oribit about the planet Saturn in July 2004 after a nearly seven-year journey from Earth. On-board electrical systems were powered by heat from three

radioisotope thermoelectric generators, which together utilized a total of 32.7 kg of 238 Pu, encapsulated as PuO₂. The isotope has a half-life of 86.4 years and emits an alpha particle with an average energy of 5.49 MeV. The daughter 234 U has a half-life of 2.47×10^5 years.

- (a) Calculate the specific thermal power generation rate of 238 pu in W/g.
- (b) How much total thermal power is generated in the spacecraft?

Problem 30 [Turner Prob. 4-14]

A 0.2 g sample of 85 Kr gas, which decays into stable 85 Rb, is accidentally broken and escapes inside a sealed warehouse measuring 40×30 m. What is the specific activity of the air inside?

Problem 31 [Turner Prob. 4-15]

A 6.2 mg sample of ⁹⁰Sr is in secular equilibrium with its daughter ⁹⁰Y.

(a) How many Bq of 90 Sr are present? (b) How many Bq of 90 Y are present? (c) What is the mass of 90 Y present? (d) What will be the activity of the 90 Y be after 100 years?

Problem 32 [Turner Prob. 4-17]

Consider the following β^- nuclide decay chain with the half-lives indicated:

$$^{210}_{82}Pb \xrightarrow{\beta^{-}}_{22y} ^{210}_{83}Bi \xrightarrow{\beta^{-}}_{5.0d} ^{210}_{84}Po$$

A sample contains 30 MBq of $^{210}\mathrm{Pb}$ and 15 MBq $^{210}\mathrm{Bi}$ at time t=0.

- (a) Calculate the activity of 210 Bi at time t=10d.
- (b) If the sample was originally pure ²¹⁰Pb, then how old is it at time t=0?

Problem 33 [Turner Prob. 4-19]

 59 Fe has a half-life of 45.33 d.

- (a) What is the mean life of a ⁵⁹Fe atom?
- (b) What is the specific activity of a ⁵⁹Fe.
- (c) How many atoms are there in a 10 mCi source of ⁵⁹Fe?

Problem 34 [Turner Prob. 4-20]

At tome t=0 a sample consists of 2 Ci of 90 Sr and 8 Ci of 90 Y.

- (a) What will be the activity of ⁹⁰Y be in the sample after 100 h?
- (b) At what time will the 90 Y activity be equal to 3 Ci?

Problem 35 [Turner Prob. 4-21]

 $^{136}\mathrm{Cs}$ decays into $^{136}\mathrm{Ba}$ as follows:

$$^{136}Cs \xrightarrow{\beta^{-}} ^{136m}Ba \xrightarrow{\gamma} ^{136}Ba$$

- (a) Calculate the decay constant of ¹³⁶Cs.
- (b) Calculate the specific activity of ¹³⁶Cs
- (c) Starting with a pure 10^{10} Bq sample of 136 Cs at time t=0, how many atoms of 136m Ba decay between time t_1 =13.7d (exactly) and time t_2 =13.7d+5s?

Problem 36 [Turner Prob. 4-24]

A 40 mg sample of pure ²²⁶Ra is encapsulated.

- (a) How long will it take for the activity of 222 Rn to build up to 10 mCi?
- (b) What will be the activity of ²²²Rn after 2 years?
- (c) What will be the activity of ²²²Rn after 1000 years?
- (d) What is the ratio of the specific activity ²²²Rn to that of ²²⁶Ra?

Problem 37 [Turner Prob. 4-28]

The average mass of potassium in the human body is about 140 g. Estimate the average activity of 40 K in the body.

Problem 38 [Turner Prob. 4.3]

The activity of a radioisotope is found to decrease by 30% in one week. What are the values ot its:

- (a)decay constant
- (b)half-life
- (c)mean life?

Problem 39 [Turner Prob. 4.5]

The isotpe $^{132}\mathrm{I}$ decays by β^- emission into stable $^{132}\mathrm{Xe}$ with a half-life of 2.3 h.

- (a) How long it will take for $\frac{7}{8}$ of the original 132 I atoms to decay?
- (b)How long it will take for a sample of ¹³²I to lose 95% of its activity?

Problem 40 [Turner Prob. 4-6]

A very old specimen of wood contained 10¹² atoms of ¹⁴C in 1986.

- (a) How many ¹⁴C atoms did it contain in the year 9474 BC?
- (b) How many ¹⁴C atoms did it contain in 1986 BC?

Problem 41 [Turner Prob. 4-7]

A radioactive sample consists of a mixture of 35 S and 32 P. Initially, 5% of the activity is due to the 35 S and 95% to the 32 P. At what subsequent time will the activities of the two nuclides in the sample be equal?

Problem 42 [June 2013]

In an experiment designed to measure the total neutron cross section of 10 MeV with lead, the neutron flux after passing a 1 cm thick rod is found to be 84.5% of its initial value. If the atomic weight of lead is 207.21 g/mol and its density is 11.3 g/cm³

- a) Calculate the total effective cross-section (in barns)
- b) Calculate also the macroscopic cross section