Cross Sections Radiation-Matter Interaction

Th. Cocolios, N. Severijns (KU Leuven) E.Cortina (UCLouvain)

Cross Section (σ)

- Collision or interaction between two particles is described in terms of cross section
- It gives a measure of the probability for a reaction to occur
- It can be calculated on the knowledge of the fundamental interaction between particles
- We define the differential cross section as the probability to observe a scattered particle per solid angle unit.
- It depends on:
 - Particles
 - Type of interaction
 - Energy
 - Angle

Differential cross section

- Let's consider a beam of incident particle of type A
- And a target formed by ONE particle of type B
- The beam is broader than the target and the particles are uniformly distributed in time and space
- We define the flux as

$$Flux = \Phi = \frac{\# \text{ incident particles}}{\text{(Unit Area) (Unit time)}}$$

 Particles not interacting = Transmitted particles Particles interacting = Scattered particles (N_s)

Differential cross section

Probability of interaction is given by the differential cross section

$$dN_s = P \cdot \Phi \cdot d\Omega$$

$$\frac{d\sigma}{d\Omega}(E,\Omega) = \frac{1}{\Phi} \frac{dN_s}{d\Omega}$$

- dimensions = area
- heuristic interpretation: geometrical cross-section of the target intercepting the beam.

Please do not mix concepts!!!

► Units : 1 barn =
$$10^{-24}$$
 cm²
= 10^{-28} m²

• We define the total cross section as

$$\sigma(E) = \int d\Omega \frac{d\sigma}{d\Omega}$$

Cross Sections August 2022 4 / 19

Measurement of the cross section

- Let's consider a thin slab of material: area S and length ℓ
 - ▶ thin = Just 1 interaction per incident particle No auto-absorption
- Let's consider that the beam surface is equal to the target one $S = S_b$
- Experimentally we can measure the cross section by counting the particles scattered in a target from a flux Φ of incoming particles:

$$P_{int} = \frac{N_R}{N_{in}} \implies \begin{cases} N_{in}: \text{ Number (or rate) of incoming particles} = \Phi S \\ N_R: \text{ Number (or rate) of scattered particles} \end{cases}$$

Measurement of the cross section

- From the cross section definition:
 - effective area "seen" by an incoming particle $S_{eff} = N_T \sigma$

$$N_T = \frac{\rho V}{A} N_A \implies \begin{cases} N_T : \text{ Number of targets in the volume} \\ N_A : \text{ Avogadro's number} \\ A : \text{ mass per mole} \end{cases}$$

► The total area of the target is therefore the ratio between "effective" and geometrical surface:

$$P_{int} = \frac{S_{eff}}{S} = \frac{N_T \sigma}{S} = N \sigma \ell$$

where N is the so called particle number density:

$$N = \frac{N_T}{V} = \frac{\rho}{A} N_A$$

Anagously we define the electron number density as:

$$N_e = ZN = \frac{Z\rho}{A}N_A$$

6 / 19

Measurement of the cross section

- ullet The number of scattering centers per unit perpendicular area to the beam is: $N\ell$
- ullet The total number of scattering centers is $\mathit{NS\ell}$

$$dN_R = \frac{d\sigma}{d\Omega} \Phi d\Omega \qquad \qquad \text{for 1 scattering center}$$

$$dN_R = \frac{d\sigma}{d\Omega} NS\ell \Phi d\Omega \qquad \qquad \text{for } NS\ell \text{ scattering centers}$$

$$N_R = \Phi SN\ell \sigma = N_{in}N\ell \sigma$$

Combining all the previous equations we obtain:

$$P_{int} = \frac{N_R}{N_{in}} = N\sigma\ell \quad \Rightarrow \quad \sigma = \frac{1}{N\ell} \frac{N_R}{N_{in}}$$

ullet Number of collisions per unit length of a particle is: $N\sigma$

→ロト 4回ト 4 差ト 4 差ト 差 めなべ

Measurement of Cross Section

- If the target surface (S_t) is smaller than the beam surface (S_b) :
 - ► The same expression is still valid
 - Now the area to be considered is that of the beam S_t
 - $S_t \Phi$ = number of incident particles

$$N_R = \Phi S_t N \delta_x \sigma \quad \Rightarrow \quad \sigma = \frac{1}{N\ell} \frac{N_R}{\Phi S_t}$$

• In case that $S_b < S_t$ the surface to be consider is S_b :

$$N_R = \Phi S_b N \delta_x \sigma \quad \Rightarrow \quad \sigma = \frac{1}{N\ell} \frac{N_R}{\Phi S_b}$$

Survival Probability

• What's the probability on not having an interaction in a distance x?

```
P(x) = probability of not having an interaction in a distance x \omega = probability of having an interaction per unit length \omega dx = probability of having an interaction between x and x + dx
```

Probability of not having an interaction between x and x + dx is

$$P(x+dx) = P(x)(1-\omega dx)$$

$$P(x) + \frac{dP(x)}{dx}dx = P(x) - \omega P(x)dx$$

$$P(x) = Ce^{-\omega x}$$

$$P(x) = Ce^{-\omega x}$$

$$P(0) = 1$$

$$P(x) = e^{-\omega x}$$

- P(x)= survival probability
- ullet The probability of suffering an interaction anywhere in the distance x is

$$P_{int} = 1 - P(x)$$

9 / 19

Cross Sections August 2022

Interaction probability

• The probability of interaction between x and x + dx is:

$$P_{int}(x)dx$$
 = Survival Probability × Interaction probability in dx
 $P_{int}(x)dx = e^{-\omega x} \times \omega dx$

• We can then calculate the mean free path as the mean distance in which there is not an interaction :

$$\lambda = \frac{\int x P(x) dx}{\int P(x) dx} = \frac{\int x e^{-\omega x} dx}{\int e^{\omega x} dx} = \frac{1}{\omega}$$

Mean Free Path

• λ must be related with the density of interaction centers and the cross-section.

For a small δx we can write the interaction probability as:

$$P_{int}(\delta x) = 1 - P(\delta x) \simeq 1 - \left(1 - \frac{\delta x}{\lambda} + \cdots\right) \simeq \frac{\delta x}{\lambda}$$

This quantity has been already calculated:

$$P_{int}(\delta x) = N\sigma\delta x$$

• From the two expression we get

$$\lambda = \frac{1}{N\sigma} = \frac{A}{\rho N_A \sigma}$$

Energy loss of charged particles

- Interaction of the radiation with the atomic electrons is the dominant energy loss process for charged particles.
 - First calculated classically by Bohr (1913)
 - Bethe and Bloch provided quantum mechanical calculation (1930's)
 - Subsequently refined: correction for various kinematical regimes.
- The average energy loss of a particle with mass M and velocity β can be expressed as:

$$-\left\langle \frac{dE}{dx} \right\rangle = n_e \int_{T_{min}}^{T_{max}} T \frac{d\sigma}{dT} (M, \beta, T) dT \qquad n_e = \frac{Z\rho}{A} N_A: \text{ Target number density}$$

T: Kinetic energy loss in the collision $\sigma(M,\beta,T)$: Cross section

Rutherford scattering

$$-\left\langle \frac{dE}{dx} \right\rangle = n_e \int_{T_{min}}^{T_{max}} T \frac{d\sigma}{dT} dT$$
$$= n_e \int_{T_1}^{T_{max}} T \frac{d\sigma}{dT} dT - \left\langle \frac{dE}{dx} \right\rangle_{T < T_1}$$

- In the following we are going to assume:
 - ► Incoming particle is "heavy": M >> m_e
 - For $T > T_1$: "quasi-free" orbital electrons $(\beta >> \beta_e)$
 - ► T_1 larger than ionization energy: $T_1 \approx 0.01 0.1$ MeV
- Let's consider incoming and outgoing 4-vectors: P, p_e, P', p'_e .
- 4-momentum transfer: $Q^2 = -(P P')^2 = -(p_e p'_e)^2 = 2m_e c^2 T$
- Lorentz-invariant Rutherford cross section:

$$\frac{d\sigma}{dQ^2} = \frac{4\pi z^2 \alpha^2 \hbar^2 c^2}{\beta^2} \frac{1}{Q^4} \Longrightarrow \frac{d\sigma}{dT} = \frac{2\pi z^2 \alpha^2 \hbar^2}{\beta^2 m_e} \frac{1}{T^2}$$

Cross Sections 13 / 19

Rutherford scattering

 Mott cross section takes into account possible spin flip of the target electron

$$\frac{d\sigma}{dT} = \frac{2\pi z^2 \alpha^2 \hbar^2}{\beta^2 m_e T^2} \left(1 - \beta^2 \frac{T}{T_{max}} \right)$$

We can now solve the integral

$$\left\langle \frac{dE}{dx} \right\rangle_{T>T_{1}} = n_{e} \int_{T_{1}}^{T_{max}} T \frac{2\pi z^{2} \alpha^{2} \hbar^{2}}{\beta^{2} m_{e} T^{2}} \left(1 - \beta^{2} \frac{T}{T_{max}} \right) dT$$
$$= \frac{2\pi z^{2} \alpha^{2} \hbar^{2}}{\beta^{2} m_{e}} n_{e} \left(\ln \frac{T_{max}}{T_{1}} - \beta^{2} \right)$$

• It contains most of the dependencies of energy loss.

Cross Sections August 2022 14 / 19

Minimum Energy Transfer

- Classically the energy transferred to a free electron can become arbitrarily small.
- Quantum mechanically:
 - Below the ionisation threshold: only discrete energy transfers.
 - ► If particle velocities similar or smaller than electron orbitals: interference effects plays a role.
 - ▶ We have to take into account excitations, atomic screening,....
- Rigorous treatment by Bethe:

$$\left\langle \frac{dE}{dx} \right\rangle_{T < T_1} = \frac{2\pi z^2 \alpha^2 \hbar^2}{\beta^2 m_e} n_e \left(\ln \frac{2m_e c^2 \beta^2 T_1}{I^2} - \ln \frac{1}{\gamma^2} - \beta^2 \right)$$

- ▶ Integral between an effective $T_{min} = \frac{I^2}{2m_ec^2\beta^2}$ and $T_{max} = T_1$
- ► I is the mean excitation energy (0.1 eV few eV).
- The term $\ln \frac{1}{\gamma^2}$ accounts for a relativistic growth at high energies.

Cross Sections

 The scattering of heavy particles with charge ze with free electrons is described by the Rutherford differential cross section

$$\frac{d\sigma_R(E,\beta)}{dE} = \frac{2\pi r_e^2 m_e c^2 z^2}{\beta^2} \frac{\left(1 - \beta^2 E/T_{max}\right)}{E^2}$$

where

r_e: Classical electron radius

me: Electron mass

z : Charge of the incident particle β : Velocity of the incident particle

E: Energy loss of the incident particle

 T_{max} : Maximum energy transfer possible in a single collision

• Electrons in matter are not free. Bethe took into account this with the inclusion of a correction factor

$$\frac{d\sigma_B(E,\beta)}{dE} = \frac{d\sigma_R(E,\beta)}{dE}B(E)$$

<□> ◆□> ◆Ē> ◆Ē> · Ē · · ○ ○

Moments

- Cross-Section = Probability of interaction
- Mean number of collisions with energy loss between E and E+dE in a distance δx is:

$$N = N_e \delta \times \left(\frac{d\sigma(E, \beta)}{dE}\right) dE$$

where

 N_e : Electron density = ZN

• It's convenient to define the moments

$$M_j(\beta) = N_e \delta \times \int E^j \frac{d\sigma(E, \beta)}{dE} dE$$

 M_0 : mean number of collisions in δx

 M_1 : mean energy loss in δx

 $M_2 - M_1^2$: Variance

Usually defined per unit length

• The number of collisions is Poisson distributed with mean $m_c = M_0 x$

Cross Sections August 2022 18 / 19

Macroscopic Cross Section

We define the macroscopic cross section as

$$\Sigma_t(\gamma\beta) = N_e \int \frac{d\sigma(E,\beta)}{dE} dE = M_0 \qquad m_c = x\Sigma_t(\gamma\beta)$$

 Previously we calculated the mean number of collision per unit length as

