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CHAPTER

ONE

QUIC

QUIC [1] is the latest transport protocol standardized by the IETF. There are several characteristics that distinguish
QUIC from other transport protocols:

• QUIC supports multiple streams like SCTP

• QUIC includes various reliability and congestion control mechanisms like TCP

• QUIC directly integrates the security features of TLS 1.3 [2] instead of simply layering TLS above the transport
layer

• QUIC can also be used to carry datagrams [3]

• QUIC runs above UDP in contrast with other transport protocols such as TCP, SCTP or DCCP that run above IP

From a pure layering viewpoint, QUIC can be illustrated as shown in Fig. 1.1. It is unusual to layer a transport protocol
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Fig. 1.1: QUIC in the TCP/IP stack

above another one. QUIC opted for this solution for two main reasons. First, on most operating systems, any application
can directly use UDP without requiring special privileges. This implies that QUIC can be implemented as a library
which can be included directly inside applications. This contrasts with TCP, SCTP or DCCP whose implementations
are either part of the operating system kernel or need special privileges to send raw packets. The second motivation is
that UDP (as well as TCP and ICMP) is supported by most middleboxes while many of them block transport protocols
that were not defined when they were designed [4].

It is useful to note that by using UDP, QUIC slightly increases its overhead. Each QUIC packet carries 8 bytes of headers
containing the source and destination ports, the length field and a checksum. UDP also comes with a performance
penalty compared to TCP. During the last decades, operating system kernels have been optimized to provide high
bandwidth using TCP with techniques such as TCP Segmentation Offload (TSO) and Generic Receive Offload (GRO).
In parallel, the UDP implementation has not changed significantly and most of the optimizations focused on request-
response services such as DNS servers. The situation has changed recently with some effort, notably on Linux, to
improve UDP’s raw throughput [5].
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1.1 Frames and packets

There is an important difference between QUIC and classical protocols like TCP or UDP. TCP and UDP send segments
that are composed of a header followed by a sequence of bytes that constitutes the payload. In contrast and like SCTP,
a QUIC packet contains a header followed by one or more frames. The QUIC header is much simpler and shorter than
the TCP header. It only carries the information which is required in all QUIC packets. We will describe later the short
and long QUIC headers. Each QUIC header starts with one byte that contains some flags and a 32 bits version field.
QUIC defines different types of frames that we will discuss in this chapter. Some types of QUIC frames carry user data.
Other types of QUIC frames carry control information. Some of these frames are used during the handshake only while
others such as acknowledgments can be sent at any time. Each QUIC frame is a sequence of byte that starts with a one
byte Type field. Fig. 1.2 shows a QUIC packet containing two frames which is placed inside a UDP datagram. Neither
the QUIC header nor the QUIC frames need to be aligned on 32 bits boundaries even if this alignment is convenient
for :numref:`fig-quic-packet. An important point to note is that a QUIC packet can mix both data and control frames
in any order.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Source Port Destination Port
Length Checksum

⎫⎬⎭ UDP
Header
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... ...

...
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Fig. 1.2: A QUIC packet is sent inside a UDP datagram and contains one or more QUIC frames

1.2 Connection establishment

QUIC uses a four-way handshake to create a QUIC connection. Fig. 1.3 describes this handshake. The QUIC hand-
shake has three main purposes. First, it allows to negotiate the crypto keys required to both encrypt and authenticate
the packets that will be sent later on the connection. This is mainly done using TLS 1.3 [2]. Second, it allows to
negotiate different options using transport parameters. Third, the server can validate that the client can respond to the
address used to send the initial packet. This validation allows to prevent denial of service attacks using spoofed ad-
dresses. The client sends an Initial packet containing a CRYPTO frame. This packet carries the TLS Client Hello
and the transport parameters proposed by the client for this connection. The server replies with an Initial packet
containing also a CRYPTO frame. This one contains the TLS Server Hello. It is immediately followed by one or
more Handshake packets containing also a CRYPTO frame with the TLS Encrypted Extensions. The contents of
this frame is encrypted using the session key derived from the information contained in the TLS Client Hello and
the TLS Server Hello. It mainly contains the certificate and the transport parameters of the server. This frame can
be spread over several QUIC packets. The client replies with a Handshake packet that contains a CRYPTO frame with
the TLS Finished message. The server later confirms the end of the TLS handshake by sending a Handshake_Done
frame.

2 Chapter 1. QUIC



A QUIC introduction, Release 2024

Client Server
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Fig. 1.3: Simplified QUIC Handshake

Before looking at the details of the negotiation of the cryptographic parameters, it is interesting to see how QUIC
counters denial of service attacks that use spoofed addresses. During such attack, host x sends packets using the
address of host y as their source. The main risk of such attacks is that the server could send a large number of packets
towards address y although the host owning this address did not try to establish a QUIC connection with the server.
QUIC prevents such attacks by using two distinct techniques. First, and this is unusual for transport protocols, the
Initial QUIC packet sent by the client is large. The first packet sent to create a QUIC connection must contain a UDP
payload of at least 1200 bytes [1]. Such a packet contains a CRYPTO frame has shown in the figure, but also padding
frames to fill the packet. If an attacker wants to send spoofed packets to initiate a connection with a server, it needs to
send more than one KByte for each connection attempt. This should be compared with the 40 bytes of the TCP and
IPv4 headers that must be sent to initiate a TCP connection. Another advantage of sending a large initial packet, the
client can also perform Path MTU discovery and detect routers that could fragment the QUIC packets.

Note: Address spoofing

In theory, an Internet host should only send packets using its IPv4 and IPv6 source addresses. In practice, incorrectly
configured hosts can use other addresses than their assigned one. Furthermore, attackers often change their source
address to hide some of their activities. A frequent situation are denial of service (DoS) attacks. A simple DoS attack
is when a host sends a large volume of packets to a victim. If the attacker sends these packets using another address
than its official IP address, it makes it more difficult for the victim to identify the source of the attack.

But there is another category of DoS attack that is more worrisome. If an attacker can send a packets using the source
address of the victim to a server, the server would return a response to the victim. These attackers use Internet servers
that send a large response, possibly using multiple packets to a single request packet. They have exploited protocols
such as DNS, NTP or applications such as memcached . The main problem with such attacks is that the server amplifies
the volume of the attack generated by the clients. As there are very powerful servers on the Internet, this can be a huge
problem and such attacks have reached volumes of hundreds of Gbps. The IETF and network operators have published
recommendations to configure access networks to block spoofed packets [6]. Unfortunately, there are still portions of
the Internet where attackers can send spoofed packets [7].

The second mitigation against denial-of-service attacks using spoofed packets operates on the server. When a server
receives an initial packet from a client, it may respond with an initial packet as shown in Fig. 1.3. This could for
example be the case of an enterprise server that receives a request from a host of a known enterprise subnet. The server
could also want to validate the client and verify that the client can receive the packets that it sends. For this, it returns a
Retry frame and a Token. This token is an opaque field that is constructed in a way that makes it easy for the server to
validate the subsequent client packets and difficult for the client to predict the token that a server will create. A possible
approach is to compute a secure hash of a message that contains the source IP addresses and ports used by the client, a
secret value only known by the server and possibly some timing information to enable the server to ignore older tokens.

1.2. Connection establishment 3
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Faced with the same problem, TCP syn cookies are encoded using fewer bits and thus inherently less secure. Fig. 1.4
shows a QUIC handshake that includes a validation of the client address. Address validation improves the resilience of

Client Server

Initial (CRYPTO)

Retry+Token

Initial (CRYPTO)+Token

Initial (CRYPTO)
Handshake (CRYPTO)

Handshake (CRYPTO)

Handshake_Done

Fig. 1.4: Simplified QUIC Handshake with address validation

servers against denial of service attacks using spoofed addresses, but this comes at the expense of a longer connection
establishment delay. QUIC version 1 includes several additional techniques to reduce the impact of address validation
while still preventing denial of service attacks.

1.2.1 Identifying QUIC connections

A TCP connection is identified by a four tuple 𝐼𝑃𝐶𝑙𝑖𝑒𝑛𝑡, 𝐼𝑃𝑆𝑒𝑟𝑣𝑒𝑟, 𝑃𝑜𝑟𝑡𝐶𝑙𝑖𝑒𝑛𝑡, 𝑃𝑜𝑟𝑡𝑆𝑒𝑟𝑣𝑒𝑟. All packets belonging to
a given connection carry this information in their IP and TCP headers. As QUIC runs above UDP, a simple approach
could have been to use the UDP four tuple to identify each QUIC connection. Although simple, this solution would
have severely restricted the flexibility of QUIC and the scalability of QUIC servers. The QUIC designers have opted
for locally unique connection identifiers (CID) that are selected by the client and the server. These identifiers are placed
in the QUIC packet headers during the handshake. When sending the Initial packet, the client selects a source CID that
uniquely identifies the connection on the client and a random destination CID. Upon reception of this packet, the server
selects its own connection identifier. It echoes the client selected CID and returns its selected CID. This is illustrated
in Fig. 1.5. The connection identifiers selected by the client and the server uniquely identify the QUIC connection.

Client Server

[SCID=𝑥, DCID=𝑦]
Initial

[SCID=𝑧, DCID=𝑥]
Initial

Handshake

Fig. 1.5: Connection identifiers during a simplified QUIC Handshake
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However, in contrast with TCP and UDP, the two identifiers are not present in all packets. Since a host selects a unique
identifier for each connection, it only needs this identifier to identify a connection to which a packet belongs. For this
reason, the QUIC packets exchanged on a connection after the handshake only contain the destination CID, i.e. the
CID selected by the host that receives the packet.

Note: Variable length CIDs

Most transport protocols rely on fixed-length fields because this simplifies the parsing of packet headers. For example,
the TCP and UDP port numbers are encoded as a 16 bits field. However, using fixed-length fields also limits the
extensibility of the protocol. A TCP server cannot listen to more than 216 different ports.

QUIC has opted for variable length CIDs to support very different use cases. On the server side, the length of the
selected connection identifiers will depend on the architecture of the server. Large sites might use a load-balancer
that distributes the connections to different physical servers. Such a load-balancer can leverage the CID to direct each
incoming packet to the server that handles this connection. A simple CID would be composed of a server identifier
chosen by the load balancer, e.g. in the high order bits of the CID, followed by a connection identifier selected by the
physical server. Other designs are possible, e.g. by encrypting the CID to prevent attacks where malicious clients try
to target a specific server.

One the client side, variable lengths CIDs bring another benefit. As clients typically manage a small number of QUIC
connections, they can simply rely on the destination port of the packets that they receive to identify the corresponding
QUIC connection. This corresponds to a zero-length connection identifier. Such a CID is never sent by the server after
the handshake. This limits the byte overhead of the packets that clients receive.

A last point to note about these CIDs is their encoding inside the QUIC packets. The Initial packet contains the length
and the value of both connection identifiers. The maximum length for a CID is 20 bytes. However, after the handshake,
the packets that are exchanged over the QUIC connection only contain the destination CID without any field indicating
its length. The host that has allocated the CID knows the length of the CIDs that it uses and can thus parse the packets
that it receives without an explicit length information.

1.2.2 Security keys

We can now discuss how QUIC leverages TLS 1.3 to negotiate the security keys that are used to authenticate and
encrypt the packets exchanged over a connection. As shown in Fig. 1.3, a QUIC connection starts with the exchange of
four frames which can be carried in four or more packets. The first packet sent by the client contains the ClientHello
TLS record. The ClientHello contains the information required to derive the session keys using Diffie-Hellman
or a similar protocol. TLS 1.3 supports both finite field Diffie-Hellman and Elliptic Curve Diffie-Hellman [2]. The
ClientHello message also contains TLS or QUIC parameters that the client proposes to use during the connection.
The TLS Server Hello returned by the server contains the certificate that enables the client to validate the server’s
identity and the information required to determine the Diffie-Hellman keys. Using these keys, the server also encrypts
the TLS Encrypted Extensions message that contains the TLS and QUIC parameters that the server has selected
based on the ones proposed in the ClientHello. The server also constructs the Finished message that contains a
message authentication code computed over the entire TLS handshake. This message is encrypted and authenticated
using the session keys derived from the Diffie-Hellman keys. The client and the server recompute the hash of the entire
handshake and verify both Finished messages. If one of these messages is incorrect, this indicates that either the key
has not been correctly derived or that some of the TLS messages have been tampered. In these situations, the QUIC
connection is terminated with an error message. The simplified TLS handshake used by QUIC is illustrated in Fig. 1.6.
The TLS messages shown in italics are encrypted using the session keys.

Note: Encrypting TLS Client Hello and TLS Server Hello

When TLS 1.3 is used above TCP, the TLS Client Hello and TLS Server Hellomessages are sent in clear because
the client and the server have not yet exchanged the session keys. A similar approach could have been used for QUIC,
but there was a fear that middleboxes could analyze the contents of these initial QUIC messages and try to interfere

1.2. Connection establishment 5



A QUIC introduction, Release 2024

Client Server
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TLS Server Hello
𝐸𝑛𝑐𝑟𝑦𝑝𝑡𝑒𝑑𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛𝑠
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Fig. 1.6: Simplified TLS Handshake within a QUIC connection

with them. To add some burden on these middleboxes, QUIC encrypts the Initial packets using a secret that is derived
from the destination connection ID of the client’s first Initial packet. The pseudocode below, extracted from [8], shows
how the client and the server keys are derived:

initial_salt = 0x38762cf7f55934b34d179ae6a4c80cadccbb7f0a
initial_secret = HKDF-Extract(initial_salt,

client_dst_connection_id)

client_initial_secret = HKDF-Expand-Label(initial_secret,
"client in", "", Hash.length)

server_initial_secret = HKDF-Expand-Label(initial_secret,
"server in", "",Hash.length)

Since the keys used to protect the Initial packets are derived from the destination connection ID, any QUIC implemen-
tation, including those used on middleboxes, can decrypt the contents of the Initial packets.

As mentioned earlier, the client and the server can also use the TLS handshake to agree on specific QUIC parame-
ters. These parameters are called transport parameters in QUIC [1]. 17 different transport parameters are defined in
QUIC version 1 [1] and implementations can define their own transport parameters. We will discuss some of them
in different sections of this document. A first example is the max_udp_payload_size parameter that indicates the
largest UDP payload that an implementation is willing to receive. The minimum value for this parameter is 1200
bytes. QUIC implementations used in a datacenter supporting jumbo Ethernet frames could agree on a much larger
max_udp_payload_size without risking packet fragmentation.

Another example of QUIC transport parameters are the initial_source_connection_id and the
original_destination_connection_id transport parameters. As explained above, thanks to the Finished
messages in the TLS handshake, the client and the servers can verify that their messages have not been tampered. Un-
fortunately, the authentication code included in the Finished messages is only computed based on the contents of the
TLS messages (i.e. ClientHello, ServerHello, EncryptedExtensions and Finished). During the handshake,
the client and the servers also propose the source and destination connection identifiers that they plan to use to identify
the QUIC session. These identifiers are placed in the packet header and not inside the TLS messages. They are thus
not covered by the authentication code included in the Finished message. To still authenticate these identifiers,
QUIC encodes them as transport parameters that are included in the ClientHello and the EncryptedExtensions
messages. The client copies the source connection identifier in the initial_source_connection_id transport
parameter in its ClientHello. The server does the same when sending the ServerHello. It also copies in the
original_destination_connection_id transport parameter the destination identifier used by the client to send
the packet containing the ClientHello.

6 Chapter 1. QUIC
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1.2.3 The QUIC packet headers

At this point, the QUIC session and the TLS security keys are known by the client and the server. They can start to
exchange data. Before looking at how data is carried inside QUIC packets, it is interesting to explore in more details
the packet headers that are placed inside each packet. QUIC uses variable length packet headers. Two different header
formats exist. The first header format is the long header. This is the header used for the first packets of a QUIC
connection.

Internet protocol specifications usually contain figures to represent the format of the packet headers. This graphical
format is useful to get a quick grasp at a header containing fixed size fields. However, when a header contains several
variable length fields, the graphical representation can become difficult to follow. The QUIC specification [1] uses the
textual representation that was also used for the TLS protocol. As an example, let us consider the well-known TCP
header. This header is graphically represented as shown in Fig. 1.7.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Source Port Destination Port
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TCP Checksum Urgent Pointer

Fig. 1.7: Graphical representation of the TCP header

Listing 1.1: Textual representation of the TCP header

TCP Header Packet {
Source Port (16),
Destination Port (16),
Sequence Number (32),
Acknowledgment Number (32),
Offset (4),
Reserved (6),
Urgent Flag (1),
ACK Flag (1),
Push Flag (1),
RST Flag (1),
SYN Flag (1),
FIN Flag(1),
Window (16),
TCP Checksum (16),
Urgent Pointer (16),
TCP Options (..)

}

The attentive reader will easily understand the correspondence between the two formats. When explaining QUIC, we
use the textual representation while we stick to the graphical one for TCP.

Listing 1.2 shows the QUIC long header. It starts with one byte containing the header type in the most significant bit,
two bits indicating the packet type and four bits that are specific to each packet packet. Then, 32 bits carry the QUIC
version number. The current version of QUIC, defined in [1], corresponds to version 0x00000001. The header then
contains the destination and source connection identifiers that were described previously and then a payload that is
specific to each type.

1.2. Connection establishment 7
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Listing 1.2: The QUIC long header

Long Header Packet {
Header Form (1) = 1, /* high order bit of the first byte */
Fixed Bit (1) = 1, /* second order bit of the first byte */
Long Packet Type (2), /* third and fourth high order bits of the first␣

→˓byte */
Type-Specific Bits (4), /* low order four bits of the first byte */
Version (32), /* 32 bits version number */
Destination Connection ID Length (8), /* 8 bits */
Destination Connection ID (0..160), /* variable number from 0 up to 160 bits */
Source Connection ID Length (8),
Source Connection ID (0..160),
Type-Specific Payload (..), /* variable length */

}

Note: Encoding packet numbers

Most transport protocols use fixed fields to encode packet numbers or byte offsets. The size of this field is always a
trade-off. On one hand, a small packet number field limits the per packet overhead. On the other hand, a large packet
number space is required to ensure that two packets carrying different data do not use the same packet number. TCP
uses a 32 bits sequence number field that indicates the position of the first byte of the payload in the bytestream. This
32 bits field became a concern as bandwidth increased to Gbps and beyond [9].

QUIC takes a different approach to sequence numbers. Each packet contains a per-packet sequence number. This num-
ber is encoded as a variable-length integer (varint). Such a varint has a length encoded in the two most significant
bits of the first byte. If these bits are set to 00, then the varint is encoded in one byte and can contain values between
0 and 26− 1. If the two most significant bits are set to 01, the varint can encode values between 0 and 214− 1 within
two bytes. When the two high order bits are set to 11 the varint can encode values between 0 and 262− 1 within four
bytes.

There are other important differences between QUIC and other transport protocols when considering packet numbers.
First, a QUIC sender must never reuse the same packet number for two different packets sent over a QUIC connection.
If data needs to be retransmitted, it will be resent as a frame inside a new packet. Furthermore, since the largest possible
packet number is 262 − 1, a QUIC sender must close the corresponding connection once it has sent a QUIC packet
carrying this packet number. This puts a restriction on the duration of QUIC connections. They cannot last forever
in contrast to TCP connections such as those used to support BGP sessions between routers. An application that uses
QUIC must be ready to restart a connection from time to time.

This long header is used for the Initial, Handhsake and Retry packets. Some of these packet types add new flags
in the first byte and additional information after the connection identifiers. Listing 1.3 shows the long header of the
Initial packet. It contains two bits in the first byte that indicate the length of the packet number field. The packet
specific part contains an option token, a length field, a packet number and a payload. The token length, length and
packet number are encoded using variable length integers.

Listing 1.3: The QUIC long header of the Initial packet

Initial Packet {
Header Form (1) = 1, /* High order bit first byte */
Fixed Bit (1) = 1,
Long Packet Type (2) = 0,
Reserved Bits (2),
Packet Number Length (2), /* Low order 2 bits of first byte */

(continues on next page)
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(continued from previous page)

Version (32),
Destination Connection ID Length (8),
Destination Connection ID (0..160),
Source Connection ID Length (8),
Source Connection ID (0..160),
Token Length (i),
Token (..),
Length (i),
Packet Number (8..32),
Packet Payload (8..),

}

The QUIC short header contains fewer fields. The most significant bit of the first byte is set to 1 to indicate that the
packet carries a short header. The other flags will be discussed later. The two least significant bits of this byte contain
the length of the packet number field. It is interesting to note that in contrast with the long header, there is no explicit
indication of the length of the destination connection identifier. This connection identifier has been assigned by the
host that receives this packet and it already knows the length of the connection identifiers that it uses.

Listing 1.4: The QUIC short header used by 1-RTT packets

1-RTT Packet {
Header Form (1) = 0, /* High order bit of first byte */
Fixed Bit (1) = 1,
Spin Bit (1),
Reserved Bits (2),
Key Phase (1),
Packet Number Length (2), /* Low order bits of first byte */
Destination Connection ID (0..160),
Packet Number (8..32),
Packet Payload (8..),

}

The short header format, depicted in Listing 1.4, is used by all QUIC packets once the session keys have been derived.
This usually happens after one round-trip-time. These packets are called the 1-RTT packets in the QUIC specification
[1]. This notation is used to emphasize the fact that QUIC also supports 0-RTT packets, i.e. packets that carry data
and can be exchanged in parallel with the TLS handshake.

Note: Coalescing packets

Besides the connection identifiers, another difference between the short and the long headers is the presence of the
Packet Length field in the long header. This field might surprise the reader who is familiar with UDP since UDP
also contains a Length field. As each QUIC packet is placed inside a UDP message, the QUIC Length field could
seem redundant. This Length field was included in the QUIC long header to allow a QUIC sender to coalesce several
consecutive and small packets inside a single UDP message. Some of the frames exchanged during the handshake are
rather small. Sending a UDP message for each of these frames would be a waste of resources. Furthermore, a mix of
Initial, Handshake and 0-RTT packets are exchanged when creating a QUIC connection. It would not be wise to
require the utilization of one UDP message to send each of these packets. You might observe this optimization when
analyzing packet traces collected on QUIC servers.

1.2. Connection establishment 9
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1.2.4 0-RTT data

Latency is a key concern for transport protocols. The QUIC/TLS handshake that we have described until now allows
the client and the server to agree on security keys within one round-trip-time. However, one round-trip-time can be
a long delay for some applications. To minimize the impact of the connection setup time, QUIC allows applications
to exchange data during the QUIC/TLS handshake. Such data is called 0-RTT data. To ensure that 0-RTT data is
exchanged securely, the client and the server must have previously agreed on a key which can be used to encrypt and
authenticate the 0-RTT data. Such a 0-RTT key could either be a pre-shared key that the client and the server have
shared without using the QUIC protocol or, and this is the most frequent solution, the key that they negotiated during a
previous connection. In practice, the server enables 0-RTT by sending a TLS session ticket to the client [2]. A session
ticket is an encrypted record that contains information that enables the server to recover all the state information about
a session including its session keys. It is also linked to the client’s address to enable the server to verify that a given
client reuses the tickets that it has received earlier. Usually, these tickets also contain an expiration date. The client
places the received ticket in the TLS CLient Hello that it sends in the first Initial packet. It uses the pre-shared key
corresponding to this ticket to encrypt data and place it in one or more 0-RTT packets. The server uses the information
contained in the ticket to recover the key and decrypt the data of the 0-RTT packet. Listing 1.5 shows the format of
QUIC’s 0-RTT packet.

Listing 1.5: The QUIC 0-RTT packet

0-RTT Packet {
Header Form (1) = 1, /* High order bit of the first byte */
Fixed Bit (1) = 1,
Long Packet Type (2) = 1,
Reserved Bits (2),
Packet Number Length (2), /* Low order bits of the first byte */
Version (32),
Destination Connection ID Length (8),
Destination Connection ID (0..160),
Source Connection ID Length (8),
Source Connection ID (0..160),
Length (i),
Packet Number (8..32),
Packet Payload (8..),

}

The main benefit of these 0-RTT packets is that the client can immediately send encrypted data while sending its
Initial packet. This is illustrated in Fig. 1.8 where the frames encrypted with the 0-RTT keys are shown in italics.
Note that some of these frames can span several packets. 0-RTT packets are only sent by the QUIC client since the
server can send encrypted data immediately after having sent its Handshake frames. As explained earlier, the Initial
packets are also encrypted but using keys derived from the connection identifiers.

Note: Replay attacks and 0-RTT packets

Thanks to the 0-RTT packets, a client can send encrypted data to the server before waiting for the secure handshake.
This reduces the latency of the data transfer, but with one important caveat. QUIC does not provide any guarantee that
0-RTT data will not be replayed. QUIC’s 0-RTT data exchanged is intended for idempotent operations. A detailed
discussion of the impact of replay attacks may be found in [10].

To understand the importance of these replay attacks, let us consider a simple HTTP GET request. Such a request could
easily fit inside the 0-RTT packet and thus have lower latency. If a web browser uses it to request a static index.html
file, there is no harm if the request is received twice by the server. However, if the GET request is part of a REST API
and has side effects, then problems could occur depending on the type of side effect. Consider a REST API that allows
a user to switch off the lights using his or her smartphone. Replaying this request two or three times will always result
in the light being switched off. However, if the user requests to increase the room temperature by one °C, then multiple
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Client Server

Initial (CRYPTO)
0−𝑅𝑇𝑇 (𝐷𝑎𝑡𝑎)

Initial (CRYPTO)
𝐻𝑎𝑛𝑑𝑠ℎ𝑎𝑘𝑒(𝐶𝑅𝑌 𝑃𝑇𝑂)

𝐻𝑎𝑛𝑑𝑠ℎ𝑎𝑘𝑒(𝐶𝑅𝑌 𝑃𝑇𝑂)

𝐻𝑎𝑛𝑑𝑠ℎ𝑎𝑘𝑒_𝐷𝑜𝑛𝑒

Fig. 1.8: Simplified QUIC Handshake with 0-RTT data

replays will obviously have different consequences.

1.3 Closing a QUIC connection

Before exploring how data can be exchanged over a QUIC connection, let us now analyze how a QUIC connection can
terminate. QUIC supports three different methods to close a QUIC connection. QUIC’s approach to terminating con-
nection is very different from the approaches used by traditional transport protocol. Before looking at these techniques,
it is important to understand how QUIC interacts with Network Address Translation.

Note: QUIC and Network Address Translation

QUIC runs above UDP and the design of QUIC was heavily influenced by the presence of NATs. NATs, like other
middleboxes, maintain per-flow state. For TCP connections, many NATs rely on the SYN, FIN and RST flags to determine
when state must be created or removed for a TCP connection. For UDP, this stateful approach is not possible and NATs
create a new mapping when they observe the first packet of a flow and remove the mapping once the flow has been idle
for sometime. The IETF recommends to maintain NAT mappings during at least two minutes [11], but measurements
show that some deployed NATs use shorter timeouts [12, 13]. In practice, UDP flows should probably send a packet
every 30 seconds to ensure that the on-path NATs preserve their state.

To prevent NATs from changing the mapping associated to the IP addresses and ports used for a QUIC connection,
QUIC hosts will need to regularly send data over each established QUIC connection. QUIC defines a PING frame that
allows any QUIC endpoint to send a frame that will trigger a response from the other peer. The PING frame does not
carry data, but the receiver of a PING frame needs to acknowledge the packet containing this frame. This creates a
bidirectional communication and can prevent NATs from discarding the mapping associated to the QUIC connection.

1.3. Closing a QUIC connection 11
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1.3.1 Implicit termination of QUIC connections

Each QUIC implementation keeps in its connection state the timestamp of the last QUIC packet received over this con-
nection. During the connection establishment, the QUIC hosts can also exchange the max_idle_timeout parameter
that indicates how long (in seconds) a QUIC connection can remain idle before being automatically closed. The first
way to close a QUIC connection is to keep it idle for this period of time.

1.3.2 Explicit termination of a QUIC connection

The second technique to terminate a QUIC connection is to use the CONNECTION_CLOSE frame. This frame indicates
that this connection has been closed abruptly. The host that receives the CONNECTION_CLOSE may respond with one
CONNECTION_CLOSE frame. After that, it must stop sending any additional frame. It keeps the connection state for
some time, but does not accept any new packet nor retransmit others. The host that sends a CONNECTION_CLOSE frame
indicates that it will neither send nor accept more data. It keeps a subset of the QUIC connection state to be able to
retransmit the CONNECTION_CLOSE frame if needed.

A host also sends a CONNECTION_CLOSE frame to abruptly terminate a connection if it receives an invalid frame or
detects a protocol error. In this case, the CONNECTION_CLOSE frame contains a variable length integer that indicates
the reason for the termination, the type of the frame that triggered the error and additional information encoded as a
text string. The QUIC specification also defines a third technique called stateless reset to cope with hosts that have lost

Client Server

Initial (CRYPTO)

Initial(CONNECTION_CLOSE)

Fig. 1.9: A server that refuses a connection

connection state after a crash or outage. It relies on a 16 bytes stateless token announced together with the connection
identifier. See [1] for all the details.

1.4 Exchanging data over a QUIC connection

The data exchanged over is QUIC connection is organized in different streams. A stream is a sequence of bytes. QUIC
supports both unidirectional and bidirectional streams. Both the client and the server can create new streams over a
QUIC connection. Each stream is identified by a stream identifier. To prevent problems when the client and the server
try to create a stream using the same identifier, QUIC restricts the utilization of the stream identifiers based its two
low-order bits. A QUIC client can only create streams whose two low order bits are set to 00 (bidirectional stream) or
10 (unidirectional stream). Similarly, the low order bits of the server-initiated streams must be set to 01 (bidirectional
stream) or 11 (unidirectional streams). The QUIC streams are created implicitly by sending data over the stream with
the chosen identifier. The stream identifiers start at the minimum value, i.e. 0x00 to 0x03 for the respective types. If
a host sends stream data for stream x before having sent data over the lower-numbered streams of that type, then those
streams are implicitly created. The stream identifier is encoded using a variable length integer. The largest possible
stream identifier is thus 262 − 1.

QUIC places all data inside STREAM frames that are then placed inside QUIC packets. The structure of a STREAM frame
is shown in Listing 1.6. This frame contains the following information :
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• the Type of the Stream frame1

• the identifier of the stream

• the offset, i.e. the position of the first byte of the Stream data in the bytestream

• the length of the data

• the Stream Data

Listing 1.6: The QUIC STREAM frame

STREAM Frame {
Type (i) = 0x08..0x0f,
Stream ID (i),
Offset (i),
Length (i),
Stream Data (..),

}

The STREAM frame carries data, but it can also terminate the corresponding stream. The lowest order bit of the Type
field acts as a FIN bit. When set to zero, it indicates that subsequent data will be sent over this stream. When set to
one, it indicates that the STREAM frame contains the last bytes sent over that stream. The stream is closed once the last
byte of the stream has been delivered to the user application. Once a QUIC stream has been closed, it cannot be reused
again over this connection.

Using this information, the receiver can easily reassemble the data received over the different streams. As an illustration,
let us consider a server that has created two streams (stream 1 and 5). The server sends ABCD.. over stream 1 and 123
over stream 5 and closes it after having sent the third digit. The data from these streams could be encoded as shown in
Listing 1.7.

Listing 1.7: Data sent over two different streams

STREAM Frame {
Type (i) = 0x0e,
Stream ID = 1,
Offset = 0
Length = 2
Stream Data = AB

}
STREAM Frame {

Type (i) = 0x0e,
Stream ID = 5,
Offset = 0
Length = 1
Stream Data = 1

}
STREAM Frame {

Type (i) = 0x0e,
Stream ID = 1,
Offset = 2
Length = 1
Stream Data = C

}
(continues on next page)

1 All STREAM frames have a type that starts with 0b0001.... The three low order bits of the STREAM frame indicate the presence of the Offset
and Length fields. The lowest order bit is the FIN bit.
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(continued from previous page)

STREAM Frame {
Type (i) = 0x0f, /* FIN bit is set, end of stream */
Stream ID = 5,
Offset = 1
Length = 2
Stream Data = 23

}
STREAM Frame {

Type (i) = 0x0e,
Stream ID = 1,
Offset = 3
Length = 4
Stream Data = DEFG

}

The penultimate frame shown in Listing 1.7 has the FIN flag set. It marks the end of stream 1 that has transported three
bytes in total. The FIN flag is the normal way to gracefully close a QUIC stream.

There are however cases where an application might need to cancel a stream abruptly without closing the corresponding
connection. First, the sending side of a stream can decide to reset the stream. For this, it sends a RESET_STREAM frame
that carries the identifier of the stream that is canceled. The receiving side of a stream might also need to stop receiving
data over a given stream. Consider for example a web browser that has started to download the different images that
compose a web while the user has already clicked on another page from the same server. The streams that correspond
to these images become useless. In this case, our browser can send a STOP_SENDING frame to indicate that it discards
the incoming data over the corresponding streams. Upon reception of this frame, the server sends a RESET_STREAM
frame to indicate that the corresponding stream has been closed.

1.4.1 Flow control in QUIC

Transport protocols usually allocate some resources to each established connection. Each QUIC connection requires
memory to store its state, but also buffers to store the packets arrived out-of-order. In practice, the memory available
for QUIC implementations is not unlimited and a QUIC receiver must control the amount of packets that the remote
host can send at any time. QUIC supports flow control techniques that operate at different levels.

The first level is the connection level. During the handshake, each host can announce the maximum number of bytes
that it agrees to receive initially on the connection using the initial_max_data transport parameter. This parameter
contains the number of bytes that the sending host agrees to receive without further notice. If the connection uses
more bytes than initially agreed, the receiver can update this limit by sending a MAX_DATA frame at any time. This
frame contains a variable length integer that encodes the maximum amount of stream data that can be sent over the
connection.

The utilization of different streams also consumes resources on a QUIC host. A receiver can also restrict the
number of streams that the remote host can create. During the handshake, the initial_max_streams_bidi and
initial_max_streams_uni transport parameters announce the maximum number of bidirectional and unidirectional
streams that the receiving host can accept. This limit can be modified during the connection by sending a MAX_STREAMS
frame that updates the limit.

Flow control can also take place at the stream level. During the handshake, several transport parameters allow the hosts
to advertise the maximum number of bytes that they agree to receive on each stream. Different transport parameters
are used to specify the limits that apply to the local/remote and unidirectional/bidirectional streams. These limits can
be updated during the connection by sending MAX_STREAM_DATA frames. Each of these frames indicates the maximum
amount of stream data that can be accepted on a given stream.

These limits restrict the number of streams that a host can create and the amount of bytes that it can send. If a host is
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blocked by any of these limits, it may sent a control frame to request the remote host to extend the limit. For each type
of flow control, there is an associated control frame which can be used to request an extension of the limit.

A host should send a DATA_BLOCKED frame when it reaches the limit on the maximum amount of data set by the
initial_max_data transport parameter or a previously received MAX_DATA frame. The DATA_BLOCKED frame con-
tains the connection limit that caused the transmission to be blocked. In practice, a receiving host should increase the
connection-level limit by sending MAX_DATA frames before reaching the limit. However, since this limit is function of
the available memory, a host might not always be able to send a MAX_DATA frame. Fig. 1.10 provides an example packet
flow with the utilization of these frames. We assume that the initial_max_data transport parameter was set to 100
bytes by the client during the handshake and the the server needs to send 900 bytes. The server creates a stream and
sends 100 bytes in a 1-RTT packet carrying a STREAM frame. At this point, the server is blocked. The same applies

Client Server

1-RTT(STREAM,100 bytes)

1-RTT(ACK)

1-RTT(DATA_BLOCKED)

1-RTT(ACK)

1-RTT(DATA_BLOCKED)

1-RTT(ACK,MAX_DATA(5000))

1-RTT(STREAM,800 bytes)

Fig. 1.10: QUIC uses DATA_BLOCKED frames when a connection’s flow control is blocked

with the STREAM_DATA_BLOCKED frame that is sent when a host reaching the per-stream limit. The STREAMS_BLOCKED
frame is used when a host has reached the maximum number of established streams.

Note: Connections blocked by flow control are not totally idle

If a QUIC host detects that a connection is blocked by flow control, it should regularly send DATA_BLOCKED or
STREAM_DATA_BLOCKED frames to request the remote host to extend the current limit. The QUIC specification [1]
does not recommend precisely how often these frames should be sent when a connection is blocked by flow control.
Experience with QUIC deployments will enable the QUIC developers to more precisely define how often these frames
should be sent.

A measurement study [14] revealed that QUIC implementations used different strategies for flow control. They iden-
tified three main types of behaviors :

• Static Flow Control: the receive buffer size stays unchanged and the receiver simply increases the maximum
allowance linearly

• Growing Flow Control: the size of the receive buffer increases over time as the connection progresses
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• Auto-tuning: the size of the receive buffer is adjusted dynamically based on the estimated bandwidth and round-
trip times

In 2020, three quarter of the studied implementations used a Static Flow Control and only one used auto-tuning. Static
Flow Control can work, but this is a waste of memory. For example, Google’s Chrome starts with a 15 MBytes
receive buffer and updates it linearly [14]. This should be contrasted with TCP implementations that usually start
with a window of a few tens of KBytes and adjust it with auto-tuning. Auto-tuning is a key feature of modern TCP
implementations [15]. It is expected that QUIC implementations will include more advanced heuristics to tune their
flow control mechanism.

1.4.2 QUIC Loss Detection

As other transport protocols, QUIC includes mechanisms to detect transmission errors and packet losses. The trans-
mission errors are usually detected by using the UDP checksum or at the datalink layer with the Wi-Fi or Ethernet
CRCs. When a transmission error occurs, the corresponding packet is discarded and QUIC considers this error as a
packet loss. Researchers have analyzed the performance of checksums and CRCs on real data [16].

Second, since QUIC used AEAD encryption schemes, all QUIC packets are authenticated and a receiver can leverage
this AEAD to detect transmission errors that were undetected by the UDP checksum of the CRC of the lower layers.
However, these undetected transmission errors are assumed to be rare and if QUIC a detects an invalid AEAD, it will
consider that this error was caused by an attack and will stop the connection using a TLS alert [2].

There are several important differences between the loss detection and retransmission mechanisms used by QUIC and
other transport protocols. First, QUIC packet numbers always increase monotonically over a QUIC connection. A
QUIC sender never sends twice a packet with the same packet number over a given connection. QUIC encodes the
packet numbers as variable length integers and it does not support wrap around in contrast with other transport protocols.
The QUIC frames contain the valuable information that needs to be delivered reliably. If a QUIC packet is lost, the
frames that it contained will be retransmitted in another QUIC packet that uses a different packet number. Thus, the
QUIC packet number serves as a unique identifier of a packet. This simplifies some operations such as measuring the
round-trip-time which is more difficult in protocols such as TCP when packets are transmitted [17].

Second, QUIC’s acknowledgments carry more information than the cumulative or selective acknowledgments used by
TCP and related protocols. This enables the receiver to provide a more detailed view of the packets that it received. In
contrast with TCP [18], once a receiver has reported that one packet was correctly received in an acknowledgment, the
sender of that packet can discard the corresponding frames.

Third, a QUIC sender autonomously decides which frames it sends inside each packet. A QUIC packet may contain
both data and control frames, or only data or only control information. If a QUIC packet is lost, the frames that it
contained could be retransmitted in different packets. A QUIC implementation thus needs to buffer the frames and
mark the in-flight ones to be able to retransmit them if the corresponding packet was lost.

Fourth, most QUIC packets are explicitly acknowledged. The only exception are the packets that only contain ACK,
PADDING or CONNECTION_CLOSE frames. A packet that contains any other QUIC frame is called an ack-eliciting
packet because its delivery will be confirmed by the transmission of an acknowledgment. A QUIC packet that carries
both an ACK and a STREAM frame will thus be acknowledged.

With this in mind, it is interesting to look at the format of the QUIC acknowledgments and then analyze how they can
be used. Listing 1.8 provides the format of an ACK frame. It can be sent at any time in a QUIC packet. Two types are
used to distinguish between the acknowledgments that contain information about the received ECN flags (type 0x03)
or only regular acknowledgments (type 0x02). The first information contained in the ACK frame is the largest packet
number that is acknowledged by this ACK frame. This is usually the highest packet number received. The second
information is the ACK delay. This is the delay in microseconds between the reception of the packet having the largest
acknowledged number by the receiver and the transmission of the acknowledgment. This information is important to
ensure that round-trip-times are accurately measured, even if a receiver delays acknowledgments. This is illustrated
in Fig. 1.11. The ACK Range Count field contains the number of ACK ranges that are included in the QUIC ACK
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frame. This number can be set to zero if all packets were received in sequence without any gap. In this case, the First
ACK Range field contains the number of the packet that arrived before the Largest Acknowledged packet number.

Listing 1.8: The QUIC ACK Frame

ACK Frame {
Type (i) = 0x02..0x03,
Largest Acknowledged (i),
ACK Delay (i),
ACK Range Count (i),
First ACK Range (i),
ACK Range (..) ...,
[ECN Counts (..)],

}

Client Server

Packet(pn=𝑥,. . . )

Packet(pn=𝑦,ACK[delay=𝛿,largest=𝑥]

𝛿 (server delay)

Fig. 1.11: Utilization of the QUIC ACK delay

An ACK frame contains 0 or more ACK Ranges. The format of an ACK range is shown in Listing 1.9. Each range
indicates first the number of unacknowledged packets since the smallest acknowledged packet in the preceding range
(or the first ACK range). The next field indicates the number of consecutive acknowledged packets.

Listing 1.9: A QUIC ACK range

ACK Range {
Gap (i),
ACK Range Length (i),

}

As an example, consider a host that received the following QUIC packets: 3,4,6,7,8,9,11,14,16,18. To report all
the received packets, it will generate the ACK frame shown in Listing 1.10.

Listing 1.10: Sample QUIC ACK Frame

ACK Frame {
Type (i) = 0x02,
Largest Acknowledged=18,
ACK Delay=x,
ACK Range Count=5,
First ACK Range=0,

(continues on next page)
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(continued from previous page)

ACK Range #0 [Gap=2, ACK Range Length=1],
ACK Range #1 [Gap=2, ACK Range Length=1],
ACK Range #2 [Gap=3, ACK Range Length=1],
ACK Range #3 [Gap=2, ACK Range Length=4],
ACK Range #4 [Gap=2, ACK Range Length=2]

}

The QUIC specification recommends to send one ACK frame after having received two ack-eliciting packets. This
corresponds roughly to TCP’s delayed acknowledgments strategy. However, there is ongoing work to allow the sender
to provide more guidelines on when and how ACK frames should be sent [19].

Note: When should QUIC hosts send acknowledgments

A measurement study [14] analyzed how QUIC implementations generate acknowledgments. Two of the studied im-
plementations sent acknowledgments every N packets (2 for one implementation and 10 for the other). Other imple-
mentations used ack frequencies that varied during the data transfer.
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Fig. 1.12: Acknowledgment frequencies for different QUIC servers

The acknowledgment frequencies should be compared with TCP that usually acknowledges every second packet. It
is likely that QUIC implementations will tune the generation of their acknowledgments in the coming years based on
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feedback from deployment.

It is interesting to observe that since the ACK frames are sent inside QUIC packets, they can also be acknowledged.
Sending an ACK in response to another ACK could result in an infinite exchange of ACK frames. To prevent this problem,
a QUIC sender cannot send an ACK frame in response to a non-eliciting QUIC packet and the ACK frames are one of the
non-eliciting frame types. Note that if a receiver that receives many STREAM frames and thus sends many ACK frames
wants to obtain information about the reception of its ACK frame, it can simply send one ACK frame inside a packet that
contains an eliciting frame, e.g. a PING frame. This frame will trigger the receiver to acknowledge it and the previously
sent ACK frames.

In contrast with other reliable transport protocols, QUIC does not use cumulative acknowledgments. As explained
earlier, QUIC never retransmits a packet with the same packet number. When a packet is lost, this creates a gap that
the receiver reports using an ACK Range. Such a gap will never be filled by retransmissions and obviously should not
be reported by the receiver forever. In practice, a receiver will send the acknowledgment that corresponds to a given
packet number several times and then will assume that the acknowledgment has been received. A receiver can also
rely on other heuristics to determine that a given ACK Range should not be reported anymore. This is the case if the
ACK frame was included in a packet that has been acknowledged by the other peer, but also when the gap was noticed
several round-trip times ago.

QUIC also allows a receiver to send information about the ECN flags in the received packets. Two flags of the IP
header [20] are reserved to indicate support for Explicit Congestion Notification. The QUIC ECN count field shown
in Listing 1.11 contains three counters for the different values of the ECN flags. These counters are incremented upon
the reception of each QUIC packet based on the values of the ECN flag of the received packet. Unfortunately, there
are still many operational problems when using ECN in the global Internet [21]. Time will tell whether it is easier to
deploy ECN with QUIC than with TCP.

Listing 1.11: A QUIC ECN Count

ECN Counts {
ECT0 Count (i),
ECT1 Count (i),
ECN-CE Count (i),

}

Note: QUIC also acknowledges control frames

Besides the STREAM frames that carry user data, QUIC uses several different frame types to exchange control infor-
mation. These control frames, like the data frames, are ack-eliciting frames. This implies a host that receives such a
frame needs to acknowledge it using an ACK frame.

Fig. 1.13 illustrates the beginning of a QUIC connection with the exchange of the Initial packets and the correspond-
ing acknowledgments. The client sends its TLS Client Hello inside a CRYPTO frame in an Initial packet. This is
the first packet sent by the client and thus its packet number is 0. The server replies with a TLS Server Hello inside
a CRYPTO frame in an Initial packet. Since this is the first packet sent by the server, its packet number is also 0. The
packet also contains an ACK frame that acknowledges the reception of the packet containing the TLS Client Hello.

The Handshake, 0-RTT and 1-RTT packets are acknowledged similarly using ACK frames. Handshake packets are
acknowledged in other Handshake packets while 0-RTT and 1-RTT packets are acknowledged inside 1-RTT packets.

Note: Not all QUIC servers use 0 as the packet number of their first Initial packet

The example shows a QUIC connection where the client sent its Initial packet with packet number 0 and the server also
replied with a packet number set to 0. This is what most QUIC implementations do. However, the QUIC specification
does not strictly requires this. In fact, facebook servers in October 2022 appear to use random packet numbers for
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Client Server

Initial(CRYPTO),𝑝𝑛 = 0

Initial(CRYPTO,ACK),𝑝𝑛 = 0

Initial(ACK),𝑝𝑛 = 1

Fig. 1.13: QUIC also acknowledges Initial frames

the Initial packet that they sent in response to a client. This is probably use to detect or mitigate some forms of attacks
since the client must receive the server’s Initial packet to be able to produce a valid acknowledgment.

To illustrate how QUIC uses acknowledgments, let us consider a simple QUIC connection. The client starts a QUIC
connection with a new server, sends a request, receives a response and then closes the connection. There are no losses
in this connection. Fig. 1.14 illustrates this connection. The connection starts when the client sends an Initial
packet containing a CRYPTO frame with the TLS Client Hello. The server replies with an Initial packet that
contains an acknowledgment and a CRYPTO frame with the TLS Server Hello. The server then sends an Initial
packet containing the TLS Encrypted Extensions. Since this is the first Initial packet, its packet number is set
to 0. In practice, it is likely that the server will need to send several packets to carry the certificates contained in this
packet. Note that the server cannot send more than 3 packets in response to the client’s Initial packet. This limit
was introduced in the QUIC specification to restrict the ability of attackers to trigger DDoS attacks by sending spoofed
packets to QUIC servers [1]. If the CRYPTO frame containing the certificates is too long, the server might need to wait
for acknowledgments from the client before sending its last Handshake packets. The client confirms the reception
of the server’s Initial packet by sending its last Initial packet that contains an ACK frame. This is the second
Initial packet sent by the client and its packet number is thus 1. Since this packet only contains an ACK frame, the
server does not return an acknowledgment to confirm its reception.

The client replies to the Handshake packet with another Handshake packet that contains a CRYPTO frame and ac-
knowledges the Handshake packets sent by the server. The client’s Handshake packet is acknowledged by the server.
The server starts the data exchange by sending a 1-RTT packet carrying one or more stream frames to create the re-
quired streams. Since this is the first 1-RTT packet sent by the server, its packet number is set to 0. The client then
sends its request in a STREAM frame. The server replies with a 1-RTT packet that contains a STREAM frame with
its response. The client ends the connection by sending a CONNECTION_CLOSE frame. In the example, the server
replies with a CONNECTION_CLOSE frame, but the QUIC specification [1] only indicates that a host may respond with
a CONNECTION_CLOSE in this case.
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Client Server

Initial(CRYPTO),pn=0

Initial(CRYPTO,ACK[0]),pn=0
Handshake*(CRYPTO),pn=0

Initial(ACK[0]),pn=1
Handshake(CRYPTO,ACK[0]),pn=0

Handshake(ACK[0]),pn=1
1-RTT(STREAM),pn=0

1-RTT(STREAM,ACK[0]),pn=0

1-RTT(STREAM,ACK[0]),pn=1

1-RTT(ACK[0-1],
CONNECTION_CLOSE),pn=1

1-RTT(ACK[0-1],
CONNECTION_CLOSE),pn=2

Fig. 1.14: Acknowledgments in a short QUIC connection
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1.4.3 Observing QUIC connections

We have now reviewed the main components of the QUIC specification. To illustrate it, let us consider a simple
scenario where a client opens a QUIC connection with a server. We leverage Maxime Piraux’s QUIC tracker [22]. In
this example, we use the packet trace collected using the nghttp2.org server on November 22, 2021 at 18:04:52 CET.
This trace is available from https://quic-tracker.info.ucl.ac.be/traces/20211122/148. You can see the contents of the
packets, download it as a .pcap trace or visualize it using QLog/QViz [23] from this web site.

This trace contains 16 packets. The scenario is a simple handshake with an exchange of data.

Fig. 1.15: Sample QUIC tracker trace with nghttp2.org containing a successful handshake

To initiate the connection, the client sends an Initial QUIC packet. It is interesting to analyze the content of this
packet. It starts with a long QUIC header shown in Listing 1.12.

Listing 1.12: The QUIC header of the first packet sent by the client

Long Header Packet {
Header Form (1) = 1,
Fixed Bit (1) = 1,
Long Packet Type = 00,
Type-Specific Bits (4) = 0000,

(continues on next page)
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(continued from previous page)

Version (32) = 0xff00001d,
Destination Connection ID Length (8) = 8,
Destination Connection ID (0..160) = 0x6114ca6ecbe483bb,
Source Connection ID Length (8) = 8,
Source Connection ID (0..160) = 0xc9f54d3c298296b9,
Token Length (i) = 0,
Length (i) = 1226,
Packet Number (8..32) = 0,
Packet Payload (8..) = CRYPTO,
Type-Specific Payload (..)

}

The client proposes a 64 bits connection identifier and uses a random 64 bits identifier for the destination connection
identifier. There is no token in this packet since this is the first connection from this client to the server. It is useful
to note that the packet number of this Initial packet is set to zero. All QUIC connections start with a packet whose
packet number is set to zero in contrast with TCP that uses a random sequence number. The packet contains a CRYPTO
frame shown in Listing 1.13.

Listing 1.13: The CRYPTO frame of the first QUIC packet sent by the
client

CRYPTO Frame {
Type (i) = 0x06,
Offset (i) = 0,
Length (i) = 245,
Crypto Data = ClientHello

}

The CRYPTO frame starts at offset 0 and has a length of 245 bytes. It contains a TLS 1.3 ClientHello message whose
format is specified in [2]. This ClientHello includes a 32 bytes secure random number, a set of proposed cipher
suites and a series of TLS extensions. One of these extensions carries the QUIC transport parameters proposed by the
client. On this connection, the QUIC tracker client proposed the following ones:

• initial_max_stream_data_bidi_local = 0x80004000

• initial_max_stream_data_uni = 0x80004000

• initial_max_data = 0x80008000

• initial_max_streams_bidi = 0x1

• initial_max_streams_uni = 0x3

• max_idle_timeout = 0x6710

• active_connection_id_limit = 0x4

• max_packet_size = 0x45c0

• inital_source_connection_id = 0xc9f54d3c298296b9

Finally, the first QUIC packet contains a PADDING frame with 960 dummy bytes. The entire packet is 1236 bytes long.

The server responds to this Initial packet with two packets. The first one is an Initial packet. It starts with the
header shown in Listing 1.14.
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Listing 1.14: The QUIC header of the first packet sent by the client

Long Header Packet {
Header Form (1) = 1,
Fixed Bit (1) = 1,
Long Packet Type = 10,
Type-Specific Bits (4) = 0000,
Version (32) = 0xff00001d,
Destination Connection ID Length (8) = 8,
Destination Connection ID (0..160) = 0xc9f54d3c298296b9,
Source Connection ID Length (8) = 18,
Source Connection ID (0..160) = 0x8d3470255ae3b0b3fad3c40515132a813dfa,
Token Length (i) = 0,
Length (i) = 149,
Packet Number (8..32) = 0,
Packet Payload (...)

}

This server uses 18 bytes to encode its connection identifier and proposes the first identifier in the long header. The
packet payload contains two frames: an ACK frame and a CRYPTO frame. The ACK frame (Listing 1.15) acknowledges
the reception of the Initial packet sent by the client. The CRYPTO frame contains the TLS ServerHello.

Listing 1.15: The ACK Frame of the first packet sent by the server

ACK Frame {
Type (i) = 0x02,
Largest Acknowledged = 0,
ACK Delay = 0,
ACK Range Count = 0,
First ACK Range = 0

}

The payload of these Initial packets is encrypted using the static key derived from the connection identifiers included
in the long header.

The server then sends three Handshake packets carrying a CRYPTO frame that contains the
TLSEncryptedExtensions. These extensions are encrypted using the TLS key. They mainly contain the
server certificate. It is interesting to note that the packet_number field of the first Handshake packet sent by the
server is also set to zero. This is the second, but not the last, packet that we observe with this packet_number. QUIC
handles packet numbers differently then other protocols. QUIC considers that a QUIC connection is divided in three
phases:

1. The exchange of the Initial packets

2. The exchange of the Handshake packets

3. The exchange of the other packets (0-RTT, 1-RTT, . . . packets)

A QUIC host restarts the packet_number at zero in each phase. This explains why it is possible to observe different
packets (of different types) with the same packet_number over a QUIC connection.

The three Handshake packets sent by the server contain the beginning of the TLSEncryptedExtensions sent by the
server. To prevent denial of service attacks, the server cannot send more than three full-length packets in response to a
packet sent by the client. The server thus needs to wait for an acknowledgment from the client before sending additional
packets.

The client sends two packets to carry these acknowledgments. First, it sends an Initial packet as the sixth packet of
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the trace. This packet belongs to the packet numbering space of the Initial packets. Its packet number is 1 since this
is the second Initial packet sent by the client. The next acknowledgment is carried inside an Handshake packet. It
acknowledges the Handshake packets 0-2 sent by the server. Since this is the first Handshake packet sent by the client,
its packet number is also 0.

The server then sends the eighth packet that contains the last part of the TLSEncryptedExtensions in a CRYPTO
frame. By combining the information contained in the Handshake packets and the Initial packets, the client can
derive the session keys.

The server immediately sends its first 1-RTT packet. This packet contains a short header shown in Listing 1.16.

Listing 1.16: The QUIC short header of the first 1-RTT packet sent by
the server

1-RTT Packet {
Header Form (1) = 0,
Fixed Bit (1) = 1,
Spin Bit (1) = 0,
Reserved Bits (2)= 00,
Key Phase (1) = 0,
Packet Number Length (2)= 0,
Destination Connection ID = 0xc9f54d3c298296b9,
Packet Number = 0,

}

This short header contains the connection identifier proposed by the client in the first Initial packet. The payload
contains STREAM frames that create three streams. The client replies with two packets. The tenth packet of the trace is
a Handshake packet that carries two frames. The CRYPTO frame contains the TLS Finished message that finalizes
the TLS handshake. The ACK frame acknowledges the four Handshake packets sent by the server.

The first 1-RTT packet sent by the client contains an ACK frame that acknowledges the 1-RTT packet sent by the server
and flow control information. The client sends a MAX_DATA frame to restrict the amount of data that the server can send
and one MAX_STREAM frame for each of the three streams created by the server.

The twelfth packet of the trace is more interesting. It contains five different frames that are sent by the server. First,
the server send two NEW_CONNECTION_ID frames that advertise two 18 bytes long connection identifiers which can be
used by the client to migrate the connection later. The next frame is the HANDSHAKE_DONE frame that confirms the TLS
handshake. The server also sends a NEW_TOKEN frame that contains a 57 bytes long token that the client will be able to
use in subsequent connections with the server. The last frame is a CRYPTO frame that contains two TLS New Session
Tickets.

A closer look at other QUIC handshakes

It is interesting to analyze how different servers perform the handshake using QUIC tracker. Let us first explore the
trace collected with cloudflare-quic.com on the same day shown in Fig. 1.16. There are several differences with the
nghttp2 trace that we analyzed above. First, the server sends two small packets in response to the client’s Initial.
The first packet only contains an ACK frame. It advertises a 20 bytes long connection identifier. The second packet
contains a CRYPTO frame with a TLS Hello Retry Request. This message indicates that the server did not agree
with the key_share parameter of the TLS Client Hello sent in the first packet. The client acknowledges this packet
and sends a new TLS Client Hello in the fourth packet. The server replies with a TLS Server Hello and then the
TLSEncryptedExtensions in three QUIC packets. The certificate used by cloudflare-quic.com is more compact
than the one used by nghttp2.org.

The 1-RTT packets are also slightly different. The first 1-RTT packet sent by the server contains the HANDSHAKE_DONE
frame, a CRYPTO frame with two TLS New Session Ticket messages and a STREAM frame that creates one stream.
The server then sends two short packet. Each of these packets contains a STREAM frame that creates a new stream. These
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Fig. 1.16: Sample quic tracker trace from cloudflare-quic.com with a successful handshake
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two short packets could have been packed in the first 1-RTT packet sent by the server. In contrast with nghttp2.org,
cloudflare-quic.com does advertise new connection identifiers.

Our third example is picoquic. The QUIC tracker trace with test.privateoctopus.com contains 13 packets.

Fig. 1.17: Sample QUIC tracker trace from test.privateoctopus.com with a successful handshake

picoquic uses 64 bits long connection identifiers. It manages to fit its TLS Encrypted Extensions within two
Handshake packets. The first 1-RTT packet that it sends contains a PING frame. The second 1-RTT packet con-
tains one CRYPTO frame that advertises one TLS New Session Ticket, three NEW_CONNECTION_ID frames and a
NEW_TOKEN frame. This test server does not try to create new streams in contrast with the two others.

Note: Comparing QUIC servers

It is interesting to use the traces collected by QUIC tracker to analyze how different servers have selected some of
the optional features of QUIC. A first difference between the servers is the length of the server-selected connection
identifiers. The graph below shows that in November 2021 many servers advertised 8 bytes CIDs, but some have opted
for much longer CIDs.
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Length of the CIDs advertised by different QUIC servers

Fig. 1.18: Length of the connection identifiers advertised by different QUIC servers (Nov 2021)

Observing 0-RTT data in QUIC

The ability to send data immediately was one of the requirements for the design of QUIC. It is interesting to observe
how QUIC uses the 0-RTT packets for this purpose. We use a trace collected between QUIC tracker and picoquic as
our example. This trace covers two QUIC connections shown in Fig. 1.19.

During the first QUIC connection, QUIC tracker receives one TLS session ticket in the CRYPTO frame contained in
the 1-RTT packet that the server sent with packet number set to 0. This ticket contains all the information required
by the server to retrieve the key in a subsequent connection. QUIC tracker starts the second connection by sending an
Initial packet. This packet contains a CRYPTO frame that contains the TLS Client Hello message. A comparison
between this TLS Client Hello and the one sent to create the first connection shows that the latter contains the
psk_key_exchange_modes TLS extension. This extension contains the information that enables the server to recover
the key required to decrypt the 0-RTT packet. In this example, the client sends a 0-RTT that contains the beginning of
a simple HTTP GET.
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Fig. 1.19: Sample QUIC trace with test.privateoctopus.com with 0-RTT packets
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QUIC streams

As QUIC support multiple streams, it is interesting to analyze how the streams are managed over a real QUIC connec-
tion. For this example, we use a trace between QUIC tracker and quic.tech summarized in Fig. 1.20. In the example,
the QUIC tracker creates four streams and sends one HTTP GET request over each of them.

Fig. 1.20: Sample QUIC trace with quic.tech using multiple streams

In this trace, the client creates four streams in its first STREAM frame sent in the first 1-RTT packet. Listing 1.17 shows
the first of these STREAM frames. The Type of the STREAM is one octet structured as 0b00001OLF where O is set to 1 if
the STREAM frame contains an Offset field. Bit L is set to 1 if the frame contains a Length field. Finally, the F is set
to 1 to mark the end of the STREAM. In this test, QUIC Tracker sends 17 bytes over each stream and closes it.
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Listing 1.17: The first QUIC STREAM frame sent by QUIC Tracker

STREAM Frame {
Type (i) = 0b00001011, # Offset=0, Length=1, FIN=1
Stream ID = 8,
Length = 17,
Stream Data = GET /index.html\r\n

}

The server sends each response in a STREAM frame. Listing 1.18 shows the frame returned by the server. Its Offset
bit is set to 1. It carries the entire HTML page and its Offset field could have been ignored since this is the first frame
of the stream.

Listing 1.18: The QUIC STREAM frame returned by the server

STREAM Frame {
Type (i) = 0b00001111, # Offset=1, Length=1, FIN=1
Stream ID = 8,
Offset = 0,
Length = 462,
Stream Data = <!DOCTYPE html>...

}
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CHAPTER

TWO

QUIC CONNECTION MIGRATION

As explained in QUIC, QUIC uses connection identifiers. These connection identifiers are used for different purposes.
On the server side, they were initially proposed to allow load-balancers to spread the packets of different connections
to different servers without having to maintain any state. In addition, QUIC ‘s connection identifiers also enable clients
to migrate connections from one path to another or even on the same path.

QUIC connection migrations occur in two steps. As an example, we consider client triggered migrations. These are
the most important from a deployment viewpoint. A client can decide to migrate its connection for various reasons,
including privacy and performance. A common scenario is a smartphone that moves and goes progressively out of
reach of its Wi-Fi access point. When the smartphone notices a decrease in performance of the Wi-Fi network (lower
signal to noise ratio, more losses or retransmissions, . . . ), it can decide to migrate the QUIC connection over the cellular
interface. A naive solution would be to simply move the QUIC packets from one interface to another using the same
connection identifiers. This is illustrated in Fig. 2.1. The QUIC connection was established from the client IP address,
𝐼𝑃𝛼, to the server’s IP address, 𝐼𝑃𝑆 . The first two packets show a simple exchange over this connection. Before
sending its second packet, the client decides to switch to the cellular interface. This interface is illustrated in red and its
IP address is 𝐼𝑃𝛽 . Unfortunately, this naive approach is not secure. Consider a server that receives a QUIC packet from

Client Server
𝐼𝑃𝛼 𝐼𝑃𝛽 𝐼𝑃𝑆

src=𝐼𝑃𝛼,dst=𝐼𝑃𝑆 ,DCID=𝜇
1-RTT(...)

src=𝐼𝑃𝑆 ,dst=𝐼𝑃𝛼

1-RTT(...)

src=𝐼𝑃𝛽 ,dst=𝐼𝑃𝑆 ,DCID=𝜇
1-RTT(...)

src=𝐼𝑃𝑆 ,dst=𝐼𝑃𝛽

1-RTT(...)

Fig. 2.1: A naive approach to migrate a QUIC connection from Wi-Fi to cellular

the smartphone’s cellular interface. This packet originates from a different IP address, but contains the same connection
identifier. If the server accepts this packet and decides to reply over the cellular path, this creates several security risks.
First, consider an attacker who managed to capture a packet sent by the client over the Wi-Fi network. By sending again
this unmodified QUIC packet from its own IP address, the attacker could disrupt the ongoing connection by forcing the
server to send replies to its own IP address. Furthermore, this also opens a risk of denial of service attacks if the packet
copied by the attacker contains a request for a large object. QUIC copes with these problems by using path-specific
connection identifiers and the path validation mechanism.

A QUIC connection identifier is always bound to a specific IP address. When a QUIC host receives a QUIC packet,
it verifies that the packet originates from the associated source. The QUIC specification does not prescribe how this
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verification can be done, but a simple approach is to encode a hash of the source IP address inside the connection
identifier.

When a QUIC connection starts the server verifies that the client receives the packets that it sends to prevent attacks
from spoofed addresses. This verification is part of the handshake and may in some cases involve the utilization of
RETRY packets. Consider a malicious client using address 𝐼𝑃𝛼 but wishes to create a denial of service attack against
address 𝐼𝑃𝜇. This client could initiate a connection with a server using address 𝐼𝑃𝛼, request a large object and send
a packet spoofing address 𝐼𝑃𝜇 to force the server to send all reply packets to the victim. To cope with this attack,
a QUIC server must first validate a new client address before sending a large number of packets. To validate a new
client address, the server simply needs to send a PATH_CHALLENGE frame that contains a random number. This frame
is encrypted using the connection keys, like all QUIC frames. Upon reception of this frame, the client can extract the
random number and return it in a PATH_RESPONSE frame to the server. Upon reception of this frame, the server has
the confirmation that the client can also receive packets on the new address and thus it can safely be used. The client
can also validate a path as shown below.

To enable a client to migrate a QUIC connection, the server must first advertise at least one different connection iden-
tifier. This is done with the NEW_CONNECTION_ID frame. The client uses the additional connection identifier adver-
tised by the server to try to move the connection to a new path. The client cannot use a new path before having the
guarantee that the server can reply over the new path. To verify that the new path is bidirectional, the client sends a
PATH_CHALLENGE frame in a QUIC packet that uses the new connection identifier over the new path. This frame mainly
contains a 64 bits random nonce that must be echoed by the server. It also includes some padding to check the path’s
MTU as done during the handshake. Upon reception of this packet, the server detects an attempt to use a new path with
the new connection identifier. It replies with a PATH_RESPONSE frame that echoes the client nonce. The server may
also perform its own path validation by sending a PATH_CHALLENGE with a different nonce in the same packet as the
PATH_RESPONSE. The client considers that the path has been validated upon reception of the valid PATH_RESPONSE
frame. The packets that contain the PATH_CHALLENGE and PATH_RESPONSE frames are usually padded with PADDING
frames. The client then switches to the new connection identifier and the new path for all the frames that it sends.
It may still continue to receive packets over the former path for some time. The server will switch to the new path
once it has received a response to its PATH_CHALLENGE if it decided to validate the new path. Otherwise, the recep-
tion of a QUIC packet that contains other frames than PATH_CHALLENGE, PATH_RESPONSE, NEW_CONNECTION_ID or
PADDING also indicates that the path is active. The client could send a NEW_CONNECTION_ID frame together with the
PATH_CHALLENGE frame if the client uses a non-null connection identifier and it has not sent a NEW_CONNECTION_ID
frame before. This is illustrated in Fig. 2.2. The examples above showed a connection that migrates from one network

Client Server

src=𝐼𝑃𝐶 ,dst=𝐼𝑃𝑆 ,DCID=𝛼
1-RTT(...)

src=𝐼𝑃𝑆 ,dst=𝐼𝑃𝐶

1-RTT(...)

src=𝐼𝑃𝑋 ,dst=𝐼𝑃𝑆 ,DCID=𝛽
1-RTT(PATH_CHALLENGE(𝑥))

src=𝐼𝑃𝑆 ,dst=𝐼𝑃𝑋

1-RTT(PATH_RESPONSE(𝑥),PATH_CHALLENGE(𝑦)

src=𝐼𝑃𝑋 ,dst=𝐼𝑃𝑆 ,DCID=𝛽
1-RTT(PATH_RESPONSE(𝑦),...)

src=𝐼𝑃𝑆 ,dst=𝐼𝑃𝑋

1-RTT(...)

Fig. 2.2: A QUIC connection migration initiated by the client
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interface to another. This is expected to be a frequent situation for smartphones that move. However, there are also
scenarios where the client can trigger a connection migration even if it uses a single network interface. First, the client
application can decide to migrate its QUIC connection every 𝑛 minutes. This could be useful for an application that
provides a VPN-like service as proposed [24]. By regularly changing their connection identifiers, such VPN services
could prevent some middleboxes from detecting and blocking them. Another scenario are the unintended migrations
caused by NAT.

Note: Unintended QUIC connection migrations

We have described how QUIC clients can trigger connection migrations. There are situations when connection migra-
tion occurs without being triggered by the client. A classical example is when there is a NAT on the path between the
client and the server. The QUIC connection has been idle for some time and the NAT has removed the mapping from
the client’s private IP address to a public one. When the client sends the next packet over the connection, the NAT
creates a new mapping and thus assigns a different IP address to the client. The server receives a packet that uses the
same connection identifier but comes from a different IP address than the initial one. This is illustrated in Fig. 2.3.
Upon reception of the QUIC packet coming from the new IP address (shown in red in Fig. 2.3, the server triggers a
path validation. Once the path has been validated, the QUIC connection can continue.

Client Server

src=𝐼𝑃𝐶 ,dst=𝐼𝑃𝑆 ,DCID=𝛼
1-RTT(...)

src=𝐼𝑃𝑆 ,dst=𝐼𝑃𝐶

1-RTT(...)

src=𝐼𝑃𝑌 ,dst=𝐼𝑃𝑆 ,DCID=𝛼
1-RTT(...)

src=𝐼𝑃𝑆 ,dst=𝐼𝑃𝑌

1-RTT(PATH_CHALLENGE(𝑧))

src=𝐼𝑃𝑆 ,dst=𝐼𝑃𝑌

1-RTT(PATH_RESPONSE(𝑧))

Fig. 2.3: A QUIC connection migration triggered by a NAT

The previous examples have shown that a client can trigger a connection migration to improve performance or for
privacy reasons. Our examples have considered that the clients can use different IP addresses while the servers have
a stable IP address. This corresponds to most deployments, but not all of them. Today, many servers are dual-stack.
They support both IPv4 and IPv6. When a client starts a QUIC connection over one address family, it could be useful
for the client to learn the other server address to be able to switch to this address if the other fails. Another interesting
type of deployments are the server farms where each server has both an anycast address and a unicast one. All servers
use the same anycast address and this address is the one advertised using the DNS. When a client initiates a QUIC
connection, it targets the anycast address. The Initial QUIC packet is load-balanced to one of the servers of the farm
and all subsequent packets of this connection are load-balanced to the same server. In this deployment, all packets
must be processed by the load-balancer before reaching the server. When the load is high, the load-balancer could
become a bottleneck and it would be useful to allow QUIC connections to migrate to the unicast address of their servers
since unicast address bypasses the load-balancer. The first version of QUIC provides partial support for this bypass
by allowing the server to advertise its preferred unicast addresses (IPv4 and IPv6) using the preferred_address
transport parameter during the handshake. However, according to QUIC specification [1], a client SHOULD, but is
not forced to, migrate to one of the preferred addresses announced by the server. This migration can only be triggered
by the client, there is no way for the server to impose a migration.
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