PhD Information Session

ICTEAM - INMA

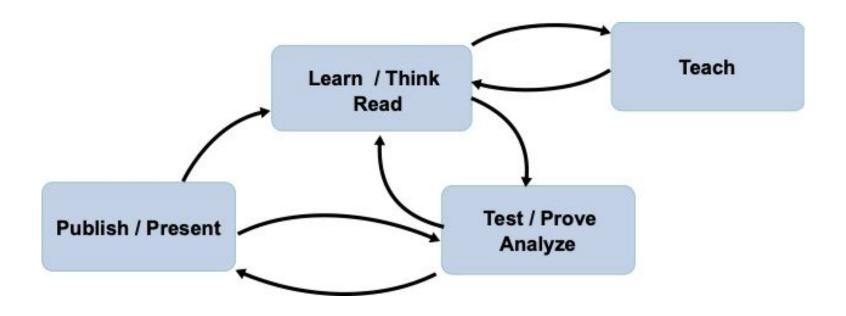
Institute of Information and Communication Technologies, Electronics and Applied Mathematics

Division of Applied Mathematics - Mathematical Engineering

Tuesday, November 18th, 2025 Euler room a002, 12:50

What is a PhD?

competitiveness continuing another lot pursue people grants else know believe stressful passionate freedom learning despite environment training


Johnstone et al. eLife, 2021

What is a PhD?

both a high-level degree and a full-time job!

- A high-level degree dedicated to the creation of something new
 New knowledge, new device, new algorithm with scientific validation
- Expected to be completed in 4 years
- A full-time job at UCLouvain, with pay comparable to junior engineer position
- Main focus: scientific research, but also includes doctoral courses, collaborations, participation to teaching, conferences, travel, and infinite opportunities to learn!

What is a PhD?

Eligibility and first step

- Graduate with a *distinction*
- Motivation and research skills as important as grades, if not more
- First step: choose a potential supervisor (promoter), and contact them
 - to discuss a topic (no need to be fully defined)
 - to identify a source of funding

Contacting a potential supervisor is crucial (\rightarrow discussion, no commitment!)

Funding: several options

- Option 1 : you apply to a grant for doctoral position
 Mostly national funds, including: [see: www.frs-fnrs.be]
 - FNRS: "Aspirant", written application in January (ICTEAM info session Dec 9)
 - FRIA: written application in August + interview in October/November
- Option 2: you apply to a UCLouvain teaching assistant position
 Application in May, 4 to 6 years (with ~50% teaching load)
- Option 3: your promoter has secured some budget for a doctoral position project-based, national/EU → contact them to ask about possibilities!

More general information from ICTEAM website (also about administrative steps) https://uclouvain.be/en/research-institutes/icteam/phd.html

List of INMA supervisors

Absil, Pierre-Antoine

Bianchin, Gianluca

Crevecoeur, Frédéric

Delhaye, Benoît

Delvenne, Jean-Charles

Glineur, François

Hendrickx, Julien

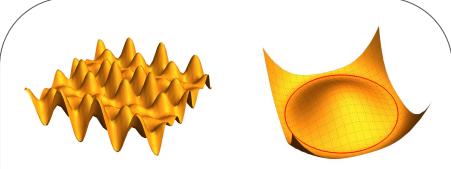
Jacques, Laurent

Jungers, Raphaël

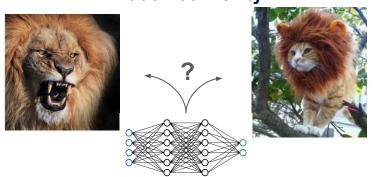
Lefèvre, Philippe

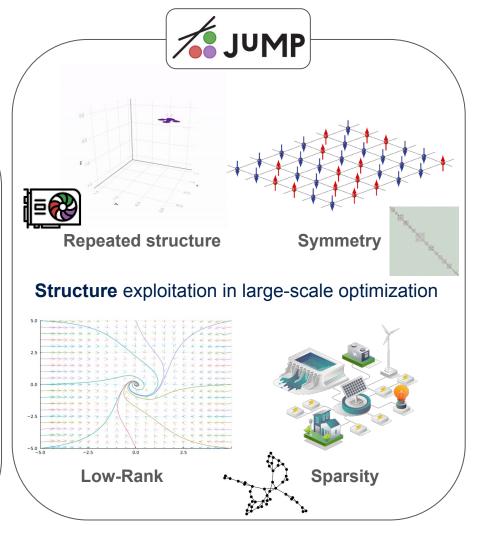
Legat, Benoît

Massart, Estelle


Nunes Grapiglia, Geovani

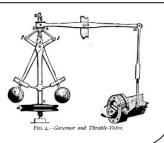
& Lété, Quentin (CORE)


RESEARCH TOPICS OVERVIEW



Benoît Legat

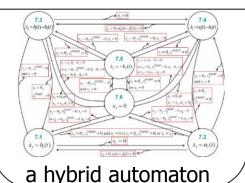
Explaining benign nonconvexity through hidden convexity



L2C Learning to control:

Towards a Paradigm shift in Control theory

Classical applications made the golden age of systems and control

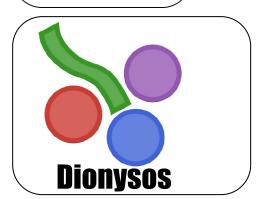

State space representation unleashed analytic approaches

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -5 & -26 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

However, modern applications are increasingly complex...

... and so are their models

Raphael Jungers

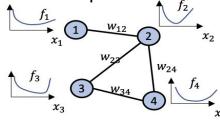

New challenges

Learning-based methods

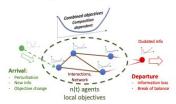
Safety-critical applications

Logical reasoning

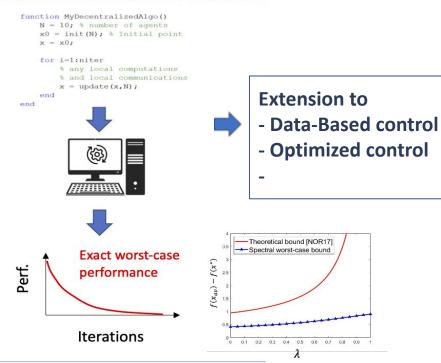
AI-in the loop


Networks and interconnected systems

- Learning on problem with network structure
- Analysis of multi-agent systems



- Identification in networked systems
- Decentralized optimization



- Open Multi-agent Systems

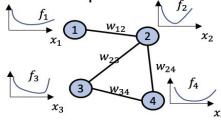
<u>Tools:</u> Graph theory, dynamical systems, probabilities, optimization, ... and new methods to be created

Performance Estimation Problems

Other topics

Privacy

Opinion dynamics

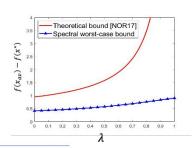

Networks and interconnected systems

- Learning on problem with network structure
- Analysis of multi-agent systems

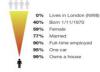
- Identification in networked systems
- Decentralized optimization

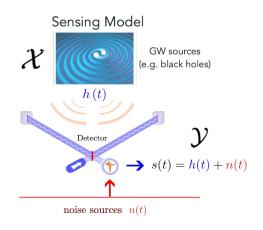
- Open Multi-agent Systems

<u>Tools:</u> Graph theory, dynamical systems, probabilities, optimization, ... and new methods to be created

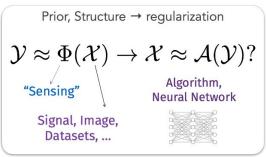

Performance Estimation Problems

Extension to

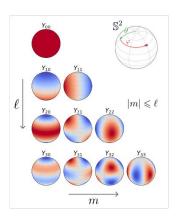

- Data-Based control
- Optimized control
- Stochastic Optimization

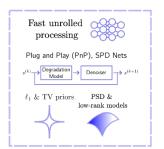

Other topics

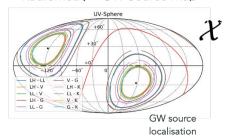
Privacy



Opinion dynamics


Machine Learning Solutions for Radiometry in Gravitational Wave Detection


Spherical Harmonics



Learned TFR Dictionaries

Radiometry ≡ GW Source Map

François Glineur

applications provide technique factorization approximation matrices solve based smooth gradient function functions problems rank duality text experiments dual low-rank first methods CONVEX standard problem algorithm timization matrix analysis formulation method accuracy novel nonnegative new linear biclique algorithms ubcarrier approach exact constraints data complexity computational performance

François Glineur

Algorithmic optimization

- Design of efficient algorithms, usually for specific classes of problem
- Analysis of existing methods
 optimal choice of parameters,
 impact of inexactness, going beyond
 worst-case, AI to improve performance

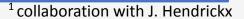
Convex and increasingly non-convex

Key tool: Performance Estimation¹ (PEP) = computer assisted methodology to automatically compute convergence rates

applications provide
technique factorization approximation smooth matrices solve based functions problems rank duality text fast methods convex dual standard problem algorithm matrix formulation matrix formulation method accuracy novel subpersion on negative subcarrier new linear bicique algorithms approach exact

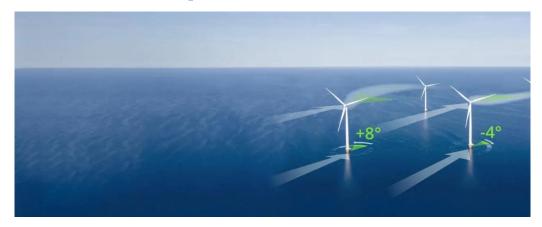
constraints data complexity computational performance

Applications

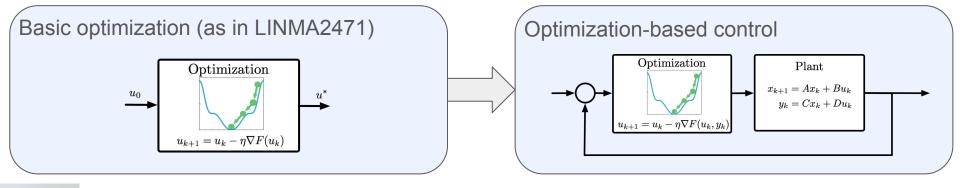

Project-oriented: topics include energy, predictive maintenance, organology

Machine Learning & Data analysis

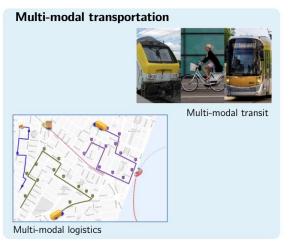
Focus on the design of efficient algorithms

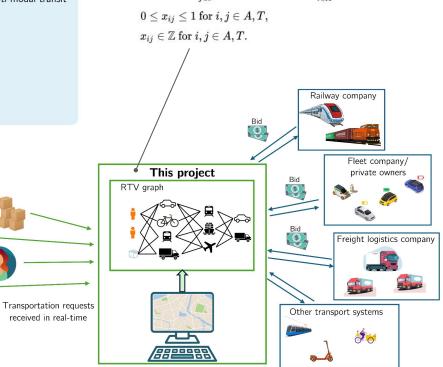

- Improved analysis and design

 e.g. for dimensionality reduction
 (paradigm: loss function minimization)
- Nonnegative Matrix factorization, to get part-based decompositions (image, text)



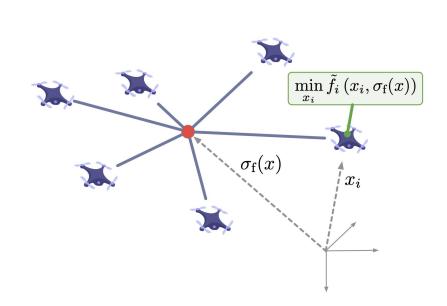
Feedback optimization

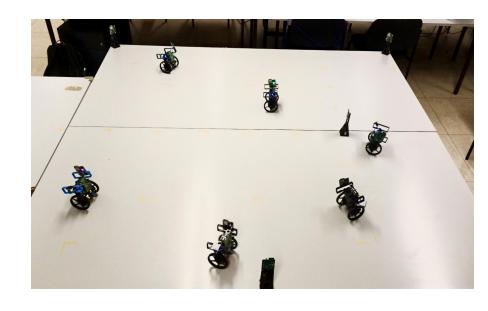




Prof. Gianluca Bianchin gianluca.bianchin@uclouvain.be https://gianlucabi.github.io

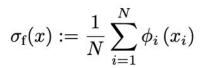
Transportation systems


 $ext{ subject to } \sum_{j \in T} x_{ij} = 1 ext{ for } i \in A, \quad \sum_{i \in A} x_{ij} = 1 ext{ for } j \in T$

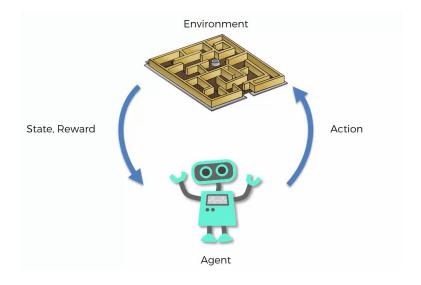

 $ext{maximize} \quad \sum_{(i,j) \in A imes T} w_{ij} x_{ij}$

Prof. Gianluca Bianchin gianluca.bianchin@uclouvain.be https://gianlucabi.github.io

Distributed cooperative optimization



Objectives:

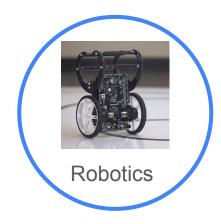

 $\min_{x \in \mathbb{R}^n} \frac{1}{N} \sum_{i=1}^{N} \tilde{f}_i \left(x_i, \sigma_{\mathrm{f}}(x) \right)$

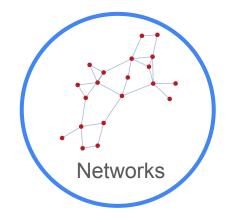
Barycenter:

Prof. Gianluca Bianchin gianluca.bianchin@uclouvain.be https://gianlucabi.github.io

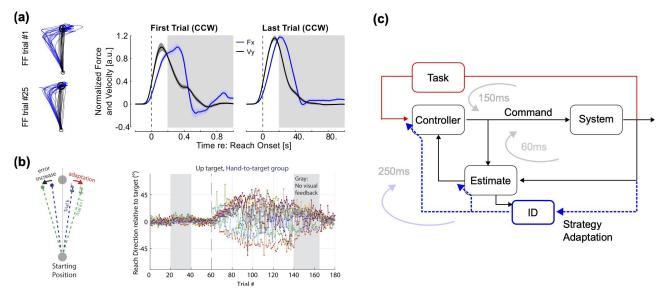
Reinforcement Learning






Prof. Gianluca Bianchin gianluca.bianchin@uclouvain.be https://gianlucabi.github.io

Other areas of applications



Prof. Gianluca Bianchin gianluca.bianchin@uclouvain.be https://gianlucabi.github.io

Motor Control - Systems Neuroscience

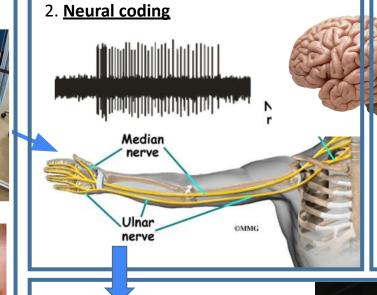
Singh & Scott, 2003

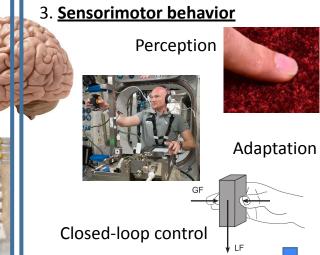
Img: https://bradentonresearch.com

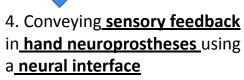
Kalidindi and Crevecoeur, 2023, https://doi.org/10.1016/j.conb.2023.102810

- Behavioural experiments: eye and arm movements, locomotion
- Computational models: control theory, probabilistic models, ANN
- Application to understand movement disorders in clinical populations (e.g. Essential Tremor, Parkinson's disease).

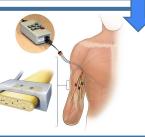
frederic.crevecoeur@uclouvain.be

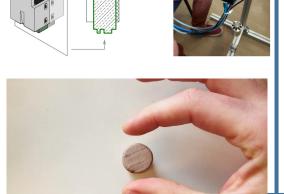

Sensorimotor Neuroscience
Touch and Grip Control

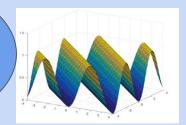

Sensorimotor Neuroscience

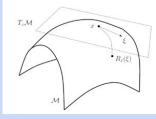

<u>benoit.delhaye@uclouvain.be</u> <u>https://perso.uclouvain.be/benoit.delhaye</u>

philippe.lefevre@uclouvain.be
https://perso.uclouvain.be/philippe.lefevre






Estelle Massart


Exploiting invariances for optimization

(Design of algorithms and complexity analysis for overparametrized problems)

Tools:

- Diff. geometry
- •Dimensionality reduction

More applied projects:

- ML for physics (quantum tomography, gravitational waves)
- •Biomedical applications (Alzheimer early diagnosis, epilepsy detection, biomedical imaging)

Maths for Deep Learning

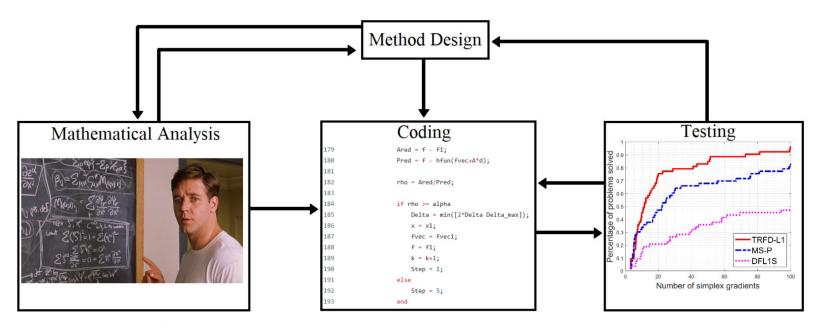
"Machine learning has become a form of alchemy"

A. Rahimi (Google, NeurIPS 2017 Test of Time Award)

Improve training? Architecture choices? Model compression

Tools:

- Optimization
- Diff./algebraic geometry


. . .

Interested?
Contact me!

Geovani Grapiglia (geovani.grapiglia@uclouvain.be)

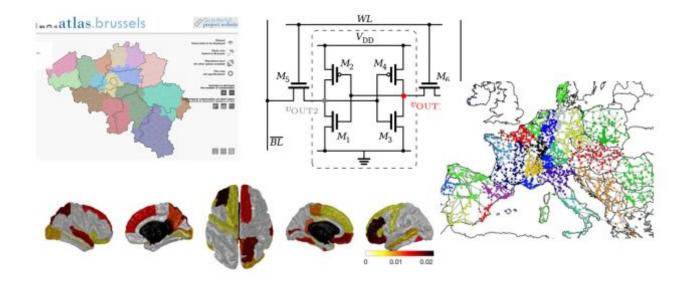
Problem: Minimize f(x), s.t. $x \in \Omega$

Research Topics: Derivative-Free Optimization; Lower-Order Implementation of High-Order Methods; Universal Methods for Convex and Nonconvex Optimization,...

Goal: Development of efficient methods with strong theoretical guarantees!

Hello! My name is Jean-Charles Delvenne.

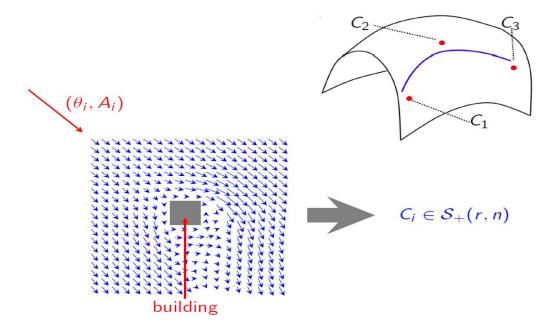
I like discrete mathematics, algorithms, probability, statistical physics, dynamical systems & control. For example, I love Markov Chains.


I apply all this to study complex systems (that is, many things interacting together).

For instance social systems, biophysical systems and electronic devices.

In the end, it all boils down to pretty mathematics.

I you feel like-minded, contact me.



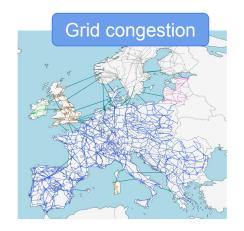
A few examples of end-results, with various co-authors, including PhD students

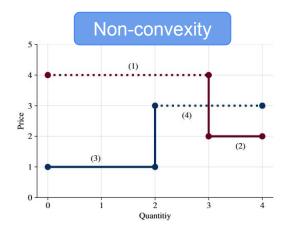
Lx = b

PA Absil - Regression on manifolds

Webpage: https://sites.uclouvain.be/absil/ E-mail: pa.absil@uclouvain.be

Modelling of Electricity Systems and Markets




Quentin Lété https://qlete.github.io/

Questions

- → How to price electricity in the energy transition?
- → How to participate optimally to electricity markets?

Challenges

Tools

- → Large-scale optimisation
- → Microeconomics theory