
Python Language Companion to

Introduction to Applied Linear Algebra:

Vectors, Matrices, and Least Squares

DRAFT

Jessica Leung and Dmytro Matsypura

January 10, 2020

Contents

Preface v

I. Vectors 1

1. Vectors 2

1.1. Vectors . 2

1.2. Vector addition . 10

1.3. Scalar-vector multiplication . 11

1.4. Inner product . 14

1.5. Complexity of vector computations . 15

2. Linear functions 19

2.1. Linear functions . 19

2.2. Taylor approximation . 20

2.3. Regression model . 21

3. Norm and distance 24

3.1. Norm . 24

3.2. Distance . 26

3.3. Standard deviation . 28

3.4. Angle . 29

3.5. Complexity . 31

4. Clustering 33

4.1. Clustering . 33

4.2. A clustering objective . 33

4.3. The k-means algorithm . 34

4.4. Examples . 35

4.5. Applications . 37

i

Contents

5. Linear independence 39

5.1. Linear independence . 39

5.2. Basis . 39

5.3. Orthonormal vectors . 40

5.4. Gram-Schmidt algorithm . 41

II. Matrices 45

6. Matrices 46

6.1. Matrices . 46

6.2. Zero and identity matrices . 51

6.3. Transpose, addition, and norm . 54

6.4. Matrix-vector multiplication . 56

6.5. Complexity . 58

7. Matrix examples 62

7.1. Geometric transformations . 62

7.2. Selectors . 62

7.3. Incidence matrix . 64

7.4. Convolution . 64

8. Linear equations 68

8.1. Linear and affine functions . 68

8.2. Linear function models . 69

8.3. Systems of linear equations . 72

9. Linear dynamical systems 74

9.1. Linear dynamical systems . 74

9.2. Population dynamics . 75

9.3. Epidemic dynamics . 76

9.4. Motion of a mass . 77

9.5. Supply chain dynamics . 78

10.Matrix multiplication 81

10.1. Matrix-matrix multiplication . 81

10.2. Composition of linear functions . 83

10.3. Matrix power . 84

ii

Contents

10.4. QR factorization . 85

11.Matrix inverses 89

11.1. Left and right inverses . 89

11.2. Inverse . 89

11.3. Solving linear equations . 91

11.4. Pseudo-inverse . 92

III. Least squares 95

12.Least squares 96

12.1. Least squares problem . 96

12.2. Solution . 96

12.3. Solving least squares problems . 97

12.4. Examples . 98

13.Least squares data fitting 103

13.1. Least squares data fitting . 103

13.2. Validation . 109

13.3. Feature engineering . 114

14.Least squares classification 119

14.1. Classification . 119

14.2. Least squares classifier . 120

14.3. Multi-class classifiers . 121

15.Multi-objective least squares 127

15.1. Multi-objective least squares . 127

15.2. Control . 129

15.3. Estimation and inversion . 129

15.4. Regularized data fitting . 133

15.5. Complexity . 135

16.Constrained least squares 139

16.1. Constrained least squares problem . 139

16.2. Solution . 141

16.3. Solving constrained least squares problems 142

iii

Contents

17.Constrained least squares applications 146

17.1. Portfolio optimization . 146

17.2. Linear quadratic control . 148

17.3. Linear quadratic state estimation . 153

18.Nonlinear least squares 157

18.1. Nonlinear equations and least squares . 157

18.2. Gauss-Newton algorithm . 157

18.3. Levenberg-Marquardt algorithm . 160

18.4. Nonlinear model fitting . 165

19.Constrained nonlinear least squares 171

19.1. Constrained nonlinear least squares . 171

19.2. Penalty algorithm . 171

19.3. Augmented Lagrangian algorithm . 173

19.4. Nonlinear control . 175

Appendix 176

A. Common coding errors . 176

A.1. I am getting a Python error message. 176

A.2. I am not getting an error message but my results are not as expected.178

B. Data sets . 179

iv

Preface

This Python Language Companion is written as a supplement to the book Introduction to

Applied Linear Algebra: Vectors, Matrices, and Least Squares written by Stephen Boyd

and Lieven Vandenberghe (referred to here as VMLS). It is mostly a transliteration of

the Julia Companion (by Stephen Boyd and Lieven Vandenberghe) to Python. This

companion is meant to show how the ideas and methods in VMLS can be expressed

and implemented in the programming language Python. We assume that the reader

has installed Python, or is using an interactive Python shell online, and understands

the basics of the language. We also assume that the reader has carefully read the rel-

evant sections of VMLS. The organization of this companion follows the topics in VMLS.

You will see that mathematical notation and Python syntax are quite similar, but not

the same. You must be careful never to confuse mathematical notation and Python

syntax. In these notes, we write mathematical notation in standard mathematics font,

e.g., y = 2x. Python code and expressions are written in a fixed-width typewriter font,

e.g., y = 2*x. We encourage you to copy and paste our Python code into a Python

console, interactive Python session or Jupyter Notebook, to test them out, and maybe

modify them and rerun.

Python is a very powerful and efficient language, but in this companion, we only demon-

strate a small and limited set of its features. We focus on numerical operations in Python,

and hence we use the numpy package to facilitate our computations. The code written

in this companion is based on Python 3.7. We also use a number of other standard

packages such as time and sklearn. The next section, Getting started with Python,

explains how to install Python on your computer.

We consider this companion to be a draft. We’ll be updating this language companion

occasionally, adding more examples and fixing typos as we become aware of them. So

you may wish to check periodically whether a newer version is available.

v

Preface

We want to thank Stephen Boyd and Lieven Vandenberghe for reviewing this Python

companion and providing insightful comments.

To cite this document: Leung J, and Matsypura D (2019) Python Language Companion

to “Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares”.

Jessica Leung Sydney, Australia

Dmytro Matsypura Sydney, Australia

vi

Getting started with Python

Installing Python. We recommend beginners to install the Anaconda distribution of

Python powered by Continuum Analytics because it comes as a convenient combo of

many basic things you need to get started with Python. You can download the Ana-

conda distribution from https://www.anaconda.com/download/. You should choose

the installer according to your operating system (Windows / Mac). This document

assumes you are using Python 3.7 (Graphical Installer). You can then follow the in-

structions and install Anaconda with default settings.

You can confirm that Anaconda is installed and working by requesting the list of installed

packages. To do so, you should type the command conda list into your terminal:

• For Windows users, you can search for anaconda prompt from the start menu.

Enter conda list into the terminal (looks like a black box). Press Enter.

• For Mac users, you can press command + space and search for terminal in the

spotlight search. Enter conda list into the terminal (looks like a white box).

Press Enter.

If you see a list of packages showing in your terminal, Anaconda is correctly installed.

A significant advantage of using Anaconda distribution is that it includes a combination

of commonly used packages and user-friendly applications. It also allows you to manage

different environments and packages in a stable and convenient way. Popular packages

such as numpy and sklearn are included in the distribution, and hence, in most cases,

no additional packages will be required. On a few occasions, we use functions from other

packages, but we will mention this in the text when we use these functions.

Installing Other Packages. If the package you need is not included in the Anaconda

distribution, you can install that package manually. Majority of the packages can be

added easily to your current Anaconda distribution with one command. For example,

if you would like to install the pandas package, you should type the following into your

vii

Preface

terminal/anaconda prompt: conda install pandas

Sometimes you may encounter packages that require a few more steps during installation;

in this case, you should follow the instructions in the package documentation.

A few words about Jupyter Notebook

We recommend using Jupyter Notebook, especially if you are a beginner. Jupyter Note-

book is an open-source web application that allows you to create and share documents

that contain live code, equations, visualizations and narrative text. You can edit and

run your code in a web browser1. Apart from Python, Jupyter Notebook also recognizes

other programming languages such as R and Julia. For these reasons, we are using

Jupyter Notebook throughout this companion. However, you can also run the code in

Python directly.

To launch Jupyter Notebook, enter jupyter notebook in the terminal. You will be

guided to your home directory. You can now click into the folder where you would like

to save your notebook. You can start a new notebook by clicking the New button in the

top right corner. A drop-down menu will appear with the option of Python 3 which you

should click on. You can rename your notebook simply by clicking on the name of your

notebook.

Try running the following piece of code:

In []: print('Hello, world.')

You will see the phrase ’Hello world.’ displayed as an output.

Hello, world.

You will find the print function very useful, especially when using Python outside of

Jupyter Notebook, as Python does not usually display the values of variables. If you are

unsure whether your code runs correctly, you can always print a variable to check its

value.

1For Windows users, we recommend to set Google Chrome as default browser; for Mac users, we
recommend Safari or Google Chrome.

viii

However, Jupyter Notebook will display the value of a variable if you simply enter the

variable name. For example:

In []: x = 3.5

x

Out[]: 3.5

We use both methods throughout this companion.

Remember: do not close the terminal while you are using Jupyter Notebook as this will

kill your kernel, and you won’t be able to run or save your code.

Before you run a cell in Jupyter Notebook, you will see an empty set of square brackets in

the top left corner of a cell. After you run that cell, you will see a number appear inside

the brackets. This number indicates the order of the cell that you have run. Sometimes

instead of a number, you may see an asterisk (*) inside the brackets after you hit run.

This indicates that the computer is still performing the calculation and needs more time

to finish. Hitting the run button multiple times when you see an asterisk usually doesn’t

help, so please be patient.

Using Packages. To use a certain package, you simply need to include an import

statement in your code. For example, if you want to use the package numpy:

In []: import numpy

This will import the package numpy and you can call the package by the name numpy

when you want to use it.

Alternatively, you can type the following:

In []: import numpy as np

Then you can simply type np when you want to call the package. For every Jupyter

Notebook, you only need to include and run the import statement once and you can use

the imported package for the rest of the same notebook. In chapter 1, we include the

import numpy as np statement in the code whenever we use the numpy package. After

chapter 1, our code assumes that you have imported the numpy package and it can be

called using np.

ix

Part I.

Vectors

1

1. Vectors

1.1. Vectors

The simplest way to represent vectors in Python is using a list structure. A vector

is constructed by giving the list of elements surrounded by square brackets, with the

elements separated by commas. The assignment operator = is used to give a name to

the list. The len() function returns the size (dimension).

In []: x = [-1.1, 0.0, 3.6, -7.2]

len(x)

Out[]: 4

Some common mistakes. Don’t forget the commas between entries, and be sure to

use square brackets. Otherwise, you’ll get things that may or may not makes sense in

Python, but are not vectors.

In []: x = [-1.1 0.0 3.6 -7.2]

Out[]: File "<ipython-input-1-18f108d7fe41>", line 1

x = [-1.1 0.0 3.6 -7.2]

^

SyntaxError: invalid syntax

Here Python returns a SyntaxError suggesting the expression that you entered does

not make sense in Python. (Depending on the kind of error that occurred, Python

may return other types of error messages. Some of the error messages are quite self-

explanatory, some are not. See Appendix A for other types of error messages from

Python and possible solutions.)

In []: y = (1,2)

Here y is a tuple consisting of two scalars. It is neither a list nor a vector.

2

1.1. Vectors

Another common way to represent vectors in Python is to use a numpy array. To do so,

we must first import the numpy package.

In []: import numpy as np

x = np.array([-1.1, 0.0, 3.6, -7.2])

len(x)

Out[]: 4

We can initialize numpy arrays from Python list. Here, to call the package we put np.

in front of the array structure. Note: we have parentheses outside the square brackets.

A major advantage of numpy arrays is their ability to perform linear algebra operations

which make intuitive sense when we are working with vectors.

Indexing. A specific element xi is extracted with the expression x[i] where i is the

index (which runs from 0 to n− 1, for an n-vector).

In []: import numpy as np

x = np.array([-1.1, 0.0, 3.6, -7.2])

x[2]

Out[]: 3.6

If we used array indexing on the left-hand side of an assignment statement, then the

value of the corresponding element changes.

In []: x[2] = 20.0

print(x)

[-1.1 0. 20. -7.2]

-1 is a special index in Python. It is the index of the last element in an array.

In []: x[-1]

Out[]: -7.2

Assignment versus copying. The behavior of an assignment statement y = x where x is

an array may be surprising for those who use other languages like Matlab or Octave. The

assignment expression gives a new name y to the same array that is already referenced

by x instead of creating a copy of x.

3

1. Vectors

In []: import numpy as np

x = np.array([-1.1, 0.0, 3.6, -7.2])

y = x

x[2] = 20.0

print(y)

[-1.1 0. 20. -7.2]

To create a new copy of array x, the method copy should be used.

In []: import numpy as np

x = np.array([-1.1, 0.0, 3.6, -7.2])

y = x.copy()

x[2] = 20.0

print(y)

[-1.1 0. 3.6 -7.2]

Vector equality. Equality of vectors is checked using the relational operator == (double

equal signs). The Python expression evaluates to True if the expression on the left and

right-hand side of the relational operator is equal, and to False otherwise.

In []: import numpy as np

x = np.array([-1.1, 0.0, 3.6, -7.2])

y = x.copy()

x == y

Out[]: array([True, True, True, True])

In []: import numpy as np

x = np.array([-1.1, 0.0, 3.6, -7.2])

y = x.copy()

y[3] = 9.0

x == y

Out[]: array([True, True, True, False])

Here four evaluations (True or False) are shown because applying relational operator

on numpy array performs element-wise comparison. However, if we apply the relational

operator on list structures, the Python expression evaluates to True only when both

sides have the same length and identical entries.

4

1.1. Vectors

In []: x = [-1.1, 0.0, 3.6, -7.2]

y = x.copy()

x == y

Out[]: True

In []: x = [-1.1, 0.0, 3.6, -7.2]

y = x.copy()

y[3] = 9.0

x == y

Out[]: False

Scalars versus 1-vectors. In the mathematical notations of VMLS, 1-vector is con-

sidered as a scalar. However, in Python, 1-vectors are not the same as scalars. For

list structure, Python distinguishes 1-vector (list with only one element) [2.4] and the

number 2.4.

In []: x = 2.4

y = [2.4]

x == y

Out[]: False

In []: y[0] == 2.4

Out[]: True

In the last line, Python checks whether the first element of y is equal to the number 2.4.

For numpy arrays, Python compares the elements inside np.array([2.4]) with the

scalar. In our example, Python compares the first (and only) element of y to the number

2.4. Hence, numpy 1-vectors behave like scalars.

In []: import numpy as np

x = 2.4

y = np.array([2.4])

x == y

Out[]: array([True])

5

1. Vectors

Block and stacked vectors. In Python, we can construct a block vector using the

numpy function concatenate(). Remember you need an extra set of parentheses over

the vectors that you want to concatenate. The use of numpy array or list structure does

not create a huge difference here.

In []: import numpy as np

x = np.array([1, -2])

y = np.array([1,1,0])

z = np.concatenate((x,y))

print(z)

[1 -2 1 1 0]

Some common mistakes. There are few Python operations that appear to be able to

construct a block or stacked vector but do not. For example, z = (x,y) creates a tuple

of two vectors; z = [x,y] creates an array of the two vectors. Both of these are valid

Python expression but neither of them is the stacked vector.

Subvectors and slicing. In VMLS, the mathematical notation r : s denotes the index

range r, r+1, . . . , s and xr:s denotes the slice of the vector x from index r to s. In Python,

you can extract a slice of a vector using an index range as the argument. Remember,

Python indices start from 0 to n− 1. For the expressing x[a:b] for array x, the slicing

selects the element from index a to index b-1. In the code below, x[1:4] select element

from index 1 to 3, which means the second to the fourth elements are selected.

In []: import numpy as np

x = np.array([1,8,3,2,1,9,7])

y = x[1:4]

print(y)

[8 3 2]

You can also use index ranges to assign a slice of a vector. In the code below, we

reassigned index 3 to 5 in array x.

In []: x[3:6] = [100,200,300]

print(x)

[1 8 3 100 200 300 7]

6

1.1. Vectors

As a result, you can see the 4th, 5th and 6th elements in the array are reassigned.

You can also use slicing to select all elements in the array starting from a certain index

In []: import numpy as np

x = np.array([1,8,3,2,1,9,7])

x[2:]

Out[]: array([3, 2, 1, 9, 7])

In []: x[:-1]

Out[]: array([1, 8, 3, 2, 1, 9])

Here the first expression selects all elements in x starting from index 2 (the third element).

The second expression selects all elements in x except the last element.

Python indexing into arrays Python slicing and subvectoring is much more general

than the mathematical notation we use in VMLS. For example, one can use a number

range with a third argument, that gives the increment between successive indexes. For

example, the index range 1:5:2 is the list of numbers 8, 2. The expression x[1:4:2]

extracts the second (index 1) to the fifth (index 4) element with an increment of 2.

Therefore, the second and fourth entries of x are extracted. You can also use an index

range that runs backward. The Python expression x[::-1] gives the reversed vector,

i.e., the vector with the same coefficients but in opposite order.

Vector of first differences. Here we use slicing to create an (n − 1)-vector d which is

defined as the first difference vector di = xi+1 − xi, for i = 1, . . . , n − 1, where x is an

n-vector.

In []: import numpy as np

x = np.array([1,8,3,2,1,9,7])

d = x[1:] - x[:-1]

print(d)

[7 -5 -1 -1 8 -2]

Lists of vectors. An ordered list of n-vectors might be denoted in VMLS as a1, . . . , ak

or a(1), . . . , a(k) or just as a, b, c. There are several ways to represent lists of vectors in

Python. If we give the elements of the list, separated by commas, and surrounded by

7

1. Vectors

square brackets, we form a one-dimensional arrays of vectors or a list of lists. If instead,

we use parentheses as delimiters, we obtain a tuple.

In []: x = [1,0]

y = [1,-1]

z = [0,1]

list_of_vectors = [x,y,z]

list_of_vectors[1] #Second element of list

Out[]: [1, -1]

In []: list_of_vectors[1][0] #First entry in second element of list

Out[]: 1

In []: tuple_of_vectors = (x,y,z)

tuple_of_vectors[1] #Second element of list

Out[]: [1, -1]

In []: tuple_of_vectors[1][0] #First entry in second element of list

Out[]: 1

Note that the difference between [x,y,z] (an array of arrays or a list of lists) and a

stacked vector of x, y, and z, obtained by concatenation.

Zero vectors. We can create a zero vector of size n using np.zeros(n). The expression

np.zeros(len(x)) creates a zero vector with the same dimension as vector x.

In []: import numpy as np

np.zeros(3)

Out[]: array([0., 0., 0.])

Unit vectors. We can create ei, the ith unit vector of length n using index.

In []: import numpy as np

i = 2

n = 4

x = np.zeros(n)

x[i] = 1

print(x)

8

1.1. Vectors

[0. 0. 1. 0.]

Ones vector. We can create a ones vector of size n using np.ones(n). The expression

np.ones(len(x)) creates a ones vector with the same dimension as vector x.

In []: import numpy as np

np.ones(3)

Out[]: array([1., 1., 1.])

Random vectors. Sometimes it is useful to generate random vectors to check our al-

gorithm or test an identity. In Python, we generate a random vector of size n using

np.random.random(n).

In []: np.random.random(2)

Out[]: array([0.79339885, 0.60803751])

Plotting. There are several external packages for creating plots in Python. One such

package is matplotlib, which comes together in the Anaconda distribution. Otherwise,

you can also add (install) it manually; see page vii. In particular, we use the mod-

ule pyplot in matplotlib. Assuming the matplotlib package had been installed, you

import it into Python using the command import matplotlib.pyplot as plt. (Now

plt acts as an alias for matplotlib.pyplot.) After that, you can access the Python

commands that create or manipulate plots.

For example, we can plot the temperature time series in Figure 1.3 in VMLS using the

code below; the last line saves the plot in the file temperature.pdf. The result is shown

in Figure 1.1.

In []: import matplotlib.pyplot as plt

plt.ion()

temps = [71, 71, 68, 69, 68, 69, 68, 74, 77, 82, 85, 86, 88, 86,

85, 86, 84, 79, 77, 75, 73, 71, 70, 70, 69, 69, 69, 69, 67,

68, 68, 73, 76, 77, 82, 84, 84, 81, 80, 78, 79, 78, 73, 72,

70, 70, 68, 67]

↪→

↪→

↪→

plt.plot(temps, '-bo')

plt.savefig('temperature.pdf', format = 'pdf')

9

1. Vectors

plt.show()

The syntax -bo indicates plotting with line (-) with circle marker (o) in blue (b). To

show the plot in the interactive session or the notebook, we need to set the interactive

output on with plt.ion() and then use the command plt.show().

0 10 20 30 40

70

75

80

85

Figure 1.1.: Hourly temperature in downtown Los Angeles on August 5 and 6, 2015 (starting at 12:47AM, ending
at 11:47PM).

1.2. Vector addition

Vector addition and subtraction. If x and y are numpy arrays of the same size, x+y

and x-y give their sum and difference, respectively.

In []: import numpy as np

x = np.array([1,2,3])

y = np.array([100,200,300])

print('Sum of arrays:', x+y)

print('Difference of arrays:', x-y)

Sum of arrays: [101 202 303]

Difference of arrays: [-99 -198 -297]

Sometimes when we would like to print more than one value, we may add a piece of

10

1.3. Scalar-vector multiplication

string in front of the value, followed by a comma. This allows us to distinguish between

the values are we printing.

1.3. Scalar-vector multiplication

Scalar-vector multiplication and division. If a is a number and x is a numpy array

(vector), you can express the scalar-vector product either as a*x or x*a.

In []: import numpy as np

x = np.array([1,2,3])

print(2.2*x)

[2.2 4.4 6.6]

You can carry out scalar-vector division as x/a.

In []: import numpy as np

x = np.array([1,2,3])

print(x/2.2)

[0.45454545 0.90909091 1.36363636]

Remark: For Python 2.x, integer division is used when you use the operator / on scalars.

For example, 5/2 gives you 2. You can avoid this problem by adding decimals to the

integer, i.e., 5.0/2. This gives you 2.5.

Scalar-vector addition. In Python, you can add a scalar a and a numpy array (vector)

x using x+a. This means that the scalar is added to each element of the vector. This

is, however, NOT a standard mathematical notation. In mathematical notations, we

should denote this as, e.g. x+ a1, where x is an n-vector and a is a scalar.

In []: import numpy as np

x = np.array([1,2,3,4])

print(x + 2)

[3 4 5 6]

Elementwise operations. In Python we can perform elementwise operations on numpy

arrays. For numpy arrays of the same length x and y, the expressions x * y, x / y and

x** y give the resulting vectors of the same length as x and y and ith element xiyi,

11

1. Vectors

xi/yi, and xyii respectively. (In Python, scalar a to the power of b is expressed as a**b)

As an example of elementwise division, let’s find the 3-vector of asset returns r from the

(numpy arrays of) initial and final prices of assets (see page 22 in VMLS).

In []: import numpy as np

p_initial = np.array([22.15, 89.32, 56.77])

p_final = np.array([23.05, 87.32, 53.13])

r = (p_final - p_initial) / p_initial

r

Out[]: array([0.04063205, -0.0223914 , -0.06411837])

Linear combination. You can form a linear combination is Python using scalar-vector

multiplication and addition.

In []: import numpy as np

a = np.array([1,2])

b = np.array([3,4])

alpha = -0.5

beta = 1.5

c = alpha*a + beta*b

print(c)

[4. 5.]

To illustrate some additional Python syntax, we create a function that takes a list

of coefficients and a list off vectors as its argument (input), and returns the linear

combination (output).

In []: def lincomb(coef, vectors):

n = len(vectors[0])

comb = np.zeros(n)

for i in range(len(vectors)):

comb = comb + coef[i] * vectors[i]

return comb

lincomb([alpha, beta], [a,b])

Out[]: array([4., 5.])

A more compact definition of the function is as follows.

12

1.3. Scalar-vector multiplication

In []: def lincomb(coef, vectors):

return sum(coef[i]*vectors[i] for i in range(len(vectors)))

Checking properties. Let’s check the distributive property

β(a+ b) = βa+ βb

which holds for any two n-vector a and b, and any scalar β. We’ll do this for n = 3, and

randomly generated a, b, and β. (This computation does not show that the property

always holds; it only show that it holds for the specific vectors chosen. But it’s good to

be skeptical and check identities with random arguments.) We use the lincomb function

we just defined.

In []: import numpy as np

a = np.random.random(3)

b = np.random.random(3)

beta = np.random.random()

lhs = beta*(a+b)

rhs = beta*a + beta*b

print('a :', a)

print('b :', b)

print('beta :', beta)

print('LHS :', lhs)

print('RHS :', rhs)

a : [0.81037789 0.423708 0.76037206]

b : [0.45712264 0.73141297 0.46341656]

beta : 0.5799757967698047

LHS : [0.73511963 0.6699422 0.70976778]

RHS : [0.73511963 0.6699422 0.70976778]

Although the two vectors lhs and rhs are displayed as the same, they might not be

exactly the same, due to very small round-off errors in floating point computations.

When we check an identity using random numbers, we can expect that the left-hand

and right-hand sides of the identity are not exactly the same, but very close to each

other.

13

1. Vectors

1.4. Inner product

Inner product. The inner product of n-vector x and y is denoted as xT y. In Python

the inner product of x and y can be found using np.inner(x,y)

In []: import numpy as np

x = np.array([-1,2,2])

y = np.array([1,0,-3])

print(np.inner(x,y))

-7

Alternatively, you can use the @ operator to perform inner product on numpy arrays.

In []: import numpy as np

x = np.array([-1,2,2])

y = np.array([1,0,-3])

x @ y

Out[]: -7

Net present value. As an example, the following code snippet finds the net present

value (NPV) of a cash flow vector c, with per-period interest rate r.

In []: import numpy as np

c = np.array([0.1,0.1,0.1,1.1]) #cash flow vector

n = len(c)

r = 0.05 #5% per-period interest rate

d = np.array([(1+r)**-i for i in range(n)])

NPV = c @ d

print(NPV)

1.236162401468524

In the fifth line, to get the vector d we raise the scalar 1+r element-wise to the powers

given in the range range(n) which expands to 0, 1,2, ..., n-1, using list compre-

hension.

Total school-age population. Suppose that the 100-vector x gives the age distribution

of some population, with xi the number of people of age i − 1, for i = 1, . . . , 100. The

14

1.5. Complexity of vector computations

total number of people with age between 5 and 18 (inclusive) is given by

x6 + x7 + · · ·+ x18 + x19

We can express this as sTx where s is the vector with entries one for i = 6, . . . , 19 and

zero otherwise. In Python, this is expressed as

In []: s = np.concatenate([np.zeros(5), np.ones(14), np.zeros(81)])

school_age_pop = s @ x

Several other expressions can be used to evaluate this quantity, for example, the expres-

sion sum(x[5 : 19]), using the Python function sum, which gives the sum of entries of

vector.

1.5. Complexity of vector computations

Floating point operations. For any two numbers a and b, we have (a+b)(a−b) = a2−b2.

When a computer calculates the left-hand and right-hand side, for specific numbers a

and b, they need not be exactly the same, due to very small floating point round-off

errors. But they should be very nearly the same. Let’s see an example of this.

In []: import numpy as np

a = np.random.random()

b = np.random.random()

lhs = (a+b) * (a-b)

rhs = a**2 - b**2

print(lhs - rhs)

4.336808689942018e-19

Here we see that the left-hand and right-hand sides are not exactly equal, but very very

close.

Complexity. You can time a Python command using the time package. The timer is

not very accurate for very small times, say, measured in microseconds (10−6 seconds).

You should run the command more than once; it can be a lot faster on the second or

subsequent runs.

In []: import numpy as np

import time

a = np.random.random(10**5)

15

1. Vectors

b = np.random.random(10**5)

start = time.time()

a @ b

end = time.time()

print(end - start)

0.0006489753723144531

In []: start = time.time()

a @ b

end = time.time()

print(end - start)

0.0001862049102783203

The first inner product, of vectors of length 105, takes around 0.0006 seconds. This can

be predicted by the complexity of the inner product, which is 2n−1 flops. The computer

on which the computations were done is capable of around 1 Gflop/s. These timings,

and the estimate of computer speed, are very crude.

Sparse vectors. Functions for creating and manipulating sparse vectors are contained

in the Python package scipy.sparse, so you need to import this package before you can

use them. There are 7 classes of sparse structures in this package, each class is designed

to be efficient with a specific kind of structure or operation. For more details, please

refer to the sparse documentation.

Sparse vectors are stored as sparse matrices, i.e., only the nonzero elements are stored

(we introduce matrices in chapter 6 of VMLS). In Python you can create a sparse

vector from lists of the indices and values using the sparse.coo_matrix function. The

scipy.sparse.coo_matrix() function create a sparse matrix from three arrays that

specify the row indexes, column indexes and values of the nonzero elements. Since we

are creating a row vector, it can be considered as a matrix with only 1 column and

100000 columns.

In []: from scipy import sparse

I = np.array([4,7,8,9])

J = np.array([0,0,0,0])

V = np.array([100,200,300,400])

A = sparse.coo_matrix((V,(I,J)),shape = (10000,1))

A

16

1.5. Complexity of vector computations

Out[]: <10000x1 sparse matrix of type '<class 'numpy.int64'>'

with 4 stored elements in COOrdinate format>

We can perform mathematical operations on the sparse matrix A, then we can view the

result using A.todense() method.

From this point onwards, in our code syntax, we assume you have imported numpy

package using the command import numpy as np.

17

1. Vectors

18

2. Linear functions

2.1. Linear functions

Functions in Python. Python provides several methods for defining functions. One

simple way is to use lambda functions. A simple function given by an expression such

as f(x) = x1 + x2 − x2
4 can be defined in a single line.

In []: f = lambda x: x[0] + x[1] - x[3]**2

f([-1,0,1,2])

Out[]: -5

Since the function definition refers to the first, second and fourth elements of the argu-

ment x, these have to be well-defined when you call or evaluate f(x); you will get an

error if, for example, x has three elements or is a scalar.

Superposition. Suppose a is an n-vector. The function f(x) = aTx is linear, which

means that for any n-vectors x and y, and any scalars α and β, the superposition equality

f(αx+ βy) = αf(x) + βf(y)

holds. Superposition says that evaluating f at a linear combination of two vectors is the

same as forming the linear combination of f evaluated at the two vectors.

Let’s define the inner product function f for a specific value of a, and then verify su-

perposition in Python for specific values of x, y, α, and β. (This check does not show

that the function is linear. It simply checks that superposition holds for these specific

values.)

In []: a = np.array([-2,0,1,-3])

x = np.array([2,2,-1,1])

y = np.array([0,1,-1,0])

alpha = 1.5

19

2. Linear functions

beta = -3.7

LHS = np.inner(alpha*x + beta*y, a)

RHS = alpha*np.inner(x,a) + beta*np.inner(y,a)

print('LHS:', LHS)

print('RHS:', RHS)

LHS: -8.3

RHS: -8.3

For the function f(x) = aTx, we have f(e3) = a3. Let’s check that this holds in our

example.

In []: a = np.array([-2,0,1,-3])

e3 = np.array([0,0,1,0])

print(e3 @ a)

1

Examples. Let’s define the average function in Python and check its value of a specific

vector. (Numpy also contains an average function, which can be called with np.mean.

In []: avg = lambda x: sum(x)/len(x)

x = [1,-3,2,-1]

avg(x)

Out[]: -0.25

2.2. Taylor approximation

Taylor approximation. The (first-order) Taylor approximation of function f : Rn → R,

at the point z, is the affine function f̂(x) given by

f̂(x) = f(z) +∇f(z)T (x− z)

For x near z, f̂(x) is very close to f(x). Let’s try a numerical example (see page 36 of

textbook) using Python.

In []: f = lambda x: x[0] + np.exp(x[1] - x[0])

grad_f = lambda z: np.array([1 - np.exp(z[1] - z[0]), np.exp(z[1]

- z[0])])↪→

z = np.array([1,2])

20

2.3. Regression model

#Taylor approximation

f_hat = lambda x: f(z) + grad_f(z) @ (x - z)

f([1,2]), f_hat([1,2])

Out[]: (3.718281828459045, 3.718281828459045)

In []: f([0.96, 1.98]), f_hat([0.96,1.98])

Out[]: (3.7331947639642977, 3.732647465028226)

In []: f([1.10, 2.11]), f_hat([1.10, 2.11])

Out[]: (3.845601015016916, 3.845464646743635)

2.3. Regression model

Regression model. The regression model is the affine function of x given by f(x) =

xTβ + ν, where the n-vector β and the scalar ν are the parameters in the model. The

regression model is used to guess or approximate a real or observed value of the number

y that is associated with x (We’ll see later how to find the parameters in a regression

model using data).

Let’s define the regression model for house sale price described on page 39 of VMLS,

and compare its prediction to the true house sale price y for a few values of x.

In []: # parameters in regression model

beta = np.array([148.73, -18.85])

v = 54.40

y_hat = lambda x: x @ beta + v

#Evaluate regression model prediction

x = np.array([0.846, 1])

y = 115

y_hat(x), y

Out[]: (161.37557999999999, 115)

In []: x = np.array([1.324, 2])

y = 234.50

y_hat(x), y

21

2. Linear functions

Out[]: (213.61852000000002, 234.5)

Our first prediction is pretty bad; our second one is better. A scatter plot of predicted

and actual house prices (Figure 2.4 of VMLS) can be generated as follows. We use

the house_sales_data data set to obtain the vector price, areas, beds (see Ap-

pendix B). The data sets we used in this Python language companion can be found

on: https://github.com/jessica-wyleung/VMLS-py. You can download the jupyter

notebook from the repository and work on it directly or you can copy and paste the data

set onto your own jupyter notebook.

In []: import matplotlib.pyplot as plt

plt.ion()

D = house_sales_data()

price = D['price']

area = D['area']

beds = D['beds']

v = 54.4017

beta = np.array([147.7251, -18.8534])

predicted = v + beta[0]*area + beta[1]*beds

plt.scatter(price, predicted)

plt.plot((0,800),(0,800) ,ls='--', c = 'r')

plt.ylim(0,800)

plt.xlim(0,800)

plt.xlabel('Actual Price')

plt.ylabel('Predicted Price')

plt.show()

22

2.3. Regression model

0 100 200 300 400 500 600 700 800
Actual Price

0

100

200

300

400

500

600

700

800

Pr
ed

ict
ed

 P
ric

e

23

3. Norm and distance

3.1. Norm

Norm. The norm ‖x‖ can be computed in Python using np.linalg.norm(x). (It can

be evaluated in several other ways too.) The np.linalg.norm function is contained in

the numpy package linalg.

In []: x = np.array([2,-1,2])

print(np.linalg.norm(x))

3.0

In []: print(np.sqrt(np.inner(x,x)))

3.0

In []: print((sum(x**2)**0.5)

3.0

Triangle inequality. Let’s check the triangle inequality, ‖x+ y‖ ≤ ‖x‖+ ‖y‖, for some

specific values of x and y.

In []: x = np.random.random(10)

y = np.random.random(10)

LHS = np.linalg.norm(x+y)

RHS = np.linalg.norm(x) + np.linalg.norm(y)

print('LHS:', LHS)

print('RHS:', RHS)

LHS: 3.6110533105675784

RHS: 3.8023691306447676

Here we can see that the right-hand side is larger than the left-hand side.

24

3.1. Norm

RMS value. The RMS value of a vector x is rms(x) = ‖x‖/
√
n. In Python, this

is expressed as np.linalg.norm(x)/np.sqrt(len(x)). Let’s define a vector (which

represents a signal, i.e. the value of some quantity at uniformly space time instances),

and find its RMS value.

In []: rms = lambda x: (sum(x**2)**0.5)/(len(x)**0.5)

t = np.arange(0,1.01,0.01)

x = np.cos(8*t) - 2*np.sin(11*t)

print(sum(x)/len(x))

-0.04252943783238685

In []: print(rms(x))

1.0837556422598

In []: import matplotlib.pyplot as plt

plt.ion()

plt.plot(t,x)

plt.plot(t, np.mean(x)*np.ones(len(x)))

plt.plot(t, (np.mean(x) + rms(x))*np.ones(len(x)), 'g')

plt.plot(t, (np.mean(x) - rms(x))*np.ones(len(x)), 'g')

plt.show()

The above code plots the signal, its average value, and two constant signals at avg(x)±
rms(x) (Figure 3.1).

Chebyshev inequality. The Chebyshev inequality states that the number of entries of an

n-vector x that have absolute value at least a is no more than ‖x‖2/a2 = nrms(x)2/a2.

If the number is, say, 12.15, we can conclude that no more than 12 entries have absolute

value at least a, since the number of entries is an integer. So the Chebyshev bound

can be improved to be floor(‖x‖2/a), where floor(u) is the integer part of a positive

number. Let’s define a function with the Chebyshev bound, including the floor function

improvement, and apply the bound to the signal found above, for a specific value of a.

In []: # Define Chebyshev bound function

import math

cheb_bound = lambda x,a: math.floor(sum(x**2)/a)

a = 1.5

print(cheb_bound(x,a))

25

3. Norm and distance

0.0 0.2 0.4 0.6 0.8 1.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Figure 3.1.: A signal x. The horizontal lines show avg(x) + rms(x), avg(x), and avg(x)− rms(x).

79

In []: # Number of entries of x with |x_i| >= a

print(sum(abs(x) >= a))

20

In the last line, the expression abs(x) >= a creates an array with entries that are

Boolean, i.e., true or false, depending on whether the corresponding entry of x satisfies

the inequality. When we sum the vector of Boolean, they are automatically converted

to the numbers 1 and 0, respectively.

3.2. Distance

Distance. The distance between two vectors is dist(x, y) = ‖x− y‖. This is written in

Python as np.linalg.norm(x-y). Let’s find the distance between the pairs of the three

vectors u, v, and w from page 49 of VMLS.

In []: u = np.array([1.8, 2.0, -3.7, 4.7])

v = np.array([0.6, 2.1, 1.9, -1.4])

w = np.array([2.0, 1.9, -4.0, 4.6])

26

3.2. Distance

print(np.linalg.norm(u-v))

print(np.linalg.norm(u-w))

print(np.linalg.norm(v-w))

8.367795408588812

0.3872983346207417

8.532877591996735

We can see that u and w are much closer to each other than u and v, or v and w. Other

expressions such as np.sqrt(sum((a-b)**2)) and sum((a-b)**2)**0.5 also give the

distance between vector a and b.

Nearest neighbor. We define a function that calculates the nearest neighbour of a

vector in a list of vectors, and try it on the points in Figure 3.3 of VMLS.

In []: near_neigh = lambda x,z: z [np.argmin([np.linalg.norm(x-y) for y

in z])]↪→

z = ([2,1], [7,2], [5.5,4], [4,8], [1,5], [9,6])

x = np.array([5,6])

print(near_neigh(x,z))

[5.5, 4]

In []: print(near_neigh(np.array([3,3]),z))

[2, 1]

On the first line, the expression [np.linalg.norm(x-y)for y in z] uses a convenient

construction in Python. Here z is a list of vectors, and the expression expands to an array

with elements np.linalg.norm(x-z[0]), np.linalg.norm(x-z[1]),... The numpy

function np.argmin applied to this array returns the index of the smallest element.

De-meaning a vector. We refer to the vector x − avg(x)1 as the de-meaned version

of x.

In []: de_mean = lambda x: x - sum(x)/len(x)

x = np.array([1,-2.2,3])

print ('Average of x: ', np.mean(x))

x_tilde = de_mean(x)

print('x_tilde: ',x_tilde)

print('Average of x_tilde: ',np.mean(x_tilde))

27

3. Norm and distance

Average of x: 0.6

x_tilde: [0.4 -2.8 2.4]

Average of x_tilde: -1.4802973661668753e-16

(The mean of x̃ is very very close to zero.)

3.3. Standard deviation

Standard deviation. We can define a function that corresponding to the VMLS defini-

tion of the standard deviation of a vector, std(x) = ‖x− avg(x)1‖/
√
n, where n is the

length of the vector.

In []: x = np.random.random(100)

stdev = lambda x: np.linalg.norm(x - sum(x)/len(x))/(len(x)**0.5)

stdev(x)

Out[]: 0.30440692170248823

You can also use the numpy function np.std(x) to obtain the standard deviation of a

vector.

Return and risk. We evaluate the mean return and risk (measured by standard devia-

tion) of the four time series Figure 3.4 of VMLS.

In []: a = np.ones(10)

np.mean(a), np.std(a)

Out[]: (1.0, 0.0)

In []: b = [5, 1, -2, 3, 6, 3, -1, 3, 4, 1]

np.mean(b), np.std(b)

Out[]: (2.3, 2.4103941586387903)

In []: c = [5, 7, -2, 2, -3, 1, -1, 2, 7, 8]

np.mean(c), np.std(c)

Out[]: (2.6, 3.7735924528226414)

In []: d = [-1, -3, -4, -3, 7, -1, 0, 3, 9, 5]

np.mean(d), np.std(d)

Out[]: (1.2, 4.308131845707604)

28

3.4. Angle

Standardizing a vector. If a vector x isn’t constant (i.e., at least two of its entries are

different), we can standardize it, by subtracting its mean and dividing by its standard

deviation. The resulting standardized vector has mean value zero and RMS value one.

Its entries are called z-scores. We’ll define a standardize function, and then check it

with a random vector.

In []: def standardize(x):

x_tilde = x - np.mean(x)

return x_tilde/np.std(x_tilde)

x = np.random.random(100)

np.mean(x), np.std(x)

Out[]: (0.568533078290501, 0.282467953801772)

In []: z = standardize(x)

np.mean(z), np.std(z)

Out[]: (1.3322676295501878e-17, 1.0)

The mean or average value of the standardized vector z is very nearly zero.

3.4. Angle

Angle. Let’s define a function that computes the angle between two vectors. We will

call it ang.

In []: #Define angle function, which returns radians

ang = lambda x,y : np.arccos(x @ y /

(np.linalg.norm(x)*np.linalg.norm(y)))↪→

a = np.array([1,2,-1])

b = np.array([2,0,-3])

ang(a,b)

Out[]: 0.9689825515916383

In []: #Get angle in degrees

ang(a,b) * (360/(2*np.pi))

Out[]: 55.51861062801842

29

3. Norm and distance

Correlation coefficient. The correlation coefficient between two vectors a and b (with

nonzero standard deviation) is defined as

ρ =
ãT b̃

‖ã‖‖b̃‖
,

where ã and b̃ are the de-meaned versions of a and b, respectively. We can define our

own function to compute the correlation. We calculate the correlation coefficients of the

three pairs of vectors in Figure 3.8 in VMLS.

In []: def corr_coef(a,b):

a_tilde = a - sum(a)/len(a)

b_tilde = b - sum(b)/len(b)

denom = (np.linalg.norm(a_tilde) * np.linalg.norm(b_tilde))

return (a_tilde @ b_tilde) /denom

a = np.array([4.4, 9.4, 15.4, 12.4, 10.4, 1.4, -4.6, -5.6, -0.6,

7.4])↪→

b = np.array([6.2, 11.2, 14.2, 14.2, 8.2, 2.2, -3.8, -4.8, -1.8,

4.2])↪→

corr_coef(a,b)

Out[]: 0.9678196342570432

In []: a = np.array([4.1, 10.1, 15.1, 13.1, 7.1, 2.1, -2.9, -5.9, 0.1,

7.1])↪→

b = np.array([5.5, -0.5, -4.5, -3.5, 1.5, 7.5, 13.5, 14.5, 11.5,

4.5])↪→

corr_coef(a,b)

Out[]: -0.9875211120643734

In []: a = np.array([-5.0, 0.0, 5.0, 8.0, 13.0, 11.0, 1.0, 6.0, 4.0,

7.0])↪→

b = np.array([5.8, 0.8, 7.8, 9.8, 0.8, 11.8, 10.8, 5.8, -0.2,

-3.2])↪→

corr_coef(a,b)

Out[]: 0.004020976661367021

The correlation coefficients of the three pairs of vectors are 96.8%,−98.8%, and 0.4%.

30

3.5. Complexity

3.5. Complexity

Let’s check that the time to compute the correlation coefficient of two n-vectors is

approximately linear in n.

In []: import time

x = np.random.random(10**6)

y = np.random.random(10**6)

start = time.time()

corr_coef(x,y)

end = time.time()

end - start

Out[]: 0.16412591934204102

In []: x = np.random.random(10**7)

y = np.random.random(10**7)

start = time.time()

corr_coef(x,y)

end = time.time()

end - start

Out[]: 1.6333978176116943

In []: x = np.random.random(10**8)

y = np.random.random(10**8)

start = time.time()

corr_coef(x,y)

end = time.time()

end - start

Out[]: 16.22579288482666

31

3. Norm and distance

32

4. Clustering

4.1. Clustering

4.2. A clustering objective

In Python, we can store the list of vectors in a numpy list of N vectors. If we call this

list data, we can access the ith entry (which is a vector) using data[0]. To specify the

clusters or group membership, we can use a list of assignments called grouping, where

grouping[i] is the number of group that vector data[i] is assigned to. (This is an

integer between 1 and k.) (In VMLS, chapter 4, we describe the assignments using a

vector c or the subsets Gj .) We can store k cluster representatives as a Python list called

centroids, with centroids[j] the jth cluster representative. (In VMLS we describe

the representatives as the vectors z1, . . . , zk.)

Group assignment. We define a function to perform group assignment. With given

initial value of centorids, we compute the distance between each centroid with each

vector and assign the grouping according to the smallest distance. The function then

returns a vector of groupings.

In []: def group_assignment(data,centroids):

grouping_vec_c = np.zeros(len(data))

for i in range(len(data)):

dist = np.zeros(len(centroids))

for j in range(len(centroids)):

dist[j] = np.linalg.norm(data[i] - centroids[j])

min_dist = min(dist)

for j in range(len(centroids)):

if min_dist == dist[j]:

grouping_vec_c[i] = j+1

return grouping_vec_c

33

4. Clustering

Update centroid. We define a function to update the centroid after the group assign-

ment, returning a new list of group centroids.

In []: def update_centroid(data, grouping, centroids):

new_centroids = [];

for i in range(len(centroids)):

cent = np.zeros(len(data[0]))

count = 0

for j in range(len(data)):

if grouping[j] == (i+1):

cent = cent+data[j]

count += 1

group_average = cent/count

new_centroids.append(group_average)

return new_centroids

Clustering objective. Given the group assignment and the centroids with the data, we

can compute the clustering objective as the square of the RMS value of the vector of

distances.

In []: def clustering_objective(data, grouping, centroids):

J_obj = 0

for i in range(len(data)):

for j in range(len(centroids)):

if grouping[i] == (j+1):

J_obj += np.linalg.norm(data[i] - centroids[j])**2

J_obj = J_obj/len(data)

return J_obj

4.3. The k-means algorithm

We can define another function Kmeans_alg that uses the three functions defined in the

above subsection iteratively.

In []: def Kmeans_alg(data, centroids):

iteration = 0

J_obj_vector = []

Stop = False

while Stop == False:

grouping = group_assignment(data, centroids)

34

4.4. Examples

new_centroids = update_centroid(data, grouping, centroids)

J_obj = clustering_objective(data, grouping,

new_centroids)↪→

J_obj_vector.append(J_obj)

iteration += 1

if np.linalg.norm(np.array(new_centroids) -

np.array(centroids)) < 1e-6:↪→

Stop = True

else:

centroids = new_centroids

return new_centroids, grouping, J_obj_vector, iteration

Convergence. Here we use a while loop, which executes the statements inside the loop

as long as the condition Stop == False is true. We terminate the algorithm when the

improvement in the clustering objective becomes very small (1e-6).

Alternatively, we can use the Kmeans function in the cluster module of the sklearn

package.

In []: from sklearn.cluster import KMeans

import numpy as np

kmeans = KMeans(n_clusters=4, random_state=0).fit(data)

labels = kmeans.labels_

group_representative = kmeans.cluster_centers_

J_clust = kmeans.inertia_

Here we try to apply the k-means algorithm on data, clustering the vectors into 4 groups.

Note that the sklearn.cluster.KMeans function initialize the algorithms with random

centroids and thus the initial values of centroids are not required as an argument but

the random state to draw the random initialization is.

4.4. Examples

We apply the algorithm on a randomly generated set of N = 300 points, shown in Figure

4.1. These points were generated as follows.

In []: import matplotlib.pyplot as plt

plt.ion()

35

4. Clustering

X = np.concatenate([[0.3*np.random.randn(2) for i in range(100)],

[[1,1] + 0.3*np.random.randn(2) for i in range(100)], [[1,-1]

+ 0.3* np.random.randn(2) for i in range(100)]])

↪→

↪→

plt.scatter(X[:,0],X[:,1])

plt.xlim(-1.5,2.5)

plt.ylim(-2,2)

plt.show()

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Figure 4.1.: 300 points in a plane.

On the first line, we import the matplotlib package for plotting. Then we generate

three arrays of vectors. Each set consists of 100 vectors chosen randomly around one

of the three points (0,0),(1,1), and (1,-1). The three arrays are concatenated using np.

concatenate() to get an array of 300 points. Next, we apply the KMeans function and

make a figure with the three clusters (Figure 4.2).

In []: from sklearn.cluster import KMeans

import numpy as np

kmeans = KMeans(n_clusters=3, random_state=0).fit(X)

labels = kmeans.labels_

group_representative = kmeans.cluster_centers_

J_clust = kmeans.inertia_

grps = [[X[i,:] for i in range(300) if labels[i]==j] for j in

range(3)]↪→

36

4.5. Applications

plt.scatter([c[0] for c in grps[0]],[c[1] for c in grps[0]])

plt.scatter([c[0] for c in grps[1]],[c[1] for c in grps[1]])

plt.scatter([c[0] for c in grps[2]],[c[1] for c in grps[2]])

plt.xlim(-1.5,2.5)

plt.ylim(-2,2)

plt.show()

1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Figure 4.2.: Final clustering.

4.5. Applications

37

4. Clustering

38

5. Linear independence

5.1. Linear independence

5.2. Basis

Cash flow replication. Let’s consider cash flows over 3 periods, given by 3-vectors. We

know from VMLS page 93 that the vectors

ei =

1

1

0

 , l1 =

 1

−(1 + r)

0

 , l2 =

 0

1

−(1 + r)

form a basis, where r is the (positive) per-period interest rate. The first vector e1 is a

single payment of 1 in period (time) t = 1. The second vector l1 is loan of $ 1 in period

t = 1, paid back in period t = 1 with interest r. The third vector l2 is loan of $ 1 in

period t = 2, paid back in period t = 3 with interest r. Let’s use this basis to replicate

the cash flow c = (1, 2,−3) as

c = α1e1 + α2l1 + α3l2 = α1

1

1

0

+ α2

 1

−(1 + r)

0

+ α3

 0

1

−(1 + r)

 .
From the third component we have c3 = α3(−(1 + r)), so α3 = −c3/(1 + r). From the

second component we have

c2 = α2(−(1 + r)) + α3 = α2(−(1 + r))− c3/(1 + r),

so α2 = −c2/(1 + r)− c3/(1 + r)2. Finally, from c1 = α1 + α2, we have

α1 = c1 + c2/(1 + r) + c3/(1 + r)2,

39

5. Linear independence

which is the net present value (NPV) of the cash flow c.

Let’s check this in Python using an interest rate of 5% per period, and the specific cash

flow c = (1, 2,−3).

In []: import numpy as np

r = 0.05

e1 = np.array([1,0,0])

l1 = np.array([1, -(1+r), 0])

l2 = np.array([0,1,-(1+r)])

c = np.array([1,2,-3])

Coefficients of expansion

alpha3 = -c[2]/(1+r)

alpha2 = -c[1]/(1+r) - c[2]/((1+r)**2)

alpha1 = c[0] + c[1]/(1+r) + c[2]/((1+r)**2) #NPV of cash flow

print(alpha1)

0.18367346938775508

In []: print(alpha1*e1 + alpha2*l1 + alpha3*l2)

[1., 2., -3.]

(Later in the course we’ll introduce an automated and simple way to find the coefficients

in the expansion of a vector in a basis.)

5.3. Orthonormal vectors

Expansion in an orthonormal basis. Let’s check that the vectors

a1 =

 0

0

−1

 , a2 =
1√
2

1

1

0

 , a3 =
1√
2

 1

−1

0

 ,
form an orthonormal basis, and check the expansion of x = (1, 2, 3) in this basis,

x = (aT1 x)a1 + . . .+ (aTnx)an.

In []: a1 = np.array([0,0,-1])

a2 = np.array([1,1,0])/(2)**0.5

a3 = np.array([1,-1,0])/(2)**0.5

print('Norm of a1 :', (sum(a1**2))**0.5)

40

5.4. Gram-Schmidt algorithm

print('Norm of a2 :', (sum(a2**2))**0.5)

print('Norm of a3 :', (sum(a3**2))**0.5)

Norm of a1 : 1.0

Norm of a2 : 0.9999999999999999

Norm of a3 : 0.9999999999999999

In []: print(a1 @ a2, a1 @ a3, a2 @ a3)

0.0, 0.0, 0.0

In []: x = np.array([1,2,3])

#Get coefficients of x in orthonormal basis

beta1 = a1 @ x

beta2 = a2 @ x

beta3 = a3 @ x

#Expansion of x in basis

x_expansion = beta1*a1 + beta2*a2 + beta3*a3

print(x_expansion)

[1. 2. 3.]

5.4. Gram-Schmidt algorithm

The following is a Python implementation of the Gram-Schmidt algorithm. It takes as

input an array a which expands into [a[0], a[1], ..., a[k]], containing k vectors

a1, . . . , ak. If the vectors are linearly independent, it returns an array q with orthonormal

set of vectors computed by the Gram-Schmidt algorithm. If the vectors are linearly

dependent and the Gram-Schmidt algorithm terminates early in the i+ 1th iteration, it

returns the array q[0], ..., q[i-1] of length i.

In []: import numpy as np

def gram_schmidt(a):

q = []

for i in range(len(a)):

#orthogonalization

q_tilde = a[i]

for j in range(len(q)):

q_tilde = q_tilde - (q[j] @ a[i])*q[j]

#Test for dependennce

41

5. Linear independence

if np.sqrt(sum(q_tilde**2)) <= 1e-10:

print('Vectors are linearly dependent.')

print('GS algorithm terminates at iteration ', i+1)

return q

#Normalization

else:

q_tilde = q_tilde / np.sqrt(sum(q_tilde**2))

q.append(q_tilde)

print('Vectors are linearly independent.')

return q

Here we initialize the output array as an empty array. In each iteration, we add the next

vector to the array using the append() method.

Example. We apply the function to the example on page 100 of VMLS.

In []: a = np.array([[-1, 1, -1, 1], [-1, 3, -1, 3], [1, 3, 5, 7]])

q = gram_schmidt(a)

print(q)

#Test orthonormality

print('Norm of q[0] :', (sum(q[0]**2))**0.5)

print('Inner product of q[0] and q[1] :', q[0] @ q[1])

print('Inner product of q[0] and q[2] :', q[0] @ q[2])

print('Norm of q[1] :', (sum(q[1]**2))**0.5)

print('Inner product of q[1] and q[2] :', q[1] @ q[2])

print('Norm of q[2] :', (sum(q[2]**2))**0.5)

Vectors are linearly independent.

[array([-0.5, 0.5, -0.5, 0.5]), array([0.5, 0.5, 0.5, 0.5]),

array([-0.5, -0.5, 0.5, 0.5])]↪→

Norm of q[0] : 1.0

Inner product of q[0] and q[1] : 0.0

Inner product of q[0] and q[2] : 0.0

Norm of q[1] : 1.0

Inner product of q[1] and q[2] : 0.0

Norm of q[2] : 1.0

Example of early termination. If we replace a3 with a linear combination of a1 and

a2, the set becomes linearly dependent.

42

5.4. Gram-Schmidt algorithm

In []: b = np.array([a[0],a[1], 1.3*a[0] + 0.5*a[1]])

q = gram_schmidt(b)

print(q)

Vectors are linearly dependent.

GS algorithm terminates at iteration 3

[array([-0.5, 0.5, -0.5, 0.5]), array([0.5, 0.5, 0.5, 0.5])]

Here the algorithm terminated at iteration 3. That means, the third iteration is not

completed and thus two orthonormal vectors are returned.

Example of independence-dimension inequality. We know that any three 2-vectors

must be dependent. Let’s use the Gram-Schmidt algorithm to verify this for three

specific vectors.

In []: three_two_vectors = np.array([[1,1],[1,2],[-1,1]])

q = gram_schmidt(three_two_vectors)

print(q)

Vectors are linearly dependent.

GS algorithm terminates at iteration 3

[array([0.70710678, 0.70710678]), array([-0.70710678,

0.70710678])]↪→

43

5. Linear independence

44

Part II.

Matrices

45

6. Matrices

6.1. Matrices

Creating matrices from the entries. Matrices can be represented in Python using

2-dimensional numpy array or list structure (list of lists). For example, the 3× 4 matrix

A =

 0 1 −2.3 0.1

1.3 4 −0.1 1

4.1 −1 0 1.7

is constructed in Python as

In []: A = np.array([[0,1,-2.3,0.1], [1.3, 4, -0.1, 0], [4.1, -1.0, 0,

1.7]])↪→

A.shape

Out[]: (3, 4)

In []: m,n = A.shape

print('m:', m)

print('n:', n)

m: 3

n: 4

Here we use numpy shape property to get the current shape of an array. As an example,

we create a function to check if a matrix is tall.

In []: tall = lambda X: A.shape[0] > A.shape[1]

tall(A)

Out[]: False

In the function definition, the number of rows and the number of columns are combined

using the relational operator >, which gives a Boolean.

46

6.1. Matrices

If matrix A is expressed as a list of lists, we can get the dimensions of the array using

the len() function as follows.

In []: A = [[0,1,-2.3,0.1], [1.3, 4, -0.1, 0], [4.1, -1.0, 0, 1.7]]

print('m:', len(A))

print('n:', len(A[0]))

m: 3

n: 4

Indexing entries. We get the ith row jth column entry of a matrix A using A[i-1, j-1]

since Python starts indexing from 0.

In []: A[0,2] #Get the third element in the first row

Out[]: -2.3

We can also assign a new value to a matrix entry using similar bracket notation.

In []: A[0,2] = 7.5 #Set the third element in the first row of A to 7.5

A

Out[]: array([[0. , 1. , 7.5, 0.1],

[1.3, 4. , -0.1, 0.],

[4.1, -1. , 0. , 1.7]])

Equality of matrices. A == B determines whether the matrices A and B are equal.

For numpy arrays A and B, the expression A == B creates a matrix whose entries are

Boolean, depending on whether the corresponding entries of A and B are the same. The

expression sum(A == B) gives the number of entries of A and B that are equal.

In []: A = np.array([[0,1,-2.3,0.1], [1.3, 4, -0.1, 0], [4.1, -1.0, 0,

1.7]])↪→

B = A.copy()

A == B

Out[]: array([[True, True, True, True],

[True, True, True, True],

[True, True, True, True]])

In []: B[0,3] = 100 #re-assign one of the elements in B

np.sum(A==B)

47

6. Matrices

Out[]: 11

Alternatively, if A and B are list expressions (list of lists), the expression A == B gives

a Boolean value that indicates whether the matrices are equivalent.

In []: A = [[0,1,-2.3,0.1],[1.3, 4, -0.1, 0],[4.1, -1.0, 0, 1.7]]

B = [[0,1,-2.3,100],[1.3, 4, -0.1, 0],[4.1, -1.0, 0, 1.7]]

A == B

Out[]: False

Row and column vectors. In VMLS, n-vectors are the same as n × 1 matrices. In

Python, there is a subtle difference between a 1D array, a column vector and a row

vector.

In []: # a 3 vector

a = np.array([-2.1, -3, 0])

a.shape

Out[]: (3,)

In []: # a 3-vector or a 3 by 1 matrix

b = np.array([[-2.1],[-3],[0]])

b.shape

Out[]: (3, 1)

In []: # a 3-row vector or a 1 by 3 matrix

c = np.array([[-2.1, -3, 0]])

c.shape

Out[]: (1, 3)

You can see a has shape (3,), meaning that it is a 1D array, while b has shape (3, 1),

meaning that it is a 3× 1 matrix. This small subtlety generally won’t affect you and b

can be reshaped to look like c easily with the command b.reshape(3).

Slicing and submatrices. Using colon notation you can extract a submatrix.

In []: A = np.array([[-1, 0, 1, 0],[2, -3, 0, 1],[0, 4, -2, 1]])

A[0:2, 2:4]

48

6.1. Matrices

Out[]: array([[1, 0], [0, 1]])

This is different from the mathematical notation in VMLS due to the fact that Python

starts index at 0. You can also assign a submatrix using slicing (index range) notation.

A very useful shortcut is the index range : which refers to the whole index range for

that index. This can be used to extract the rows and columns of a matrix.

In []: # Third column of A

A[:,2]

Out[]: array([1, 0, -2])

In []: # Second row of A, returned as vector

A[1,:]

Out[]: array([2, -3, 0, 1])

The numpy function reshape() gives a new k× l matrix. (We must have mn = kl, i.e.,

the original and reshaped matrix must have the same number of entries. This is not

standard mathematical notation, but they can be useful in Python.

In []: A.reshape((6,2))

Out[]: array([[-1, 0],

[1, 0],

[2, -3],

[0, 1],

[0, 4],

[-2, 1]])

In []: A.reshape((3,2))

Out[]: ValueError: cannot reshape array of size 12 into shape (3,2)

Block matrices. Block matrices are constructed in Python very much as in the standard

mathematical notation in VMLS. We can use the np.block() method to construct block

matrices in Python.

In []: B = np.array([0,2,3]) #1 by 3 matrix

C = np.array([-1]) #1 by 1 matrix

D = np.array([[2,2,1],[1,3,5]]) #2 by 3 matrix

E = np.array([[4],[4]]) #2 by 1 matrix

Constrcut 3 by 4 block matrix

49

6. Matrices

A = np.block([[B,C],[D,E]])

A

Out[]: array([[0, 2, 3, -1],

[2, 2, 1, 4],

[1, 3, 5, 4]])

Column and row interpretation of a matrix. An m × n matrix A can be interpreted

as a collection of n m-vectors (its columns) or a collection of m n-row-vectors (its rows).

Column vectors can be converted into a matrix using the horizontal function np.hstack

() and row vectors can be converted into a matrix using the vertical function np.vstack

().

In []: a = [1,2]

b = [4,5]

c = [7,8]

A = np.vstack([a,b,c])

B = np.hstack([a,b,c])

print('matrix A :',A)

print('dimensions of A :', A.shape)

print('matrix B :',B)

print('dimensions of B :', B.shape)

matrix A : [[1 2]

[4 5]

[7 8]]

dimensions of A : (3, 2)

matrix B : [1 2 4 5 7 8]

dimensions of B : (6,)

In []: a = [[1],[2]]

b = [[4],[5]]

c = [[7],[8]]

A = np.vstack([a,b,c])

B = np.hstack([a,b,c])

print('matrix A :',A)

print('dimensions of A :', A.shape)

print('matrix B :',B)

print('dimensions of B :', B.shape)

50

6.2. Zero and identity matrices

matrix A : [[1]

[2]

[4]

[5]

[7]

[8]]

dimensions of A : (6, 1)

matrix B : [[1 4 7]

[2 5 8]]

dimensions of B : (2, 3)

Another useful expression is np.c_ and np.r_, which allow us to stack column (and row)

vectors with other vectors (and matrices).

In []: np.c_[-np.identity(3), np.zeros(3)]

Out[]: array([[-1., -0., -0., 0.],

[-0., -1., -0., 0.],

[-0., -0., -1., 0.]])

In []: np.r_[np.identity(3), np.zeros((1,3))]

Out[]: array([[1., 0., 0.],

[0., 1., 0.],

[0., 0., 1.],

[0., 0., 0.]])

6.2. Zero and identity matrices

Zero matrices. A zero matrix of size m × n is created using np.zeros((m,n)). Note

the double brackets!

In []: np.zeros((2,2))

Out[]: array([[0., 0.],

[0., 0.]])

Identity matrices. Identity matrices in Python can be created in many ways, for ex-

ample, by starting with a zero matrix and then setting the diagonal entries to one. You

can also use the np.identity(n) function to create an identity matrix of dimension n.

51

6. Matrices

In []: np.identity(4)

Out[]: array([[1., 0., 0., 0.],

[0., 1., 0., 0.],

[0., 0., 1., 0.],

[0., 0., 0., 1.]])

Ones matrix. In VMLS we do not use special notation for a matrix with all entries

equal to one. In Python, such a matrix is given by np.ones((m,n))

Diagonal matrices. In standard mathematical notation, diag(1, 2, 3) is a diagonal 3×3

matrix with diagonal entries 1, 2, 3. In Python, such a matrix can be created using np.

diag().

In []: x = np.array([[0, 1, 2],

[3, 4, 5],

[6, 7, 8]])

print(np.diag(x))

[0 4 8]

In []: print(np.diag(np.diag(x)))

[[0 0 0]

[0 4 0]

[0 0 8]]

Here we can see that, when we apply the np.diag() function to a matrix, it extracts

the diagonal elements as a vector (array). When we apply the np.diag() function to a

vector (array), it constructs a diagonal matrix with diagonal entries given in the vector.

Random matrices. A random m×n matrix with entries distributed uniformly between

0 and 1 is created using np.random.random((m,n)). For entries that have a standard

normal distribution, we can use np.random.normal((m,n)).

In []: np.random.random((2,3))

Out[]: array([[0.13371842, 0.28868153, 0.6146294],

[0.81106752, 0.10340807, 0.02324088]])

In []: np.random.randn(3,2)

52

6.2. Zero and identity matrices

Out[]: array([[1.35975208, -1.63292901],

[-0.47912321, -0.4485537],

[-1.1693047 , -0.05600474]])

Sparse matrices. Functions for creating and manipulating sparse matrices are con-

tained in the scipy.sparse module, which must be installed and imported. Sparse

matrices are stored in a special format that exploits the property that most of the ele-

ments are zero. The scipy.sparse.coo_matrix() function create a sparse matrix from

three arrays that specify the row indexes, column indexes, and values of the nonzero

elements. The following code creates a sparse matrix

A =

−1.11 0 1.17 0 0

0.15 −0.10 0 0 0

0 0 −0.3 0 0

0 0 0 0.13 0

In []: from scipy import sparse

I = np.array([0, 1, 1, 0, 2, 3]) # row indexes of nonzeros

J = np.array([0, 0, 1, 2, 2, 3]) # column indexes

V = np.array([-1.11, 0.15, -0.10, 1.17, -0.30, 0.13]) # values

A = sparse.coo_matrix((V,(I,J)), shape=(4,5))

A

Out[]: <4x5 sparse matrix of type '<class 'numpy.float64'>'

with 6 stored elements in COOrdinate format>

In []: A.nnz

Out[]: 6

Sparse matrices can be converted to regular non-sparse matrices using the todense()

method.

In []: A.todense()

Out[]: matrix([[-1.11, 0. , 1.17, 0. , 0.],

[0.15, -0.1 , 0. , 0. , 0.],

[0. , 0. , -0.3 , 0. , 0.],

[0. , 0. , 0. , 0.13, 0.]])

53

6. Matrices

A sparse m× n zero matrix is created with sparse.coo_matrix((m, n)). To create a

sparse n×n identity matrix in Python, use sparse.eye(n). We can also create a sparse

diagonal matrix (with different offsets) using

In []: diagonals = [[1, 2, 3, 4], [1, 2, 3], [1, 2]]

B = sparse.diags(diagonals, offsets=[0,-1,2])

B.todense()

Out[]: matrix([[1., 0., 1., 0.],

[1., 2., 0., 2.],

[0., 2., 3., 0.],

[0., 0., 3., 4.]])

A useful function for creating a random sparse matrix is sparse.rand(). It generates a

sparse matrix of a given shape and density with uniformly distributed values.

In []: matrix = sparse.rand(3, 4, density=0.25, format='csr',

random_state=42)↪→

matrix

Out[]: <3x4 sparse matrix of type '<class 'numpy.float64'>'

with 3 stored elements in Compressed Sparse Row format>

6.3. Transpose, addition, and norm

Transpose. In VMLS we denote the transpose of an m×n matrix A as AT . In Python,

the transpose of A is given by np.transpose(A) or simply A.T.

In []: H = np.array([[0,1,-2,1], [2,-1,3,0]])

H.T

Out[]: array([[0, 2],

[1, -1],

[-2, 3],

[1, 0]])

In []: np.transpose(H)

Out[]: array([[0, 2],

[1, -1],

[-2, 3],

[1, 0]])

54

6.3. Transpose, addition, and norm

Addition, subtraction, and scalar multiplication. In Python, addition and subtraction

of matrices, and scalar-matrix multiplication, both follow standard and mathematical

notation.

In []: U = np.array([[0,4], [7,0], [3,1]])

V = np.array([[1,2], [2,3], [0,4]])

U + V

Out[]: array([[1, 6],

[9, 3],

[3, 5]])

In []: 2.2*U

Out[]: array([[0. , 8.8],

[15.4, 0.],

[6.6, 2.2]])

(We can also multiply a matrix on the right by a scalar.) Python supports some opera-

tions that are not standard mathematical ones. For example, in Python you can add or

subtract a constant from a matrix, which carries out the operation on each entry.

Elementwise operations. The syntax for elementwise vector operations described on

page 11 carries over naturally to matrices.

Matrix norm. In VMLS we use ‖A‖ to denote the norm of an m× n matrix,

‖A‖ =

 m∑
i=1

n∑
j=1

A2
ij

 1
2

In standard mathematical notation, this is more often written as ‖A‖F , where F stands

for the name Frobenius. In standard mathematical notation, ‖A‖ usually refers to

another norm of a matrix, which is beyond the scope of topics in VMLS. In Python,

np.linalg.norm(A) gives the norm used in VMLS.

In []: A = np.array([[2,3,-1], [0,-1,4]])

np.linalg.norm(A)

Out[]: 5.5677643628300215

In []: np.linalg.norm(A[:])

55

6. Matrices

Out[]: 5.5677643628300215

Triangle inequality. Let’s check that the triangle inequality ‖A + B‖ ≤ ‖A‖ + ‖B‖
holds, for two specific matrices.

In []: A = np.array([[-1,0], [2,2]])

B = np.array([[3,1], [-3,2]])

print(np.linalg.norm(A + B))

print(np.linalg.norm(A) + np.linalg.norm(B))

4.69041575982343

7.795831523312719

Alternatively, we can write our own code to find the norm of A:

In []: A = np.array([[1,2,3], [4,5,6], [7,8,9], [10,11,12]])

m,n = A.shape

print(A.shape)

sum_of_sq = 0

for i in range(m):

for j in range(n):

sum_of_sq = sum_of_sq + A[i,j]**2

matrix_norm = np.sqrt(sum_of_sq)

print(matrix_norm)

print(np.linalg.norm(A))

(4, 3)

25.495097567963924

25.495097567963924

6.4. Matrix-vector multiplication

In Python, matrix-vector multiplication has the natural syntax y = A @ x. Alterna-

tively, we can use the numpy function np.matmul(A,x).

In []: A = np.array([[0,2,-1],[-2,1,1]])

x = np.array([2,1,-1])

A @ x

Out[]: array([3, -4])

56

6.4. Matrix-vector multiplication

In []: np.matmul(A,x)

Out[]: array([3, -4])

Difference matrix. An (n− 1)× n difference matrix (equation (6.5) of VMLS) can be

constructed in several ways. A simple one is the following.

In []: diff_mat = lambda n: np.c_[-np.identity(n-1), np.zeros(n-1)] +

np.c_[np.zeros(n-1), np.identity(n-1)]↪→

D = diff_mat(4)

x = np.array([-1,0,2,1])

D @ x

Out[]: array([1., 2., -1.])

Since a difference matrix contains many zeros, this is a good opportunity to use sparse

matrices. Here we use the sparse.hstack() function to stack the sparse matrices.

In []: diff_mat = lambda n: sparse.hstack([-sparse.eye(n-1),

sparse.coo_matrix((n-1,1))])+

sparse.hstack([sparse.coo_matrix((n-1,1)), sparse.eye(n-1)])

↪→

↪→

D = diff_mat(4)

D @ np.array([-1,0,2,1])

Out[]: array([1., 2., -1.])

Running sum matrix. The running sum matrix (equation (6.6) in VMLS) is a lower

triangular matrix, with elements on and below the diagonal equal to one.

In []: def running_sum(n):

import numpy as np

S = np.zeros((n,n))

for i in range(n):

for j in range(i+1):

S[i,j] = 1

return S

running_sum(4)

Out[]: array([[1., 0., 0., 0.],

[1., 1., 0., 0.],

[1., 1., 1., 0.],

[1., 1., 1., 1.]])

57

6. Matrices

In []: running_sum(4) @ np.array([-1,1,2,0])

Out[]: array([-1., 0., 2., 2.])

An alternative construction is np.tril(np.ones((n,n))). This uses the function np.

tril, which sets the elements of a matrix above the diagonal to zero.

Vandermonde matrix. An m× n Vandermonde matrix (equation (6.7) in VMLS) has

entries tj−1
i for i = 1, . . . ,m and j = 1, . . . , n. We define a function that takes an

m-vector with elements t1, . . . , tm and returns the corresponding m × n Vandermonde

matrix.

In []: def vandermonde(t,n):

m = len(t)

V = np.zeros((m,n))

for i in range(m):

for j in range(n):

V[i,j] = t[i]**(j)

return V

vandermonde(np.array([-1,0,0.5,1]),5)

Out[]: array([[1. , -1. , 1. , -1. , 1.],

[1. , 0. , 0. , 0. , 0.],

[1. , 0.5 , 0.25 , 0.125 , 0.0625],

[1. , 1. , 1. , 1. , 1.]])

An alternative shorter definition uses numpy np.column_stack function.

In []: vandermonde = lambda t,n: np.column_stack([t**i for i in

range(n)])↪→

vandermonde(np.array([-1,0,0.5,1]),5)

Out[]: array([[1. , -1. , 1. , -1. , 1.],

[1. , 0. , 0. , 0. , 0.],

[1. , 0.5 , 0.25 , 0.125 , 0.0625],

[1. , 1. , 1. , 1. , 1.]])

6.5. Complexity

Complexity of matrix-vector multiplication. The complexity of multiplying an m× n
matrix by an n-vector is 2mn flops. This grows linearly with both m and n. Let’s check

58

6.5. Complexity

this.

In []: import time

A = np.random.random((1000,10000))

x = np.random.random(10000)

start = time.time()

y = A @ x

end = time.time()

print(end - start)

0.004207134246826172

In []: A = np.random.random((5000,20000))

x = np.random.random(20000)

start = time.time()

y = A @ x

end = time.time()

print(end - start)

0.04157733917236328

In the second matrix-vector multiplication, m increases by a factor of 5 and n increases

by a factor of 2, so the complexity should be increased by a factor of 10. As we can see,

it is increased by a factor around 10.

The increase in efficiency obtained by sparse matrix computations is seen from matrix-

vector multiplications with the difference matrix.

In []: n = 10**4;

Ds = sparse.hstack([-sparse.eye(n-1),

sparse.coo_matrix((n-1,1))]) +

sparse.hstack([sparse.coo_matrix((n-1,1)), sparse.eye(n-1)])↪→

D = np.column_stack([np.eye(n-1), np.zeros(n-1)]) +

np.column_stack([np.zeros(n-1), np.eye(n-1)])↪→

x = np.random.normal(size=n)

import time

start = time.time()

D @ x

end = time.time()

print(end - start)

0.05832314491271973

59

6. Matrices

In []: start = time.time()

Ds @ x

end = time.time()

print(end - start)

0.0003020763397216797

60

6.5. Complexity

61

7. Matrix examples

7.1. Geometric transformations

Let us create a rotation matrix, and use it to rotate a set of points π/3 radians (60 deg).

The result is in Figure 7.1.

In []: Rot = lambda theta: [[np.cos(theta), -np.sin(theta)],

[np.sin(theta), np.cos(theta)]]

R = Rot(np.pi/3)

R

Out[]: [[0.5000000000000001, -0.8660254037844386],

[0.8660254037844386, 0.5000000000000001]]

In []: #create a list of 2-D points

points =

np.array([[1,0],[1.5,0],[2,0],[1,0.25],[1.5,0.25],[1,0.5]])↪→

#Now rotate them

rpoints = np.array([R @ p for p in points])

#Show the two sets of points

import matplotlib.pyplot as plt

plt.ion()

plt.scatter([c[0] for c in points], [c[1] for c in points])

plt.scatter([c[0] for c in rpoints],[c[1] for c in rpoints])

plt.show()

7.2. Selectors

Reverser matrix. The reverser matrix can be created from an identity matrix by re-

versing the order of its rows. The numpy function np.flip() can be used for this

purpose.

62

7.2. Selectors

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Figure 7.1.: Counterclockwise rotation by 60 degrees applied to six points.

In []: reverser = lambda n: np.flip(np.eye(n),axis=0)

A = reverser(5)

A

Out[]: array([[0., 0., 0., 0., 1.],

[0., 0., 0., 1., 0.],

[0., 0., 1., 0., 0.],

[0., 1., 0., 0., 0.],

[1., 0., 0., 0., 0.]])

Permutation matrix. Let’s create a permutation matrix and use it to permute the

entries of a vector. In Python, you can directly pass the permuted indexes to the vector.

In []: A = np.array([[0,0,1], [1,0,0], [0,1,0]])

x = np.array([0.2, -1.7, 2.4])

A @ x # Permutes entries of x to [x[2], x[0], x[1]]

Out[]: array([2.4, 0.2, -1.7])

In []: x[[2,0,1]]

Out[]: array([2.4, 0.2, -1.7])

63

7. Matrix examples

7.3. Incidence matrix

Incidence matrix of a graph. We create the incidence matrix of the network shown in

Figure 7.3 in VMLS.

In []: A = np.array([[-1,-1,0,1,0], [1,0,-1,0,0], [0,0,1,-1,-1],

[0,1,0,0,1]])↪→

xcirc = np.array([1,-1,1,0,1]) #A circulation

A @ xcirc

Out[]: array([0, 0, 0, 0])

In []: s = np.array([1,0,-1,0,]) # A source vector

x = np.array([0.6,0.3,0.6,-0.1,-0.3]) #A flow vector

A @ x + s #Total incoming flow at each node

Out[]: array([1.11022302e-16, 0.00000000e+00, 0.00000000e+00,

0.00000000e+00])↪→

Dirichlet energy. On page 135 of VMLS we compute the Dirichlet energy of two po-

tential vectors associated with the graph of Figure 7.2 in VMLS.

In []: A = np.array([[-1,-1,0,1,0], [1,0,-1,0,0], [0,0,1,-1,-1],

[0,1,0,0,1]])↪→

vsmooth = np.array([1,2,2,1])

np.linalg.norm(A.T @ vsmooth)**2 #Dirichlet energy of vsmooth

Out[]: 2.9999999999999996

In []: vrough = np.array([1,-1, 2, -1])

np.linalg.norm(A.T @ vrough)**2 # Dirichlet energy of vrough

Out[]: 27.0

7.4. Convolution

The numpy function np.convolve() can be used to compute the convolution of the

vectors a and b. Let’s use this to find the coefficients of the polynomial

p(x) = (1 + x)(2− x+ x2)(1 + x− 2x2) = 2 + 3x− 3x2 − x3 + x4 − 2x5

64

7.4. Convolution

In []: a = np.array([1,1]) # coefficients of 1+x

b = np.array([2,-1,1]) # coefficients of 2-x+x^2

c = np.array([1,1,-2]) # coefficients of 1+x-2x^2

d = np.convolve(np.convolve(a,b),c) # coefficients of product

d

Out[]: array([2, 3, -3, -1, 1, -2])

Let’s write a function that creates a Toeplitz matrix and check it against the conv func-

tion. We will also confirm that Python is using a very efficient method for computing

the convolution.

To construct the Toeplitz matrix T (b) defined in equation (7.3) of VMLS, we can first

create a zero matrix of the correct dimensions ((n + m − 1) × n) and then add the

coefficients bi one by one. Single-index indexing comes in handy for this purpose. The

single-index indexes of the elements bi in the matrixT (b) are i, i + m + n, i + 2(m +

n), . . . , i+ (n− 1)(m+ n).

In []: b = np.array([-1,2,3])

a = np.array([-2,3,-1,1])

def toeplitz(b,n):

m = len(b)

T = np.zeros((n+m-1,n))

for j in range(n):

T[j:j+m,j] = b

return T

Tb = toeplitz(b,len(a))

Tb

Out[]: array([[-1., 0., 0., 0.],

[2., -1., 0., 0.],

[3., 2., -1., 0.],

[0., 3., 2., -1.],

[0., 0., 3., 2.],

[0., 0., 0., 3.]])

In []: Tb @ a, np.convolve(b,a)

Out[]: (array([2.,-7., 1., 6.,-1., 3.]), array([2,-7, 1, 6,-1, 3]))

65

7. Matrix examples

In []: import time

m = 2000

n = 2000

b = np.random.normal(size = n)

a = np.random.normal(size = m)

start = time.time()

ctoep = toeplitz(b,n) @ a

end = time.time()

print(end - start)

0.05798077583312988

In []: start = time.time()

cconv = np.convolve(a,b)

end = time.time()

print(end - start)

0.0011739730834960938

In []: np.linalg.norm(ctoep - cconv)

Out[]: 1.0371560230890881e-12

66

7.4. Convolution

67

8. Linear equations

8.1. Linear and affine functions

Matrix-vector product function. Let’s define an instance of the matrix-vector product

function, and then numerically check that superposition holds.

In []: A = np.array([[-0.1,2.8,-1.6],[2.3,-0.6,-3.6]]) #2 by 3 matrix A

f = lambda x: A @ x

#Let's check superposition

x = np.array([1,2,3])

y = np.array([-3,-1,2])

alpha = 0.5

beta = -1.6

LHS = f(alpha*x + beta*y)

print('LHS:', LHS)

RHS = alpha*f(x) + beta*f(y)

print('RHS:', RHS)

print(np.linalg.norm(LHS - RHS))

LHS: [9.47 16.75]

RHS: [9.47 16.75]

1.7763568394002505e-15

In []: f(np.array([0,1,0])) #Should be second column of A

Out[]: array([2.8, -0.6])

De-meaning matrix. Let’s create a de-meaning matrix, and check that it works on a

vector.

In []: de_mean = lambda n: np.identity(n) - (1/n)

x = np.array([0.2,2.3,1.0])

de_mean(len(x)) @ x #De-mean using matrix multiplication

Out[]: array([-0.96666667, 1.13333333, -0.16666667])

68

8.2. Linear function models

In []: x - sum(x)/len(x)

Out[]: array([-0.96666667, 1.13333333, -0.16666667])

Examples of functions that are not linear. The componentwise absolute value and the

sort function are examples of nonlinear functions. These functions are easily computed

by abs and sorted. By default, the sorted function sorts in increasing order, but this

can be changed by adding an optional keyword argument.

In []: f = lambda x: abs(x) #componentwise absolute value

x = np.array([1,0])

y = np.array([0,1])

alpha = -1

beta = 2

f(alpha*x + beta*y)

Out[]: array([1, 2])

In []: alpha*f(x) + beta*f(y)

Out[]: array([-1, 2])

In []: f = lambda x: np.array(sorted(x, reverse = True))

f(alpha*x + beta*y)

Out[]: array([2, -1])

In []: alpha*f(x) + beta*f(y)

Out[]: array([1, 0])

8.2. Linear function models

Price elasticity of demand. Let’s use a price elasticity of demand matrix to predict

the demand for three products when the prices are changed a bit. Using this we can

predict the change in total profit, given the manufacturing costs.

In []: p = np.array([10, 20, 15]) #Current prices

d = np.array([5.6, 1.5, 8.6]) #Current demand (say in thousands)

c = np.array([6.5, 11.2, 9.8]) #Cost to manufacture

profit = (p - c) @ d #Current total profit

69

8. Linear equations

print(profit)

77.51999999999998

In []: #Demand elesticity matrix

E = np.array([[-0.3, 0.1, -0.1], [0.1, -0.5, 0.05], [-0.1, 0.05,

-0.4]])↪→

p_new = np.array([9,21,14]) #Proposed new prices

delta_p = (p_new - p)/p #Fractional change in prices

print(delta_p)

[-0.1 0.05 -0.06666667]

In []: delta_d = E @ delta_p # Predicted fractional change in demand

print(delta_d)

[0.04166667 -0.03833333 0.03916667]

In []: d_new = d * (1 + delta_d) # Predicted new demand

print(d_new)

[5.83333333 1.4425 8.93683333]

In []: profit_new = (p_new - c) @ d_new #Predicted new profit

print(profit_new)

66.25453333333333

If we trust the linear demand elasticity model, we should not make these price changes.

Taylor approximation. Consider the nonlinear function f : R2 → R2 given by

f(x) =

[
‖x− a‖
‖x− b‖

]
=

[√
(x1 − a1)2 + (x2 − a2)2√
(x1 − b1)2 + (x2 − b2)2

]
.

The two components of f gives the distance of x to the points a and b. The function is

differentiable, except when x = a or x = b. Its derivative or Jacobian matrix is given by

Df(x) =

∂f1

∂x1
(z)

∂f1

∂x2
(z)

∂f2

∂x1
(z)

∂f2

∂x2
(z)

 =

z1 − a1

‖z − a‖
z2 − a2

‖z − a‖
z1 − b1
‖z − b‖

z2 − b2
‖z − b‖

 .

70

8.2. Linear function models

Let’s form the Taylor approximation of f for some specific values of a, b, and z, and

then check it against the true value of f at a few points near z.

In []: f = lambda x: np.array([np.linalg.norm(x-a),

np.linalg.norm(x-b)])

Df = lambda z: np.array([(z-a)/np.linalg.norm(z-a),

(z-b)/np.linalg.norm(z-b)])

f_hat = lambda x: f(z) + Df(z)@(x - z)

a = np.array([1,0])

b = np.array([1,1])

z = np.array([0,0])

f(np.array([0.1,0.1]))

Out[]: array([0.90553851, 1.27279221])

In []: f_hat(np.array([0.1,0.1]))

Out[]: array([0.9 , 1.27279221])

In []: f(np.array([0.5,0.5]))

Out[]: array([0.70710678, 0.70710678])

In []: f_hat(np.array([0.5,0.5]))

Out[]: array([0.5 , 0.70710678])

Regression model. We revisit the regression model for the house sales data in Section

2.3. The model is

ŷ = xTβ + ν = β1x1 + β2x2 + ν,

where ŷ is the predicted house sales price, x1 is the house area in 1000 square feet, and

x2 is the number of bedrooms.

In the following code we construct the 2 × 774 data matrix X and vector of outcomes

yd, for the N = 774 examples, in the data set. We then calculate the regression model

predictions ŷd, the prediction error rd, and the RMS prediction errors.

In []: # parameters in regression model

beta = [148.73, -18.85]

v = 54.40

D = house_sales_data()

71

8. Linear equations

yd = D['price'] # vector of outcomes

N = len(yd)

X = np.vstack((D['area'], D['beds']))

X.shape

Out[]: (2, 774)

In []: ydhat = beta @ X + v; # vector of predicted outcomes

rd = yd - ydhat; # vector of predicted errors

np.sqrt(sum(rd**2)/len(rd)) # RMS prediction error

Out[]: 74.84571862623025

In []: # Compare with standard deviation of prices

np.std(yd)

Out[]: 112.78216159756509

8.3. Systems of linear equations

Balancing chemical reactions. We verify the linear balancing equation on page 155 of

VMLS, for the simple example of electrolysis of water.

In []: R = np.array([2,1])

P = np.array([[2,0], [0,2]])

#Check balancing coefficients [2,2,1]

coeff = np.array([2,2,1])

coeff @ np.vstack((R, -P))

Out[]: array([0, 0])

72

8.3. Systems of linear equations

73

9. Linear dynamical systems

9.1. Linear dynamical systems

Let’s simulate a time-invariant linear dynamical system

xt+1 = Axt, t = 1, . . . , T,

with dynamics matrix

A =

 0.97 0.10 −0.05

−0.30 0.99 0.05

0.01 −0.04 0.96

and initial state x1 = (1, 0,−1). We store trajectory in the n × T matrix state_traj,

with the ith column xt. We plot the result in Figure 9.1.

In []: # initial state

x_1 = np.array([1,0,-1])

n = len(x_1)

T = 50

A = np.array([[0.97, 0.1, -0.05], [-0.3, 0.99, 0.05], [0.01,

-0.04, 0.96]])↪→

state_traj = np.column_stack([x_1, np.zeros((n,T-1))])

dynamics recursion

for t in range(T-1):

state_traj[:, t+1] = A @ state_traj[:,t]

import matplotlib.pyplot as plt

plt.ion()

plt.plot(np.arange(T), state_traj.T)

plt.legend(['(x_t)_1','(x_t)_2','(x_t)_3'])

plt.xlabel('t')

74

9.2. Population dynamics

0 10 20 30 40 50
t

2

1

0

1

2 (x_t)_1
(x_t)_2
(x_t)_3

Figure 9.1.: Linear dynamical system simulation.

9.2. Population dynamics

We can create a population dynamics matrix with just one simple line of Python code.

The following code predicts the 2020 population distribution in the US using the data

of Section 9.2 of VMLS in the population_data dataset.

In []: # Import 3 100-vector: population, birth_rate, death_rate

D = population_data()

b = D['birth_rate']

d = D['death_rate']

A = np.vstack([b, np.column_stack([np.diag(1 - d[:-1]),

np.zeros((len(d) - 1))])])↪→

x = D['population']

x = np.power(A,10) @ x

import matplotlib.pyplot as plt

plt.ion()

plt.plot(x)

plt.xlabel('Age')

plt.ylabel('Population (millions)')

plt.show()

75

9. Linear dynamical systems

0 20 40 60 80 100
Age

0

1

2

3

4
Po

pu
la

tio
n

(m
illi

on
s)

Figure 9.2.: Predicted age distribution in the US in 2020.

9.3. Epidemic dynamics

Let’s implement the simulation of the epidemic dynamics from VMLS section 9.3.

In []: T = 210

A = np.array([[0.95,0.04,0,0], [0.05,0.85,0,0], [0,0.1,1,0],

[0,0.01,0,1]])↪→

x_1 = np.array([1,0,0,0])

state trajectory

state_traj = np.column_stack([x_1, np.zeros((4, T-1))])

dynamics recursion

for t in range(T-1):

state_traj[:, t+1] = A @ state_traj[:,t]

import matplotlib.pyplot as plt

plt.ion()

plt.plot(np.arange(T), state_traj.T)

plt.xlabel('Time t')

plt.legend(['Susceptible', 'Infected', 'Recovered', 'Deceased'])

plt.show()

76

9.4. Motion of a mass

0 50 100 150 200
Time t

0.0

0.2

0.4

0.6

0.8

1.0

Susceptible
Infected
Recovered
Deceased

Figure 9.3.: Simulation of epidemic dynamics.

9.4. Motion of a mass

Let’s simulate the discretized model of the motion of a mass in section 9.4 of VMLS.

In []: h = 0.01

m = 1

eta = 1

A = np.block([[1,h],[0, 1-h*eta/m]])

B = np.vstack([0,h/m])

x1 = np.array([0,0])

K = 600 #simulate for K*h = 6 seconds

f = np.zeros((K));

f[49:99] = 1

f[99:139] = -1.3

X = np.column_stack([x1, np.zeros((2, K-1))])

for k in range(K-1):

X[:, k+1] = A @ X[:, k] + f[k]*B.T

import matplotlib.pyplot as plt

plt.ion()

plt.plot(X[0,:])

plt.xlabel('k')

plt.ylabel('Position')

77

9. Linear dynamical systems

plt.show()

plt.plot(X[1,:])

plt.xlabel('k')

plt.ylabel('Velocity')

plt.show()

9.5. Supply chain dynamics

78

9.5. Supply chain dynamics

0 100 200 300 400 500 600
k

0.025

0.000

0.025

0.050

0.075

0.100

0.125

0.150

Po
sit

io
n

0 100 200 300 400 500 600
k

0.1

0.0

0.1

0.2

0.3

0.4

Ve
lo

cit
y

Figure 9.4.: Simulation of a mass moving along a line: position (top) and velocity (bottom).

Figure 9.5.

79

9. Linear dynamical systems

80

10. Matrix multiplication

10.1. Matrix-matrix multiplication

In Python the product of matrices A and B is obtained with A @ B. Alternatively, we can

compute the matrix product using the function np.matmul(). We calculate the matrix

product on page 177 of VMLS.

In []: A = np.array([[-1.5, 3, 2], [1, -1,0]]) #2 by 3 matrix

B = np.array([[-1,-1], [0,-2], [1,0]]) #3 by 2 matrix

C = A @ B

print(C)

[[3.5 -4.5]

In []: [-1. 1.]]

C = np.matmul(A,B)

print(C)

[[3.5 -4.5]

[-1. 1.]]

Gram matrix. The Gram matrix of a matrix A is the matrix G = ATA. It is a

symmetric matrix and the i, j element Gi,j is the inner product of columns i and j of A.

In []: A = np.random.normal(size = (10,3))

G = A.T @ A

print(G)

[[8.73234113 -2.38507779 1.59667064]

[-2.38507779 3.07242591 0.49804144]

[1.59667064 0.49804144 15.65621955]]

In []: #Gii is norm of column i, squared

G[1,1]

81

10. Matrix multiplication

Out[]: 3.072425913055046

In []: np.linalg.norm(A[:,1])**2

Out[]: 3.072425913055046

In []: #Gij is inner product of columns i and j

G[0,2]

Out[]: 1.5966706354935412

In []: A[:,0] @ A[:,2]

Out[]: 1.5966706354935412

Complexity of matrix triple product. Let’s check the associative property, which states

that (AB)C = A(BC) for any m×n matrix A, any n×p matrix B, and any p×q matrix

C. At the same time we will see that the left-hand and right-hand sides take very different

amounts of time to compute.

In []: import time

m = 2000

n = 50

q = 2000

p = 2000

A = np.random.normal(size = (m,n))

B = np.random.normal(size = (n,p))

C = np.random.normal(size = (p,q))

start = time.time()

LHS = (A @ B) @ C

end = time.time()

print(end - start)

0.17589497566223145

In []: start = time.time()

LHS = (A @ B) @ C

end = time.time()

print(end - start)

0.23308205604553223

82

10.2. Composition of linear functions

In []: start = time.time()

RHS = A @ (B @ C)

end = time.time()

print(end - start)

0.026722192764282227

In []: start = time.time()

RHS = A @ (B @ C)

end = time.time()

print(end - start)

0.025452852249145508

In []: np.linalg.norm(LHS - RHS)

Out[]: 4.704725926477414e-10

In []: start = time.time()

D = A @ B @ C #Evaluated as (A@B)@C or as A@(B@C)?

end = time.time()

print(end - start)

0.24454998970031738

From the above, we see that evaluating (A@B)@C takes around 10 times as much time as

evaluating A@(B@C), which is predicted from the complexities. In the last line, we deduce

that $A@B@C$ is evaluated left to right, as $(A@B)@C$. Note that for these particular

matrices, this is the (much) slower order to multiply the matrices.

10.2. Composition of linear functions

Second difference matrix. We compute the second difference matrix on page 184 of

VMLS.

In []: D = lambda n: np.c_[-np.identity(n-1), np.zeros(n-1)] +

np.c_[np.zeros(n-1), np.identity(n-1)]↪→

D(5)

Out[]: array([[-1., 1., 0., 0., 0.],

[0., -1., 1., 0., 0.],

[0., 0., -1., 1., 0.],

83

10. Matrix multiplication

[0., 0., 0., -1., 1.]])

In []: D(4)

Out[]: array([[-1., 1., 0., 0.],

[0., -1., 1., 0.],

[0., 0., -1., 1.]])

In []: Delta = D(4) @ D(5) #Second difference matrix

print(Delta)

[[1. -2. 1. 0. 0.]

[0. 1. -2. 1. 0.]

[0. 0. 1. -2. 1.]]

10.3. Matrix power

The kth power of a square matrix A is denoted Ak. In Python, this power is formed

using np.linalg.matrix_power(A,k). Let’s form the adjacency matrix of the directed

graph on VMLS page 186. Then let’s find out how many cycles of length 8 there are,

starting from each node. (A cycle is a path that starts and stops at the same node.)

In []: A = np.array([[0,1,0,0,1], [1,0,1,0,0], [0,0,1,1,1], [1,0,0,0,0],

[0,0,0,1,0]])↪→

np.linalg.matrix_power(A,2)

Out[]: array([[1, 0, 1, 1, 0],

[0, 1, 1, 1, 2],

[1, 0, 1, 2, 1],

[0, 1, 0, 0, 1],

[1, 0, 0, 0, 0]])

In []: np.linalg.matrix_power(A,8)

Out[]: array([[18, 11, 15, 20, 20],

[25, 14, 21, 28, 26],

[24, 14, 20, 27, 26],

[11, 6, 9, 12, 11],

[6, 4, 5, 7, 7]])

84

10.4. QR factorization

In []: num_of_cycles = np.diag(np.linalg.matrix_power(A,8))

print(num_of_cycles)

[18 14 20 12 7]

Population dynamics. Let’s write the code for figure 10.2 in VMLS, which plots the

contribution factor to the total US population in 2020 (ignoring immigration), for each

age in 2010. The Python plot is in figure 10.1. We can see that, not surprisingly, 20−25

years olds have the highest contributing factor, around 1.5. This means that on average,

each 20 − 25 year old in 2010 will be responsible for around 1.5 people in 2020. This

takes into account any children they may have before then, and (as a very small effect)

the few of them who will no longer be with us in 2020.

In []: import matplotlib.pyplot as plt

plt.ion()

D = population_data();

b = D['birth_rate'];

d = D['death_rate'];

Dynamics matrix for populaion dynamics

A = np.vstack([b, np.column_stack([np.diag(1-d[:-1]),

np.zeros((len(d)-1))])])↪→

Contribution factor to total poulation in 2020

from each age in 2010

cf = np.ones(100) @ np.linalg.matrix_power(A,10) # Contribution

factor↪→

plt.plot(cf)

plt.xlabel('Age')

plt.ylabel('Factor')

10.4. QR factorization

In Python, we can write a QR_factorization function to perform the QR factorization

of a matrix A using the gram_schmidt function on page 41.

Remarks. When we wrote the gram_schmidt function, we were checking whether the

rows of the numpy array (matrix A) are linearly independent. However, in QR factori-

sation, we should perform the Gram-Schmidt on the columns of matrix A. Therefore,

AT should be the input to the QR_factorization instead of A.

85

10. Matrix multiplication

0 20 40 60 80 100
Age

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Fa

ct
or

Figure 10.1.: Contribution factor per age in 2010 to the total population in 2020. The value of age i− 1 is the ith
component of the row vector 1TA10.

In []: def QR_factorization(A):

Q_transpose = np.array(gram_schmidt(A.T))

R = Q_transpose @ A

Q = Q_transpose.T

return Q, R

Q, R = QR_factorization(A)

Alternatively, we can use the numpy function np.linalg.qr(A).

In []: Q, R = np.linalg.qr(A)

Here we would like to highlight a minor difference in the following examples with the

VMLS definition. The R factor computed in the QR_factorization function may have

negative elements on the diagonal, as opposed to only positive elements if we follow the

definition used in VMLS and in np.linalg.qr(A). The two definitions are equivalent,

because Rii is negative, one can change the sign of the ith row of R and the ith column

of Q, to get an equivalent factorization with Rii > 0. However, this step is not needed in

practice, since negative elements on the diagonal do not pose any problem in applications

of the QR factorization.

86

10.4. QR factorization

In []: A = np.random.normal(size = (6,4))

Q, R = np.linalg.qr(A)

R

Out[]: array([[-2.96963114, 0.77296876, 1.99410713, 0.30491373],

[0. , 0.73315602, 1.0283551 , -0.13470329],

[0. , 0. , -3.03153124, 0.60705777],

[0. , 0. , 0. , -1.0449406]])

In []: q, r = QR_factorization(A)

r

Out[]: array([[2.96963114e+00, -7.72968759e-01, -1.99410713e+00,

-3.04913735e-01],↪→

[-7.77156117e-16, 7.33156025e-01, 1.02835510e+00,

-1.34703286e-01],↪→

[-8.32667268e-17, -1.66533454e-16, 3.03153124e+00,

-6.07057767e-01],↪→

[-2.22044605e-16, -1.11022302e-16, 8.88178420e-16,

1.04494060e+00]])↪→

In []: np.linalg.norm(Q @ R - A)

Out[]: 1.3188305818502897e-15

In []: Q.T @ Q

Out[]: array([[1.00000000e+00, 9.39209220e-17, 1.90941200e-16,

-4.69424568e-17],↪→

[9.39209220e-17, 1.00000000e+00, 2.25326899e-16,

2.04228665e-16],↪→

[1.90941200e-16, 2.25326899e-16, 1.00000000e+00,

-4.57762562e-16],↪→

[-4.69424568e-17, 2.04228665e-16, -4.57762562e-16,

1.00000000e+00]])↪→

87

10. Matrix multiplication

88

11. Matrix inverses

11.1. Left and right inverses

We’ll see later how to find a left or right inverse, when one exists.

In []: A = np.array([[-3,-4], [4,6], [1,1]])

B = np.array([[-11,-10,16], [7,8,-11]])/9 #left inverse of A

C = np.array([[0,-1,6], [0,1,-4]])/2 #Another left inverse of A

#Let's check

B @ A

Out[]: array([[1.0000000e+00, 0.0000000e+00],

[-4.4408921e-16, 1.0000000e+00]])

In []: C @ A

Out[]: array([[1., 0.],

[0., 1.]])

11.2. Inverse

If A is invertible, its inverse is given by np.linalg.inv(A). You’ll get an error if A is

not invertible, or not square.

In []: A = np.array([[1,-2,3], [0,2,2], [-4,-4, -4]])

B = np.linalg.inv(A)

B

Out[]: array([[-2.77555756e-17, -5.00000000e-01, -2.50000000e-01],

[-2.00000000e-01, 2.00000000e-01, -5.00000000e-02],

[2.00000000e-01, 3.00000000e-01, 5.00000000e-02]])

In []: B @ A

89

11. Matrix inverses

Out[]: array([[1.00000000e+00, -2.22044605e-16, -2.22044605e-16],

[0.00000000e+00, 1.00000000e+00, 8.32667268e-17],

[0.00000000e+00, 5.55111512e-17, 1.00000000e+00]])

In []: A @ B

Out[]: array([[1.00000000e+00, 0.00000000e+00, -1.38777878e-17],

[5.55111512e-17, 1.00000000e+00, 1.38777878e-17],

[0.00000000e+00, 0.00000000e+00, 1.00000000e+00]])

Dual basis. The next example illustrates the dual basis provided by the rows of the

inverse of B = A−1. We calculate the expansion

x = (bT1 x)a1 + · · ·+ (bTnx)an

for a 3× 3 example (see page 205 of VMLS).

In []: A = np.array([[1,0,1], [4,-3,-4], [1,-1,-2]])

B = np.linalg.inv(A)

x = np.array([0.2,-0.3,1.2])

RHS = (B[0,:]@x) * A[:,0] + (B[1,:]@x) * A[:,1] + (B[2,:]@x) *

A[:,2]↪→

print(RHS)

[0.2 -0.3 1.2]

Inverse via QR factorization. The inverse of a matrix A can be computed from its QR

factorization A = QR via the formula A−1 = R−1QT .

In []: A = np.random.normal(size = (3,3))

np.linalg.inv(A)

Out[]: array([[0.83904201, -1.17279605, 1.02812262],

[1.28411762, -0.30441464, 0.9310179],

[0.06402464, -0.0154395 , 1.51759022]])

In []: Q,R = QR_factorization(A)

np.linalg.inv(R) @ Q.T

Out[]: array([[0.83904201, -1.17279605, 1.02812262],

[1.28411762, -0.30441464, 0.9310179],

90

11.3. Solving linear equations

[0.06402464, -0.0154395 , 1.51759022]])

11.3. Solving linear equations

Back substitution. Let’s first implement back substitution (VMLS Algorithm 11.1) in

Python, and check it.

In []: def back_subst(R,b_tilde):

n = R.shape[0]

x = np.zeros(n)

for i in reversed(range(n)):

x[i] = b_tilde[i]

for j in range(i+1,n):

x[i] = x[i] - R[i,j]*x[j]

x[i] = x[i]/R[i,i]

return x

R = np.triu(np.random.random((4,4)))

b = np.random.random(4)

x = back_subst(R,b)

np.linalg.norm(R @ x - b)

Out[]: 1.1102230246251565e-16

The function np.triu() gives the upper triangular part of a matrix, i.e., it zeros out

the entries below the diagonal.

Solving system of linear equations. Using the gram_schmidt, QR_factorization and

back_subst functions that we have defined in the previous section, we can define our own

function to solve a system of linear equations. This function implements the algorithm

12.1 in VMLS.

In []: def solve_via_backsub(A,b):

Q,R = QR_factorization(A)

b_tilde = Q.T @ b

x = back_subst(R,b_tilde)

return x

This requires you to include the other functions in your code as well.

91

11. Matrix inverses

Alternatively, we can use the numpy function np.linalg.solve(A,b) to solve a set of

linear equations

Ax = b.

This is faster than x = np.linalg.inv(A)@ b, which first computes the inverse of A

and then multiplies it with b. However, this function computes the exact solution of a

well-determined system.

In []: import time

n = 5000

A = np.random.normal(size = (n,n))

b = np.random.normal(size = n)

start = time.time()

x1 = np.linalg.solve(A,b)

end = time.time()

print(np.linalg.norm(b - A @ x1))

print(end - start)

4.033331000615254e-09

1.2627429962158203

In []: start = time.time()

x2 = np.linalg.inv(A) @ b

end = time.time()

print(np.linalg.norm(b - A @ x2))

print(end - start)

8.855382050136278e-10

4.3922741413116455

11.4. Pseudo-inverse

In Python the pseudo-inverse of a matrix A is obtained with np.linalg.pinv(). We

compute the pseudo-inverse for the example of page 216 of VMLS using the np.linalg

.pinv() function and via the formula A† = R−1QT , where A = QR is the QR factor-

ization of A.

In []: A = np.array([[-3,-4],[4,6],[1,1]])

np.linalg.pinv(A)

Q, R = np.linalg.qr(A)

R

92

11.4. Pseudo-inverse

Out[]: array([[5.09901951, 7.256297],

[0. , -0.58834841]])

In []: np.linalg.solve(R,Q.T)

Out[]: array([[-1.22222222, -1.11111111, 1.77777778],

[0.77777778, 0.88888889, -1.22222222]])

93

11. Matrix inverses

94

Part III.

Least squares

95

12. Least squares

12.1. Least squares problem

We take the small least squares problem of Figure 12.1 in VMLS and check that ‖Ax̂−b‖
is less than ‖Ax− b‖ for some other value of x.

In []: A = np.array([[2,0],[-1,1],[0,2]])

b = np.array([1,0,-1])

x_hat = np.array([1/3, -1/3])

r_hat = A @ x_hat - b

np.linalg.norm(r_hat)

Out[]: 0.816496580927726

In []: x = np.array([1/2, -1/2]) #other value of x

r = A @ x - b

np.linalg.norm(r)

Out[]: 1.0

12.2. Solution

Least squares solution formula. Let’s check the solution formulas (12.5) and (12.6) in

VMLS,

x̂ = (ATA)−1AT b = A†b

for the small example of Figure 12.1 (where x̂ = (1/3,−1/3)).

In []: np.linalg.inv(A.T @ A) @ A.T @ b

Out[]: array([0.33333333, -0.33333333])

In []: np.linalg.pinv(A) @ b

Out[]: array([0.33333333, -0.33333333])

96

12.3. Solving least squares problems

In []: (A.T @ A) @ x_hat - A.T @ b #Check that normal equations hold

Out[]: array([-2.22044605e-16, 2.22044605e-16])

Orthogonality principle. Let’s check the orthogonality principle for the same example.

In []: z = np.array([-1.1,2.3])

(A @ z).T @ r_hat

Out[]: 2.220446049250313e-16

In []: z = np.array([5.3, -1.2])

(A @ z).T @ r_hat

Out[]: -6.661338147750939e-16

12.3. Solving least squares problems

We can find the least square approximate solution using the solve_via_backsub we

defined in section 11.3.

In []: A = np.random.normal(size = (100,20))

b = np.random.normal(size = 100)

x1 = solve_via_backsub(A,b)

x2 = np.linalg.inv(A.T @ A) @ (A.T @ b)

x3 = np.linalg.pinv(A) @ b

print(np.linalg.norm(x1-x2))

print(np.linalg.norm(x2-x3))

print(np.linalg.norm(x3-x1))

3.025314970522842e-16

7.545708143930438e-16

7.908978925534183e-16

Complexity. The complexity of solving the least squares problem with m×n matrix A

is around 2mn2 flops. Let’s check this in Python by solving a few least squares problems

of different dimensions.

In []: m = 2000

n = 500

A = np.random.normal(size = (m,n))

97

12. Least squares

b = np.random.normal(size = m)

start = time.time()

x = solve_via_backsub(A,b)

end = time.time()

print(end - start)

2.00296688079834

In []: m = 4000

n = 500

A = np.random.normal(size = (m,n))

b = np.random.normal(size = m)

start = time.time()

x = solve_via_backsub(A,b)

end = time.time()

print(end - start)

3.680551290512085

In []: m = 2000

n = 1000

A = np.random.normal(size = (m,n))

b = np.random.normal(size = m)

start = time.time()

x = solve_via_backsub(A,b)

end = time.time()

print(end - start)

7.565088987350464

We can see that doubling m approximately doubles the computation time, and doubling

n increases it by around a factor of four. The times above can be used to guess the

speed of the computer on which it was carried out. For example, using the last problem

solved, the number of flops is around 2mn2 = 4 × 109, and it look around 0.4 seconds.

This suggests a speed of around 10 Gflop per second.

12.4. Examples

Advertising purchases. We work out the solution of the optimal advertising purchase

problem on page 234 of VMLS.

98

12.4. Examples

In []: n = 3

m = 10

R = np.array([[0.97,1.86,0.41], [1.23,2.18,0.53],

[0.80,1.24,0.62], [1.29,0.98,0.51], [1.10,1.23,0.69],

[0.67,0.34,0.54], [0.87,0.26,0.62], [1.10,0.16,0.48],

[1.92,0.22,0.71], [1.29,0.12,0.62]])

↪→

↪→

↪→

v_des = 1e+3*np.ones(10)

s = solve_via_backsub(R,v_des)

print(s)

array([62.07662454, 99.98500403, 1442.83746254])

In []: np.sqrt(sum((R @ s - v_des)**2)/len(v_des))

Out[]: 132.63819026326527

Illumination. The following code constructions and solves the illumination problem on

page 234, and plots two histograms with the pixel intensity distributions (Figure (12.1)).

In []: import numpy as np

number of lamps

n = 10

x, y positions of lamps and height above floor

lamps = np.array([[4.1 ,20.4, 4],[14.1, 21.3, 3.5],[22.6, 17.1,

6], [5.5 ,12.3, 4.0], [12.2, 9.7, 4.0], [15.3, 13.8, 6],

[21.3, 10.5, 5.5], [3.9 ,3.3, 5.0], [13.1, 4.3, 5.0], [20.3,

4.2, 4.5]])

↪→

↪→

↪→

N = 25 # grid size

m = N*N # number of pixels

construct m x 2 matrix with coordinates of pixel centers

pixels = np.hstack([np.outer(np.arange(0.5,N,1),

np.ones(N)).reshape(m,1), np.outer(np.ones(N),

np.arange(0.5,N,1)).reshape(m,1)])

↪→

↪→

The m x n matrix A maps lamp powers to pixel intensities.

A[i,j] is inversely proportional to the squared distance of

lamp j to pixel i.

A = np.zeros((m,n))

for i in range(m):

for j in range(n):

99

12. Least squares

A[i,j] = 1.0 / (np.linalg.norm(np.hstack([pixels[i,:], 0])

- lamps[j,:])**2)↪→

A = (m/np.sum(A)) * A # scale elements of A

Least squares solution

x = solve_via_backsub(A, np.ones(m))

rms_ls = (sum((A @ x - 1)**2)/m)**0.5

print(rms_ls)

0.14039048134276055

In []: import matplotlib.pyplot as plt

plt.ion()

plt.hist(A @ x, bins = 25)

plt.show()

In []: # Intensity if all lamp powers are one

rms_uniform = (sum((A @ np.ones(n) - 1)**2)/m)**0.5

print(rms_uniform)

0.24174131853807873

In []: plt.hist(A @ np.ones(n), bins = 25)

plt.show()

100

12.4. Examples

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
0

10

20

30

40

50

60

70

80

0.4 0.6 0.8 1.0 1.2 1.4 1.6
0

10

20

30

40

Figure 12.1.: Histogram of pixel illumination values using p = 1(top) and p̂ (bottom). The target intensity value
is one.

101

12. Least squares

102

13. Least squares data fitting

13.1. Least squares data fitting

Straight-line fit. A straight-line fit to time series data gives an estimate of a trend line.

In Figure 13.3 of VMLS we apply this to a time series of petroleum consumption. The

figure is reproduced here as Figure 13.1.

In []: import matplotlib.pyplot as plt

plt.ion()

consumption = petroleum_consumption_data()

n = len(consumption)

A = np.column_stack((np.ones(n),np.arange(n)))

x = solve_via_backsub(A,consumption)

plt.scatter(np.arange(1980,2014), consumption)

plt.plot(np.arange(1980,2014), A @ x, 'r')

plt.show()

Estimation of trend and seasonal component. The next example is the least squares

fit of a trend plus a periodic component to a time series. In VMLS this was illustrated

with a time series of vehicle miles traveled in the US, per month, for 15 years (2000-

2014). The following Python code replicates Figure 13.2 in VMLS. It imports the data

via the function vehicle_miles_data, which creates a 15 × 12 matrix vmt, with the

monthly values of each of the 15 years.

In []: import matplotlib.pyplot as plt

plt.ion()

vmt = vehicle_miles_data()

m = 15*12

A = np.column_stack((np.arange(m), np.vstack([np.identity(12) for

i in range(15)])))↪→

b = np.reshape(vmt.T, m, 1)

x = solve_via_backsub(A,b)

plt.scatter(np.arange(m), b)

103

13. Least squares data fitting

1980 1985 1990 1995 2000 2005 2010
55000

60000

65000

70000

75000

80000

85000

90000

Figure 13.1.: World petroleum consumption between 1980 and 2013 (dots) and least squares straight-line fit (data
from www.eia.gov).

plt.plot(np.arange(m), A @ x, 'r')

plt.show()

The matrix A in this example has size m×n where m = 15×12 = 180 and n = 13. The

first column has entries 0, 1, 2, . . . , 179. The remaining columns are formed by vertical

stacking of 15 identity matrices of size 12 × 12. The Python expression np.vstack([

np.identity(12)for i in range(15)]) creates an array of 15 identity matrices, and

then stacks them vertically. The plot produced by the code is shown in Figure 13.2.

Polynomial fit. We now discuss the polynomial fitting problem on page 255 in VMLS

and the results shown in Figure 13.4. We first generate a training set of 100 points and

plot them (Figure 13.3).

In []: import matplotlib.pyplot as plt

plt.ion()

#Generate training data in the interval [-1,1]

m = 100

t = -1 + 2*np.random.random(m)

y = np.power(t,3) - t + 0.4 / (1 + 25*np.power(t,2)) +

0.10*np.random.normal(size = m)↪→

104

13.1. Least squares data fitting

0 25 50 75 100 125 150 175

200000

210000

220000

230000

240000

250000

260000

270000

Figure 13.2.: The dots show vehicle miles traveled in the US, per month, in the period January 2000 - December
2014. The line shows the least squares fit of a linear trend and a seasonal component with a 12-month
period.

plt.scatter(t,y)

plt.show()

Next we define a function that fits the polynomial coefficients using least squares. We

apply the function to fit polynomials of degree 2, 6, 10, 15 to our training set.

In []: polyfit = lambda t,y,p: solve_via_backsub(vandermonde(t,p),y)

theta2 = polyfit(t,y,3)

theta6 = polyfit(t,y,7)

theta10 = polyfit(t,y,11)

theta15 = polyfit(t,y,16)

Finally, we plot the four polynomials. To simplify this, we first write a function that

evaluates a polynomial at all points specified in a vector x. The plots are in Figure 13.4.

In []: polyeval = lambda theta,x: vandermonde(x, len(theta)) @ theta

t_plot = np.linspace(-1,1,num = 100)

fig = plt.figure()

plt.ylim(-0.7, 0.7)

plt.subplot(2, 2, 1)

105

13. Least squares data fitting

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

0.4

0.2

0.0

0.2

0.4

0.6

Figure 13.3.: Training set used in the polynomial fitting example.

plt.scatter(t,y)

plt.plot(t_plot, polyeval(theta2, t_plot),'r')

plt.subplot(2, 2, 2)

plt.scatter(t,y)

plt.plot(t_plot, polyeval(theta6, t_plot),'r')

plt.subplot(2, 2, 3)

plt.scatter(t,y)

plt.plot(t_plot, polyeval(theta10, t_plot),'r')

plt.subplot(2, 2, 4)

plt.scatter(t,y)

plt.plot(t_plot, polyeval(theta15, t_plot),'r')

plt.show()

Piecewise-linear fit. In the following code least squares is used to fit a piecewise-linear

function to 100 points. It produces Figure 13.5, which is similar to Figure 13.8 in VMLS.

In []: import matplotlib.pyplot as plt

plt.ion()

106

13.1. Least squares data fitting

1.0 0.5 0.0 0.5 1.0
0.5

0.0

0.5

1.0 0.5 0.0 0.5 1.0
0.5

0.0

0.5

1.0 0.5 0.0 0.5 1.0
0.5

0.0

0.5

1.0 0.5 0.0 0.5 1.0

1

0

Figure 13.4.: Least squares polynomial fits of degree 1,6,10 and 15 to 100 points.

#Generate random data

m = 100

x = -2 + 4*np.random.random(m)

y = 1 + 2*(x-1) - 3*np.maximum(x+1,0) + 4*np.maximum(x-1, 0) +

0.3*np.random.normal(size = m)↪→

#least square fitting

theta = solve_via_backsub(np.column_stack((np.ones(m), x,

np.maximum(x + 1, 0), np.maximum(x-1, 0))), y)↪→

#plot result

t = np.array([-2.1, -1, 1, 2.1])

yhat = theta[0] + theta[1]*t + theta[2]*np.maximum(t+1,0) +

theta[3]*np.maximum(t-1,0)↪→

plt.scatter(x,y)

plt.plot(t, yhat, 'r')

plt.show()

House price regression. We calculate the simple regression model for predicting house

sales price from area and number of bedrooms, using data of 774 house sales in Sacra-

mento.

107

13. Least squares data fitting

2 1 0 1 2
5.5

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

Figure 13.5.: Piecewise-linear fit to 100 points.

In []: D = house_sales_data()

area = D["area"]

beds = D["beds"]

price = D["price"]

m = len(price)

A = np.column_stack((np.ones(m), area, beds))

x = solve_via_backsub(A, price)

rms_error = (sum((price - A @ x)**2)/len(price))**0.5

std_price = np.std(price)

print(rms_error)

print(std_price)

74.84571649590141

112.78216159756509

Auto-regressive time series model. In the following Python code, we fit an auto-

regressive model to the temperature time series discussed on page 259 of VMLS. In

Figure 13.6 we compare the first five days of the model predictions with the data.

In []: #import time series of temperatures t

t = temperature_data()

108

13.2. Validation

N = len(t)

#Standard deviation

np.std(t)

Out[]: 3.0505592856293298

In []: #RMS error for simple predictor zhat_{t+1} = z_t

(sum((t[1:] - t[:-1])**2)/(N-1))**0.5

Out[]: 1.1602431638206123

In []: #RMS error for simple predictor zhat_{t+1} = z_{t-23}

(sum((t[24:] - t[:-24])**2)/(N-24))**0.5

Out[]: 1.733894140046875

In []: #Least squares fit of AR predictor with memory 8

M = 8

y = t[M:]

A = np.column_stack([t[i:i+N-M] for i in reversed(range(M))])

theta = solve_via_backsub(A,y)

ypred = A @ theta

#RMS error of LS AR fit

(sum((ypred-y)**2)/len(y))**0.5

Out[]: 1.0129632612687502

In []: #Plot first five days

import matplotlib.pyplot as plt

plt.ion()

Nplot = 24*5

plt.scatter(np.arange(Nplot), t[0:Nplot])

plt.plot(np.arange(M,Nplot), ypred[:Nplot-M], 'r')

plt.show()

13.2. Validation

Polynomial approximation. We return to the polynomial fitting example of page 106.

We continue with the data vectors t and y in the code on page 106 as the training set,

and generate a test set of 100 randomly chosen points generated by the same method

109

13. Least squares data fitting

0 20 40 60 80 100 120

56

58

60

62

64

66

68

70

Figure 13.6.: Hourly temperature at Los Angeles International Airport between 12:53AM on May 1, 2016, and
11:53PM on May 5, 2016, shown as circles. The solid line is the prediction of an auto-regressive
model with eight coefficients.

as used for the training set. We then fit polynomials of degree 0, . . . , 20 (i.e., with

p = 1, . . . , 21 coefficients) and compute the RMS error on the training set and the test

set. This produces a figure similar to Figure 13.11 in VMLS, shown here as Figure 13.7.

In []: m = 100

Generate the test set.

t = -1 + 2*np.random.random(m)

y = np.power(t,3) - t + 0.4 / (1 + 25*np.power(t,2)) +

0.10*np.random.normal(size = m)↪→

t_test = -1 + 2*np.random.random(m)

y_test = np.power(t_test,3) - t_test + 0.4/(1 +

np.power(25*t_test,2)) + 0.10*np.random.normal(size = m)↪→

error_train = np.zeros(21)

error_test = np.zeros(21)

for p in range(1,22):

A = vandermonde(t,p)

theta = solve_via_backsub(A,y)

error_train[p-1] = np.linalg.norm(A @ theta -

y)/np.linalg.norm(y)↪→

110

13.2. Validation

error_test[p-1] = np.linalg.norm(vandermonde(t_test,p) @ theta

- y_test)/np.linalg.norm(y_test)↪→

import matplotlib.pyplot as plt

plt.ion()

plt.plot(np.arange(21), error_train, 'b-o', label = 'Train')

plt.plot(np.arange(21), error_test, 'r-x', label = 'Test')

plt.xlabel('Degree')

plt.ylabel('Relative RMS error')

plt.show()

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Degree

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
la

tiv
e

RM
S

er
ro

r

Figure 13.7.: RMS error versus polynomial degree for the fitting examples in figure 13.4.

House price regression model. On page 108 we used a data set of 774 house sales data

to fit a simple regression model

ŷ = ν + β1x1 + β2x2,

where ŷ is the predicted sales price, x1 is the area, and x2 is the number of bedrooms.

Here we apply cross-validation to assess the generalisation ability of the simple model.

We use five folds, four of size 155 (Nfold in the code below) and one of size 154. To choose

the five folds, we create a random permutation of the indices 1, . . . , 774. (We do this by

111

13. Least squares data fitting

calling the np.random.permutation function and the np.array_split function.) We

choose the data points indexes by the first 155 elements in the permuted list as fold 1,

the next 155 as fold 2, et cetera. The output of the following code outputs is similar to

Table 13.1 in VMLS (with different numbers because of the random choice of folds).

In []: D = house_sales_data()

price = D['price']

area = D['area']

beds = D['beds']

N = len(price)

X = np.column_stack([np.ones(N), area, beds])

I = np.array_split(np.random.permutation(N),5)

nfold = np.floor(N/5)

coeff = np.zeros((5,3))

rms_train = np.zeros(5)

rms_test = np.zeros(5)

for k in range(5):

Itest = I[k]

Itrain = np.concatenate((np.delete(I,k)))

Ntrain = len(Itrain)

Ntest = len(Itest)

theta = solve_via_backsub(X[Itrain], price[Itrain])

coeff[k,:] = theta

rms_train[k] = (sum((X[Itrain] @ theta -

price[Itrain])**2)/N)**0.5↪→

rms_test[k] = (sum((X[Itest] @ theta -

price[Itest])**2)/N)**0.5↪→

3 coefficients for the five folds

coeff

Out[]: array([[50.24831806, 153.00231387, -19.53167009],

[52.07612052, 150.87670328, -19.25688475],

[48.97172712, 147.21796832, -16.87045855],

[59.47192274, 143.46388968, -17.6308993],

[61.47688681, 149.73876065, -21.35382905]])

In []: # RMS errors for five folds

print(np.column_stack((rms_train, rms_test)))

112

13.2. Validation

[[67.81867582 31.75300852]

[65.42979442 36.36228512]

[67.67144708 32.02715856]

[66.38289164 34.68626333]

[67.26065478 32.87790231]]

Alternatively, one may consider using the sklearn.model_selection.KFold function in

the scikit-learn package1. Please refer to the package documentation for the syntax

of the scikit-learn package.

Validating time series predictions. In the next example, we return the AR model of

hourly temperatures at LAX. We divide the time series in a training set of 24 days and

a test set of 7 days. We fit the AR model to the training set and calculate the RMS

prediction errors on the training and test sets. Figure 13.8 shows the model predictions

and the first five days of the test set.

In []: # import time series of temperatures t

t = temperature_data()

N = len(t)

use first 24 days as training set

Ntrain = 24*24

t_train = t[:Ntrain]

Ntest = N-Ntrain

t_test = t[Ntrain:]

Least squares fit of AR predictor with memory 8

M = 8

m = Ntrain - M

y = t_train[M:M+m]

A = np.column_stack([t[i:i+m] for i in reversed(range(M))])

coeff = solve_via_backsub(A,y)

rms_train = (sum((A @ coeff-y)**2)/len(y))**0.5

print(rms_train)

1.0253577259862339

In []: ytest = t_test[M:]

mtest = len(ytest)

1The scikit-learn package is a comprehensive machine learning package in Python. It offers a wide
range of simple and efficient tools for data mining and data analysis

113

13. Least squares data fitting

ypred = np.column_stack([t_test[i:i+mtest] for i in

reversed(range(M))]) @ coeff↪→

rms_test = (sum((ypred-ytest)**2)/len(ytest))**0.5

print(rms_test)

0.9755113632201694

In []: import matplotlib.pyplot as plt

plt.ion()

Nplot = 24*5

plt.scatter(np.arange(Nplot), t_test[np.arange(Nplot)])

plt.plot(np.arange(M,Nplot), ypred[np.arange(Nplot-M)],'r')

plt.show()

0 20 40 60 80 100 120

56

58

60

62

64

66

68

Figure 13.8.: Hourly temperature at Los Angeles International Airport between 12:53AM on May 26, 2016, and
11:53PM on May 29, 2016, shown as circles. The solid line is the prediction of an auto-regressive
model with eight coefficients, developed using training data from May 1 to May 24.

13.3. Feature engineering

Next, we compute the more complicated house price regression model of section 13.3.5

of VMLS. The data are imported via the function house_sales_data, which returns a

dictionary containing the following five vectors of length 774. Details of the data set can

114

13.3. Feature engineering

be found in Appendix B.

The code below computes the model and makes a scatter plot of actual and predicted

prices (Figure 13.9). Note that the last three columns of the matrix X contain Boolean

variables (true or false). We rely on the fact that Python treats this as integers 1 and

0.

In []: D = house_sales_data()

price = D['price']

area = D['area']

beds = D['beds']

condo = D['condo']

location = D['location']

N = len(price)

X = np.column_stack([np.ones(N), area, np.maximum(area-1.5,0),

beds, condo, location==2, location==3, location==4])↪→

theta = solve_via_backsub(X,price)

theta

Out[]: array([115.61682367, 175.41314064, -42.74776797, -17.87835524,

-19.04472565, -100.91050309, -108.79112222,

-24.76524735])↪→

In []: # RMS prediction error

(sum((X @ theta - price)**2)/N)**0.5

Out[]: 68.34428699036884

In []: import matplotlib.pyplot as plt

plt.ion()

plt.scatter(price, X @ theta)

plt.plot([0,800],[0,800],'r--')

plt.ylim(0,800)

plt.xlim(0,800)

plt.xlabel('Actual price')

plt.ylabel('Predicted price')

plt.show()

We finish by a cross-validation of this method. We following the same approach as for

the simple regression model on page 112, using five randomly chosen folds. The code

shows the eight coefficients, and the RMS training and test errors for each fold.

115

13. Least squares data fitting

0 100 200 300 400 500 600 700 800
Actual price

0

100

200

300

400

500

600

700

800

Pr
ed

ict
ed

 p
ric

e

Figure 13.9.: Scatter plot of actual and predicted prices for a model with eight parameters.

In []: I = np.array_split(np.random.permutation(N),5)

nfold = np.floor(N/5)

store 8 coefficients for the 5 models

models = np.zeros((5,8))

rms_train = np.zeros(5)

rms_test = np.zeros(5)

for k in range(5):

Itest = I[k]

Itrain = np.concatenate((np.delete(I,k)))

Ntrain = len(Itrain)

Ntest = len(Itest)

theta = solve_via_backsub(X[Itrain], price[Itrain])

models[k,:] = theta

rms_train[k] = (sum((X[Itrain] @ theta -

price[Itrain])**2)/N)**0.5↪→

rms_test[k] = (sum((X[Itest] @ theta -

price[Itest])**2)/N)**0.5↪→

display the 8 coefficients for each of the 5 folds

models

116

13.3. Feature engineering

Out[]: array([[102.3402802 , 181.97752835, -46.2691896 ,

-20.68491222,↪→

-16.84462998, -89.58550776, -95.62153542,

-13.20162517],↪→

[122.99137921, 165.21259743, -37.15617807,

-15.95828304,↪→

-23.12481482, -102.1544885 , -108.39142253,

-21.40599881],↪→

[137.61858093, 181.79833222, -47.39666676,

-20.06847113,↪→

-19.71503497, -122.08026771, -132.99656753,

-47.69513389],↪→

[109.96492671, 161.36369407, -35.27910343,

-9.40327285,↪→

-12.03343019, -101.12023823, -110.4278418 ,

-33.38553974],↪→

[105.39525443, 187.93825777, -48.73041524,

-24.05769035,↪→

-24.38599371, -88.87911655, -95.726103 ,

-6.69225326]])↪→

In []: # display training errors

print(rms_train)

display testing errors

print(rms_test)

[61.42022599 62.33572416 62.17139464 60.7368078 58.27960703]

[30.13525437 28.21601462 28.8141013 31.78478227 36.0136247]

117

13. Least squares data fitting

118

14. Least squares classification

14.1. Classification

Boolean values. Python has the Boolean values true and false. These are automat-

ically converted to the numbers 1 and 0 when they are used in numerical expression.

In VMLS we use the encoding (for classifiers) where True corresponds to +1 and False

corresponds to −1. We can get our encoding from a Python Boolean value b using

2*b-1.

In []: tf2pm1 = lambda b: 2*b-1

b = True

tf2pm1(b)

Out[]: 1

In []: b = np.array([True, False, True])

tf2pm1(b)

Out[]: array([1, -1, 1])

Confusion matrix. Let’s see how we would evaluate the prediction errors and confusion

matrix, given a set of data y and predictions yhat, both stores as arrays (vectors) of

Boolean values, of length N.

In []: # Count errors and correct predictions

Ntp = lambda y,yhat: sum((y == True)&(yhat == True))

Nfn = lambda y,yhat: sum((y == True)&(yhat == False))

Nfp = lambda y,yhat: sum((y == False)&(yhat == True))

Ntn = lambda y,yhat: sum((y == False)&(yhat == False))

error_rate = lambda y,yhat: (Nfn(y,yhat)+Nfp(y,yhat))/len(y)

confusion_matrix = lambda y,yhat: np.block([[Ntp(y,yhat),

Nfn(y,yhat)], [Nfp(y,yhat), Ntn(y,yhat)]])↪→

y = np.random.randint(2, size = 100)

119

14. Least squares classification

yhat = np.random.randint(2, size = 100)

confusion_matrix(y,yhat)

Out[]: array([[23, 25],

[31, 21]])

In []: error_rate(y,yhat)

Out[]: 0.56

When we sum the Boolean vectors, they are converted to integers. In the last section

of the code, we generate two random Boolean vectors, so we expect the error rate to be

around 50%. In the code above, we compute the error rate from the numbers of false

negatives and false positives.

Alternatively, one can compute the confusion matrix using the confusion_matrix func-

tion from the sklearn package. Note that the entries in the sklearn confusion matrix

are reversed relative to the definition in VMLS.

In []: from sklearn.metrics import confusion_matrix

confusion_matrix(y,yhat)

Out[]: array([[21, 31],

[25, 23]])

14.2. Least squares classifier

We can evaluate f(x̂) = sign(˜f(x)) using ftilde(x)>0, which returns a Boolean value.

In []: #Regression model

ftilde = lambda x: x @ beta + v

#Regression classifier

fhat = lambda x: ftilde(x) > 0

Iris flower classification. The Iris data set contains 150 examples of three types of

iris flowers. There are 50 examples of each class. For each example, four features are

provided. The following code reads in a dictionary containing three 50 × 4 matrices

setosa, versicolor, virginica with the examples for each class, and then computes

a Boolean classifier that distinguishes Iris Virginica from the other two classes. We also

use the confusion_matrix function and error_rate function defined above.

120

14.3. Multi-class classifiers

In []: D = iris_data()

Create 150 by 4 data matrix

iris = np.vstack([D['setosa'], D['versicolor'], D['virginica']])

y[k] is true (1) if virginica, false (-1) otherwise

y = np.concatenate([np.zeros(100), np.ones(50)])

A = np.column_stack([np.ones(150), iris])

theta = solve_via_backsub(A, 2*y-1)

theta

Out[]: array([-2.39056373, -0.09175217, 0.40553677, 0.00797582,

1.10355865])↪→

In []: yhat = A @ theta > 0

C = confusion_matrix(y,yhat)

C

Out[]: array([[46, 4],

[7, 93]])

In []: error_rate(y,yhat)

Out[]: 0.07333333333333333

In []: np.average(y != yhat)

Out[]: 0.07333333333333333

14.3. Multi-class classifiers

Multi-class error rate and confusion matrix. The overall error rate is easily evaluated

np.average(y!=yhat). We can form the K ×K confusion matrix from a set of N true

outcomes y and N predictions yhat (each with entries among {1, . . .K}) by counting

the number of times each pair of values occurs.

In []: error_rate = lambda y,yhat: np.average(y != yhat)

def confusion_matrix(y, yhat, K):

C = np.zeros((K,K))

for i in range(K):

for j in range(K):

C[i,j] = sum((y == i+1) & (yhat == j+1))

return C

121

14. Least squares classification

test for K = 4 on random vectors of length 100

K = 4

y = np.random.randint(1, K+1, size = 100)

yhat = np.random.randint(1, K+1, size = 100)

C = confusion_matrix(y,yhat,K)

print(C)

[[6., 4., 9., 11.],

[4., 3., 8., 4.],

[9., 8., 7., 5.],

[3., 9., 5., 5.]]

In []: error_rate(y,yhat), 1 - sum(np.diag(C))/np.sum(C)

Out[]: (0.79, 0.79)

Least squares multi-class classifier. A K-class classifier (with regression model) can

be expressed as

f̂(x) = argmax
k=1,...,K

f̃k(x),

where f̃k(x) = xT θk. The n-vector θ1, . . . , θK are the coefficients or parameters in the

model. We can express this in matrix-vector notation as

f̂(x) = argmax(xTΘ),

where Θ = [θ1 . . . θK] is the n×K matrix of model coefficients, and the argmax of a row

vector has the obvious meaning.

Let’s see how to express this in Python. In Python this numpy function np.argmax(u)

finds the index of the largest entry in the row or column vector u, i.e., argmaxkuk. To

extend this to matrices, we define a function row_argmax that returns a vector with, for

each row, the index of the largest entry in that row.

In []: row_argmax = lambda u: [np.argmax(u[i,:]) for i in range(len(u))]

A = np.random.normal(size = (4,5))

A

Out[]: array([[-0.46389523, 0.49276966, -2.91137672, -0.91803154,

-0.74178812],↪→

122

14.3. Multi-class classifiers

[-0.65697642, -0.64776259, -0.84059464, -2.74870103,

-0.31462641],↪→

[0.62005913, 0.70966526, 0.54062214, -0.50133417,

0.00602328],↪→

[0.5946104 , 0.88064277, -0.18461465, -1.44861368,

-0.15476018]])↪→

In []: row_argmax(A)

Out[]: [1, 4, 1, 1]

If a data set with N examples is stored as an n × N data matrix X, and Theta is an

n ×K matrix with the coefficient vectors θk, as its columns, then we can now define a

function

In []: fhat = lambda X, Theta: row_argmax(X @ Theta)

to find the N -vector of predictions.

Matrix least squares. Let’s use least squares to find the coefficient matrix Θ for a

multi-class classifier with n features and K classes, from a data set of N examples. We

will assume the data is given as an n × N matrix X and an N -vector ycl with entries

in {1, . . . ,K} that give the classes of the examples. The least squares objective can be

expressed as a matrix norm squared,

‖XTΘ− Y ‖2,

where Y is the N ×K vector with

Yij =

1 ycl
i = j

−1 ycl
i 6= j

In other words, the rows of Y describe the classes using one-hot encoding, converted

from 0/1 to −1/+ 1 values. The least squares solution is given by Θ̂ = (XT)†Y .

Let’s see how to express this in Python.

In []: def one_hot(ycl, K):

N = len(ycl)

Y = np.zeros((N,K))

for j in range(K):

123

14. Least squares classification

Y[np.where(ycl == j),j] = 1

return Y

K = 4

ycl = np.random.randint(K, size = 6)

Y = one_hot(ycl,K)

Y

Out[]: array([[1., 0., 0., 0.],

[0., 0., 1., 0.],

[0., 0., 1., 0.],

[0., 0., 0., 1.],

[0., 0., 1., 0.],

[0., 1., 0., 0.]])

In []: 2*Y - 1

Out[]: array([[1., -1., -1., -1.],

[-1., -1., 1., -1.],

[-1., -1., 1., -1.],

[-1., -1., -1., 1.],

[-1., -1., 1., -1.],

[-1., 1., -1., -1.]])

Using the function we have defined, the matrix least squares multi-class classifier can be

computed in a few lines.

In []: def ls_multiclass(X, ycl, K):

n, N = X.shape

Theta = solve_via_backsub(X.T, 2*one_hot(ycl,K) - 1)

yhat = 1 + row_argmax(X @ theta)

return Theta, yhat

Iris flower classification. We compute a 3-class classifier for the iris flower data set.

We split the data set of 150 examples in a training set of 120 (40 per class) and a test

set of 30 (10 per class). The code calls the functions we defined above.

In []: D = iris_data()

setosa = np.array(D['setosa'])

versicolor = np.array(D['versicolor'])

virginica = np.array(D['virginica'])

124

14.3. Multi-class classifiers

pick three random permutations of 1,...,50

I1 = np.random.permutation(50)

I2 = np.random.permutation(50)

I3 = np.random.permutation(50)

training set is 40 randomly picked examples per class

Xtrain = np.vstack([setosa[I1[:40],:], versicolor[I2[:40],:],

virginica[I3[:40],:]]).T↪→

add contant feature one

Xtrain = np.vstack([np.ones(120), Xtrain])

the true labels for train set are a sequence of 1s, 2s and 3s

since the examples in Xtrain are stacked in order

ytrain = np.hstack([np.ones(40), 2*np.ones(40), 3*np.ones(40)])

test set is remaining 10 examples for each class

Xtest = np.vstack([setosa[I1[40:],:], versicolor[I2[40:],:],

virginica[I3[40:],:]]).T↪→

Xtest = np.vstack([np.ones(30), Xtest])

ytest = np.hstack([np.ones(10), 2*np.ones(10), 3*np.ones(10)])

Theta, yhat = ls_multiclass(Xtrain, ytrain, 3)

Ctrain = confusion_matrix(ytrain, yhat, 3)

print(Ctrain)

[[39., 1., 0.],

[0., 28., 12.],

[0., 6., 34.]]

In []: error_train = error_rate(ytrain, yhat)

print(error_train)

0.15833333333333333

In []: yhat = row_argmax(Xtest.T @ Theta.T) + 1

Ctest = confusion_matrix(ytest, yhat, 3)

print(Ctest)

[[10., 0., 0.],

[0., 5., 5.],

[0., 2., 8.]]

In []: error_test = error_rate(ytest, yhat)

print(error_test)

0.23333333333333334

125

14. Least squares classification

126

15. Multi-objective least squares

15.1. Multi-objective least squares

Let’s write a function that solves the multi-objective least squares problems, with given

positive weights. The data are a list (or array) of coefficient matrices (of possibly different

heights) As, a matching list of (right-hand side) vectors bs, and the weights, given as an

array or list, lambdas.

In []: def mols_solve(As, bs, lambdas):

k = len(lambdas)

Atil = np.vstack([np.sqrt(lambdas[i])*As[i] for i in

range(k)])↪→

btil = np.hstack([np.sqrt(lambdas[i])*bs[i] for i in

range(k)])↪→

return solve_via_backsub(Atil,btil)

Simple example. We use the function mols_solve to work out a bi-criterion example

similar to Figures 15.1, 15.2 and 15.3 in VMLS. We minimized the weighted sum objective

J1 + λJ2 = ‖A1x− b1‖2 + λ‖A2x− b2‖2

for randomly chosen 10× 5 matrices A1, A2 and 10-vectors b1, b2.

In []: As = np.array([np.random.normal(size = (10,5)),

np.random.normal(size = (10,5))])

bs = np.vstack([np.random.normal(size = 10),

np.random.normal(size = 10)])

N = 200

lambdas = np.power(10, np.linspace(-4, 4, 200))

x = np.zeros((5,N))

J1 = np.zeros(N)

127

15. Multi-objective least squares

J2 = np.zeros(N)

for k in range(N):

x[:,k] = mols_solve(As, bs, [1, lambdas[k]])

J1[k] = np.linalg.norm(As[0]@x[:,k] - bs[0])**2

J2[k] = np.linalg.norm(As[1]@x[:,k] - bs[1])**2

import matplotlib.pyplot as plt

plt.ion()

plot solution versus lambda

plt.plot(lambdas, x.T)

plt.xscale('log')

plt.xlabel('lambda')

plt.xlim((1e-4, 1e+4))

plt.legend(['y1','y2','y3','y4','y5'], loc='upper right')

plt.show()

plot two objectives versus lambda

plt.plot(lambdas, J1)

plt.plot(lambdas, J2)

plt.xscale('log')

plt.xlabel('lambda')

plt.xlim((1e-4, 1e+4))

plt.legend(['J1', 'J2'])

plt.show()

plot tradeoff curve

plt.plot(J1,J2)

plt.xlabel('J1')

plt.ylabel('J2')

add (single objective) end points to trade-off curve

x1 = solve_via_backsub(As[0], bs[0])

x2 = solve_via_backsub(As[1], bs[1])

J1 = [np.linalg.norm(As[0]@x1 - bs[0])**2,

np.linalg.norm(As[0]@x2 - bs[0])**2]

J2 = [np.linalg.norm(As[1]@x1 - bs[1])**2,

np.linalg.norm(As[1]@x2 - bs[1])**2]

plt.scatter(J1, J2)

plt.show()

128

15.2. Control

The expression lambdas = np.power(10, np.linspace(-4,4,200)) generates 200 val-

ues of λ ∈ [10−4, 104], equally spaced on a logarithmic scale. Our code generates the

three plots in Figures 15.1, 15.2 and 15.3.

10 4 10 3 10 2 10 1 100 101 102 103 104

lambda

0.4

0.2

0.0

0.2

0.4

0.6
y1
y2
y3
y4
y5

Figure 15.1.: Weighted-sum least squares solution x̂(λ) as a function of λ for a bi-criterion least squares problem
with five variables.

15.2. Control

15.3. Estimation and inversion

Estimating a periodic time series. We consider the example of Figure 15.4 in VMLS.

We start by loading the data, as a vector with hourly ozone levels, for a period of 14 days.

Missing measurements have a value NaN (for Not a Number). The matplotlib.pyplot

package skips those values (Figure 15.4).

In []: ozone = ozone_data() # a vector of length 14*24 = 336

k = 14

N = k*24

import matplotlib.pyplot as plt

plt.ion()

plt.plot(np.arange(N), ozone, 'o-')

plt.yscale('log')

129

15. Multi-objective least squares

10 4 10 3 10 2 10 1 100 101 102 103 104

lambda

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0
J1
J2

Figure 15.2.: Objective function J1 = ‖A1x̂(λ)b1‖2 (blue line) and J2 = ‖A2x̂(λ)b2‖2 (red line) as functions of λ
for the bi-criterion problem in figure 15.1.

4.0 4.5 5.0 5.5 6.0 6.5 7.0
J1

3.75

4.00

4.25

4.50

4.75

5.00

5.25

5.50

J2

Figure 15.3.: Optimal trade-off curves for the bi-criterion least squares problem of figures 15.1 and 15.2.

130

15.3. Estimation and inversion

0 50 100 150 200 250 300 350

10 2

10 1

Figure 15.4.: Hourly ozone level at Azusa, California, during the first 14 days of July 2014 (California Environ-
mental Protection Agency, Air Resources Board, www.arb.ca.gov). Measurements start at 12AM
on July 1st, and end at 11PM on July 14. Note the large number of missing measurements. In
particular, all 4AM measurements are missing.

Next, we make a periodic fit for the values λ = 1 and λ = 100. The numpy function

np.isnan is used to find and discard the missing measurement. The results are shown

in Figures 15.5 and 15.6.

In []: A = np.vstack([np.eye(24) for i in range(k)])

#periodic difference matrix

D = -np.eye(24) + np.vstack((np.column_stack([np.zeros(23),

np.eye(23)]), np.hstack([1, np.zeros(23)])))↪→

ind = [k for k in range(len(ozone)) if ~np.isnan(ozone[k])]

As = [A[ind,:],D]

bs = [np.log(ozone[ind]), np.zeros(24)]

solution for lambda = 1

lambdas = np.array([1,1])

n = len(lambdas)

Atil = np.vstack([np.sqrt(lambdas[i])*As[i] for i in range(n)])

btil = np.hstack([np.sqrt(lambdas[i])*bs[i] for i in range(n)])

x = np.linalg.inv(Atil.T @ Atil) @ (Atil.T @ btil)

plt.scatter(np.arange(N), ozone)

131

15. Multi-objective least squares

plt.plot(np.arange(N), np.hstack([np.exp(x) for i in

range(k)]),'r')↪→

plt.yscale('Log', basey=10)

plt.ylim(10**(-2.8),10**(-0.8))

plt.show()

solution for lambda = 100

lambdas = np.array([1,100])

n = len(lambdas)

Atil = np.vstack([np.sqrt(lambdas[i])*As[i] for i in range(n)])

btil = np.hstack([np.sqrt(lambdas[i])*bs[i] for i in range(n)])

x = np.linalg.inv(Atil.T @ Atil) @ (Atil.T @ btil)

plt.scatter(np.arange(N), ozone)

plt.plot(np.arange(N), np.hstack([np.exp(x) for i in

range(k)]),'r')↪→

plt.yscale('Log', basey=10)

plt.ylim(10**(-2.8),10**(-0.8))

plt.show()

0 50 100 150 200 250 300 350

10 2

10 1

Figure 15.5.: Smooth periodic least squares fit to logarithmically transformed measurements, using λ = 1.

132

15.4. Regularized data fitting

0 50 100 150 200 250 300 350

10 2

10 1

Figure 15.6.: Smooth periodic least squares fit to logarithmically transformed measurements, using λ = 100.

15.4. Regularized data fitting

Example. Next we consider the small regularised data fitting example of page 329 of

VMLS. We fit a model

f̂(x) =
5∑

k=1

θkfk(x)

with basis function f1(x) = 1 and fk+1(x) = sin(ωkx + φk) for k = 1, . . . , 4 to N = 20

data points. We use the values of ωk, φk given in the text. We fit the model by solving

a sequence of regularised least squares problem with objective

N∑
i=1

(
y(i) −

5∑
k=1

θkfk(x
(i))

)2

+ λ
5∑

k=2

θ2
k,

The two plots are shown in Figures 15.7 and 15.8.

In []: #Import data as vectors xtrain, ytrain, xtest, ytest

D = regularized_fit_data()

xtrain = D['xtrain']

ytrain = D['ytrain']

xtest = D['xtest']

ytest = D['ytest']

133

15. Multi-objective least squares

N = len(ytrain)

Ntest = len(ytest)

p = 5

omega = np.array([13.69, 3.55, 23.25, 6.03])

phi = np.array([0.21, 0.02, -1.87, 1.72])

A = np.column_stack((np.ones(N), np.sin(np.outer(xtrain,omega) +

np.outer(np.ones(N),phi))))↪→

Atest = np.column_stack((np.ones(Ntest),

np.sin(np.outer(xtest,omega) + np.outer(np.ones(Ntest),phi))))↪→

npts = 100

lambdas = np.power(10, np.linspace(-6,6,npts))

err_train = np.zeros(npts)

err_test = np.zeros(npts)

thetas = np.zeros((p,npts))

As = [A, np.column_stack([np.zeros(p-1), np.eye(p-1)])]

bs = [ytrain, np.zeros(p-1)]

for k in range(npts):

lam = [1,lambdas[k]]

n = len(lam)

Atil = np.vstack([np.sqrt(lam[i])*As[i] for i in range(n)])

btil = np.hstack([np.sqrt(lam[i])*bs[i] for i in range(n)])

theta = np.linalg.inv(Atil.T @ Atil) @ (Atil.T @ btil)

err_train[k] = (sum((ytrain - A @ theta)**2)/len(ytrain))**0.5

err_test[k] = (sum((ytest - Atest @

theta)**2)/len(ytest))**0.5↪→

thetas[:,k] = theta

import matplotlib.pyplot as plt

plt.ion()

#plot RMS errors

plt.plot(lambdas, err_train.T)

plt.plot(lambdas, err_test.T)

plt.xscale('Log')

plt.xlabel('lambda')

plt.legend(['Train', 'Test'], loc='upper left')

plt.ylabel('RMS error')

plt.show()

#Plot coefficients

plt.plot(lambdas, thetas.T)

134

15.5. Complexity

plt.xscale('Log')

plt.xlabel('lambda')

plt.xlim((1e-6, 1e6))

plt.legend(['y1', 'y2', 'y3', 'y4', 'y5'], loc='upper right')

plt.show()

10 5 10 3 10 1 101 103 105

lambda

0.0

0.2

0.4

0.6

0.8

1.0

RM
S

er
ro

r

Train
Test

Figure 15.7.: RMS training and testing errors as a function of the regularization parameter λ.

15.5. Complexity

The kernel trick. Let’s check the kernel trick, described in section 15.5.2 in VMLS to

find x̂, the minimizer of

‖Ax− b‖2 + λ‖x− xdes‖2,

where A is an m×n matrix and λ > 0. We will compute x̂ in two ways. First, the näıve

way, and then, using the kernel trick. We use the fact that if[
AT√
λI

]
= QR,

then

(AAT + λI)−1 = (RTQTQR)−1 = R−1R−T .

135

15. Multi-objective least squares

10 6 10 4 10 2 100 102 104 106

lambda

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
y1
y2
y3
y4
y5

Figure 15.8.: The regularization path.

In []: m = 100

n = 5000

A = np.random.normal(size = (m,n))

b = np.random.normal(size = m)

xdes = np.random.normal(size = n)

lam = 2.0

Find x that minimizes ||Ax - b||^2 + lambda ||x||^2

import time

start = time.time()

xhat1 = solve_via_backsub(np.vstack((A, np.sqrt(lam)*np.eye(n))),

np.hstack((b.T, np.sqrt(lam)*xdes)))↪→

end = time.time()

print('xhat1 time:', end - start)

xhat1 time: 419.9836058616638

In []: # Now use kernel trick

start = time.time()

Q, R = QR_factorization(np.vstack((A.T, np.sqrt(lam)*np.eye(m))))

xhat2 = A.T @ (solve_via_backsub(R, solve_via_backsub(R.T,(b-A @

xdes)))) + xdes↪→

end = time.time()

136

15.5. Complexity

print('xhat2 time:', end - start)

xhat2 time: 0.22452521324157715

In []: # compare solutions

np.linalg.norm(xhat1 - xhat2)

Out[]: 5.361013146339246e-12

The näıve method requires the factorization of a 5100 × 5100 matrix. In the second

method we factor a matrix of size 5100 × 100 and hence the second method is about

2000 times faster!

137

15. Multi-objective least squares

138

16. Constrained least squares

16.1. Constrained least squares problem

In the examples in this section, we use the cls_solve function, described later in section

16.3, to find the constrained least squares solution.

Piecewise polynomial. We fit a function f̂ : R→ R to some given data, where f̂(x) =

p(x) for x ≤ a and f̂(x) = q(x) for x > a, subject to p(a) = q(a) and p′(a) = q′(a), i.e.

the two polynomials have matching value and slope at the knot point a. We have data

points x1, . . . , xM ≤ a and xM+1, . . . , xN > a and corresponding values y1, . . . , yN . In

the example we take a = 0, polynomials p and q of degree 3, and N = 2M = 140. The

code creates a figure similar to Figure 16.1 of VMLS. We use the vandermonde function

defined on page 58.

In []: M = 70

N = 2*M

xleft = np.random.random(M) - 1

xright = np.random.random(M)

x = np.hstack([xleft, xright])

y = np.power(x,3) - x + 0.4/(1+25*np.power(x,2)) +

0.05*np.random.normal(size = N)↪→

n = 4

A = np.vstack([np.hstack([vandermonde(xleft,n), np.zeros((M,n))]),

np.hstack([np.zeros((M,n)), vandermonde(xright,n)])])↪→

b = y

C = np.vstack((np.hstack([1,np.zeros(n-1), -1, np.zeros(n-1)]),

np.hstack([0, 1, np.zeros(n-2), 0, -1, np.zeros(n-2)])))↪→

d = np.zeros(2)

theta = cls_solve(A,b,C,d)

import matplotlib.pyplot as plt

plt.ion()

Evaluate and plot for 200 equidistant points on each side.

139

16. Constrained least squares

Npl = 200

xpl_left = np.linspace(-1, 0, Npl)

ypl_left = vandermonde(xpl_left, 4) @ theta[:n]

xpl_right = np.linspace(0, 1, Npl)

ypl_right = vandermonde(xpl_right, 4) @ theta[n:]

plt.scatter(x, y)

plt.plot(xpl_left, ypl_left, 'orange')

plt.plot(xpl_right, ypl_right, 'green')

plt.show()

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

0.4

0.2

0.0

0.2

0.4

0.6

Figure 16.1.: Least squares fit of two cubic polynomials to 140 points, with continuity constraints p(0) = q(0) and
p′(0) = q′(0).

Advertising budget. We continue the advertising example of page 98 and add a total

budget constraint 1T s = 1284.

In []: n = 3

m = 10

R = np.array([[0.97,1.86,0.41], [1.23,2.18,0.53],

[0.80,1.24,0.62], [1.29,0.98,0.51], [1.10,1.23,0.69],

[0.67,0.34,0.54], [0.87,0.26,0.62], [1.10,0.16,0.48],

[1.92,0.22,0.71], [1.29,0.12,0.62]])

↪→

↪→

↪→

cls_solve(R, 1e3*np.ones(m), np.ones((1,n)), np.array([1284]))

140

16.2. Solution

Out[]: array([315.16818459, 109.86643348, 858.96538193])

Minimum norm force sequence. We compute the smallest sequence of ten forces, each

applied for one second to a unit frictionless mass originally at rest, that moves the mass

position one with zero velocity (VMLS page 343).

In []: A = np.eye(10)

b = np.zeros(10)

C = np.vstack([np.ones((1,10)), np.arange(9.5,0.4,-1).T])

d = np.array([0,1])

cls_solve(A, b, C, d)

Out[]: array([0.05454545, 0.04242424, 0.03030303, 0.01818182,

0.00606061,↪→

-0.00606061, -0.01818182, -0.03030303, -0.04242424,

-0.05454545])↪→

16.2. Solution

Let’s implement the function cls_solve_kkt, which finds the constrained least squares

solution by forming the KKT system and solving it. We allow the b and d to be matrices,

so one function call can solve multiple problems with the same A and C.

In []: def cls_solve_kkt(A, b, C, d):

m, n = A.shape

p, n = C.shape

#Gram matrix

G = A.T @ A

#KKT matrix

KKT = np.vstack([np.hstack([2*G,C.T]), np.hstack([C,

np.zeros((p,p))])])↪→

xzhat = solve_via_backsub(KKT, np.hstack([2*A.T @ b,d]))

return xzhat[:n]

A = np.random.normal(size = (10,5))

b = np.random.normal(size = 10)

C = np.random.normal(size = (2,5))

d = np.random.normal(size = 2)

x = cls_solve_kkt(A, b, C, d)

141

16. Constrained least squares

Check that residual is small

print(C @ x - d)

[-1.36557432e-14 1.04916076e-14]

16.3. Solving constrained least squares problems

Solving constrained least squares via QR. Let’s implement VMLS algorithm 16.1 and

then check it against our method above, which forms and solves the KKT system.

In []: def cls_solve(A, b, C, d):

m, n = A.shape

p, n = C.shape

Q, R = QR_factorization(np.vstack([A,C]))

Q1 = Q[:m,:]

Q2 = Q[m:m+p+1,:]

Qtil, Rtil = QR_factorization(Q2.T)

w = solve_via_backsub(Rtil, (2*Qtil.T @ (Q1.T @ b) -

2*solve_via_backsub(Rtil.T, d)))↪→

xhat = solve_via_backsub(R, (Q1.T @ b - Q2.T @ w/2))

return xhat

compare with KKT method

m = 10

n = 5

p = 2

A = np.random.normal(size = (m,n))

b = np.random.normal(size = m)

C = np.random.normal(size = (p,n))

d = np.random.normal(size = p)

xKKT = cls_solve_kkt(A, b, C, d)

xQR = cls_solve(A, b, C, d)

compare solutions

print(np.linalg.norm(xKKT - xQR))

5.0005888865147664e-15

Sparse constrained least squares. Let’s form and solve the system of linear equations

in VMLS (16.11), and compare it to our basic method for constrained least squares.

142

16.3. Solving constrained least squares problems

This formulation will result in a sparse set of equations to solve if A and C are sparse.

(The code below jsut checks that the two methods agree; it does not use sparsity. Unlike

the earlier cls_solve, it assumes b and d are vectors.)

In []: def cls_solve_sparse(A, b, C, d):

m, n = A.shape

p, n = C.shape

bigA = np.vstack([np.hstack([np.zeros((n,n)),A.T,C.T]),

np.hstack([A, -np.eye(m)/2,np.zeros((m,p))]),

np.hstack([C, np.zeros((p,m)), np.zeros((p,p))])])

↪→

↪→

xyzhat = solve_via_backsub(bigA,np.hstack([np.zeros(n),b,d]))

xhat = xyzhat[:n]

return xhat

m = 100

n = 50

p = 10

A = np.random.normal(size = (m,n))

b = np.random.normal(size = m)

C = np.random.normal(size = (p,n))

d = np.random.normal(size = p)

x1 = cls_solve(A, b, C, d)

x2 = cls_solve_sparse(A, b, C, d)

compare solutions

print(np.linalg.norm(x1 - x2))

6.115026165379654e-14

Solving least norm problem. In Python, the solve_via_backsub function that we de-

fined previously and the numpy np.linalg.solve do not provide approximate solutions

for under-determined set of equations, thus should not be used to find the least norm

solution when the coefficient matrix is wide. Here we solve a least norm problem using

several methods, to check that they agree.

In []: p = 50

n = 500

C = np.random.normal(size=(p,n))

d = np.random.normal(size=p)

#solve via least norm analytical solution

x1 = C.T @ np.linalg.inv(C @ C.T) @ d

143

16. Constrained least squares

#solve using cls_solve which uses KKT

x2 = cls_solve(np.eye(n),np.zeros(n),C,d)

#Using pseudo inverse

x3 = np.linalg.pinv(C) @ d

print(np.linalg.norm(x1-x2))

print(np.linalg.norm(x2-x3))

1.8636583822949544e-14

1.866643783671431e-14

144

16.3. Solving constrained least squares problems

145

17. Constrained least squares applications

17.1. Portfolio optimization

Compounded portfolio value. The cumulative value of a portfolio from a return time

series vector r, starting from the traditional value of $10000, is given by the value times

series vector v, where

vt = 10000(1 + r1) · · · (1 + rt−1), t = 1, . . . , T.

In other words, we form the cumulative product of the vector with entries 1+rt. Numpy

has a function that does this, np.cumprod().

In []: #Portfolio value of with re-investment, return time series r

cum_value = lambda r: 10000*np.cumprod(1+r)

T = 250 # One year's worth of trading days

#Generate random returns sequence with

#10% annualized return, 5% annualized risk

mu = 0.10/250

sigma = 0.05/np.sqrt(250)

r = mu + sigma*np.random.normal(size = T)

v = cum_value(r)

compute final value (compounded) and average return

v[T-1], v[0]*(1+sum(r))

plot cumulative value over the year

import matplotlib.pyplot as plt

plt.ion()

plt.plot(np.arange(T), v)

plt.xlabel('t')

plt.ylabel('v_t')

plt.show()

The resulting figure for a particular choice of r is shown in Figure 17.1.

146

17.1. Portfolio optimization

0 50 100 150 200 250
t

10000

10200

10400

10600

10800

11000

11200

11400

11600

v_
t

Figure 17.1.: Total portfolio value over time.

Portfolio optimization. We define a function port_opt that evaluates the solution

(17.3) of the constrained least squares problem (17.2) in VMLS, and apply to the return

data in VMLS Section 17.1.3.

In []: def port_opt(R, rho):

T, n = R.shape

mu = np.sum(R, axis = 0).T/T

KKT = np.vstack([np.column_stack([2*R.T @ R, np.ones(n), mu]),

np.hstack([np.ones(n).T, 0 , 0]), np.hstack([mu.T, 0,

0])])

↪→

↪→

wz1z2 = solve_via_backsub(KKT, np.hstack([2*rho*T*mu, 1,

rho]))↪→

w = wz1z2[:n]

return w

R, Rtest = portfolio_data()

T, n = R.shape

rho = 0.1/250 #Ask for 10% annual return

w = port_opt(R, rho)

r = R @ w #Portfolio return time series

pf_return = 250*sum(r)/len(r)

pf_risk = np.sqrt(250)*np.std(r)

147

17. Constrained least squares applications

print(pf_return)

print(pf_risk)

0.10000000001219751

0.08650183079228145

This produces the curve labeled ‘10%’ in Figure 17.2. In the same figure we also include

the plots for 20% and 40% annual return, and for the 1/n portfolio w = (1/n)1.

In []: import matplotlib.pyplot as plt

plt.ion()

cum_value = lambda r: 10000*np.cumprod(1+r)

10% annual return

rho = 0.1/250 #Ask for 10% annual return

w = port_opt(R, rho)

r = R @ w #Portfolio return time series

plt.plot(np.arange(T), cum_value(r), 'blue')

20% annual return

rho = 0.2/250

w = port_opt(R, rho)

r = R @ w #Portfolio return time series

plt.plot(np.arange(T), cum_value(r), 'orange')

40% annual return

rho = 0.4/250

w = port_opt(R, rho)

r = R @ w #Portfolio return time series

plt.plot(np.arange(T), cum_value(r), 'green')

Uniform portolio

w = (1/n)*np.ones(n)

r = R @ w #Portfolio return time series

plt.plot(np.arange(T), cum_value(r), 'purple')

plt.legend(['10%','20%','40%','1/n'])

plt.show()

17.2. Linear quadratic control

We implement linear quadratic control as described in VMLS section 17.2, for a time-

invariant system with matrices A,B, and C.

148

17.2. Linear quadratic control

0 250 500 750 1000 1250 1500 1750 2000

20000

40000

60000

80000

100000

120000

140000 10%
20%
40%
1/n

Figure 17.2.: Total value over time for four portfolio: the Pareto optimal portfolio with 10%, 20%, and 40% return,
and the uniform portfolio. The total value is computed using the 2000× 20 daily return matrix R.

Kronecker product. To create the big matrices Ã and C̃, we need to define block

diagonal matrices with the same matrix repeated a number of times along the diagonal.

There are many ways to do this in Python. One of the simplest ways uses the np.kron

function, for the Kronecker product of two matrices. The Kronecker product of an m×n
matrix G and a p× q matrix H is defined as the mp× nq block matrix

G11H G12H . . . G1nG

G21H G22H . . . G2nG
...

...
...

Gm1H Gm2H . . . GmnG

It is computed in Python as np.kron(G,H). If G is an n× n identity matrix, we obtain

the block diagonal matrix with H repeated n times on the diagonal.

In []: H = np.random.normal(size = (2,2))

print(np.kron(np.eye(3),H))

[[-0.25527609 -0.09038866 -0. -0. -0. -0.

]↪→

[0.12547218 -0.72681408 0. -0. 0. -0.

]↪→

149

17. Constrained least squares applications

[-0. -0. -0.25527609 -0.09038866 -0. -0.

]↪→

[0. -0. 0.12547218 -0.72681408 0. -0.

]↪→

[-0. -0. -0. -0. -0.25527609

-0.09038866]↪→

[0. -0. 0. -0. 0.12547218

-0.72681408]]↪→

Alternatively, we can construct the matrix block by block.

In []: H = np.random.normal(size = (2,2))

G = np.eye(3)

p, q = H.shape

m, n = G.shape

matrix = np.zeros((m*p,n*q))

for k in range(n):

matrix[p*k:p*(k+1),q*k:q*(k+1)] = H

print(matrix)

[[-0.25527609 -0.09038866 -0. -0. -0. -0.

]↪→

[0.12547218 -0.72681408 0. -0. 0. -0.

]↪→

[-0. -0. -0.25527609 -0.09038866 -0. -0.

]↪→

[0. -0. 0.12547218 -0.72681408 0. -0.

]↪→

[-0. -0. -0. -0. -0.25527609

-0.09038866]↪→

[0. -0. 0. -0. 0.12547218

-0.72681408]]↪→

Linear quadratic control example. We start by writing a function lqr that constructs

and solves the constrained least squares problem for linear quadratic control. The func-

tion returns three arrays

x = [x[0], x[1], ..., x[T]],

u = [u[0], u[1], ..., u[T]],

y = [y[0], y[1], ..., y[T]].

150

17.2. Linear quadratic control

The first two contain the optimal solution of the problem. The third array contains

yt = Cxt.

We allow the input arguments x_init and x_des to be matrices, so we can solve the

same problem for different pairs of initial and end states, with one function call. If

the number of columns in x_init and x_des is q, then the entries of the three output

sequences x, u, y are matrices with q columns. The ith columns are the solution for

the initial and end states specified in the ith columns of x_init and x_des.

In []: def lqr(A, B, C, x_init, x_des, T, rho):

n = A.shape[0]

m = B.shape[1]

p = C.shape[0]

q = x_init.shape[1]

Atil = np.vstack([np.hstack([np.kron(np.eye(T), C),

np.zeros((p*T,m*(T-1)))]), np.hstack([np.zeros((m*(T-1),

n*T)), np.sqrt(rho)*np.eye(m*(T-1))])])

↪→

↪→

btil = np.zeros((p*T+m*(T-1), q))

We'll construct Ctilde bit by bit

Ctil11 =

np.hstack([np.kron(np.eye(T-1),A),np.zeros((n*(T-1),n))])

- np.hstack([np.zeros((n*(T-1),n)), np.eye(n*(T-1))])

↪→

↪→

Ctil12 = np.kron(np.eye(T-1),B)

Ctil21 = np.vstack([np.hstack([np.eye(n),

np.zeros((n,n*(T-1)))]), np.hstack([np.zeros((n,n*(T-1))),

np.eye(n)])])

↪→

↪→

Ctil22 = np.zeros((2*n, m*(T-1)))

Ctil = np.block([[Ctil11,Ctil12],[Ctil21,Ctil22]])

dtil = np.vstack([np.zeros((n*(T-1),q)), x_init, x_des])

z = cls_solve(Atil, btil.flatten(), Ctil, dtil.flatten())

x = [z[i*n:(i+1)*n] for i in range(T)]

u = [z[n*T+i*m: n*T+(i+1)*m] for i in range(T-1)]

y = [C @ xt for xt in x]

return x, u, y

Note that q = 1 in the above function as we are using cls_solve. We apply our lqr

function to the example in section 17.2.1 of VMLS.

151

17. Constrained least squares applications

In []: A = np.array([[0.855, 1.161, 0.667], [0.015, 1.073, 0.053],

[-0.084, 0.059, 1.022]])↪→

B = np.array([[-0.076], [-0.139] ,[0.342]])

C = np.array([[0.218, -3.597, -1.683]])

n = 3

p = 1

m = 1

x_init = np.array([[0.496], [-0.745], [1.394]])

x_des = np.zeros((n,1))

We first plot the open-loop response in figure 17.3 (also shown in VMLS figure 17.4).

In []: T = 100

yol = np.zeros((T,1))

Xol = np.hstack([x_init, np.zeros((n,T-1))])

for k in range(T-1):

Xol[:,k+1] = A @ Xol[:,k]

yol = C @ Xol

import matplotlib.pyplot as plt

plt.ion()

plt.plot(np.arange(T), yol.T)

plt.show()

0 20 40 60 80 100

0.0

0.1

0.2

0.3

0.4

Figure 17.3.: Open-loop response CAt−1xinit.

152

17.3. Linear quadratic state estimation

We then solve the linear quadratic control problem with T = 100 and ρ = 0.2. The

result is shown in figure 17.4 (also shown in second row of VMLS figure 17.6).

In []: rho = 0.2

T = 100

x, u, y = lqr(A, B, C, x_init, x_des, T, rho)

J_input = np.linalg.norm(u)**2

J_output = np.linalg.norm(y)**2

print(J_input)

print(J_output)

0.7738942551160012

3.782998646333574

In []: plt.plot(np.arange(T-1), u)

plt.xlabel('t')

plt.ylabel('u_t')

plt.show()

plt.plot(np.arange(T), y)

plt.xlabel('t')

plt.ylabel('y_t')

plt.show()

Linear state feedback control. (This section will be added in the next iteration.)

17.3. Linear quadratic state estimation

The code for the linear quadratic estimation method is very similar to the one for linear

quadratic control.

In []: def lqe(A, B, C, y, T, lam):

n = A.shape[0]

m = B.shape[1]

p = C.shape[0]

Atil = np.block([[np.kron(np.eye(T),C),

np.zeros((T*p,m*(T-1)))], [np.zeros((m*(T-1), T*n)),

np.sqrt(lam)*np.eye(m*(T-1))]])

↪→

↪→

#We assume y is a p by T array, so we vectorize it

153

17. Constrained least squares applications

0 20 40 60 80 100
t

0.2

0.1

0.0

0.1

0.2

0.3

u_
t

0 20 40 60 80 100
t

0.0

0.1

0.2

0.3

0.4

y_
t

Figure 17.4.: Optimal input and output for ρ = 0.2.

154

17.3. Linear quadratic state estimation

btil = np.block([np.hstack([i for i in

y.T]),np.zeros((m*(T-1)))])↪→

Ctil = np.block([np.block([np.kron(np.eye(T-1),A),

np.zeros((n*(T-1), n))]) + np.block([np.zeros((n*(T-1),

n)), -np.eye(n*(T-1))]),np.kron(np.eye(T-1), B)])

↪→

↪→

dtil = np.zeros(n*(T-1))

z = cls_solve(Atil, btil, Ctil, dtil)

x = [z[i*n:(i+1)*n] for i in range(T)]

u = [z[n*T+i*m : n*T+(i+1)*m] for i in range(T-1)]

y = [C @ xt for xt in x]

return x, u, y

We use the system matrices in section 17.3.1 of VMLS. The output measurement data

are read from the estimation_data() data set, which creates a 2× 100 matrix ymeas.

We compute the solution for λ = 103, shown in the lower-left plot of figure 17.8 of VMLS.

In []: y = lq_estimation_data()

A = np.block([[np.eye(2), np.eye(2)], [np.zeros((2,2)),

np.eye(2)]])↪→

B = np.block([[np.zeros((2,2))], [np.eye(2)]])

C = np.block([[np.eye(2), np.zeros((2,2))]])

n = A.shape[0]

m = B.shape[1]

p = C.shape[0]

T = 100

lam = 1e+3

x_hat, u_hat, y_hat = lqe(A,B,C,y,T,lam)

import matplotlib.pyplot as plt

plt.ion()

plt.scatter(y[0,:], y[1,:])

plt.plot(np.array([yt[0] for yt in y_hat]), np.array([yt[1] for yt

in y_hat]),'r')↪→

plt.show()

The result is shown in Figure 17.5.

155

17. Constrained least squares applications

0 50 100 150 200 250 300
1750

1500

1250

1000

750

500

250

0

Figure 17.5.: The circles show 100 noisy measurements in 2-D. The solid line is the estimated trajectory Cx̂t for
λ = 1000.

156

18. Nonlinear least squares

18.1. Nonlinear equations and least squares

18.2. Gauss-Newton algorithm

Basic Gauss-Newton algorithm. Let’s first implement the basic Gauss-Newton method

(algorithm 18.1 in VMLS) in Python. In Python, you can pass a function as an argument

to another function, so we can pass f (the function) and also Df (the derivative or

Jacobian matrix) to our Gauss-Newton algorithm.

In []: def gauss_newton(f, Df, x1, kmax=10):

x = x1

for k in range(kmax):

x = x - np.linalg.lstsq(Df(x),f(x))

return x

Here we simply run the algorithm for a fixed number of iterations kmax, specified by

an optimal keyword argument with default value 10. The code does not verify whether

the final x is actually a solution, and it will break down when Df(x(k)) has linearly

dependent columns. This very simple implementation is only for illustrative purposes;

the Levenberg-Marquardt algorithm described in the next section is better in every way.

Newton algorithm. The Gauss-Newton algorithm reduces to the Newton algorithm

when the function maps n-vectors to n-vectors, so the function above is also an imple-

mentation of the Newton method for solving nonlinear equations. The only difference

with the following function is the stopping condition. In Newton’s method, one termi-

nates when ‖f(x(k))‖ is sufficiently small.

In []: def newton(f, Df, x1, kmax=20, tol=1e-6):

x = x1

fnorms = np.zeros((1,1))

for k in range(kmax):

157

18. Nonlinear least squares

fk = f(x)

fnorms = np.vstack([fnorms, np.linalg.norm(fk)])

if np.linalg.norm(fk) < tol:

break

if len(np.array([fk])) < 2:

x = x - (fk/Df(x))

else:

x = x - solve_via_backsub(Df(x), fk)

return x, fnorms

We add a second optional argument with the tolerance in the stopping condition. The

default value is 10−6. We also added a second output argument fnorm, with the sequence

‖f(x(k))‖, so we can examine the convergence in the following example. Since the np.

linalg.pinv function only works when the input matrix has dimensions greater than

2× 2, we split the case between scalars and matrices.

Newton algorithm for n = 1. Our first example is a scalar nonlinear equation f(x) = 0

with

f(x) =
ex − e−x

ex + e−x

In []: Df = lambda x: 4/np.power((np.exp(x) + np.exp(-x)),2)

f = lambda x: (np.exp(x) - np.exp(-x))/(np.exp(x) + np.exp(-x))

We first try with x(1) = 0.95.

In []: x, fnorms = newton(f, Df, 0.95)

f(x)

Out[]: 4.3451974324200454e-07

In []: fnorms

Out[]: array([[0.00000000e+00],

[7.39783051e-01],

[5.94166364e-01],

[2.30111246e-01],

[8.67002865e-03],

[4.34519743e-07]])

In []: plt.plot(fnorms,'o-')

plt.xlabel('k')

158

18.2. Gauss-Newton algorithm

plt.ylabel('|f|')

plt.show()

0 1 2 3 4 5
k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

|f|

Figure 18.1.: The first iterations in the Newton algorithm for solving f(x) = 0 for starting point x(1) = 0.95.

The method converges very quickly, as shown in figure 18.1. However it does not converge

for a slightly larger starting point x(1) = 1.15.

In []: x, fnorms = newton(f, Df, 1.15)

f(x)

Out[]: nan

In []: fnorms

Out[]: array([[0.],

[0.81775408],

[0.86640565],

[0.97355685],

[1.],

[nan],

[nan],

[nan],

[nan],

[nan],

159

18. Nonlinear least squares

[nan],

[nan],

[nan],

[nan],

[nan],

[nan],

[nan],

[nan],

[nan],

[nan],

[nan]])

18.3. Levenberg-Marquardt algorithm

The Gauss-Newton algorithm can fail if the derivative matrix does not have independent

columns. It also does not guarantee that ‖f(x(k))‖ decreases in each iteration. Both

of these shortcomings are addressed in the Levenberg-Marquardt algorithm. Below is a

Python implementation of algorithm 18.3 in VMLS.

In []: def levenberg_marquardt(f, Df, x1, lambda1, kmax=100, tol=1e-6):

n = len(x1)

x = x1

lam = lambda1

obj = np.zeros((0,1))

res = np.zeros((0,1))

for k in range(kmax):

obj = np.vstack([obj, np.linalg.norm(f(x))**2])

res = np.vstack([res, np.linalg.norm(2*Df(x).T @ f(x))])

if np.linalg.norm(2*Df(x).T @ f(x)) < tol:

break

xt = x - np.linalg.inv((Df(x).T @ Df(x)) +

np.sqrt(lam)*np.eye(n)) @ (Df(x).T @ f(x))↪→

if np.linalg.norm(f(xt)) < np.linalg.norm(f(x)) :

lam = 0.8*lam

x = xt

else:

lam = 2.0*lam

return x, {'Objective':obj, 'Residual':res}

Here we use the second stopping criterion suggested on page 393 of VMLS, and checks

160

18.3. Levenberg-Marquardt algorithm

whether the optimality condition is approximately satisfied. The default tolerance 10−6

can vary with the scale of the problem and the desired accuracy. Keep in mind that the

optimality condition is a necessary condition and does not guarantee that the solution

minimizes the nonlinear least squares objective ‖f(x)‖2. The code limits the number of

iterations to kmax, after which it is assumed that the algorithm fails to converge.

The function returns a dictionary with information about the sequence of iterations,

including the value of ‖f(x(k))‖2 and ‖Df(x(k))T f(x(k))‖ at each iteration.

Nonlinear equation. We apply the algorithm to the scalar function

f(x) =
ex − e−x

ex + e−x

with starting point x(1) = 1.15.

In []: Df = lambda x: 4/np.power((np.exp(x) + np.exp(-x)),2)

f = lambda x: (np.exp(x) - np.exp(-x))/(np.exp(x) + np.exp(-x))

x, history = levenberg_marquardt(f, Df, np.array([1.15]), 1.0)

import matplotlib.pyplot as plt

plt.ion()

plt.plot(np.sqrt(history['Objective'][1:10]), 'o-')

plt.xlabel('k')

plt.ylabel('|f|')

plt.show()

Note that we defined x(1) as the array np.array([1.15]), and use dot-operations in

the definition of f and Df to ensure that these functions work with vector arguments.

This is important because Python distinguishes scalars and 1-vectors. If we call the

levenberg-marquardt function with a scalar argument x1, line 15 will raise an error,

because Python does not accept subtractions of scalars and 1-vectors.

Equilibrium prices. We solve a nonlinear equation f(p) = 0 with two variables, where

f(p) = exp(Es log p+ snom)− exp(Ed log p+ dnom).

161

18. Nonlinear least squares

0 1 2 3 4 5 6 7 8
k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
|f|

Figure 18.2.: Values of |f(x(k))| versus the iteration number k for the Levenberg-Marquardt algorithm applied to
f(x) = (exp(x)− exp(−x))/(exp(x) + exp(−x)). The starting point is x(1) = 1.15 and λ(1) = 1.

Here exp and log are interpreted as elementwise vector operations. The problem param-

eters are snom = (2.2, 0.3), dnom = (3.1, 2.2),

Es =

[
0.5 −0.3

−0.15 0.8

]
, Ed =

[
−0.5 0.2

0 −0.5

]

In []: snom = np.array([2.2, 0.3]).reshape(2,1)

dnom = np.array([3.1, 2.2]).reshape(2,1)

Es = np.array([[0.5, -0.3], [-0.15,0.8]])

Ed = np.array([[-0.5,0.2], [0,-0.5]])

f = lambda p: (np.exp(Es @ np.log(p) + snom) - np.exp(Ed @

np.log(p) + dnom))↪→

def Df(p):

S = np.exp(Es @ np.log(p) + snom)

D = np.exp(Ed @ np.log(p) + dnom)

162

18.3. Levenberg-Marquardt algorithm

result = np.block([[S.flatten()[0]*Es[0,0]/p[0],

S.flatten()[0]*Es[0,1]/p[1]],

[S.flatten()[1]*Es[1,0]/p[0],

S.flatten()[1]*Es[1,1]/p[1]]]) -

np.block([[D.flatten()[0]*Ed[0,0]/p[0],

D.flatten()[0]*Ed[0,1]/p[1]],

[D.flatten()[1]*Ed[1,0]/p[0],

D.flatten()[1]*Ed[1,1]/p[1]]])

↪→

↪→

↪→

↪→

↪→

↪→

↪→

return result

p, history = levenberg_marquardt(f, Df,

np.array([3,9]).reshape(2,1), 1)↪→

print(p)

[[5.64410859]

[5.26575503]]

In []: import matplotlib.pyplot as plt

plt.ion()

plt.plot(history['Objective'][:10], 'o-')

plt.xlabel('k')

plt.ylabel('Objective')

plt.savefig('costfunction_k.pdf', format = 'pdf')

plt.show()

Location from range measurements. The next example is the location from range

measurement on page 396 in VMLS. The positions of the m = 5 points ai are given as

rows in a 5 × 2 matrix A. The measurements are given in a 5-vector rhos. To simplify

the code for the function f(x) and Df(x) we add a function dist(x) that computes the

vector of distances (‖x− a1‖, . . . , ‖x− am‖). The expression for the derivative is

Df(x) =

x1 − (a1)1

‖x− a1‖
x2 − (a1)2

‖x− a1‖
...

...
x1 − (am)1

‖x− am‖
x2 − (am)2

‖x− am‖

 .

They can be evaluated as the product of a diagonal matrix with diagonal entries 1/‖x−
ai‖ and the 5× 2 matrix with i, j entry (x− ai)j .

163

18. Nonlinear least squares

0 2 4 6 8
k

0

20

40

60

80

100

120

140

160

Ob
je

ct
iv

e

Figure 18.3.: Cost function ‖f(p(k))‖2 versus iteration number k.

We run the Levenberg-Marquardt method for three starting points and λ(1) = 0.1. The

plot is shown in figure 18.4.

In []: # Five locations ai in a 5 by 2 matrix

A = np.array([[1.8, 2.5], [2.0, 1.7], [1.5, 1.5], [1.5, 2.0],

[2.5, 1.5]])↪→

Vector of measured distances to five locations.

rhos = np.array([1.87288, 1.23950, 0.53672, 1.29273, 1.49353])

dist(x) returns a 5-vector with the distances ||x-ai||.

dist = lambda x: np.sqrt(np.power((x[0] - A[:,0]), 2) +

np.power((x[1] - A[:,1]), 2))↪→

f(x) returns the five residuals.

f = lambda x: dist(x).reshape(5,1) - rhos.reshape(5,1)

Df(x) is the 5 by 2 derivative.

Df = lambda x: np.diag(1 / dist(x)) @ np.vstack([(x[0] -

A[:,0]),(x[1] - A[:,1])]).T↪→

Solve with starting point (1.8, 3.5) and lambda = 0.1

x1, history1 = levenberg_marquardt(f, Df, np.array([1.8,

3.5]).reshape(2,1), 0.1)↪→

print(x1)

164

18.4. Nonlinear model fitting

[[1.18248563]

[0.82422915]]

In []: # Starting point (3.0,1.5)

x2, history2 = levenberg_marquardt(f, Df,

np.array([3.0,1.5]).reshape(2,1), 0.1)↪→

print(x2)

[[1.18248561]

[0.82422909]]

In []: # Starting point (2.2,3.5)

x3, history3 = levenberg_marquardt(f, Df,

np.array([2.2,3.5]).reshape(2,1), 0.1)↪→

print(x3)

[[2.98526651]

[2.12157657]]

In []: import matplotlib.pyplot as plt

plt.ion()

plt.plot(history1['Objective'][:10],'bo-')

plt.plot(history2['Objective'][:10],'ro-')

plt.plot(history3['Objective'][:10],'go-')

plt.legend(['Starting point 1','Starting point 2','Starting point

3'])↪→

plt.xlabel('k')

plt.ylabel('Objective')

plt.show()

18.4. Nonlinear model fitting

Example. We fit a model

f̂(x; θ) = θ1exp(θ2x)cos(θ3x+ θ4)

to N = 60 data points. We first generate the data.

In []: # Use these parameters to generate data

theta_x = np.array([1, -0.2, 2*np.pi/5, np.pi/3])

Choose 60 points x between 0 and 20

165

18. Nonlinear least squares

0 2 4 6 8
k

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ob
je

ct
iv

e

Starting point 1
Starting point 2
Starting point 3

Figure 18.4.: Cost function ‖f(x(k)‖2 versus iteration number k for the three starting points in the location from
range measurements example.

M = 30

xd = np.vstack([5*np.random.random((M,1)),

5+15*np.random.random((M,1))])↪→

Evaluate function at these points

yd = theta_x[0]*np.exp(theta_x[1]*xd)*np.cos(theta_x[2]*xd +

theta_x[3])↪→

Create a random perturbation of yd

N = len(yd)

yd = np.multiply(yd.T, (1 + 0.2*np.random.normal(size = N)) +

0.015*np.random.normal(size = N))↪→

import matplotlib.pyplot as plt

plt.ion()

plt.scatter(xd, yd)

plt.show()

We now run our Levenberg-Marquardt code with starting point θ(1) = (1, 0, 1, 0) and

λ(1) = 1. The 60 points and the fitted model are shown in figure 18.5.

In []: f = lambda theta: (np.hstack(theta[0]*np.exp(theta[1]*xd) *

np.cos(theta[2]*xd + theta[3])) - yd).flatten()↪→

166

18.4. Nonlinear model fitting

Df = lambda theta: np.hstack([np.exp(theta[1]*xd) *

np.cos(theta[2]*xd + theta[3]),

theta[0]*(xd*np.exp(theta[1]*xd) * np.cos(theta[2]*xd +

theta[3])), - theta[0]*np.exp(theta[1]*xd) * xd *

np.sin(theta[2]*xd + theta[3]), - theta[0] *

np.exp(theta[1]*xd) * np.sin(theta[2]*xd + theta[3])])

↪→

↪→

↪→

↪→

↪→

theta1 = np.array([1,0,1,0])

theta, history = levenberg_marquardt(f, Df, theta1, 1.0)

x = np.linspace(0,20,500)

y = theta[0]*np.exp(theta[1]*x) * np.cos(theta[2]*x + theta[3])

import matplotlib.pyplot as plt

plt.ion()

plt.scatter(xd, yd)

plt.plot(x,y, 'r')

plt.show()

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Figure 18.5.: Least squares fit of a function f̂(x; θ) = θ1exp(θ2x)cos(θ3x+ θ4) to N = 60 points (x(i)y(i)).

Orthogonal distance regression. In figure 18.14 of VMLS we use orthogonal distance

regression to fit a cubic polynomial

f̂(x; θ) = θ1 + θ2x+ θ3x
2 + θ4x

3

167

18. Nonlinear least squares

to N = 25 data points.

We first read in the data and compute the standard least squares fit.

In []: xd, yd = orth_dist_reg_data() #2 vectors of length N = 25

N = len(xd)

p = 4

theta_ls = solve_via_backsub(vandermonde(xd,p), yd)

The nonlinear least squares formulation on page 400 of VMLS has p + N variables

θ1, . . . , θp, u
(1), . . . , u(N). We will store them in that order in the nonlinear least squares

vector variable. The objective is to minimize the squared norm of the 2N -vector.

f̂(u(1)); θ − y(1)

...

f̂(u(N)); θ − y(N)

u(1) − x(1)

...

u(N) − x(N)

In []: def f(x):

theta = x[:p]

u = x[p:]

f1 = vandermonde(u,p) @ theta - yd

f2 = u - xd

return np.vstack([f1,f2])

def Df(x):

theta = x[:p]

u = x[p:]

D11 = vandermonde(u,p)

D12 = np.diag(np.hstack(theta[1] + 2*theta[2]*u +

3*theta[3]*np.power(u,2)))↪→

D21 = np.zeros((N,p))

D22 = np.eye(N)

return np.block([[D11,D12], [D21,D22]])

We now call levenberg_marquardt function with these two functions. A natural choice

for the initial points is to use the least squares solution for the variables θ and the data

168

18.4. Nonlinear model fitting

0.2 0.4 0.6 0.8 1.0

0.2

0.1

0.0

0.1

0.2

0.3 LS
Orth. dist.

Figure 18.6.: Least squares and orthogonal distance regression fit of a cubic polynomial to 25 data points.

points x(i) for the variables u(i). We use λ(1) = 0.01.

In []: z = np.vstack([theta_ls.reshape(4,1), xd])

sol, hist = levenberg_marquardt(f, Df, z, 0.01)

theta_od = sol[:p]

In []: import matplotlib.pyplot as plt

plt.ion()

plt.scatter(xd, yd)

x = np.linspace(min(xd), max(xd), 500)

y_ls = vandermonde(x,p) @ theta_ls

y_od = vandermonde(x,p) @ theta_od

plt.plot(x, y_ls)

plt.plot(x, y_od)

plt.legend(['LS', 'Orth. dist.'])

plt.show()

Figure 18.6 shows the two fitted polynomials.

169

18. Nonlinear least squares

170

19. Constrained nonlinear least squares

19.1. Constrained nonlinear least squares

19.2. Penalty algorithm

Let’s implement the penalty algorithm (algorithm 19.1 in VMLS).

In []: def penalty_method(f, Df, g, Dg, x1, lambda1, kmax=100,

feas_tol=1e-4, oc_tol=1e-4):↪→

x = x1

mu = 1.0

feas_res = [np.linalg.norm(g(x))]

oc_res = [[np.linalg.norm(2*Df(x).T * f(x) +

2*mu*Dg(x).T*g(x))]]↪→

lm_iters = []

for k in range(kmax):

F = lambda x: np.hstack([f(x), np.sqrt(mu)*g(x)])

DF = lambda x: np.block([[Df(x)],[np.sqrt(mu)*Dg(x)]])

x, hist = levenberg_marquardt(F, DF, x, lambda1,

tol=oc_tol)↪→

feas_res.append(np.linalg.norm(g(x)))

oc_res.append(hist['Residual'][-1])

lm_iters.append(len(hist['Residual']))

if np.linalg.norm(g(x)) < feas_tol:

break

mu = 2*mu

return x,

{'lm_iters':lm_iters,'feas_res':feas_res,'oc_res':oc_res}↪→

Here we call the function levenberg_marquardt of the previous chapter to minimize

‖F (x)‖2 where

F (x) =

[
f(x)
√
µg(x)

]
.

171

19. Constrained nonlinear least squares

We evaluate two residuals. The ‘feasibility’ residual ‖g(x(k))‖ is the error in the con-

straint g(x) = 0. The ‘optimality condition’ residual is defined as

‖2Df(x(k))T f(x(k)) + 2Dg(x(k))T z(k)‖

where z(k) = 2µ(k−1)g(x(k)) and we take µ(0) = µ(1). We obtain the optimality condition

residual as the last residual in the Levenberg-Marquardt method. We return the final x,

and a dictionary containing the two sequences of residuals and the number of iterations

used in each call to the Levenberg-Marquardt algorithm

Examples. We apply the method to a problem with two variables

f(x1, x2) =

[
x1 + exp(−x2)

x2
1 + 2x2 + 1

]
, g(x1, x2) = x2

1 + x3
1 + x2 + x2

2.

In []: f = lambda x: np.array([x[0] + np.exp(-x[1]), x[0]**2 + 2*x[1] +

1])↪→

Df = lambda x: np.array([[1 ,- np.exp(-x[1])],[2*x[0] , 2]])

g = lambda x: np.array([x[0] + x[0]**3 + x[1] + x[1]**2])

Dg = lambda x: np.array([1 + 3*x[0]**2, 1+ 2*x[1]])

x, hist = penalty_method(f, Df, g, Dg, np.array([0.5, -0.5]), 1.0)

print(x)

[-3.31855595e-05, -2.78464833e-05]

The following lines create a staircase plot with the residuals versus the cumulative num-

ber of Levenberg-Marquardt iterations as in VMLS figure 19.4. The result is in figure

19.1.

In []: import matplotlib.pyplot as plt

plt.ion()

cum_lm_iters = np.cumsum(hist['lm_iters'])

itr = np.hstack([0,np.hstack([[i,i] for i in cum_lm_iters])])

feas_res = np.hstack([np.hstack([r,r] for r in

hist['feas_res'][:-1]), hist['feas_res'][-1]])↪→

oc_res = np.hstack([np.hstack([r[0],r[0]] for r in

hist['oc_res'][:-1]), hist['oc_res'][-1]])↪→

plt.plot(itr, feas_res,'o-')

plt.plot(itr, oc_res,'o-')

172

19.3. Augmented Lagrangian algorithm

plt.yscale('log')

plt.legend(['Feasibility','Opt.cond.'])

plt.xlabel('Cumulative Levenberg-Marquardt iterations')

plt.ylabel('Residual')

plt.show()

0 20 40 60 80 100
Cumulative Levenberg-Marquardt iterations

10 5

10 4

10 3

10 2

10 1

100

101

Re
sid

ua
l

Feasibility
Opt.cond.

Figure 19.1.: Feasibility and optimality condition errors versus the cumulative number of Levenberg-Marquardt
iterations in the penality algorithm.

19.3. Augmented Lagrangian algorithm

In []: def aug_lag_method(f, Df, g, Dg, x1, lambda1, kmax=100,

feas_tol=1e-4, oc_tol=1e-4):↪→

x = x1

z = np.zeros(len(g(x)))

mu = 1.0

feas_res = [np.linalg.norm(g(x))]

oc_res = [[np.linalg.norm(2*Df(x).T * f(x) +

2*mu*Dg(x).T*g(x))]]↪→

lm_iters = []

for k in range(kmax):

173

19. Constrained nonlinear least squares

F = lambda x: np.hstack([f(x), np.sqrt(mu)*(g(x) +

z/(2*mu))])↪→

DF = lambda x: np.block([[Df(x)], [np.sqrt(mu)*Dg(x)]])

x, hist = levenberg_marquardt(F, DF, x, lambda1,

tol=oc_tol)↪→

z = z + 2*mu*g(x)

feas_res.append(np.linalg.norm(g(x)))

oc_res.append(hist['Residual'][-1])

lm_iters.append(len(hist['Residual']))

if np.linalg.norm(g(x)) < feas_tol:

break

if ~(np.linalg.norm(g(x)) < 0.25*feas_res[-2]):

mu = 2*mu

return x, z, {'lm_iters': lm_iters, 'feas_res': feas_res,

'oc_res': oc_res}↪→

Here the call to the Levenberg-Marquardt algorithm is to minimize ‖F (x)‖2 where

F (x) =

[
f(x)√

µ(k)(g(x) + z(k)/(2µ(k)))

]
.

We again record the feasibility residuals ‖g(x(k))‖ and the optimality conditions residuals

‖2Df(x(k))T f(x(k)) + 2Dg(x(k))T z(k)‖,

and return them in a dictionary.

Example. We continue the small example.

In []: x, z, hist = aug_lag_method(f, Df, g, Dg, np.array([0.5, -0.5]),

1.0)↪→

print(x)

print(z)

[-1.79855232e-05, -1.49904382e-05]

[-1.99995875]

The following code shows the convergence figure 19.4 in VMLS. The plot is given in

figure 19.2.

174

19.4. Nonlinear control

In []: import matplotlib.pyplot as plt

plt.ion()

cum_lm_iters = np.cumsum(hist['lm_iters'])

itr = np.hstack([0,np.hstack([[i,i] for i in cum_lm_iters])])

feas_res = np.hstack([np.hstack([r,r] for r in

hist['feas_res'][:-1]), hist['feas_res'][-1]])↪→

oc_res = np.hstack([np.hstack([r[0],r[0]] for r in

hist['oc_res'][:-1]), hist['oc_res'][-1]])↪→

plt.plot(itr, feas_res,'o-')

plt.plot(itr, oc_res,'o-')

plt.yscale('log')

plt.legend(['Feasibility','Opt.cond.'])

plt.xlabel('Cumulative Levenberg-Marquardt iterations')

plt.ylabel('Residual')

plt.show()

0 10 20 30 40 50 60 70
Cumulative Levenberg-Marquardt iterations

10 4

10 3

10 2

10 1

100

101

Re
sid

ua
l

Feasibility
Opt.cond.

Figure 19.2.: Feasibility and optimality condition errors versus the cumulative number of Levenberg-Marquardt
iterations in the augmented Lagrangian algorithm.

19.4. Nonlinear control

175

Appendix

A. Common coding errors

A.1. I am getting a Python error message.

It is natural to get error messages when you are coding, especially for beginners. Reading

the error messages generated by Python can be very helpful in identifying the problem

in your code syntax. Here are some common types of error messages in Python:

Attribute Error

• You are calling a method on the wrong type of object.

SyntaxError

• You have forgotten the quotation marks (" " or ' ') around a string.

• You have forgotten to put a colon (:) at the end of a def/if/for line

• You have different numbers of open and close brackets

TypeError

• You are trying to use an operator on the wrong type of object

• You have used non-integer numbers when slicing a list

• You expect an object to have a value but the value is actually None

• You have called a method or function with the wrong number or type of arguments

(input to a function).

176

A. Common coding errors

Identification Error

• You have used a mixture of tabs and spaces

• You have not indented all lines in a block equally

• You have not indented when Python expects you to

NameError

• You have forgotten to define a variable

• You have misspelled a variable, function or method name

• You have forgotten to import a module or a package

• Your code uses a variable outside the scope (e.g. within the function) where it is

defined

• Your code calls a function before it has been defined

• You are trying to print a single word and have forgotten the quotation marks

IOError

• You are trying to open a file that does not exist

• You are in the wrong directory

IndexError

• The index that you have given to a sequence is out of range

Key Error

• You are trying to look up a key that does not exist in a dictionary

ValueError

• You are trying to perform numerical operations on arrays with different dimensions

• You have given an argument with the right type but an inappropriate value to a

function or to an operation

177

Appendix

A.2. I am not getting an error message but my results are not as expected.

For loops

• A list which should have a value for every iteration only has a single

value. You have defined the list inside the loop, you should move it outside.

• A loop which uses the range function misses out the last value. The

range function is exclusive at the finish, you should increase it by one.

• You are trying to loop over a collection of strings, but you are getting

individual characters. You are iterating over a string by mistake.

• You are trying to write multiple lines to a file but only getting a single

line. You have opened the file inside the loop, you should move it outside.

If statements

• Two numbers which should be equal are not. You are comparing a number

with a string representation of a number (e.g. if 5 == '5')

• A complex condition is not giving the expected result. The order of

precedence in the condition is ambiguous. Try adding some parentheses.

Others

• A variable that should contain a value does not. You are storing the return

value of a function which changes the variables itself (e.g. sort).

• I am reading a file but getting no input. You have already read the contents

of the file in the code, so the cursor is at the end.

• A regular expression is not matching when I expect it to. You have

forgotten to use raw strings or escape backslash .

• You are trying to print a value but getting a bunch of weird-looking

string. You are printing an object (e.g. a FileObject) when you want the result

of calling a method on the object.

178

B. Data sets

B. Data sets

The data sets we used in this Python language companion can be found on:

https://github.com/jessica-wyleung/VMLS-py. You can download the jupyter no-

teobok from the repository and work on it directly or you can copy and paste the data

set onto your own jupyter notebook.

house_sales_data(). Returns a dictionary D with the Sacramento house sales data.

The 6 items in the dictionary are vectors of length 774, with data for 774 house sales.

D["price"]: selling price in 1000 dollars

D["area"]: area in 1000 square feet

D["beds"]: number of bedrooms

D["baths"]: number of bathrooms

D["condo"]: 1 if a condo, 0 otherwise

D["location"]: an integer between 1 and 4 indicating the location.

population_data(). Returns a dictionary D with the US population data. The items

in the dictionary are three vectors of length 100.

D["population"]: 2010 population in millions for ages 0,. . . ,99

D["birth_rate"]: birth rate

D["death_rate"]: death rate.

petroleum_consumption_data(). Returns a 34-vector with the world annual petroleum

consumption between 1980 and 2013, in thousand barrels/day.

vehicle_miles_data(). Returns a 15 matrix with the vehicle miles traveled in the US

(in millions), per month, for the years 2000, . . . , 2014.

temperature_data(). Returns a vector of length 774 = 31 × 24 with the hourly tem-

perature at LAX in May 2016.

iris_data(). Returns a dictionary D with the Iris flower data set. The items in the

dictionary are:

D["setosa"]: a 50× 4 matrix with 50 examples of Iris Setosa

D["versicolor"]: a 50× 4 matrix with 50 examples of Iris Versicolor

D["virginica"]: a 50× 4 matrix with 50 examples of Iris Virginica.

179

Appendix

The columns give values for four features: sepal length in cm, sepal width in cm, petal

length in cm, petal width in cm.

ozone_data(). Returns a vector of length 336 = 14 × 24 with the hourly ozone levels

at Azusa, California, during the first 14 days of July 2014.

regularized_fit_data(). Returns a dictionary D with data for the regularized data

fitting example. The items in the dictionary are:

D["xtrain"]: vector of length 10

D["ytrain"]: vector of length 10

D["xtest"]: vector of length 20

D["ytest"]: vector of length 20.

portfolio_data(). Returns a tuple (R, Rtest) with data for the portfolio optimiza-

tion example. R is a 2000×20 matrix with daily returns over a period of 2000 days. The

first 19 columns are returns for 19 stocks; the last column is for a risk-free asset. Rtest

is a 500× 20 matrix with daily returns over a different period of 500 days.

lq_estimation_data(). Returns a 2 × 100 matrix with the measurement data for the

linear quadratic state estimation example.

orth_dist_reg_data(). Returns a tuple (xd, yd) with the data for the orthogonal

distance regression example.

180

	Preface
	Vectors
	Vectors
	Vectors
	Vector addition
	Scalar-vector multiplication
	Inner product
	Complexity of vector computations

	Linear functions
	Linear functions
	Taylor approximation
	Regression model

	Norm and distance
	Norm
	Distance
	Standard deviation
	Angle
	Complexity

	Clustering
	Clustering
	A clustering objective
	The k-means algorithm
	Examples
	Applications

	Linear independence
	Linear independence
	Basis
	Orthonormal vectors
	Gram-Schmidt algorithm

	Matrices
	Matrices
	Matrices
	Zero and identity matrices
	Transpose, addition, and norm
	Matrix-vector multiplication
	Complexity

	Matrix examples
	Geometric transformations
	Selectors
	Incidence matrix
	Convolution

	Linear equations
	Linear and affine functions
	Linear function models
	Systems of linear equations

	Linear dynamical systems
	Linear dynamical systems
	Population dynamics
	Epidemic dynamics
	Motion of a mass
	Supply chain dynamics

	Matrix multiplication
	Matrix-matrix multiplication
	Composition of linear functions
	Matrix power
	QR factorization

	Matrix inverses
	Left and right inverses
	Inverse
	Solving linear equations
	Pseudo-inverse

	Least squares
	Least squares
	Least squares problem
	Solution
	Solving least squares problems
	Examples

	Least squares data fitting
	Least squares data fitting
	Validation
	Feature engineering

	Least squares classification
	Classification
	Least squares classifier
	Multi-class classifiers

	Multi-objective least squares
	Multi-objective least squares
	Control
	Estimation and inversion
	Regularized data fitting
	Complexity

	Constrained least squares
	Constrained least squares problem
	Solution
	Solving constrained least squares problems

	Constrained least squares applications
	Portfolio optimization
	Linear quadratic control
	Linear quadratic state estimation

	Nonlinear least squares
	Nonlinear equations and least squares
	Gauss-Newton algorithm
	Levenberg-Marquardt algorithm
	Nonlinear model fitting

	Constrained nonlinear least squares
	Constrained nonlinear least squares
	Penalty algorithm
	Augmented Lagrangian algorithm
	Nonlinear control

	Appendix
	Common coding errors
	I am getting a Python error message.
	I am not getting an error message but my results are not as expected.

	Data sets

