LINFO1341

TP - Building a network
https://beta.computer-
networking.info/syllabus/default/exercises/network.html

Open question 7: Configuring link metrics

Weights on the links to meet the

Open question 6: Configuring link metrics

Weights on the links to meet the requirements?

Open question 10: Configuring link metrics

Open question 11: Configuring link metrics

* R1->R5->R4
* R3->R2->R4

Link metrics to have this?

Discussion question 5: Distance vector

Split horizon, periodic update: what happens after B-C link failure?

Discussion question 5: Distance vector

Split horizon, periodic update: what happens after B-C link failure?

A's Routing Table	B's Routing Table	C's Routing Table	D's Routing Table	E's Routing Table
A: 0 [Local]	A: 1 [via A]	A: 2 [via B]	A: 3 [via C]	A: 4 [via D]
B: 1 [via B]	B: 0 [Local]	B: 1 [via B]	B: 2 [via C]	B: 3 [via D]
C: 2 [via B]	C: 1 [via C]	$\mathrm{C}: 0$ [Local]	C: 1 [via C]	C: 2 [via D]
D: 3 [via B]	D: 2 [via C]	D: 1 [via D]	D: 0 [Local]	D: 1 [via D]
E: 4 [via B]	E: 3 [via C]	E: 2 [via D]	E: 1 [via E]	E: 0 [Local]

Discussion question 6: Link-state

What happens after B-C link failure? B\&C, E, A

Discussion question 6: Link-state

What happens after B-C link failure?

A's view	
Links	LSPs
A->B, B->A:	A-O $[\mathrm{B}: 1] ;[\mathrm{E}: 8]$
$\mathrm{B}->\mathrm{C}, \mathrm{C}->\mathrm{B}: 1$	$\mathrm{~B}-0[\mathrm{~A}: 1] ;[\mathrm{C}: 1] ;[\mathrm{D}: 3]$
$\mathrm{C}->\mathrm{D}, \mathrm{D}->\mathrm{C}: 1$	$\mathrm{C}-0[\mathrm{~B}: 1] ;[\mathrm{D}: 1]$
$\mathrm{D}->\mathrm{E}, \mathrm{E}->\mathrm{D}: 1$	$\mathrm{D}-0[\mathrm{~B}: 3] ;[\mathrm{C}: 1] ;[\mathrm{E}: 1]$
$\mathrm{B}->\mathrm{D}, \mathrm{D}>\mathrm{B}: 3$	$\mathrm{E}-0[\mathrm{~A}: 8] ;[\mathrm{D}: 1]$
$\mathrm{A} \rightarrow \mathrm{E}, \mathrm{E}>\mathrm{A}: 8$	

B's view

Links	LSPs
$\mathrm{A} \rightarrow \mathrm{B}, \mathrm{B}->\mathrm{A}: 1$	$\mathrm{~A}-\mathrm{O}[\mathrm{B}: 1] ;[\mathrm{E}: 8]$
$\mathrm{B} \rightarrow \mathrm{C}, \mathrm{C}->\mathrm{B}: 1$	$\mathrm{~B}-0[\mathrm{~A}: 1] ;[\mathrm{C}: 1] ;[\mathrm{D}: 3]$
$\mathrm{C}->\mathrm{D}, \mathrm{D}->\mathrm{C}: 1$	$\mathrm{C}-\mathrm{O}[\mathrm{B}: 1] ;[\mathrm{D}: 1]$
$\mathrm{D}>\mathrm{E}, \mathrm{E}->\mathrm{D}: 1$	$\mathrm{D}-0[\mathrm{~B}: 3] ;[\mathrm{C}: 1] ; \mathrm{E}: 1]$
$\mathrm{B} \rightarrow \mathrm{D}, \mathrm{D}->\mathrm{B}: 3$	$\mathrm{E}-0[\mathrm{~A}: 8] ;[\mathrm{D}: 1]$
$\mathrm{A} \rightarrow \mathrm{E}, \mathrm{E}->\mathrm{A}: 8$	

C's view

Links	LSPs
A $>\mathrm{B}, \mathrm{B}->\mathrm{A}: 1$	$\mathrm{~A}-0[\mathrm{~B}: 1] ;[\mathrm{E}: 8]$
$\mathrm{B} \rightarrow \mathrm{C}, \mathrm{C}->\mathrm{B}: 1$	$\mathrm{~B}-\mathrm{O}[\mathrm{A}: 1] ;[\mathrm{C}: 1] ;[\mathrm{D}: 3]$
$\mathrm{C}->\mathrm{D}, \mathrm{D}->\mathrm{C}: 1$	$\mathrm{C}-\mathrm{O}[\mathrm{B}: 1] ;[\mathrm{D}: 1]$
$\mathrm{D}->\mathrm{E}, \mathrm{E}->\mathrm{D}: 1$	$\mathrm{D}-0[\mathrm{~B}: 3] ;[\mathrm{C}: 1] ;[\mathrm{E}: 1]$
$\mathrm{B} \rightarrow \mathrm{D}, \mathrm{D}->\mathrm{B}: 3$	$\mathrm{E}-0[\mathrm{~A}: 8] ;[\mathrm{D}: 1]$
$\mathrm{A} \rightarrow \mathrm{E}, \mathrm{E}->\mathrm{A}: 8$	

D's view

Links	LSPs
A $>\mathrm{B}, \mathrm{B}->\mathrm{A}: 1$	$\mathrm{~A}-\mathrm{O}[\mathrm{B}: 1] ;[\mathrm{E}: 8]$
$\mathrm{B} \rightarrow \mathrm{C}, \mathrm{C}->\mathrm{B}: 1$	$\mathrm{~B}-0[\mathrm{~A}: 1] ;[\mathrm{C}: 1] ;[\mathrm{D}: 3]$
$\mathrm{C} \rightarrow \mathrm{D}, \mathrm{D}->\mathrm{C}: 1$	$\mathrm{C}-\mathrm{O}[\mathrm{B}: 1] ;[\mathrm{D}: 1]$
$\mathrm{D}->\mathrm{E}, \mathrm{E}->\mathrm{D}: 1$	$\mathrm{D}-0[\mathrm{~B}: 3] ;[\mathrm{C}: 1] ;[\mathrm{E}: 1]$
$\mathrm{B}->\mathrm{D}, \mathrm{D}->\mathrm{B}: 3$	$\mathrm{E}-0[\mathrm{~A}: 8] ;[\mathrm{D}: 1]$
$\mathrm{A} \rightarrow \mathrm{E}, \mathrm{E}->\mathrm{A}: 8$	

E's view

$$
\begin{aligned}
& \text { Links } \\
& \text { A->B, B->A: } 1 \\
& \text { B->C, C->B: } 1 \\
& \text { C->D, D->C: } 1 \\
& \text { D->E, E->D: } 1 \\
& \text { B->D, D->B: } 3 \\
& \text { A->E, E->A: } 8
\end{aligned}
$$

LSPs

A-O [B:1];[E:8]
B-0 [A:1];[C:1];[D:3]
$\mathrm{C}-\mathrm{O}[\mathrm{B}: 1] ;[\mathrm{D}: 1]$
D-0 [B:3];[C:1];[E:1]
E-0 [A:8];[D:1]

Interdomain routing with BGP

Small Recap

- How many routes do an AS advertise to a given prefix?
- One route only, the preferred route
- As a provider, what routes do I advertise to my clients?
- All (preferred) routes to ourselves, clients, shared-cost or providers
- As a client, what routes do I advertise to my providers?
- Only the (preferred) route to ourselves and our clients
- What routes do I advertise over a shared-cost?
- The (preferred) routes to ourselves and our clients
\qquad

Open Question 1

What are the paths?

- From AS1 to AS4
- From AS4 to AS2
- From AS4 to AS1

Open Question 2

AS1 advertises prefix 2001:db8:1::/48
AS2 advertises prefix 2001:db8:2::/48

Routing tables?
Are all ASes capable of reaching the other ones?

Open Question 3

AS1 advertises prefix 2001:db8:1::/48
AS2 advertises prefix 2001:db8:2::/48

Routing tables?
Are all ASes capable of reaching the other ones? If you need to add only one peering link, what should it be?

