
A	Simulated	Bike	Race	
Course	project	-	LSINF2345	-	April	2016	

Ruma	Paul	
	

A	bike	race	is	announced	to	take	place	at	Louvain-la-Neuve	on	May	13,	
2016.		A	student	team	from	each	institute	of	UCL	must	participate.		
From	ICTEAM		a	team	is	built.	One	member	of	the	team	is	a	student	of	
Informatics	and	that	is	You!!	The	team	had	a	discussion	about	the	
strategy	to	win	the	race.	Everyone	proposed	different	strategies;	
resulting	in	a	debate	of	whose	strategy	is	the	best.	Being	fed-up,	you	
have	come	up	with	a	proposal:	“Let	us	do	a	simulation	of	the	bike	race”.		
Everybody	will	play	by	following	his/her	own	strategy,	whoever	wins	
we	will	follow	that	strategy	in	the	race!!	Everybody	has	agreed	to	your	
proposal.	You,	being	a	student	of	Informatics,	have	taken	up	the	
challenge	to	implement	this	idea.	
	
	
	
	
	
	
Rules	of	the	game:	Everybody	is	given	a	fixed	number	of	point,	E,	
denoting	the	energy	of	each	player.		Using	E,	each	player	has	to	make		a	
total	distance	of	D.	The	player	who	finishes	first	is	the	winner!!	At	each	
round,		

• A	player	can	increase	or	decrease	his/her	current	speed.	The	
energy	consumption	is	proportional	to	the	speed.		

• A	player	can	be	behind	of	another	player.	In	that	case	the	
energy	consumption	will	be	lower.	

• A	player	can	use	a	boost		Boost	can	be	used	only	once	and	
consumes	all	the	remaining	energy	during	next	round.	Boost	is	
used	to	sprint	at	the	end	of	the	race.	

	
	
	
	
	

Implementation	Details:	We	will	use	Riak-core	to	implement	this	
application.	This	application	works	in	rounds.		Each	round	is	timed	to	
take	10	seconds	in	real	time	at	each	player.	
	
1. Initialization:	

a. Distance	to	cover	=	100km	
b. EnergyRemaining		=	100	
c. My_Position		=	0	
d. My_Speed	=	0	
e. Round_Length	=	10	seconds;	
	

2. At	each	round	t,	
a. Update	Display:	Display	can	be	textual,	where	the	position	
of	each	player	is	shown	in	a	decreasing	order.	That	implies,	
the	player	who	has	crossed	maximum	distance	will	be	
shown	first.	If	one	player	was	behind	another	they	will	be	
shown	as	a	set,	e.g.,	if	player	3	was	behind	player	7	then	it	
will	show	{3,7}	=	Position7;	Implementation	of	a	GUI	is	
optional.	

b. Calculate	my	speed	during	t-1:	
i. If	I	did	biking	by	myself:	Speedt-1	=	My_Speed;	
ii. If	I	was	behind	player	k	:	Speedt-1=	Speedt-1(Pk)	

c. Calculate	my	new	Position:	My_Position	=	My_Position	+	
Speedt-1;	

d. If	I	took	boost	during	t-1,	EnergyRemaining	=0;	otherwise,	
EnergyRemaining	=	EnergyRemaining	-	b*	Speedt-12	

i. b	=	0.5;	if	I	was	behind	another	player	
ii. b	=	1.5;	otherwise	

e. If	EnergyRemaining	!=0	then	take	an	input	from	the	user	about	
his/her	strategy	during	this	round.	There	can	be	3	possible	
inputs:		

i. New	speed:	My_Speed=	Speedinput;	or		
ii. Choose	a	player	(PB)	to	be	behind	who	is	at	a	position	

such	that,	Position(PB)	<=	My_Position+	Speedt-1;		
iii. Boost:	My_Speed	=	3.87*Sqrt(EnergyRemaining).	

f. Broadcast	my	updates,	i.e.,	My_Speed	or	decision	to	be	
behind	PB.	

	
	

	
Installing Erlang and Riak-Core:
We	suggest	installing	Erlang/OTP	R16B	or	newer.	Source	and	binaries	
can	be	found	at	https://www.erlang-
solutions.com/downloads/download-erlang-otp	and	
http://www.erlang.org/download.html.		

Riak	is	a	distributed	NoSQL	key-value	store	that	offers	high	scalability,	
high	availability	and	fault	tolerance.	Follow	the	lab	“LSINF2345:	A	
Simple	Application	using	Riak-Core”	to	familiarize	yourself	with	Riak.	
You	can	also	try	this	blog:	https://github.com/rzezeski/try-try-try;	to	
get	started	with	Riak-Core	and	build	applications	on	top	of	it	(Be	
Careful!!	The	bog	is	a	bit	old,	so	you	need	to	configure	some	version	
parameters;	otherwise	you	might	face	strange	errors).	

	

Deliverables		
Turn	in	a	zip	file	containing	your	src,	and	test	directories,	and	a	PDF	
report	(of	Maximum	5	pages).	Your code should be properly commented
(for reading/debugging purposes) and you should also include a
README file with instructions for compiling and running it.

Optionally,	you	may	include	up	to	2	pages	worth	of	diagrams.	A	cover	
page	is	optional.		

First	we	will	look	at	your	broadcast	code,	and	visually	inspect	the	
behavior	of	the	bikers	during	your	interview	with	the	assistant.	The	race	
should	finish	with	a	winner,	even	when	some	bikers	crash.	

Optionally,	you	can	write	no	more	than	150	words	about	any	strange	
behavior	observed	or	problems	you	have	spotted	while	doing	this	
project.		

Problem 0: Setting the track, the uncoordinated bikers [8 point]
(Extension: Implementation of GUI for the display [Optional: 2 points])

We	start	by	setting	the	track,	where	no	biker	fails	and	no	special	

consideration	has	been	given	to	broadcasting	messages.	Implement	
best-effort	broadcast,	beb,	and	observe	the	behavior	of	the	system	for	a	
number	of	bikers	of	your	choice.	It	is	possible	that	you	will	already	
observe	strange	behavior.	Think	about	the	properties	of	beb,	and	the	
way	in	which	the	bikers	are	periodically	broadcasting	what	they	think	
about	the	global	state	of	the	system	and	deciding	based	on	that.	

Problem 1: Same view for all bikers [6 points]

You will soon realize that message ordering is important to guarantee the
same view to all bikers: the updates must be totally ordered across the
bikers. Implement total-order broadcast: Totally–ordered delivery of
updates and their execution. For	this	problem,	you	can	assume	that	there	
are	no	failures	(no	bikers	fall	down).	

Deliverable:	Explain	your	solutions	in	your	report.	Aim	for	about	
one	page.	In	particular,	explain	how	you	have	implemented	your	total-
order	broadcast	module	and	how	that	solves	the	problem	of	Problem	0.	

Problem	2:	Failing	nodes	with	a	bounded	(synchronous)	
network	[6	points]		

To	make	things	worse,	suppose	a	biker	may	fall	down	during	the	race.		
Despite	this,	the	race	must	go	on.	

Modify	your	solution	of	problem	1	to	survive	failing	bikers.	Assume	fail-
stop	(crash-stop)	failures.	Once	a	biker	has	fallen	down,	he/she	is	out	of	
the	race.	Your	design	may	require	the	use	of	a	failure	detector.	You	can	
build	a	failure	detector	P	by	using	a	simple	heartbeat	algorithm.		You	
can	assume	that	this	failure	detector	is	perfect,	if	the	heartbeat	is	chosen	
correctly.	In	order	to	select	a	time	bound	for	P,	determine	how	long	is	a	
reasonable	time	for	a	perfectly	delivered	message	to	be	sent	(heartbeat	
request)	and	returned	(heartbeat	response).	

Deliverables:	Explain	your	solution,	and	parameters	for	your	
failure	detector,	if	used,	in	no	more	than	500	words.	Your	solution	will	
be	tested	by	letting	some	bikers	fall-down	during	the	race.		

	

Marking		

The	assignment	is	out	of	a	maximum	of	20	points.	The	points	for	each	
section	are	explained	in	their	“deliverables”	section.	1	discretionary	
point	is	available	for	a	nicely	presented	report	and	implementation	
code.		

	

Where	to	find	help		

In	order	to	find	documentation	for	Erlang	functions,	try	Google,	the	
reference	manual	(http://erlang.org/doc/apps/stdlib/index.html)		and	
possibly	http://erldocs.com.	To	better	understand	the	algorithms,	refer	
to	the	course	slides	or	textbook.	The	assistant	will	announce	their	
availability	separately.	Ask	them	about	Erlang	problems,	or	to	discuss	
your	design.	It’s	ok	to	talk	to	the	other	students	about	how	to	solve	the	
problems,	but	don’t	copy	their	code.		

	

Deadline: Wednesday, May 11 @ 23:59 �

Contact: ruma.paul@uclouvain.be

