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3
Principles for Designing Experiments

This chapter presents the basic concepts that are required to construct designs to address 
directly and efficiently the aims of a biological experiment. We first discuss the choice of 
treatments and materials; treatments should be determined by the aims and the materi-
als should be chosen according to the frame of reference for the experiment (Section 3.1). 
These two components must then be combined to produce an appropriate design. A good 
design takes proper consideration of three statistical principles: replication (Section 3.1.1), 
randomization (Section 3.1.2) and blocking (Section 3.1.3), to reduce bias and maximize the 
precision of treatment comparisons. We describe the structure of a design with respect to 
underlying factors using a symbolic form (Section 3.2). Many experiments will use one 
of the wide and flexible family of standard designs, such as the completely randomized 
design (CRD) (Section 3.3.1), the randomized complete block design (RCBD) (Section 3.3.2), 
the Latin square (LS) design (Section 3.3.3), the split-plot (SP) design (Section 3.3.4) or the 
balanced incomplete block design (BIBD) (Section 3.3.5). Once the structure of the design 
has been determined, a properly randomized layout can be generated with statistical soft-
ware (Section 3.3.6).

3.1 Key Principles

As described in Chapter 1, an experimental study investigates the relationship between 
an outcome and one or more conditions that are manipulated by the researcher. Before 
considering the appropriate design for any experiment, it is important to be clear about its 
aims, which are usually associated with one or more scientific questions or hypotheses to 
be tested. Examples of such questions might be

• Is any reduction in disease infection achieved with a new ‘resistant’ variety com-
pared with a standard ‘control’ variety?

• How do plant metabolites respond to increasing drought stress at different stages 
of development?

• Which chemicals, of several under study, show insecticidal activity?
• How is yield related to plant spacing, and does this relationship vary between 

varieties?

The aims of the experiment should be well defined to make it easy to assess whether 
the chosen treatments are sufficient to achieve them. In this context, the term treat-
ments is used to describe the set of different experimental conditions to be tested, 
for  example, varieties, nitrogen rates, or chemical compounds, or, more usually, com-
binations of  several such classifying variables. Control treatments – either positive or 
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negative controls – may be used to provide a baseline, or to verify that the experiment 
has worked as expected. A negative control usually corresponds to a ‘null’ treatment, 
and a positive control usually corresponds to a standard treatment with a known effect. 
This is discussed further in Section 8.5. In addition to defining the experimental treat-
ments, the experimental units must be chosen. The experimental unit for a treatment 
is defined as ‘the smallest division of the experimental material such that any two units 
may receive different treatments in the actual experiment’ (Cox, 1992). For some treat-
ments, this may be larger than the size of unit on which individual observations are 
recorded (sometimes called the observational or measurement unit), and may occur at 
a range of scales, as in the following examples.

• An area of land on a farm. A field trial typically has numerous small plots, and 
experimental treatments are applied to the individual plots. The experimental 
unit is the plot, and the measurement unit may be either the plot (e.g. yield) or 
sub-samples from the plot area (e.g. individual plant measurements).

• Individual soil samples taken from a field. In the context of a field trial with treatments 
applied to plots, if a single soil sample is taken from each field plot for process-
ing in the lab, then the soil sample becomes the experimental unit. If multiple 
soil samples are taken from each plot, then the experimental units are the sets of 
samples from each plot.

• Pots, each containing three plants. If experimental treatments, such as soil nutrient 
content, are applied to whole pots, then the pot is the experimental unit. The mea-
surement unit may be either the whole pot (e.g. combined biomass) or individual 
plants.

• Different leaves from an individual plant. In the investigation of the response of plants 
to aphid attack, clip cages with or without aphids might be attached to individual 
leaves within a plant. The experimental unit is then the individual leaf.

• Samples of RNA extracted from different plants. Investigation of gene expression often 
involves the application of different treatments to individual plants, followed by 
extraction of RNA from each plant. The experimental unit for further study is then 
the RNA taken from an individual plant.

• A batch of 10 insects in a Petri dish. Experiments on small insects are often done on 
groups of insects kept together in dishes (or cages), with treatments applied to 
the dishes. The experimental unit is then the dish. The measurement unit may 
be the dish, via a summary of insect behaviour such as percent survival, or the 
individual insects.

Recall from Section 1.2 that the experimental units are considered to consist of a sam-
ple from a wider population for which inferences can be made, and that this population 
should be identified according to the frame of reference for the experiment. For example, 
if RNA samples for microarray work are taken from only a single plant, then conclusions 
regarding gene expression in the plant population cannot safely be made without further 
experimentation, because variation between different plants would be expected. If sam-
ples are taken from several randomly selected plants, then variation between plants can be 
accounted for, and inferences can be applied to the wider population. A similar situation 
occurs when an experiment is established in a single site, or in a single year, or on a single 
variety, as there can be no certainty that results can be safely extrapolated to wider circum-
stances. This issue is especially relevant to field trials, where the chance peculiarities of a 
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single environment can produce anomalous results; for this reason, many journals will not 
publish the results of field trials that have not been repeated over several sites or seasons or 
both. It is therefore important to recognize the frame of reference implied by the choice of 
experimental units, so that appropriate conclusions can be drawn from the results.

Although we wish to have a representative sample of experimental units, we can get 
more precise estimates of differences between treatments by making comparisons across 
similar units. We can deal with this apparent contradiction by using sets of reasonably 
homogeneous experimental units, and then repeating the comparison across a wider range 
of circumstances. In some cases, the experimental units may have some intrinsic structure, 
introducing some heterogeneity between groups of more homogeneous units. This struc-
ture should be incorporated in both the choice of experimental units for treatment applica-
tion and in the statistical analysis. For example, experimental materials may be arranged 
as plants within pots within trays, giving three structural levels, and we expect different 
levels of variation within each of these levels. Depending on practical considerations and 
the aims of the experiment, it may be appropriate to apply treatments at any of these levels 
and a statistical analysis should account for this structure.

The choice of experimental units and treatments should be made separately: units are 
chosen according to the appropriate frame of reference for the experiment, and treatments 
are chosen to enable the hypotheses to be tested. A good design then matches the treat-
ments with the units so that the treatment differences can be estimated without bias (i.e. 
without systematic over- or under-estimation) and as precisely as possible (i.e. to minimize 
uncertainty in the results). Our main tool to avoid experimental bias is randomization, i.e. 
the random allocation of treatments to experimental units, and experimental precision 
can be improved by the use of proper replication and blocking (terms we discuss in more 
detail below).

First, it is helpful to recall the role of the underlying unit-to-unit variation in biological 
experimentation. It is well known that biological individuals vary in any given character-
istic or response. The amount of variation may depend on several factors, such as differing 
genetic backgrounds and environmental effects, but some variation is always present. This 
natural variation may be inflated by uncertainty introduced by the measurement process 
in cases where exact measurement is not possible (also known as measurement error). 
This combined background variation is a potential cause of both bias and uncertainty in 
experimental results. For example, if two treatments are each applied to one plant only, it 
is not possible to assess whether any difference in the measured response is due to treat-
ment differences or natural plant-to-plant variation. Statistical design and analysis aim to 
distinguish, quantify and, subsequently, compare variation between treatments (signal) 
with background variation (noise). A large signal:noise ratio indicates that substantive 
treatment differences are present. A small signal:noise ratio indicates that any apparent 
treatment differences could be explained by the background variation in the system, and 
therefore cannot confidently be attributed to treatment effects. Proper identification and 
control of background variation is thus an essential aim of any statistical design.

A good design considers each of the three basic principles: replication, randomization 
and blocking. Replication is the process of applying each treatment to more than one 
experimental unit, so the number of replicates of a treatment is the number of independent 
experimental units to which each treatment is applied. Randomization means the random 
allocation of treatments to experimental units and is used to ensure the fair assessment of 
treatments without bias. For this reason, it can be regarded as an insurance against poten-
tial unknown differences between units, and it should be used whenever possible. In some 
circumstances, it may be possible to identify or construct groups of experimental units 
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expected to have similar responses in the absence of any treatment effects. This process is 
known as blocking. A block is a subset of the experimental material within which experi-
mental units are expected to be homogeneous, with more heterogeneity expected between 
experimental units in different blocks. In the analysis of experimental data, variation due 
to blocks can be separated from background variation and, if there are differences among 
blocks, this separation will increase the precision of treatment comparisons by reducing 
the estimate of the unit-to-unit background variability. An appropriate use of these three 
design principles will give confidence that any treatment differences observed are real and 
not due to some chance combination of circumstances, and will also enable the maximum 
amount of information to be obtained from the available resources. We now discuss each 
of these principles in more detail.

3.1.1 Replication

The natural background variation among experimental units means that it is necessary to 
replicate the application of each treatment to several experimental units. This replication 
serves two important purposes. First, by repeating each treatment on several experimental 
units, we get a more reliable estimate of the effect of each treatment. Second, and possibly 
more importantly, the replicated observations provide an estimate of the background vari-
ation between units, which we can use to assess whether treatments differ and to indicate 
the precision associated with the estimated treatment effect. Usually each treatment will 
be replicated an equal number of times, but in circumstances where particular treatments 
are of greater interest, it may be advantageous to have increased replication for those treat-
ments. Conversely, reduced replication may be used where resources for particular treat-
ments are either scarce or expensive, for example, seed for a new breeding line.

To illustrate some issues regarding replication, consider an experiment to compare two 
pesticide treatments (a standard and a new formulation) applied to six insect-net cages, 
each cage containing 10 aphids. The new formulation is applied to three cages selected 
at random, with the standard formulation applied to the remaining three cages. The rep-
lication of each treatment in this experiment is only three, even though 30 aphids have 
been treated with each pesticide and even if the measurement unit is the individual aphid, 
because each treatment is applied to a cage of aphids and so this is the experimental unit. 
The individual aphids here are an example of pseudo-replicates. Pseudo-replication 
describes the situation in which multiple measurements are taken from each experimental 
unit. This can be a very useful experimental technique, but must be properly incorpo-
rated into any statistical analysis, which may otherwise produce an incorrect estimate 
of the between-unit variability (usually too small), possibly leading to incorrect conclu-
sions about the importance of treatment effects. Pseudo-replication usually causes prob-
lems when the smallest level of experimental material (i.e. the measurement unit, here, 
the aphid) is wrongly identified as the experimental unit in a statistical analysis, in place 
of the level at which treatments were actually applied (here, the cage). As a rule of thumb, 
replication needs to occur at the level at which the treatments have been applied to be con-
sidered ‘real’. Consider the following examples of designs for experiments.

• Twelve pots, each containing four plants at the three-leaf stage, with six treat-
ments (A–F) each applied to two of the pots with the allocation made at random 
(Figure 3.1). Treatments were applied to pots, and so the pot is the experimental 
unit and the replication of each treatment is two. Measurements from individual 
plants are pseudo-replicates.
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• A field experiment consisting of 12 plots, with two treatments (A and B) each applied 
to six of the plots selected at random (Figure 3.2). One soil sample was taken per plot, 
and labelled by the treatment and replicate number, giving samples A1 … A6 and B1 
… B6. The soil samples from the six replicate plots for each treatment (e.g. A1 … A6) 
were bulked (combined) together and mixed thoroughly and six sub-samples taken 
and measured. These sub-samples were labelled as a1 … a6 and b1 … b6. In this case, 
although treatments were originally applied to plots, at the analysis stage there is 
only a single replicate for each treatment because samples from independent plots 
have been bulked and the sub-samples are not independent. The sub-samples are 
pseudo-replicates and give information on the homogeneity of the bulked sample 
rather than on the variation between plots. Ideally, samples from each plot should 
have been kept separate, giving six true replicates for each treatment.

• Two controlled environment (CE) cabinets, one at 10°C and one at 20°C, each 
containing eight seed trays, with two different watering regimes (A and B) each 
applied to four trays chosen at random within each cabinet (Figure 3.3). Both 
temperature and watering regime are considered as treatments here. The experi-
mental units for watering regime are the seed trays and each watering regime is 
applied to eight independent seed trays, giving replication of eight. The experi-
mental units for temperature are the cabinets, and the temperature treatments are 
unreplicated. To achieve replication of temperature, it would be necessary to use 
another two cabinets, or to repeat the study under the same controlled conditions 
with a new randomization of both factors.

E A

C D

F E

B A

C F

B D

FIGURE 3.1
Design for an experiment with four plants (•) in each of 12 pots with treatments (A–F) applied to pots.

B1 A1 B2 A2

A3 B3 A4 A5

B4 B5 A6 B6

A1

A2
A3 A4 A5

A6

A

a1 a2 a3 a4
a5

a6

B1

B2
B3 B4 B5

B6

B

b1 b2 b3 b4
b5

b6

FIGURE 3.2
A two-stage design. The first stage (left) is a field trial with 12 plots and two treatments (A and B). A soil sample 
is taken from each plot and labelled by its treatment and replicate (A1–A6 and B1–B6). At the second stage, sam-
ples from each treatment are mixed together (bulked) then sub-sampled. Sub-samples from each bulked sample 
are labelled by lower-case letters and sample number and then measured.
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The last of these examples shows that experimental units can occur at several different 
levels within a structure, and may differ between treatment factors. Therefore, one level 
of structure may represent pseudo-replicates for one type of treatment and real replicates 
for another.

It is also important to draw the distinction between technical and biological replication. 
Technical replication occurs when several measurements are taken from the same biolog-
ical material, while biological replication occurs when measurements are taken from sev-
eral independent biological subjects. The use of adequate biological replication is required 
to make inferences valid for the population from which the samples were obtained, rather 
than for a single individual. Technical replication is always pseudo-replication, but biolog-
ical replication may correspond to either pseudo-replication or true replication, depending 
on the context. It is clearly important to recognize when measurements are pseudo-repli-
cates that do not increase treatment replication. Note however, that technical replication 
can be useful in increasing precision where measurement is seriously subject to error, 
provided that it is properly accounted for in the statistical analysis. We give an example of 
an analysis accounting for pseudo-replication in Section 7.5.

3.1.2 Randomization

Randomization is required to ensure the fair allocation of treatments to units to guard 
against bias, and to cope with the natural variation between experimental units. In the 
simplest case, randomization requires that each permutation of the set of treatments has 
an equal probability of occurring, so that (for equal replication) every experimental unit 
has an equal chance of receiving any treatment. Hence, each treatment is equally likely to 
be applied to ‘good’ units as to ‘bad’ units. Where randomization has not taken place, there 
will always be a question about possible bias in the experiment.

To obtain a proper randomization for a given design, a method is required for assigning 
treatments to experimental units at random. We use the convention that treatments get 
assigned to experimental units, though the opposite approach can also be used. So, for 
example, for an experiment comprising two treatments each replicated six times, we might 
write A and B on six pieces of paper each, to represent the six replicates of each treatment, 
and put these in a bag and draw (without replacement and without looking) to obtain a 
sequence which allocates treatments to units 1 … 12. Alternative approaches could use 
six tokens of each of two different colours, or six playing cards from each of two different 

B A

B B

A A

A B

A B

A A

B B

A B

10°C 20°C

FIGURE 3.3
Design for an experiment with eight trays, with two watering regimes (A and B) applied within each of two CE 
rooms, with each room operating at a different temperature (10°C or 20°C).
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suits, in the same way. Random number tables can also be used for allocating treatments 
to units, though care is needed to define the protocol where too many repeats of a treat-
ment occur in the random sequence. However, most randomizations are now done via 
statistical software. The mechanics of the process are unimportant as long as the property 
of equal probability for each permutation of treatments is preserved – this is discussed 
further in Example 3.1. Randomization ensures that any (possibly unconscious) bias of the 
experimenter (e.g. a tendency to assign the biggest plants to their favoured treatment) is 
avoided and that any unknown differences between the units are unlikely to consistently 
favour particular treatments.

To reinforce objectivity in some areas of research, particularly medical research, trials 
are carried out as either single- or double-blind trials. In a single-blind trial, the subject 
does not know which treatment has been allocated, while in a double-blind trial, neither 
the subject nor the investigator knows which treatment has been applied. In plant science, 
the perception of the subject is not considered relevant. However, the perception of the 
investigator measuring or assessing the experimental material could be influenced (pos-
sibly unconsciously) by their expectation of the applied treatment. It is therefore good 
practice to make experimental measurements (especially subjective assessments) without 
knowledge of the treatment allocation as far as possible. For example, in field trials, this 
can sometimes be achieved by the use of a field plan with plot numbers marked but not 
treatments.

Randomization leads to estimates of treatment differences that are unbiased when 
considered across the whole set of possible randomizations. However, this does not 
guarantee that any individual randomization will produce unbiased results. For exam-
ple, all instances of one treatment may be assigned to larger plants by chance. For this 
reason, experimental units should be chosen to be as homogeneous as possible while 
still being representative of the population of interest. Selecting homogeneous units has 
the added advantage of reducing the background variation or noise. Where it is not pos-
sible to select a completely homogenous set of experimental units, the units need to be 
grouped into sets (blocks) of more homogeneous experimental units to avoid potential 
bias (see Section 3.1.3). Sometimes, even where the units are thought to be homogeneous, 
a randomization can give cause for concern. For example, for 12 pots arranged in a line 
with two treatments (labelled A and B) each replicated six times, consider the following 
randomization

 A A A A A A B B B B B B.

This particular randomization does not look random, but can occur (with probability 1 in 
924). If we are not happy to accept this randomization, it is probably an indication that we 
do not consider the experimental units to be completely homogeneous, so that some sort 
of blocking is needed.

EXAMPLE 3.1: RANDOMIZATION

The efficacy of a new pesticide is to be tested in the field with 15 plots of size 5 m × 10 m 
arranged in a 3 × 5 array. Five plots will be sprayed with the pesticide and 10 will be 
untreated (controls) for comparison. In this case, extra replication of the control treat-
ment is used to obtain a good estimate of background variability and because the new 
pesticide is available in only small amounts. We evaluate two methods of determining 
a randomization for this experiment and consider whether each of the methods gives a 
valid randomization, i.e. with equal probability for each permutation of treatment effects.
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First, we use a pack of cards. We might take 15 cards: five red cards to represent the 
pesticide treatment and 10 black cards to represent the control. We shuffle the cards 
 (randomization), then deal them out in shuffled order to allocate treatments to plots (in 
order 1–15) to get, for example, the randomization shown in Table 3.1.

Is this a valid randomization? Let us consider the process. Assuming a fair shuffle, 
when we pick the first card we have a probability of 5/15 of picking the pesticide treat-
ment for the first plot (and 10/15 of picking the control). These probabilities change as 
the allocation proceeds. For example, if the first plot is allocated the pesticide treatment, 
when we pick the second card we have a probability of 4/14 of the second plot also being 
allocated the pesticide treatment (as we have four red cards out of 14 left), and so on. With 
this method, the probability of plots 1–5 all being allocated the pesticide treatment is 
1/3003 (= 5/15 × 4/14 × 3/13 × 2/12 × 1/11). This is the same, for example, as the probabil-
ity of plots 11–15 all being allocated the pesticide treatment (equivalent to the probability 
of plots 1–10 being allocated the control, i.e. 10/15 × 9/14 × … × 2/7 × 1/6 = 1/3003). There 
are, in fact, 3003 possible permutations of five pesticide-treated plots and 10 control plots, 
calculated as the factorial function of 15 (the number of plots) divided by the product of 
the factorial function of five (the number of pesticide-treated plots) and the factorial func-
tion of 10 (the number of control plots):

 

15
5 10

15 14 13 2 1
5 4 3 2 1 10 9 2 1

15 14 13

!
! !×

= × × × × ×
× × × ×( ) × × × × ×( )

= × × ×

…
…

112 11
5 4 3 2 1

3003

×
× × × ×

=  .

With this randomization approach, each of these permutations is equally likely.
An alternative, and perhaps at first sight simpler, approach is to toss a coin to construct 

the randomization, with heads corresponding to the pesticide treatment, and tails cor-
responding to the control. Working through the plots one by one, we toss the coin once 
for each plot, allocating the pesticide treatment to the plot if it comes up heads (subject 
to a maximum of five pesticide plots), and allocating the control treatment to the plot if it 
comes up tails (subject to a maximum of 10 control plots). Is this a valid randomization? 
Let us again consider the process. We have a probability of 1/2 (assuming a fair coin) of 
allocating pesticide to the first plot. The second coin toss takes no account of the alloca-
tion for the first plot, so again we have probability 1/2 of pesticide being allocated to the 
second plot, and so on. With this method, the probability of plots 1–5 being allocated 
the pesticide treatment is 1/32 (= 1/2 × 1/2 × 1/2 × 1/2 × 1/2). In contrast, the probability 
of plots 11–15 being allocated the pesticide treatment (i.e. plots 1–10 being allocated the 

TABLE 3.1

Experimental Layout Achieved Using Randomization by 
Playing Cards for a Field Trial with 15 Plots (Numbered 
1–15) and Two Treatments: A Pesticide Treatment (Labelled 
P) with Five Replicates and a Control Treatment (Labelled 
C) with 10 Replicates (Example 3.1)

1 2 3 4 5
P P C P C

6 7 8 9 10
C C P C P

11 12 13 14 15
C C C C C
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control) is (1/2)10 (= 1/1024). The probabilities of these different permutations are obvi-
ously not the same, and the probability of any particular permutation depends on how 
we number the plots!

It is clear that the two processes are not equivalent. The ‘coin tossing’ approach gives 
an invalid randomization, with different permutations having different probabilities. 
By contrast, the ‘card shuffling’ approach associates the same probability with each per-
mutation, and therefore provides a valid randomization. This example illustrates some 
of the issues that must be considered when you derive a randomization scheme, and 
that are automatically accounted for by statistical software.

Some other examples of randomization are presented in Figures 3.1 to 3.3 and in Section 
3.3. Note that if an experiment is repeated, then a new randomization should be generated 
each time the design is used; it is not statistically valid (or sensible) to generate a single 
randomization and then to use it repeatedly.

3.1.3 Blocking

It is desirable for the set of experimental units that are used to compare treatments to 
be reasonably uniform (homogeneous) in their natural response, as this decreases our 
estimate of the background variation, thus increasing precision and the potential for the 
experiment to detect small treatment differences. So, if the experimental units are intrinsi-
cally diverse (heterogeneous), then the experiment is likely to be insensitive. Further, as 
noted in Section 3.1.2, using a set of homogeneous units increases the chances of a fair 
comparison between treatments. However, it is not always possible to obtain a sufficient 
number of homogeneous experimental units for a whole experiment and, even if it is pos-
sible, it might not be desirable if it means restricting the frame of reference for the experi-
ment. In such cases, it might be possible to identify groups of experimental units such that 
the units within each group are reasonably homogeneous, but with different underlying 
responses between groups. These groups of units can then be considered as blocks within 
the design. Blocking the units in this way potentially increases the precision of an experi-
ment, as comparisons between treatments within blocks are made against a more uniform 
background. In this sense, blocking is said to be used for the control of variation, and for 
this reason is also known as local control.

The term block originated in agricultural experiments, where a block corresponded to a 
set of contiguous field plots; however, the specification of blocking can take more general 
forms, including the recognition of any physical structure present in the experiment. We 
often use the term ‘block’ as synonymous with ‘structure’. Blocks may therefore be defined 
according to proximity of units in space (e.g. neighbouring plots), proximity of units in 
time (e.g. units measured in the same day or hour), units with similar physical character-
istics (e.g. size of plant, age of insect), or logistical factors (e.g. machine, technician). Note 
that the number of units per block should ideally be determined by consideration of the 
uniformity or structure of experimental units and not by what is convenient in relation to 
the number of experimental treatments.

Consider the following examples of types and causes of heterogeneity among experi-
mental units, which can be addressed by the use of blocking.

• Field characteristics. A slope, or fertility or pH trend across a field, or local pest prob-
lems (e.g. pigeons next to woodland) may be present. Blocks are usually formed 
from sets of contiguous plots that are expected to be similar in as many respects 
as possible. Occasionally, blocks may be formed from non-contiguous plots with 
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similar properties, for example, soil pH, but, in such cases, the other spatial char-
acteristics need to be reasonably homogeneous.

• Glasshouse characteristics. Differential shade or temperature due to positioning 
with respect to walls and doors are common in glasshouses. Blocks are usually 
formed from sets of trays or pots placed close together and hence in similar envi-
ronmental conditions.

• Time of measurement. Some experiments may be processed over a lengthy period, 
and time of measurement may have a systematic effect on results. In the laboratory, 
there may be a limit to the number of samples that can be measured in one batch, 
and equipment may give slightly different readings on different days. In either case, 
a set of units processed within the same time period can be considered as a block.

• Investigator. For subjective measures, such as visual scores, individuals often per-
ceive pre-determined scores differently. However, even in more objective situa-
tions, for example, an investigator following a standard protocol, the use of subtly 
different procedures can lead to systematic differences in results. If several differ-
ent investigators are scoring material or carrying out a laboratory process, then it 
makes sense to regard each person as a block.

• Batches of chemical, of plants, or of other organisms such as insects. Again, if there is 
any possibility of (even small) differences between batches, then batches should 
be considered as blocks.

• General structure. There will often be a natural structure in experimental mate-
rial. For example, trays of plants may be held on shelves within a CE cabinet. 
Conditions are more similar for plants within the same tray, for trays on the same 
shelf, and for shelves within the same cabinet (in the case of several cabinets), so 
all of these levels of structure should be considered as possible blocking factors.

In each of the examples above, information on the causes of heterogeneity is used to define 
blocks of reasonably homogeneous units and treatments can then be assigned at random 
to units within blocks. Note that each block might not be able to contain the full set of 
treatments (see Section 3.3.5), and that all blocks might not even contain the same numbers 
of experimental units. The randomization process needs to take account of the structure 
of the blocks, so that each treatment has the same probability of being applied to any unit 
within each block. If there are large differences between blocks, this also ensures a fairer 
allocation of treatments to units, as each treatment will occur within several (often all) 
blocks. For this reason, blocking can be seen as a set of restrictions on the randomiza-
tion of treatments to the experimental units. We consider this in more detail for specific 
designs later (Section 3.3). Note that although blocking is generally intended to increase 
the precision of treatment comparisons where groups of heterogeneous units are present, 
the precision may decrease if too much blocking is used where there is no heterogeneity.

3.2 Forms of Experimental Structure

To successfully design, and later analyse, an experiment, it is necessary to identify all com-
ponents of the experiment, i.e. both the treatments imposed and the structure of the units. 
In Section 1.3, we partitioned the systematic part of our mathematical model into two 
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components: the explanatory component describes the treatments present and the struc-
tural component describes the blocking, or other structure, of the experimental units. We 
describe both components using factors which label the different groups present. Often, 
several factors are required to describe each component fully. For example, in a CE experi-
ment where trays were placed on shelves within cabinets, we need factors to label each of 
the cabinets, shelves and trays to fully describe the structure. Similarly, a set of experimen-
tal treatments may be constructed from an underlying set of treatment factors. A factorial 
treatment structure consists of all possible experimental treatments constructed by taking 
one level from each of a set of treatment factors; this gives a particularly efficient form of 
design and is discussed further in Sections 8.2 and 8.3.

We write our model components using a symbolic notation similar to that commonly 
used in statistical software. To use this notation effectively, we first need to understand 
two different types of relationships between factors, namely nested and crossed structures.

Nested structures are used to describe hierarchical relationships. These most often 
occur within the structural component, but also occasionally within the explanatory 
component (e.g. see Section 8.4). A nested structure describes the situation where multi-
ple units at one structural level are entirely contained within units at a higher level, and 
there is no direct relationship between units with the same label at the lower level. For 
example, consider an experiment with different treatments to be applied to four leaves 
(factor Leaf, with four levels) within each of 10 plants (factor Plant, with 10 levels). Leaves 
within plants are the experimental units, and we consider the Leaf factor to be nested 
within the Plant factor, written symbolically as Plant/Leaf. In this hierarchical structure, 
there is no association between leaves with the same label across plants, for example 
there is no association between leaf 1 on plant 1 and leaf 1 on plant 2. The / (forward 
slash) operator is used to indicate a nested relationship. In fact, this operator generates 
two separate model terms, as

 Plant/Leaf = Plant + Plant.Leaf

The first term consists of the Plant factor alone, and labels each of the 10 individual plants. 
In the second term, the . (dot) operator generates all combinations of levels of the two fac-
tors, in this case labelling the 40 individual leaves. These two terms label the units within 
the two levels of the design.

Crossed structures occur when two factors are used to classify experimental units 
both independently and simultaneously. This type of structure occurs frequently within 
both the explanatory and structural components of the model. For example, consider 
a laboratory experiment to examine an extraction procedure in which three different 
filtering methods (factor Filter, with three levels) are tested with four different reagents 
(factor Reagent, with four levels), giving 12 experimental treatments in total. Both fac-
tors act simultaneously, and the crossed structure can be written as Filter*Reagent. In 
a crossed structure, there is an association between units with the same level of either 
factor. The * (star) operator indicates a crossed relationship and again generates several 
model terms, as

 Filter*Reagent = Filter + Reagent + Filter.Reagent

The first two terms are the individual factors, and the third term labels all combinations 
of the two factors, here the 12 individual treatments. The interpretation of these terms is 
discussed further in Section 8.2.
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In the structural component of the model, the terms generated describe different levels 
of the design at which variation may occur; these different levels are known as strata. For 
example, the crossed structure of a rectangular layout, Row*Column, generates three strata 
(Row, Column and Row.Column) and the nested structure Plant/Leaf generates two strata 
(Plant and Plant.Leaf).

In general, either of the model components may contain nested or crossed relationships or 
both. Examples 3.2 and 3.3 describe some specific situations in the context of the structural 
component; in Chapter 8, we consider examples in the context of the explanatory component.

EXAMPLE 3.2: NESTED STRUCTURAL FACTORS

An experiment is set up with two identical CE rooms with three trays, each containing 
six pots, within each room (see Figure 3.4), with the potential to allocate different treat-
ments at both the tray and pot levels.

The CE rooms can be considered as the highest level of structure, with trays within 
rooms as the middle level, and pots within trays as the lowest level. This nested struc-
ture thus has multiple units at any one level (e.g. trays) completely contained within 
each unit at the level above (e.g. rooms). We can verify that this is a nested structure by 
noting that there is no association between tray 1 in room 1 and tray 1 in room 2, and 
similarly no association between pots with the same label in different trays. The struc-
tural factors can be denoted as Room (two levels), Tray (trays labelled within rooms, 
three levels) and Pot (pots labelled within trays, six levels) and we can write this as

Structural component: Room/Tray/Pot

which can be expanded as

Structural component: Room + Room.Tray + Room.Tray.Pot

The three terms label the three strata, or levels of the hierarchy: the individual rooms 
(term Room), the individual trays (term Room.Tray) and the individual pots (term 
Room.Tray.Pot). The appropriate experimental unit for the application of any treatment 
must then be decided as a separate exercise.

CE rooms

Trays

Pots

A

FIGURE 3.4
A nested structure with six pots per tray and three trays per CE room (Example 3.2).
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EXAMPLE 3.3: CROSSED AND NESTED STRUCTURAL FACTORS

Consider an experiment where a large set of plant samples are to be processed by a 
machine. There are two machines that could be used (factor Machine, with two levels) 
and two scientists available to do the work (factor Scientist, also with two levels). We 
might want to allow for potential differences in results both between scientists and 
between machines. If we want to separate the effects of the different scientists from 
the effects of the two machines, then both scientists must use both machines. So an 
appropriate design might allocate four sets of samples to be processed by the four 
machine-by-scientist combinations. Each of the machine-by-scientist combinations can 
be considered as a block (see Figure 3.5).

Because there may be an association between samples processed either by the same 
machine or by the same scientist, this is a crossed relationship. The structure of the four 
blocks can then be written with our symbolic notation as

 Machine*Scientist

which can be expanded as

 Machine + Scientist + Machine.Scientist

These three terms, or strata, describe an overall effect for each machine, an overall effect 
for each scientist, and a combined effect for each machine-by-scientist combination. 
There is no association across samples processed by different machine-by-scientist 
combinations, and so samples can be considered to be nested within these blocks. The 
full structure can thus be written as

Structural component: (Machine*Scientist)/Sample

and expanded as

Structural component: Machine + Scientist + Machine.Scientist
 + Machine.Scientist.Sample

Machine 1 Machine 2

SamplesScientist 1

Scientist 2

FIGURE 3.5
A crossed and nested structure with three samples within each of four machine-by-scientist combinations 
(Example 3.3).
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So the full structure has four strata: the three described above, plus a fourth that labels 
the full set of individual samples. One advantage of using the crossed structure at the 
higher level is that it allows us to establish whether differences between scientists and 
machines are present, and to estimate their relative size and potential impact on the 
results. This information can be useful in designing future experiments although, in 
practice, we would require several repeats of this structure to get reliable estimates of 
the different sources of variation. An alternative structure for this experiment might 
combine (or, in statistical terminology, confound) the scientist and machine effects, so 
that each scientist uses just one of the two machines. In this case, the effects of the two 
scientists and the effects of the two machines would not be separable. Whether this is 
important depends on the information required from the experiment: this confounded 
blocking still achieves the main aim of separating block variation from the background 
variation, but does not allow us to compare the relative influence of the scientists and 
machines used in the process.

The symbolic notation for model formulae that we have used here was introduced by 
Wilkinson and Rogers (1973) and is used within GenStat. Unfortunately, conventions for 
model specification differ somewhat between statistical packages. For example, the R 
package uses the : (colon) operator where we have used the . (dot) operator. Details can be 
found by consulting software documentation.

To define a model fully, we need to specify in full both the explanatory and structural 
components. For analysis, we also need to define the response variable to be analysed. 
In the examples above, and throughout this book, we have included the individual units 
within the structural model. This is not strictly necessary, as the individual units obviously 
correspond to individual observations. However, we believe that retention of information 
on the full design structure as well as the treatment factors from an experiment is good 
practice. For example, unless we retain full information on the design, we cannot use all of 
the diagnostic procedures described in Chapter 5; we cannot plot residuals on the experi-
mental layout if we do not know where each unit was placed. If a few pots in a corner of 
a glasshouse behave differently to the rest, the cause may be obvious when observations 
are plotted on the experimental layout but not when examined by treatment classification. 
Unfortunately, it is not common practice to record this information, for example, we have 
been unable to determine the full experimental layout for many of the examples in this 
book. Where this is the case, we use dummy structural factors, for example, we use factor 
DPot, to arbitrarily label pots, with the D prefix indicating a dummy factor. Treatment fac-
tors can sometimes be used as dummy structural factors, but we believe that this practice 
is confusing and prefer to avoid it. We discuss this further at the end of Section 7.3.

Finally, we mention two concepts often used to describe the structure of designs: orthog-
onality and balance. Two factors are said to be orthogonal if the estimated effects for each 
factor are the same regardless of whether the other term is included or not in the model. A 
more rigorous mathematical definition of orthogonality is beyond the scope of this book 
(but details can be found in Bailey, 2008). Most of the designs that we consider in this book 
are orthogonal, and the concept and consequences of non-orthogonality are discussed in 
Chapter 11. The concept of balance refers to information on treatment differences. In the 
simplest case of an unstructured set of experiment units, a design is balanced if the preci-
sion of all treatment comparisons is equal. For a structured set of units, a design is bal-
anced if the precision of all treatment comparisons is equal within each stratum. Most of 
the designs that we consider in this book are balanced, and the complications introduced 
by unbalanced designs are discussed within Chapters 11 and 16.
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3.3 Common Forms of Design for Experiments

There are many types of statistical design for experiments, which differ from one another 
in their complexity and in their statistical properties. In the following sections, we describe 
briefly some common designs illustrated using a simple treatment structure (more com-
plex treatment structures are considered in Chapter 8).

3.3.1 The Completely Randomized Design

The completely randomized design (CRD) is the simplest form of design and is appropri-
ate if the experimental units are unstructured and homogeneous, so that there is no need 
for any form of blocking. The random allocation of treatments to experimental units is not 
constrained in any way, so that each treatment is equally likely to be allocated to each unit. 
This is the only case in which we omit the structural component from our model, as this 
comprises only a single factor which indexes each observation.

EXAMPLE 3.4: CALCIUM POT TRIAL

An experiment was devised to investigate the effect of differences in soil calcium on 
the root growth of plants. The experimental material consisted of 20 pots, each con-
taining one plant, arranged in a grid with four rows and five columns, under uniform 
controlled conditions. The treatments comprised four relative concentrations of calcium 
(A = 1, B = 5, C = 10, D = 20). Each treatment was applied to five pots selected at random 
to give a CRD. The layout for this design is shown in Table 3.2.

The main advantages of this design are that it is easy to set up and has a simple form of 
analysis. It is also flexible, as the statistical analysis is still simple if the replication varies 
between treatments or if data are missing for some units. The CRD also provides maximal 
information on the background unit-to-unit variation, as none of the between-unit infor-
mation is used to assess blocking. However, this is also a weakness of the design if hetero-
geneity among units is present, as this heterogeneity will inflate the background variation 
and decrease the precision of estimates of treatment differences. The statistical analysis for 
this design is presented in Chapter 4. 

TABLE 3.2

Randomization for the Calcium Pot Trial, with Pot 
Numbers (1–20), as a CRD with Four Treatments Labelled 
A–D, Each with Five Replicates (Example 3.4)

1 2 3 4 5
D A B C D

6 7 8 9 10
A D A C B

11 12 13 14 15
A C A D C
16 17 18 19 20
B D C B B
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3.3.2 The Randomized Complete Block Design

The randomized complete block design (RCBD) is the simplest design that includes 
blocking and is probably the most frequently used design. In this design, the number of 
experimental units in each block must be the same as the number of treatments. Within 
each block, treatments are then randomly assigned to experimental units with a different 
randomization for each block. The design is called complete because all treatments occur 
within each block. If we use factors Block to label the blocks, and Unit to label the units 
within each block, then this is a nested structure with two strata, represented using our 
symbolic notation as

Structural component: Block/Unit

or written in expanded form as

Structural component: Block + Block.Unit

EXAMPLE 3.5: POTATO YIELDS

An experiment was devised to investigate the effects of four different types of fungi-
cides (labelled F1, F2, F3, F4) on the yield of potatoes in field plots. An untreated control 
treatment (labelled Control) was also included to give a baseline comparison. In the 
field designated for the trial, heterogeneity was thought to be present at large scales, 
but suitable blocks of five field plots could be identified and so a RCBD with four blocks 
each of five plots could be used. The randomized layout is shown in Table 3.3. The struc-
tural component is written as

Structural component: Block/Plot

The RCBD is popular (and useful) because it includes some blocking to deal with hetero-
geneity between experimental units, while still being straightforward to manage and with 
a simple statistical analysis. Because each treatment occurs once in each block, this design 
is both orthogonal (treatments are orthogonal to blocks) and balanced (all treatment com-
parisons are made with equal precision). Details of statistical analysis for this design are 
presented in Chapter 7. A weakness of the design is that the block size must be equal to 
the number of treatments, and so the RCBD may be inefficient if the natural block size, as 
determined by the experimental material, is smaller than the number of treatments. The 
RCBD will also be inefficient if two independent sources of background heterogeneity are 
present. We introduce appropriate designs for these situations (the balanced incomplete 
block design and the Latin square design, respectively) below.

TABLE 3.3

Randomization for the Potato Yields Trial as a RCBD with Five Treatments 
in Four Blocks of Five Plots (Example 3.5)

Plot 1 Plot 2 Plot 3 Plot 4 Plot 5

Block 1 F3 Control F2 F1 F4
Block 2 F2 Control F3 F4 F1
Block 3 Control F2 F3 F4 F1
Block 4 F3 F2 F1 Control F4
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3.3.3 The Latin Square Design

The Latin square (LS) design is useful where patterns of heterogeneity are associated with 
two crossed structural factors with the same numbers of levels. Because this design was 
originally used for square layouts in field trials, the structural factors are often called Row 
and Column, corresponding to the spatial arrangement of the rows and columns of the 
layout, respectively. However, these factors often correspond to non-spatial factors, such as 
time of day and observer. Using our symbolic notation, we write the crossed structure as

 Structural component: Row*Column

or written in expanded form as

 Structural component: Row + Column + Row.Column

This structure has three strata. The number of treatments must be equal to the numbers 
of rows and columns, and the treatment allocation is such that each treatment appears 
exactly once in each row and once in each column (see Figure 3.6a).

Construction of a Latin square is more complex than for the RCBD, as the three-way 
inter-relationship between rows, columns and treatments must be preserved. Tables of 
standard Latin squares have been published for small numbers of treatments (e.g. see 
Cochran and Cox, 1957, or Fisher and Yates, 1963), but statistical software can be used to 
obtain Latin squares for any number of treatments. To generate a randomization, one stan-
dard square of the right size is first selected at random. The order of the columns is then 
randomized, followed by the order of the rows (as illustrated in Figure 3.6). This random-
ization preserves the structure of the design while giving a very large number of possible 
squares, and thus avoiding bias.

EXAMPLE 3.6: LUPIN TRIAL

An experiment was devised to investigate the effects of soil type and water availabil-
ity on the growth of lupins. The experiment was to be done with pots on a bench in a 
glasshouse, with a systematic trend running along the bench (left–right) as a result of a 
temperature gradient, and across the bench (up–down) because of differing light levels. 
The rows and columns within the array of pots were therefore considered as block-
ing factors with a crossed structure, and a LS design is appropriate. Four treatments, 
labelled CL, CH, SL and SH, representing different combinations of soil type (clay or 
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A C B
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R1 D B A C
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A B C D

B C D A

C D A B

D A B C

C1 C2 C3 C4

R1

R2

R3
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FIGURE 3.6
Randomization of a LS design. Rows, columns and treatments are labelled R1–R4, C1–C4 and A–D, respectively. 
(a) Start with a standard LS design, then (b) randomize the order of the columns and (c) finally randomize the 
order of the rows.



60 Statistical Methods in Biology

sand) and the amount of water supplied (low or high) were used. A randomized layout 
for a LS design for this experiment is shown in Table 3.4. It is straightforward to verify 
that each treatment can be found once in each row and once in each column and that 
each row or column contains all four treatments.

The main disadvantage of the LS design is the restriction that the number of rows, col-
umns and treatments must all be equal. This is discussed further in Section 9.1, where 
some extensions of the LS design are also described.

3.3.4 The Split-Plot Design

The split-plot (SP) design has a nested structure, and is used in the case where (at least) 
two treatment factors are present, with the levels of one treatment factor having to be 
applied to large experimental units while the levels of another treatment factor can be 
applied to smaller units. Here we consider a standard form of the SP design with two treat-
ment factors, A and B, with a crossed structure, and a nested structural component with 
three strata. The highest level of structure corresponds to complete replicates of the set of 
treatments, and we denote this level using the factor Block. Each block is then divided into 
a number of whole plots (factor WPlot), with levels of treatment factor A randomized to the 
whole plots separately within each block. Finally, each whole plot is divided into a number 
of subplots (factor Subplot), and the levels of factor B are randomized onto subplots within 
each whole plot. This design can be represented in symbolic form as

Explanatory component: A*B
Structural component: Block/WPlot/Subplot

EXAMPLE 3.7: WEED COMPETITION EXPERIMENT

A field trial was set up to study the competitive effects of three different weed species 
in winter wheat under different levels of water stress. Variation in water stress was 
provided by the presence or absence of irrigation, which could be applied only to large 
areas of land whereas the weed species could be applied to small plots. A SP design was 
therefore deemed suitable, with the two irrigation treatments (factor Irrigation, with two 
levels) applied to whole plots (factor WholePlot, with two levels). Each whole plot was 
split into four subplots (factor Subplot, with four levels), and a pre-determined popula-
tion of each weed species (Alopecurus myosuroides (black-grass), Galium aparine (cleavers) 
and Stellaria media (chickweed), abbreviated as Am, Ga and Sm, respectively) was sown 
in one of these four subplots. The remaining subplot within each whole plot had no 
weed seeds added, and it was used as a control. Factor Species was used to label the 

TABLE 3.4

Randomization for the Lupin Trial as a Latin Square Design with Four 
Treatments Labelled CH, CL, SH and SL (Example 3.6)

Column 1 Column 2 Column 3 Column 4

Row 1 CH SL CL SH
Row 2 CL SH CH SL
Row 3 SH CH SL CL
Row 4 SL CL SH CH
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four weed treatments, i.e. the three added populations and control. This structure was 
repeated another three times, giving four blocks (factor Block, with four levels), with a 
different randomization in each block, as shown in Table 3.5. The model for this design 
can be written in symbolic form as

Explanatory component: Irrigation*Species
Structural component: Block/WholePlot/SubPlot

The statistical analysis for, drawbacks of and variations on this design are discussed in 
Section 9.2.

3.3.5 The Balanced Incomplete Block Design

The balanced incomplete block design (BIBD) can be useful when there is only one block-
ing factor but the number of units per block is smaller than the number of treatments. In 
this case, each block can contain only a subset of the treatments, and designs with this 
property are known as incomplete block designs. A BIBD has the additional character-
istic of balance, which requires that all treatment comparisons have equal precision. This 
is achieved if the treatments have equal replication and each pair of treatments occurs 
together within a block exactly the same number of times over the whole experiment. If we 
again use factor Block to label the blocks, and factor Unit to label the units within blocks, 
then this design has the same nested blocking structure as the RCBD, represented as

Structural component: Block/Unit

Construction of a BIBD is more complex than for the RCBD, as the balanced inter-rela-
tionship between blocks and treatments must be preserved. Tables of standard BIBDs 
have been published (e.g. see Cochran and Cox, 1957, or Fisher and Yates, 1963) and can 
be used to generate a BIBD. These designs are also available in many statistical packages. 
The first step in construction is to choose a standard design with the right block size and 
number of treatments. The standard layout is then randomized first by randomization 
of the order of the blocks, and then randomization of the order of the treatments present 
within each block.

TABLE 3.5

Randomization for the Weed Competition Experiment as a Split-Plot Design with 
Two Whole-Plot Treatments (Irrigated, Highlighted in Grey, and Non-Irrigated) and 
Four Subplot Treatments (Weed Species Am, Sm, Ga or Control, –) (Example 3.7)

Block 1 Block 2 Block 3 Block 4

Whole plot 1

1 2 1 2 1 2 1 2
– Am – Ga Sm Ga Am –

3 4 3 4 3 4 3 4
Sm Ga Sm Am – Am Ga Sm

Whole plot 2

1 2 1 2 1 2 1 2
– Sm Am Ga Am Sm Ga Sm

3 4 3 4 3 4 3 4
Ga Am  – Sm  Ga –  Am –
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EXAMPLE 3.8: GRAIN PROTEIN CONTENT 

An experiment was devised to evaluate the grain protein content for six different variet-
ies of pea (labelled A, B, C, D, E and F). Five independent samples of grain were available 
for each variety. Only five samples (factor Sample, five levels) could be assessed within 
a session (factor Session, six levels), with possible heterogeneity between sessions, so 
a BIBD with six blocks (corresponding to sessions), each containing five units (corre-
sponding to samples) was used. The structural component was specified as

Structural component: Session/Sample

A randomized plan for this design is shown in Table 3.6. For this design each variety is 
replicated five times, as each appears in five of the six sessions, and any pair of varieties 
is present together in four sessions, for example, varieties E and F are both present in 
sessions 1, 2, 3 and 6.

One drawback of BIBDs is that the range of available designs is fairly limited: it is not 
always possible to construct a BIBD for a given number of treatments, number of blocks 
and block size (number of units per block). More details are given in Section 9.3.

3.3.6 Generating a Randomized Design

Once a design has been chosen, and the numbers of treatments and replicates have been 
defined, then a randomized layout or plan for the experiment can be generated. Most gen-
eral statistical software (including GenStat, R and SAS) have some facilities for generat-
ing standard designs, including most of those considered in this book. For non-standard 
designs (including some BIBDs), more specialist software, such as CycDesigN (see http:/
www.vsni.co.uk/software/cycdesign) must be used.

EXERCISES

 3.1 Suppose that you are planning an experiment to investigate the impact of nutrient 
deprivation on plant metabolites. You have four different nutrient levels to test, 
obtained by applying appropriate nutrients to four sub-samples from a single bag 
of base compost. The resulting volume of each nutrient level is sufficient for four 
seed trays (i.e. 16 seed trays in total), and six plants will be grown in each seed tray. 
To achieve the required growing conditions, a small CE cabinet will be used. The 
cabinet has four shelves, and you can fit four seed trays on each shelf in a 2 × 2 

TABLE 3.6

Randomization for Grain Protein Content Experiment as a BIBD with Six Treatments 
Labelled A–F in Six Sessions (Blocks), Each Containing Five Samples (Units) (Example 3.8)

Sample 1 Sample 2 Sample 3 Sample 4 Sample 5

Session 1 C F E B A
Session 2 C E F D A
Session 3 E D F C B
Session 4 A C B E D
Session 5 D B A C F
Session 6 E F A D B
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arrangement (Figure 3.7). Although the cabinet is supposed to provide a uniform 
environment, a technician suggests that light levels may vary between the shelves, 
and that this might affect plant growth. When they reach the required growth 
stage, the six plants from each seed tray will be bulked and processed together 
to form a single sample to be read by a machine. Your colleague tells you that the 
machine shows some drift over time, but that readings should stay stable across a 
set of up to six samples.

   How might you design this experiment to obtain an unbiased assessment of 
differences between the four nutrient levels? Consider and discuss the different 
factors which might affect your choice of design and produce a candidate design. 
You should consider both stages of the experiment and the following issues: 

• What is the experimental unit for the nutrient treatments?
• What are the sources of heterogeneity in the experimental process?
• How might you deal with this heterogeneity?
• How would you allocate the treatments to the experimental units?
• What replication do you have for each treatment?
• What are the advantages/disadvantages of your design?

  How would you modify your design if

 a. A temperature gradient was discovered between the front and back of the 
shelves

 b. You want to include a CO2 treatment that can only be applied to a whole CE 
cabinet and you obtain sufficient resources for 32 trays (eight for each nutrient 
level)

CE cabinet

Shelves

Tray of 
6 plants

FIGURE 3.7
Structure of a CE cabinet to be used for an experiment to investigate the impact of nutrient deprivation on plant 
metabolites (Exercise 3.1).
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 3.2 Identify the experimental unit, the replication for each treatment and whether 
pseudo-replication is present in the following experiments.
 a. A pot experiment with 12 circular pots in a 2 × 6 array, in a uniform environ-

ment. Each pot contains four plants at the three-leaf stage, and each of four 
treatments (labelled A–D) were applied at random to one plant per pot as 
shown in Figure 3.8.

 b. A field experiment with 12 homogeneous rectangular plots in a 3 × 4 grid. 
Two treatments (labelled A and B) were applied at random to six plots each 
(Figure 3.9). At harvest, 25 plants are to be sampled per plot, and the plants 
from each plot will be processed as a single batch for measurement.

 c. The field experiment described in part (b) (Figure 3.9) with the height of 25 
individual plants per plot measured and recorded in situ at 4-weekly intervals 
from tillering until harvest.

 3.3 Four replicates of each of four treatments, labelled A–D, are to be applied at ran-
dom to batches of aphids in 16 Petri dishes laid out in a 2 × 8 array (Figure 3.10). 
The environment is thought to be homogeneous. Use a pack of playing cards to 
determine an appropriate randomization for this experiment.

1 2 3 4 5 6

7 8 9 10 11 12

D B
A C
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B A

C B
D A
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B A

C A
B D

A D
B C

D B
A C

C D
B A

A D
B C

B C
A D

B A
C D

A C
D B

FIGURE 3.8
Experimental layout for a pot experiment with 12 pots and four treatments, labelled A–D, applied to plants 
within pots. Letters denote the positions of the plants and the treatment applied (Exercise 3.2a).

B A B A

A B A A

B A B B

FIGURE 3.9
Experimental layout for a field experiment with plots in a 3 × 4 grid, showing the allocation of treatments (A or 
B) to plots (Exercises 3.2b and c).
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 3.4 Four novel herbicides (labelled A–D) are to be compared with a commercial 
product (labelled P) and a hand-weeded control (labelled H) in a field trial, giv-
ing six treatments in total. The field available can accommodate 24 plots in an 
array of four columns running north to south, by six rows running west to east 
(Figure 3.11). The field has a known pH gradient running west to east, i.e. along 
rows, which may affect crop growth. Produce a RCBD which accounts for this 
gradient with a randomized allocation of treatments to plots using (a) a pack of 
playing cards, and (b) a standard six-sided die.

 3.5 The efficacy of six synthetic insect pheromones is to be tested in the field. Traps 
are baited with a single pheromone, deployed at dusk, left out overnight, then 
retrieved the next morning and the insect catches recorded. There is sufficient 
material to bait six traps with each pheromone.

4 5 6 7 8 1 2 3

9 10 11 12 13 14 15 16

FIGURE 3.10
Layout of 16 numbered Petri dishes for an aphid experiment using four replicates of four treatments 
(Exercise 3.3).

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

East

FIGURE 3.11
Layout (with numbered plots) for an experiment testing six treatments in a field with a pH gradient running 
from west to east (Exercise 3.4).
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 a. Consider how you might use a RCBD for this experiment if only six traps are 
available at any one time and all six traps will be placed in the same field, 
but a different field will be used each night. Are any structural factors con-
founded? What are the assumptions of this design? Write down the structural 
component for this design.

 b. How would you change your design if the same trap locations were to be used 
each night and the positions could not be considered homogeneous? Write 
down the structural component for this design.

 c. How might you modify your design if 18 traps are available at any one time? 
Under which conditions would designs based on CRD, RCBD or LS arrange-
ments be preferable?

 d. What design might you use if only four pheromones are to be tested, with six 
traps available at any one time, and enough material for nine replicates of each 
pheromone?

  3.6 The effect of temperature on the transmission of a virus by five aphid species is 
to be investigated. Three small growth chambers are available and three tem-
peratures will be tested. The temperature for each chamber can be set and then 
applies to the whole chamber, and each chamber can hold five plants in indi-
vidual pots. One aphid will be placed onto each plant using a clip cage. Forty-five 
plants and 15 aphids of each species are available. Assuming that chambers (and 
positions within chambers) can be considered homogeneous, suggest a design 
to test the effects of temperature and aphid species. What are the experimen-
tal units for each factor? Produce a randomized design for this experiment and 
write down the explanatory and structural components for the design. If you 
suspected that there were systematic differences between chambers, how would 
you modify your design? Write down the structural component for this new 
design.

  3.7 A field experiment was set up to investigate how invertebrate abundance is 
affected by the spatial structure and species composition of weed patches 
(Smith, 2007). Small weed patches were formed from three pots of plants in a 
tray. Species composition was varied by using different numbers of mayweed 
(M) or thistle (T) plants in the patch, i.e. 3M, 2M + 1T, 1M + 2T or 3T. Spatial 
structure was varied by changing the distance between patches (12 or 6 m). Five 
blocks of two whole plots were set up, with the two spacings allocated at random 
to whole plots within blocks. Each whole plot contained 16 patches laid out in a 
4 × 4 array with the designated spacing, with patches allocated to four replicates 
of each of the four species compositions according to a LS design. A different 
randomization was used within each whole plot. Write down the explanatory 
and structural components for this design.

 3.8 A glasshouse experiment to compare the effect of two nutrition regimes on the 
growth of three wheat varieties was set up as a RCBD with 12 blocks of six pots 
each, as shown in Figure 3.12. The treatments comprise the six combinations 
of nutrition regime (labelled N1, N2) and variety (labelled V1–V3). The blocks 
accommodate an expected temperature gradient running from the door to the 
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far end of the glasshouse. Several characteristics of each plant, including height 
and number of leaves, are to be recorded every week. Suggest acceptable proto-
cols for recording data if
 a. You are the only person available to take the measurements
 b. There are two people available to take the measurements

  Which protocols would be unacceptable and why?

1 2 3 4 5 6
N2
V2

7 8 9 10 11 12

13 14 15 16 17 18
N1
V2

19 20 21 22 23 24

25 26 27 28 29 30
N2
V3

31 32 33 34 35 36

37 38 39 40 41 42
N1
V1

43 44 45 46 47 48

49 50 51 52 53 54
N1
V3

55 56 57 58 59 60

61 62 63 64 65 66
N2
V1

67 68 69 70 71 72

Door
(cooler)

Far end
(warmer)

FIGURE 3.12
Layout of pots (labelled 1–72) as a RCBD in a greenhouse experiment to compare the effects of two nutrition 
regimes (N1 and N2) on the growth of three wheat varieties (V1, V2 and V3). Blocks (columns) contain six pots. 
One block shows treatment labels in addition to pot numbers (Exercise 3.8).


