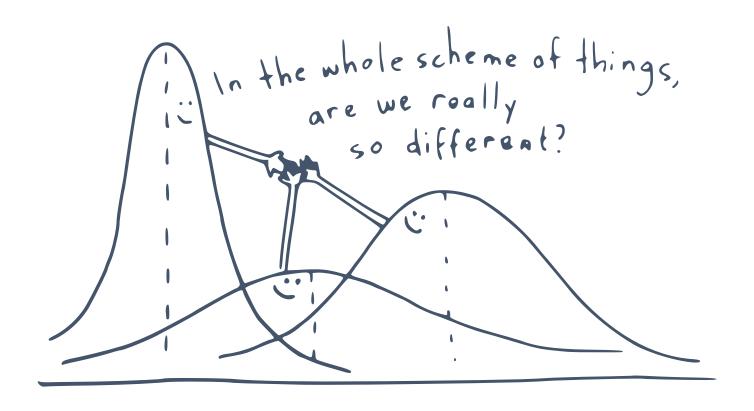
TP LBRAI2222 – Compléments de biométrie et plans expérimentaux



FEEDBACK TP6

TP 6 - 2023

Difficile

Très difficile

TP6 - 2024

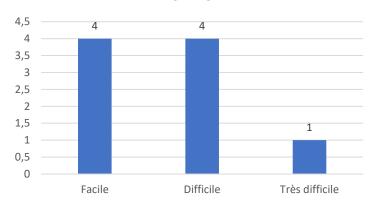
Facile

16

14 12

10

Très facile

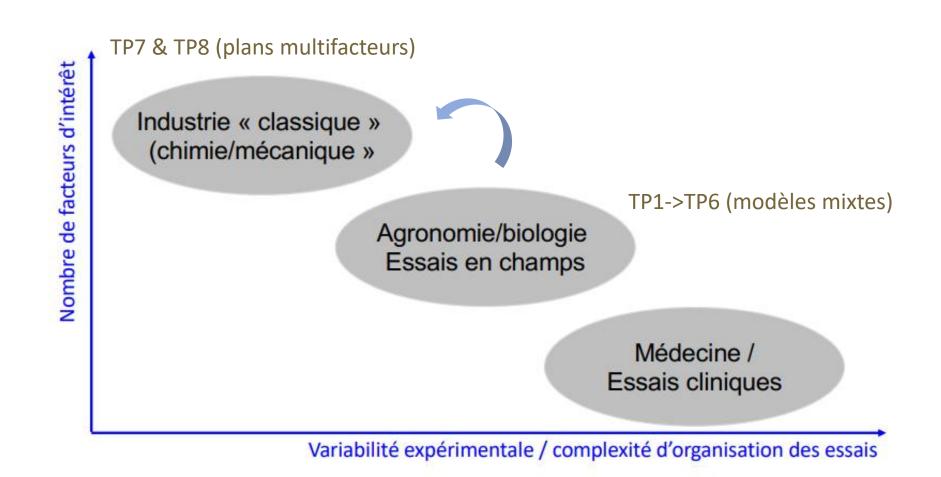




PLAN DES TRAVAUX PRATIQUES

- TP1 Modèles Linéaire Général (Rappel)
- TP2 Modèles hiérarchisés
- TP3 Modèles mixtes 1
- TP4 Puissance et réplication
- TP5 Modèles mixtes 2
- TP6 Choix de design et plans split plot
- TP7 Plans de criblage et plans factoriels fractionnaires
- TP8 Plans pour surface de réponse

PLANS D'EXPÉRIENCE MULTIFACTEURS

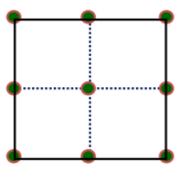


PLAN FACTORIEL COMPLET

Un plan factoriel complet $I_1 \times I_2 \times ... \times I_k$ à k facteurs est un plan formé de toutes les combinaisons des $I_1, I_2, ... I_k$ niveaux de k facteurs $X_1, X_2, ... X_k$.

ESTIME:

- toutes les interactions possibles
- les effets quadratiques, cubiques... (f(nbre de facteur))

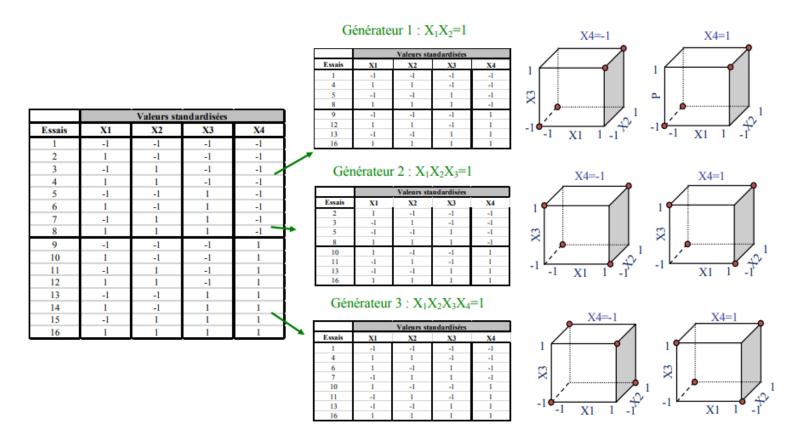


Plan factoriel complet 3²

Ces plans sont toujours très bons mais coûteux quand le nombre de facteurs augmente.

PLAN FACTORIEL FRACTIONNAIRE

Un plan factoriel fractionnaire 2^{k-r} à k facteurs est un plan résultant de r fractionnements successifs d'un plan factoriel complet 2^k



PLAN FACTORIEL FRACTIONNAIRE

Un plan factoriel fractionnaire 2^{k-r} à k facteurs est un plan résultant de r fractionnements successifs d'un plan factoriel complet 2^k

R=3 → modèle d'orde 1

R=4 → modèle d'ordre 1 et quelques interactions Xi*Xj

R=5 → modèle d'ordre 1 et toutes les interactions

k	r	N	Résolution	Générateurs
3	1	4	III	123 = ±1
4	1	8	IV	1234 = ±1
5	2	8	III	$124 = \pm 1, 135 = \pm 1$
	1	16	V	12345 = ±1
6	3	8	III	$124 = \pm 1, 135 = \pm 1, 236 = \pm 1$
	2	16	IV	$1235 = \pm 1, 2346 = \pm 1$
7	4	8	III	$124 = \pm 1, 135 = \pm 1, 236 = \pm 1, 1237 = \pm 1$
	3	16	IV	$1235 = \pm 1, 2346 = \pm 1, 1347 = \pm 1$
8	4	16	IV	$2345 = \pm 1$, $1346 = \pm 1$, $1237 = \pm 1$, $1248 = \pm 1$
9	5	16	III	$1235 = \pm 1, 2346 = \pm 1, 1347 = \pm 1,$
				1248 = ±1, 12349 = ±1
10	6	16	III	$1235 = \pm 1, 2346 = \pm 1, 1347 = \pm 1,$
				$1248 = \pm 1$, $12349 = \pm 1$, $12(10) = \pm 1$

Voir : Box, Hunter et Hunter : Statistics for experimenters

STANDARDISATION

LORSQUE LES FACTEURS SONT QUANTITATIFS

$$x_{standardis\acute{e}} = \frac{X - \overline{X}}{\max(X) - \min(X)} * 2$$

Facteur 1

$$Max = 1.6$$

Facteur 1 standardisé

$$Min = _{-1}$$

OBJECTIF

ESTIMATION DES PARAMÈTRES

Réduire la variance des <u>estimations</u> : $Var(\hat{\beta}) = (X'X)^{-1}$. σ^2

- -> (X'X)-1 diagonale = Orthogonalité
- -> réduire 1/N

1/N	0	0	0	0	0	0
0	1/N	0	0	0	0	0
0	0	1/N	0	0	0	0
0	0	0	1/N	0	0	0
0	0	0	0	1/N	0	0
0	0	0	0	0	1/N	0
_ 0	0	0	0	0	0	1/N

NB : Exemple pour 7 paramètres

ORTHOGONALITÉ

- les estimateurs des moindres carrés des différents effets $\hat{\theta}_1,\ldots,\hat{\theta}_m$ sont non-corrélés et indépendants sous l'hypothèse gaussienne.
- pour $l=1,\cdots,m$, l'expression de l'estimateur $\hat{\theta}_l$ ne dépend pas de la présence ou non des autres termes θ_i dans le modèle.