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Abstract

An important aim of the analysis of agricultural field trials is to obtain good predictions
for genotypic performance, by correcting for spatial effects. In practice these corrections
turn out to be complicated, since there can be different types of spatial effects; those due
to management interventions applied to the field plots and those due to various kinds of
erratic spatial trends. This paper presents models for field trials in which the random
spatial component consists of tensor product Penalized splines (P-splines). A special
ANOVA-type reformulation leads to five smooth additive spatial components, which form
the basis of a mixed model with five unknown variance components. On top of this spatial
field, effects of genotypes, blocks, replicates, and/or other sources of spatial variation are
described by a mixed model in a standard way. We show the relation between several
definitions of heritability and the effective dimension or the effective degrees of freedom
associated to the genetic component. The approach is illustrated with large-scale field
trial experiments. An R-package is provided.

1 Introduction

Spatial variation is common in agricultural field trials. Many factors combine to generate
micro-environments that differ from plot to plot, strongly influencing yield and other traits.
It is necessary to correct for them when estimating genotypic effects.

A part of the spatial variation can be attributed to systematic effects, caused by the way
the field was prepared before and during sowing or planting. A familiar example are row
and column effects, caused by the movements of machines during ploughing, tilling and other
procedures. It is relatively easy to add factors to a statistical model to account for them.

Random spatial variation such as for example fertility trends is harder to model. There
are no covariates (like row numbers) to relate it to, so it is necessary to include a model
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component for a random field. Roughly speaking, there are two main approaches to model
spatial trends: one based on spatial variance-covariance structures; and the other based on
smoothing techniques. In the first case, a spatially correlated stochastic component is in-
cluded into the spatial model. However, this is non-trivial, as correlation in two directions,
along the rows and columns of the field has to be modeled. To keep the effort manageable,
several assumptions need to be made, and it has become standard to consider separability
and stationarity (see e.g. Zimmerman and Harville, 1991). Important contributions in this
area are the separable autoregressive model proposed by Cullis and Gleeson (1991) and ex-
tended in Gilmour et al. (1997), the separable linear variance model discussed in Piepho and
Willians (2010), or the Bayesian first-differencing model in rows and columns given in Besag
and Hidgon (1999). As a complementary approach, smoothing methods model spatial trend
variation explicitly. The use of smoothing techniques in the agricultural context dates back
to Green et al. (1985), and it has been further described and extended, among others, by
Durban et al. (2003) and Verbyla et al. (1999). To the best of our knowledge, this modeling
technique has been mainly approached in the statistical literature in the one dimensional case,
i.e., through separate (or additive) smoothed trend effects along the rows and columns of the
field. However, while these approaches have proved useful for modeling large-scale depen-
dence (or global trend), they suffer from the limitation of not always being able to capture
small-scale dependence (local trend). As a consequence of this limitation, the inclusion of
spatially correlated components might still be necessary (Gilmour et al., 1997; Verbyla et al.,
1999).

As an alternative, this paper explores the use of two-dimensional smooth surfaces. We
propose the use of tensor product Penalized splines (P-splines, Eilers and Marx, 2003) to
explicitly model both sources of spatial dependence. P-splines were introduced by Eilers
and Marx (1996), as a simplification of a proposal by O’Sullivan (1986). P-splines approach
smoothing as penalized regression: a rich B-spline basis is combined with a penalty on (higher
order) differences of the B-spline coefficients to avoid overfitting, and estimation is based on
penalized ordinary least squares. As it will be seen, the mixed model representation of P-
splines (Currie and Durban, 2002; Wand, 2003) provides us with a general framework for the
analysis of field trials. It allows the inclusion of both extra fixed and random components,
such as genotypic effects or the correction for rows and columns. Besides, using nested B-
spline bases (Lee et al., 2013) the computational effort of our approach, which we call SpATS,
is moderate, even for large fields trials. Our SpATS model has a number of other attractive
properties: (1) an explicit estimate of the spatial trend in the field is obtained; (2) estimation
is stable and fast; (3) missing plots, even a large fraction of them, are easily handled; and
(4) extension to a non-normal response, along the lines of the generalized linear model, is
straightforward.

We should mention that our approach is not completely new in the agricultural literature.
In Taye and Njuho (2008) and Robbins et al. (2012) the authors discuss similar approaches
in the context of field experiments, and in forest research the topic has been covered by
Cappa and Cantet (2008). This paper goes one step further by proposing a fully anisotropic
penalized approach framed within the mixed-effects model context. Use is made of the P-
spline ANOVA-type (PS-ANOVA) approach presented in Lee et al. (2013), which gives rise
to a model with five smooth spatial components each having a clear interpretation. We also
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show the link between the generalized definitions of heritability proposed by Cullis et al. (2006)
and Oakey et al. (2006) and the notion of effective dimension of model components, a well-
known complexity measure in the smoothing context (Hastie and Tibshirani, 1990). Finally,
we provide software for the practical application of our proposal in a free and easy-to-use
R-package (R Core Team, 2016), called SpATS.

The rest of the paper is structured as follows. We start by motivating our approach in
Section 2. Section 3 presents background on B- and P-splines in one and two dimensions,
including their representation as mixed models. They form the basis for spatial models, which
are presented in Section 4. Simulations comparing our SpATS model and that of Gilmour
et al. (1997) can be found in Section 5 and Section 6 presents several applications to large-
scale field trials. A Discussion Section closes the paper. Some technical details have been
added as Appendices, where we also describe the R-package that accompany this paper.

2 Motivating example

Uniformity field trials are trials in which a single genotype or variety is evaluated. In practice,
the interest of such field trials is that its statistical analysis can help understanding the
different sources of spatial variation present in a field, and thus serve as guidance for the
design and subsequent analyses when genetic effects are to be evaluated. In this section
we present a series of analyses of a set of barley uniformity data discussed in the paper by
Williams and Luckett (1988). We focus here on presenting the big picture of our approach,
leaving the more technical details to subsequent sections.

In this experiment, plots were laid out in a 15 row by 48 column grid, and the phenotypic
trait of interest was yield. Figure 1(a) depicts the raw yield data. Note that there is a rather
complex spatial pattern, with patches presenting larger/smaller yield values. Let yi denotes
the yield data (in kg per hectare divided by 10) obtained at plot i (i = 1, . . . , 720), and ui and
vi the row and column position respectively, both centered and scaled. A common strategy
in the analysis of field trial experiments is to use the following statistical model as starting
point

y = 1720β0 +Zrcr +Zccc + ε, (1)

where y = (y1, . . . , y720)
t, 1n is a column vector of ones of length n, and cr = (cr1, . . . , cr15)

t

and cc = (cc1, . . . , cc48)
t are, respectively, the random effect coefficients for the rows and

columns with cr ∼ N
(
0, σ2rI15

)
and cc ∼ N

(
0, σ2cI48

)
and associated design matrices Zr

and Zc. Finally, the random error vector ε = (ε1, . . . , ε720)
t ∼ N

(
0, σ2I720

)
.

Figure 1(b) depicts the empirical best linear unbiased predictors (BLUPs) for the row and
column random factors. As can be observed, and especially for the rows, the BLUPs show a
clear evidence of a pattern, indicating that the independent Gaussian distribution assumption
does not hold. Besides, the residuals’ spatial plot (ε̂ = y− 1720β̂0 +Zrĉr +Zcĉc) shown also
in Figure 1(b) suggests that the complex spatial pattern has not been completely captured,
and thus a more complex statistical analysis is required. To that end, we propose a modeling
strategy based on incorporating a model (spatial) component that simultaneously accounts for
the spatial trend across both directions of the field. Specifically, a smooth bivariate surface,
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jointly defined over the row and column positions, is assumed

y = f (u,v) +Zrcr +Zccc + ε, (2)

where u = (u1, . . . , u720)
t, v = (v1, . . . , v720)

t, and f (u,v) = (f (u1, v1) , . . . , f (u720, v720))
t,

with f(·, ·) representing a smooth bivariate function. Note that the intercept, β0, is embedded
as part of f (u, v). To have a better understanding of the interpretation of f (·, ·), we can
further decompose it in a nested-type ANOVA structure

f (u,v) = 1nβ0 + uβ1 + vβ2 + u� vβ3︸ ︷︷ ︸
Bilinear polynomial

+ fu (u) + fv (v) + u� hv (v) + v � hu (u) + fu,v (u,v)︸ ︷︷ ︸
Smooth part

,

where � denotes the element-wise vector (matrix) product. There are now two components:
the bilinear polynomial and the smooth part. The bilinear (or parametric) component includes
the intercept (β0), the linear trends along the row (β1) and column (β2) directions, as well
as the linear interaction trend (β3). In addition, the smooth component is responsible for
modeling the deviation from this compound linear trend. Here,

• fu(u) is a smooth trend along the rows, identical for all columns (i.e., a main smooth
effect).

• fv(v) is a smooth trend along the columns, identical for all rows.

• vhu(u) and uhv(v) are linear-by-smooth interaction trends. For instance, uhv(v) is
a varying coefficient surface trend, consisting of functions, linear in the rows, for each
column, but with slopes that change smoothly along the columns, hv(v) (the same holds
for vhu(u)).

• fu,v(u, v) is a smooth-by-smooth interaction trend jointly defined over the row and
column directions.

The functions fu, fv, hu and hv are constructed with variations on one-dimensional P-
splines, while fu,v is based on tensor product P-splines. It may come as a surprise that six
components are introduced to model the surface f in (2) (the bilinear polynomial and the
five smooth trends). The reason is that this decomposition translates model (2) directly to a
standard mixed model. In fact, for each of the smooth components the desirable amount of
smoothing is computed using restricted maximum likelihood (REML, Patterson and Thomp-
son, 1971). This decomposition also allows to reduce the size of the interaction component
fu,v for very large fields, to save computation time (Lee et al., 2013). The technical details
will be presented in Section 3.

Figure 1(c) shows the estimated spatial trend across the field, i.e. f̂(·, ·), but excluding the
intercept. A nice property of our proposal is that it allows depicting the spatial trend in a grid
finer than the number of rows and columns, facilitating results interpretation. Note that we
recover quite successfully the spatial variation observed in the raw data. The residuals’ spatial
plot and BLUPs for cr and cc shown also in Figure 1(c) suggest that the spatial independence
assumption for the error vector ε might be appropriate, and that no trend is now present
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Figure 1: For the barley uniformity data: Raw data, residuals’ spatial plot, best linear un-
biased predictions (BLUPs) for the row and column random factors and contour plot of the
estimated spatial trend based on the models including (b) only the row and column random
factors (Simple model) (c) the smooth spatial trend (Full model)

in the BLUPs. Figure 2 shows the bilinear and smooth components of the ANOVA-type
decomposition discussed above. Note that the estimated smooth functions defined over the
rows (f̂u) and columns (f̂v) capture the trends observed in the BLUPs for the row and column
analysis (model (1) and Figure 1(b)). When we compare the estimated linear-by-smooth
interactions trends, we observe that the contribution of vĥu(u) to the fitted spatial trend is
stronger than that due to uĥv(v), but both are mainly responsible for modeling local behaviors
at the edges of the field. Finally, the smooth-by-smooth interaction term recovers the local
patches observed in the raw data, that the other components would not be able to capture.

3 Background on P-splines

This section provides background information on P-splines, their tensor products and equiva-
lent mixed model formulations. We refer the interested reader to Eilers and Marx (2010) and
Eilers et al. (2015) for an extensive account of many aspects of P-splines.
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Figure 2: Bilinear and smooth components of the ANOVA-type decomposition of the esti-
mated spatial trend for the barley uniformity data.
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3.1 Modeling surfaces by means of P-splines

Suppose we are given n data triples (ui, vi, yi), with ui and vi for positions, e.g, rows and
columns, and yi for a response variable, e.g a phenotype in a trial, and that we are interested
in the following model

yi = f(ui, vi) + εi, εi ∼ N(0, σ2). (3)

In the P-spline framework, the smooth bivariate function f (ui, vi) is approximated by the
tensor product of B-spline basis (Dierckx, 1993). The idea is simple: we form two B-spline
bases, “B, with “bil = “Bl(ui) and B̆, with b̆ip = B̆p(vi), where “Bl(ui) is the l-th B-spline
evaluated at ui (and the same holds for B̆p(vi)), and take

f (ui, vi) =
L∑
l=1

P∑
p=1

“Bl(ui)B̆p(vi)αlp,

where α = (α11, . . . , α1P , . . . , αLP )t is a vector of unknown regression coefficients of dimension
(LP × 1). Here Blp(u, v) = “Bl(u)B̆p(v) implicitly defines a bivariate B-spline basis function
as the tensor product of two univariate B-splines. Under this representation, model (3) can
be expressed in matrix notation as

y = Bα+ ε, (4)

with
B = B̆� “B =

(
B̆ ⊗ 1tL

)
�
(
1tP ⊗ “B

)
,

where ⊗ denotes the Kronecker product and � the ‘row-wise’ Kronecker product (Eilers et al.,
2006). Note that model (4) is purely parametric and can thus be estimated by minimizing
the residual sum of squares (with the explicit solution α̂ = (BtB)−1Bty.). To prevent over-
fitting, Eilers and Marx (1996) propose to modify the least squares criterion by incorporating
a discrete penalty on the coefficient associated to adjacent B-splines. For the two-dimensional
case, the vector α can be seen as an (L × P ) matrix of coefficients, A = [αlp]. Now the
rows and columns of A correspond to the regression coefficients in the v and u direction,
respectively. In anisotropic P-splines, a different amount of smoothing is assumed along the
u and v directions. It leads to two penalties: one on all rows of A, the other on all of its
columns; and the penalized least squares objective function becomes (Eilers and Marx, 2003)

S∗ = ||y −Bα||2 + “λ|| “DA||2F + λ̆||AD̆t||2F = ||y −Bα||2 +αtPα, (5)

where P = “λ(IP ⊗ “D
t “D) + λ̆(D̆

t
D̆ ⊗ IL) is the penalty matrix, “λ and λ̆ are the smoothing

parameters acting, respectively, on the columns and rows ofA, and “D and D̆ are matrices that
form differences of order du and dv respectively (in this paper we use second order differences,
i.e., du = dv = 2). Finally, ||M ||2F denotes the Frobenius norm, i.e., the sum of the squares

of the elements of the matrix M . The minimizer of (5), given “λ and λ̆, is

α̂ = (BtB + P )−1Bty. (6)
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The only tuning mechanism for smoothness is now the strength of the penalty, i.e the value of
the smoothing parameters λ̆ and “λ. The number of B-splines will be purposely chosen so large
as to get over-fitting without a penalty. Accordingly, a critical issue is setting the right value
for the smoothing parameters, which we like to see determined by the data. We discuss this
point in detail in Section 3.2. The P-spline principle asks for a generous number of B-splines
in the bases. (However, we cannot be too generous, as the size of the systems of equations is
LP , the product of the sizes of “B and B̆). Appendix A contains a proposal to use smaller,
nested, B-spline bases (Lee et al., 2013) that strongly reduce the computational effort.

3.2 Mixed model-based smoothing parameter selection

As said before, an important aspect when fitting a P-spline model is choosing appropriate val-
ues for the smoothing parameters. Eilers and Marx (1996) showed how to use several classical
criteria, like cross-validation and Akaike’s Information Criterion (AIC). For our application,
however, we exploit the formal similarity between P-splines and mixed models (Currie and
Durban, 2002; Wand, 2003), as it provides a general framework for the analysis of field trials.
In this approach, the smooth functions are treated as sums of fixed and random components,
and the smoothing parameters are replaced by ratios of variances which are estimated by
REML. We present here the main ideas, and refer to Lee (2010); Lee and Durban (2011) for
a more detailed description.

Note that, for given λ̆ and “λ, the solution to the penalized least squares problem (5)
given in (6) corresponds to the BLUPs for the (LP × 1) vector α under the assumption that
α ∼ N(0, σ2P+). Here, P+ denotes the Moore-Penrose pseudoinverse of the penalty matrix

P given in (5). Given that both “D
t “D and D̆

t
D̆ are rank-deficient, P is also rank-deficient,

and thus N(0, σ2P+) is a degenerate distribution. This causes numerical instability when
applying mixed model estimation techniques. Moreover, it also implies that, for second order
differences, the bilinear polynomial discussed in Section 2 remains unpenalized.

To obtain a full rank penalty matrix or precision matrix, the key is to write Bα =
Xsβs + Zscs. There are now two bases, Xs, with coefficients that are not penalized at all,
and Zs, with a size penalty on its coefficients. There are different ways to decompose B
(see, e.g., Ruppert et al., 2003; Eilers, 1999; Currie et al., 2006). In this paper we follow the

proposal by Lee and Durban (2011), based on the eigenvalue decomposition (EVD) of “D
t “D

and D̆
t
D̆. This approach gives rise to a diagonal penalty matrix, making it very appealing

from a computational point of view.

Let “D
t “D = UuEuU

t
u and D̆

t
D̆ = U vEvU

t
v be the EVD of “D

t “D and D̆
t
D̆ respectively.

Here U j denotes the matrix of eigenvectors and Ej the diagonal matrix of eigenvalues (j =
u, v). If we use second order differences, Eu and Ev contain L− 2 and P − 2 non-zero values
respectively. Let us also denote by Ũ j and Ẽj the sub-matrices corresponding to the non-zero
eigenvalues. Setting

Xs = [1n,u,v,u� v] and Zs = [Zv,Zu,Zv�u,v�Zu,Zv�Zu] , (7)

where Zu = B̆Ũu and Zv = “BŨ v, the penalized least squares problem (5) becomes

S∗ = ||y −Xsβs −Zscs||2 + ctsP̃ cs, (8)

8



with
P̃ = blockdiag

(
λ̆Ẽv, “λẼu, λ̆Ẽv, “λẼu, λ̆Ẽv ⊗ IL−2 + “λIP−2 ⊗ Ẽu

)
.

Each block in P̃ corresponds to each block in Zs (see (7)). The solution to (8), for given λ̆
and “λ, corresponds to the empirical best linear unbiased estimator (BLUE) for the (4 × 1)
vector βs, and the BLUPs for the ((LP − 4)× 1) vector cs under the linear mixed model

y = Xsβs +Zscs + ε, with ε ∼ N
(
0, σ2In

)
and cs ∼ N (0,Gs) ,

where Gs = σ2P̃
−1

. Denoting as σ̆2 = σ2/λ̆ and “σ2 = σ2/“λ the variance parameters involved
in Gs, it follows

G−1s = blockdiag

(
1

σ̆2
Ẽv,

1

“σ2
Ẽu,

1

σ̆2
Ẽv,

1

“σ2
Ẽu,

1

σ̆2
Ẽv ⊗ IL−2 +

1

“σ2
IP−2 ⊗ Ẽu

)
. (9)

Besides the possibility of selecting the smoothing parameters (λ̆ = σ2/σ̆2 and “λ = σ2/“σ2) by
(RE)ML, the mixed model representation of the tensor-product P-spline directly provides the
interesting ANOVA-type decomposition discussed in Section 2 (Lee and Durban, 2011; Lee
et al., 2013). The block-structure of both Xs and Zs (see (7)) implies

f(u,v) = Xsβs +Zscs

= 1nβ0 + uβ1 + vβ2 + u� vβ3
+ fv(v)︸ ︷︷ ︸
Zvcs1

+ fu(u)︸ ︷︷ ︸
Zucs2

+u� hv(v)︸ ︷︷ ︸
[Zv�u]cs3

+v � hu(u)︸ ︷︷ ︸
[v�Zu]cs4

+ fu,v(u,v)︸ ︷︷ ︸
[Zv�Zu]cs5

,

where csk (k = 1, . . . , 5) contains the elements of cs that correspond to the k-th block of Zs,

i.e., cs =
(
cts1, . . . , c

t
s5

)t
. The dimension of each csk will depend on the basis dimensions,

L and P , used for the tensor product (eqn. (4)). It is easy to show that cs1 and cs3 are
((P − 2)× 1) vectors, cs2 and cs4 are ((L− 2)× 1) vectors, and cs5 is a ((L− 2)(P − 2)× 1)
vector. The nested bases presented in Appendix A allow reducing the dimension associated
to the smooth-by-smooth interaction term, and, as a consequence, the computational effort.

A close look at (9) shows that, despite the five smooth components, only two variance
parameters (or smoothing parameters) control their smoothness: σ̆2 and “σ2. In fact, the
same variance parameter apply to both the main effects and the interaction terms. In Lee
et al. (2013) the ANOVA-type decomposition is further exploited, and the authors propose
to use a different variance component for each smooth component, i.e., each block in (9) will
have its own variance component. For ease of notation, let Λ−1s1 = Λ−1s3 = Ẽv, Λ−1s2 = Λ−1s4 =

Ẽu, and Λ−1s5 = Ẽv ⊗ IL−2 + IP−2 ⊗ Ẽu. For the PS-ANOVA model the precision matrix is
then defined as

G−1s = blockdiag

(
1

σ2s1
Λ−1s1 ,

1

σ2s2
Λ−1s2 ,

1

σ2s3
Λ−1s3 ,

1

σ2s4
Λ−1s4 ,

1

σ2s5
Λ−1s5

)
,

and thus the variance-covariance matrix Gs is a linear function of variance parameters

Gs =

5⊕
k=1

σ2skΛsk =

5⊕
k=1

Gsk = blockdiag (Gs1,Gs2,Gs3,Gs4,Gs5) , (10)

9



where Gsk = σ2skΛsk (k = 1, . . . , 5). In other words, here the tensor product P-spline mixed
model is represented as the sum of 5 sets of mutually independent Gaussian random factors
csk each depending on one variance σ2sk (k = 1, . . . , 5).

4 Spatial models for field trials

The tensor product P-spline presented in Section 3 constitutes the base for the analysis of
agricultural field trials. As said, it allows the modeling of the random spatial variation typi-
cally presented in a field, providing an explicit estimate of the spatial random field. However,
on top of this spatial field, we need to build up more complex models in order to account
for the genetic variation, the presence of block and/or replication effects, or other sources of
spatial variation as those due to the way the field was prepared. From now on, we therefore
consider the following linear mixed model

y = Xsβs +Zscs︸ ︷︷ ︸
f(u,v)

+Xdβd +Zdcd + ε, with cs ∼ N (0,Gs) and cd ∼ N (0,Gd) , (11)

where Xs, Zs and Gs have been defined in (7) and (10). Xd and Zd represent column-
partitioned matrices, associated respectively with extra fixed and random components, as for
instance, row, column, replicate and/or genotypic effects. We assume that Xd has full rank,

Zd = [Zd1, . . . ,Zdb], and cd =
(
ctd1, . . . , c

t
db

)t
. Each Zdk corresponds to the design matrix of

the k-th random factor cdk, with cdk being a (mdk×1) vector (k = 1, . . . , b). We assume further
that cs and cd are independent, and that the b components of cd are mutually independent
with diagonal variance-covariance matrices σ2dkΛdk, i.e., Gd =

⊕b
k=1Gdk =

⊕b
k=1 σ

2
dkΛdk. In

spite of this restriction, the estimation of rather complex mixed models can be accommodated,
as it will be shown in Section 6. In order to keep the notation as simple as possible, we rewrite
model (11) in a more compact way as follows

y = Xβ +Zc+ ε, with c ∼ N (0,G) and ε ∼ N
(
0, σ2In

)
, (12)

where X = [Xs,Xd], Z = [Zs,Zd] = [Z1, . . . ,Zq] (q = 5 + b), and

G = blockdiag (Gs,Gd) =

q⊕
k=1

Gk =

q⊕
k=1

σ2kΛk. (13)

As far as estimation of model (12) is concerned, estimates of the fixed and random effect
coefficients, for given values of the variance components, follow from standard mixed-model
theory (see Appendix B), and variance components can be obtained, as usual, by maximizing
the REML log-likelihood function

l = −1

2
log |V | − 1

2
log |XtV −1X| − 1

2
(y −Xβ̂)tV −1(y −Xβ̂). (14)

Given thatG is a linear function of variance components, estimation can be accommodated us-
ing standard mixed model procedures, as, e.g., those implemented in the R-packages asreml-R,
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nlme and lme4, or the PROC MIXED procedure in SASr. In next Section we present the numeri-
cal procedure implemented in the R-package SpATS that accompany this paper. The procedure
presents many appealing features, which make it a good candidate for the analysis of field
trials: (a) it is fast and stable; (b) it is robust (i.e., it converges from almost any starting
values); and (c) it always provides positive estimates of the variance components, although it
is possible to obtain values very close to zero. For all these reasons it has been our choice.

4.1 Variance component estimation

As said, REML estimates of the variance components are obtained by maximizing (14). Taking
derivatives with respect to the variance components σ2k (k = 1, . . . , q), we obtain (see e.g.,

Rodŕıguez-Álvarez et al., 2015; Johnson and Thompson, 1995)

∂l

∂σ2k
= −1

2
trace

(
ZtQZG

∂G−1

∂σ2k
G

)
+

1

2
ĉt
∂G−1

∂σ2k
ĉ,

where Q = V −1 − V −1X
(
XtV −1X

)−1
XtV −1 with V = R + ZGZt and R = σ2In.

By (13), it is easy to show that the former derivatives can be expressed as

2
∂l

∂σ2k
= − 1

σ2k
trace

(
Zt
kQZkGk

)
+

1

σ4k
ĉtkΛ

−1
k ĉk.

Then, REML estimates of the variance components are found by equating the former expres-
sion to zero, which gives

σ̂2k =
ĉtkΛ

−1
k ĉk

EDk
, k = 1, . . . , q, (15)

with
EDk = trace

(
Zt
kQZkGk

)
. (16)

An estimate of σ2 can also be easily obtained following the same reasoning. Specifically, in
this case we have

σ̂2 =
ε̂tε̂

EDε
, (17)

where ε̂ = y −Xβ̂ +Zĉ and

EDε = trace (RQ) = n− rank(X)−
q∑

k=1

EDk. (18)

As can be seen, the right-hand side of eqn. (16) depends on the unknown variance components.
Hence, eqns. (15) and (17) need to be solved with an iterative procedure. Given some starting
values for the variance components, estimation of model (12) is thus obtained by iterating,
until convergence, among (a) estimating the fixed and random effect coefficients (linear system
(24)); (b) evaluating the right-hand side of eqn. (16); and (c) updating the variances by
means of eqns. (15) and (17). In this work, the REML-deviance was used as the convergence
criterion.
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To the best of our knowledge, this iterative algorithm was originally proposed by Hen-
derson in an unpublished manuscript, and discussed in detail by Harville (1977) and Engel
(1990), among others. Schall (1991) further extended the algorithm for the estimation of
generalized linear mixed models. In the P-spline literature, the algorithm has been also suc-
cessfully used (e.g., Schnabel and Eilers, 2009; Lee et al., 2013), and usually referred to as
Schall’s algorithm.

From a computational point of view, the traces in (16) may involve the computation and
manipulations of several large matrices. However, there are several ways this computation
can be relaxed. For instance, using some results on mixed models (see, e.g., Johnson and
Thompson, 1995) we have that

Zt
kQZkGk = Imk

−G−1k C
−1
kk = Imk

− 1

σ2k
Λ−1k C

−1
kk , (19)

where mk is the number of random coefficients in the vector ck and C−1kk is that partition of
the inverse of C in (24) corresponding to ck. An alternative approach would be to use the
result given in eqn. (5.3) in Harville (1977)

ZtQZ = G−1C−1m [X,Z]tR−1Z,

where C−1m denotes the matrix formed by the last m rows of the inverse of C (with m =∑q
k=1mk). Here, the block-diagonal elements of ZtQZ correspond to Zt

kQZk. Despite the
apparent complexity of this expression, in order to compute (16) only the diagonal of ZtQZ
needs to be explicitly obtained, since G is a diagonal matrix (see Rodŕıguez-Álvarez et al.,
2015, for further details).

4.2 Effective dimensions

Denoting the denominator of (15) and (17) as ED{·} (from “effective dimension”) has not
been done without purpose. In the smoothing context, the notion of effective dimension or
effective degrees of freedom is well known (see, e.g., Hastie and Tibshirani, 1990). The effective
dimension (denoted by ED) of a “smooth” model is defined as the trace of the so-called “hat”
matrix H, defined as ŷ = Hy. In this setting, ED can be interpreted as a measure of the
complexity of the model: the larger the ED, the more complex (or the less smooth) the model
(see also Ye, 1998; Eilers et al., 2015).

In recent years, several new definitions and generalizations of the concept of effective
dimension that are applicable to (generalized) linear mixed models have been proposed in the
statistical literature (see, e.g., You et al., 2016, and references therein). In almost all cases, the
aim has been to provide a complexity measure that allows models’ comparison and selection
(via, for instance, the AIC). For our application, however, we are more interested in obtaining
a separate complexity measure for each component in model (12), that can give us insights
about the contribution of that effect when explaining the response (phenotypic) variation.
This issue has been already discussed by Cui et al. (2010). In that paper the authors define
the effective dimension of a model’s component as the trace of the ratio of the component
modeled variance matrix to the total variance matrix. This new definition can be interpreted
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as the fraction of response variation attributed to individual components. Besides, it allows
explaining how components compete with one another to explain that variation.

In line with previous work in the smoothing context (e.g., Hastie and Tibshirani, 1990;
Ruppert et al., 2003), this paper considers defining the effective dimension of a model’s com-
ponent as the trace of the corresponding hat matrix. Appendix C shows the equivalence
between this definition and that by Cui et al. (2010). Note first that for the linear mixed
model (12) we might define two different hat matrices: one for the fixed part of the model and
one for the random part. From standard mixed-model theory (see Appendix B for further
details) it follows that

Hy = ŷ = Xβ̂ +Zĉ = HFy +HRy,

where HF = X
(
XtV −1X

)−1
XtV −1 and HR = ZGZtQ. Thus,

ED = trace (H) = trace (HF ) + trace (HR) .

However, we can even go one step further. The block structure of both the random design
matrix Z and the variance-covariance matrix G in (12) implies that (see Appendix B)

HR =

q∑
k=1

Hk

where Hk = ZkGkZ
t
kQ, with Zk and Gk denoting the k-th block of Z and G respectively.

As shown in Appendix B, each of these hat matrices corresponds to an individual random
component in model (12), either coming from the PS-ANOVA spatial field or a “pure” random
factor, i.e.,

f̂v(v) = Z1ĉ1 = H1y f̂u(u) = Z2ĉ2 = H2y u� ĥv(v) = Z3ĉ3 = H3y,

v � ĥu(u) = Z4ĉ4 = H4y f̂u,v(u,v) = Z5ĉ5 = H5y.

Zkĉk = Hky, k = 6, . . . , q.

This results suggests defining the effective dimension for ck as the trace of Hk. Using trace
properties, we have

trace (Hk) = trace
(
ZkGkZ

t
kQ
)

= trace
(
Zt
kQZkGk

)
= EDk,

and the total effective dimension of model (12) is thus decomposed as the sum of independent
contributions

ED = trace (H)

= trace (HF ) + trace (HR)

= trace (HF ) +

q∑
k=1

trace (Hk)

= rank(X) +

q∑
k=1

EDk.
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Besides, eqn. (27) in Appendix B also suggests defining the effective dimension for the resid-
uals as the trace of Hε and thus (see eqn. (18))

trace (Hε) = trace (RQ) = EDε.

This is in concordance with the definition given by Cui et al. (2010) (see Appendix C). As
extensively discussed by the authors, EDε avoids the problem that is posed by most of the
traditional definitions for the residual effective dimension in the smoothing context, that is to
say, that ED + EDε is not equal to the number of observations n.

For all components EDk (k = 1, . . . , q) will vary between 0 and (mk − ζk), where ζk is the
number of zero eigenvalues of Zt

kQZkGk. In Cui et al. (2010) the authors show that this
upper bound, (mk − ζk), can also be expressed as: rank ([X,Zk])− rank (X). The signal-to-
noise ratio σ2k/σ

2 modulates the value of EDk: when σ2k/σ
2 → 0 then EDk → 0; and when

σ2k/σ
2 → ∞, then EDk → (mk − ζk). Arguably, EDk can be therefore be interpreted as a

measure of the complexity of the corresponding component. A value of zero would indicate
that this component does not contribute to the response variability.

A nice property of the PS-ANOVA spatial field is that we have a separate effective di-
mension for each of the five smooth components, which in turns gives a separate measure of
the contribution of that component. In this case, EDk (k = 1, . . . , 5) can be interpreted as
a measure of the smoothness of the corresponding term: the larger the effective dimension,
the less smooth the effect. For the other random factors, EDk (k = 6, . . . , q) will also give a
measure of the complexity, but here, it is worth interpreting it as a measure of the shrinkage.
What is more, when the genetic effect is included in model (12) as random, the associated ef-
fective dimension corresponds to the generalized heritability proposed by Oakey et al. (2006).
A formal derivation and deeper discussion is provided in Section 4.3.

To finish this part we would like to emphasize that, at convergence, the algorithm presented
in Section 4.1 explicitly provides an estimate of the effective dimension associated to each
random component in model (12). Moreover, as can be seen in eqn. (15), a beautiful result is
that the algorithm furnishes variance components estimates that are the ratio of the sum of
squares of the BLUPs of the components of ck (weighted according to their precision, Λ−1k )
to the individual effective dimension EDk (and the same applies for the residual variance).

4.2.1 Motivating example revisited

Let us now come back to the uniformity barley data discussed in Section 2. For fitting model
(2), we used cubic B-spline bases of dimension L = 18 and P = 51, jointly with nested basis
for the columns with PN = 27. Table 1 shows the model (i.e., the number of coefficients), and
effective dimensions associated to the row and column random factors, the smooth spatial field
f(u, v), and each of the PS-ANOVA components. If we focus on the random effects for the
rows and columns, we have that the estimated effective dimensions are 5.5 (out of 14) and 38.0
(out of 47) respectively. This result suggests that the column effect is stronger than the row
effect, and that these two components are probably needed. For the PS-ANOVA spatial field
(excluding the intercept), the total effective dimension is 78.7, with the smooth-by-smooth
interaction trend being responsible for the strongest contribution, with an effective dimension
of 53.1. As can be observed on the graphical results depicted in Section 2, the smooth trend
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Table 1: Model and effective dimension of the smooth spatial component, and the ANOVA-
type decomposition components for the barley uniformity trial.

Dimensions
Spatial components

Random Smooth
cr cc Global - f(u, v) fu(u) fv(v) vhu(u) uhv(v) fu,v(u, v)

Model (mk) 48 15 533 16 49 16 49 400
Effective (EDk) 38.0 5.5 78.7 6.2 3.7 8.2 4.5 53.1

along the rows, fu(u), is more complex (or rougher) than the one along the columns, fv(v),
and this fact is made evident on the effective dimension related to each of these components,
6.2 and 3.7 respectively. Besides, as could have also been expected, the effective dimension
associated to vhu(u) is also larger than that associated uhv(v). These results suggest and
emphasize the need of modeling spatial trends by means of bivariate surfaces. Here the
additive assumption – only based on main smooth effects – would have not been flexible
enough to recover the spatial trend variation present in the data.

4.3 Heritability and effective dimension

To introduce the standard definition of heritability, let us start with the classical quantitative
genetic model, in which mg genotypes, each replicated r times, are evaluated and no other
model components (either spatial, fixed or random) are considered

y = 1nβ0 +Zgcg + ε.

We assume that the observations are ordered according to the genotypes, i.e., Zg = Img ⊗1r,
and that cg ∼ N(0, σ2gImg) and ε ∼ N(0, σ2In). Under this model, the standard heritability
measure is defined as

H2
s =

σ2g
(σ2g + σ2/r)

. (20)

That is to say, the standard heritability is the proportion of the total (phenotypic) variation
explained by the genetic component.

We turn now to the notion of effective dimension defined above. For the genetic effects
cg, the associated effective dimension is EDg = trace

(
Zt
gQZgGg

)
, where Gg = σ2gImg . By

eqn. (3.7) in Harville (1977), we have

Zt
gQZgGg =

(
1

λ
Img +ZT

g SZg

)−1
ZT
g SZg,

where λ =
σ2
g

σ2 and S = In − 1n(1tn1n)−11tn. It can be shown that ZT
g SZg has (mg − 1)

eigenvalues equal to r (the number of replicates), and 1 eigenvalue equal to zero. Moreover,
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1
λImg has mg eigenvalues all equal to 1

λ . Using the property that the trace of a matrix is the
sum of its eigenvalues, we have

EDg =

mg∑
i=1

λi =

(mg−1)∑
i=1

(
1

λ
+ r

)−1
r = (mg − 1)

σ2g
(σ2g + σ2/r)

,

where λi are the eigenvalues of Zt
gQZgGg. Hence, there is direct link between the standard

heritability measure H2
s defined in (20) and the genetic effective dimension, with

H2
s =

EDg

mg − 1
.

When the statistical analysis of a field trial experiment involves modeling more sources of
variation (as, e.g., spatial and/or extraneous variation), the standard definition of heritability
given in (20) does not longer apply, and several generalizations have been proposed in the
literature (e.g., Cullis et al., 2006; Oakey et al., 2006). For instance, Cullis et al. (2006)
present a generalized definition of heritability – applicable whenever Gg = σ2gImg – based on
the pairwise prediction error variance of genetic effects

H2
c = 1− 1

σ2g

mg∑
i=1

pev(cgi)

mg
.

where pev(cgi) = var(ĉgi − cgi). Using the equivalence given in (19) and noting that C−1kk
corresponds to Cov (ĉg − cg) (i.e., the prediction error variance-covariance matrix for the
genetic effects), the generalized heritability measure proposed by Cullis et al. (2006) can also
be expressed in terms of the genetic effective dimension

H2
c = 1− 1

σ2g

mg∑
i=1

pev(cgi)

mg
=

trace(Img − 1
σ2
g
C−1kk )

mg
=

trace(Zt
gQZgGg)

mg
=

EDg

mg
.

In Oakey et al. (2006) a more general definition of heritability is presented that can be used
regardless of the structure of genetic variance-covariance matrix Gg. As can be seen in eqn.
(7) of that paper, the definition the authors propose turns out to be the ratio between the
genetic effective dimension and the number of genetic effects mg minus the number of zero
eigenvalues of Zt

gQZgGg, i.e.,

H2
g =

EDg

mg − ζg
. (21)

As said before, the denominator of (21) represents the upper bound of the genetic effective
dimension, and 1 − H2

g can therefore be interpreted as a shrinkage factor. The generalized
heritability proposed by Cullis et al. (2006) would be a special case, but ignoring the number
of zero eigenvalues.

On the basis of the estimation procedure presented above, an estimate of the generalized
heritability can be thus obtained as

Ĥ2
g =

ÊDg

mg − ζg
.

where ÊDg denotes the estimated effective.

16



5 Simulation studies

This section is devoted to present the results of several studies performed to evaluate the
behavior of our SpATS model under controlled scenarios, and its comparison with the sepa-
rable autoregressive (AR×AR) model proposed by Gilmour et al. (1997). In the context of
single-trial experiments, this proposal has become the standard modeling strategy, specially
among applied breeders, and therefore it has been chosen as the benchmark model. In Section
5.1, the uniformity trial presented in Section 2 is used to introduce the proposal by Gilmour
et al. (1997), and comparisons between both approaches when including genotypic effects are
reported. Section 5.2 presents the results of a simulation study when the underlying simulated
model follows an AR×AR process. In both cases, simulations were done using the R-packages
SpATS and ASreml-R.

5.1 Barley uniformity trial

As said, the uniformity trial presented in Section 2 was analyzed using the AR×AR model
proposed by Gilmour et al. (1997). Model selection was performed by means of the sample
variogram and plots of the residuals as suggested by Stefanova et al. (2009). Starting with
the simplest model, including only the separable Gaussian AR process of order 1, we further
evaluated the need of extra model components. In total, 9 different models were considered,
with the best being

y = 1nβ0 + uβ1 + vβ2 + fu(u) + fv(v) +Zccc + ξ + ε. (22)

Here ξ is a (720× 1) spatially dependent random vector, for which a separable Gaussian AR
process of order 1 in the row and column directions is assumed. Accordingly, cov (ξl, ξp) =

σ2sρ
|ul−up|
r ρ

|vl−vp|
c , where ρr and ρc are the autocorrelation parameters for row and column,

respectively. As in our approach, fu (·) and fv (·) represent smooth-trend functions over the
row and column direction respectively. We note that in the geostatistics literature, ε is usually
referred to as measurement error or nugget effect.

As postulated by Gilmour et al. (1997), model (22) accounts for three sources of spatial
variation: the global trend variation, the local trend variation; and the so-called extraneous
variation. Here, (a) the global trend variation is modeled by the linear effect along the rows
(β1) and columns (β2) as well as by the smooth-effect functions fu (·) and fv (·); and (b) the
local trend variation by means of the spatially dependent random error ξ. The extraneous
variation, related to the experimental procedure, is accounted for by the column random
factor cc. Under this framework, we can see our SpATS model (see eqn. (2)) as that based
on aggregating both the local and global trend variation in one component, and modeling it
by means of a smooth bivariate surface. Table 2 shows the REML estimates of the variance
components based on model (2) and model (22). Based on this table, we find it difficult
to compare both approaches. Thus, to gain more insights in the performance of these two
models, we designed a simulation study in which, on top of the uniformity data, genotypic
effects were included, i.e,

y∗ = y +Zgcg,
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Table 2: REML estimates of the variance parameters for the barley uniformity trial based on
both AR×AR and SpATS approaches.

Model
Parameter

σ2s σ2r σ2c ρr ρc σ2

AR×AR 265.67 - 144.20 0.383 0.834 173.12
SpATS - 20.38 145.14 - - 238.94

where cg denotes the genotypic effects, with cg ∼ N(0, σ2gImg). For the results reported here,
we considered σ2g = 144, and a total of mg = 360 genotypes, each replicated twice. The
360 genotypes were allocated to the plots following an alpha design, in blocks of size 15 (the
number of rows in the field).

For each data set simulated as described above, we fitted our SpATS model (see eqn.
(2)), including the genetic random factor. For Gilmour et al. (1997)’s approach we considered
model (22) (with and without the nugget) plus the genetic random factor. For comparison
purposes, we also fitted a model only with the correction for rows and columns (eqn. (1)). The
procedure was repeated a total of R = 500 times. For SpATS, we used cubic B-spline bases
of dimension L = 18 and P = 51, jointly with nested basis for the columns with PN = 27.

For measuring models’ performance, the discrepancy between the BLUPs for the geno-
typic effects and the corresponding true (simulated) quantities was measured in terms of the
empirical version of the global root mean squared error (RMSE):

RMSE =

√√√√ 1

360

360∑
i=1

(ĉgi − cgi)2.

As far as the REML estimates of σ2g is concerned, the behavior was evaluated in terms of the
bias.

Figure 3 shows the boxplots of log10(RMSE) associated to the genotypic BLUPs and the
REML estimates of σ2g , for each of the four models considered. In terms of the log10(RMSE),
and as could have been expected, the worst performance corresponds to the model including
only the correction for rows and columns. The remaining three models present a similar
behavior, with the best approach being the AR×AR model including the nugget, followed by
our SpATS model. However, if we focus on the REML estimates of σ2g , we observe that the
AR×AR model excluding the nugget tends to overestimate the genetic signal. This behavior
can explain the larger heritability (on average) provided by this model in comparison with
SpATS or the AR×AR model including the nugget (see Table 4). Surprisingly, the model
including only the correction for rows and columns provides good estimates of σ2g . However,
it also produces the lowest heritabilities. Note that this is the expected behavior, as the
variance associated to the measurement error will be inflated in this case.
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Figure 3: For the barley uniformity data simulation study: Boxplots, based on 500 simulated
data sets, of the log10(RMSE) associated to the genotypic random factor and the REML
estimates of σ2g . “Row Col” corresponds to the model including only the correction for rows
and columns, “SpATS” to our proposal, “AR×AR w nugget” and “AR×AR w/o nugget” to
the AR×AR model with and without the nugget respectively.

Table 3: Numerical results associated to the simulation study based on the barley uniformity
data. For the genotypic BLUPs, the log10(RMSE) is shown. For the REML estimates of σ2g
the results show the bias. In all cases, averages and standard deviations over 500 simulated
data sets are presented. “Row Col” corresponds to the model including only the correction
for rows and columns, “SpATS” to our proposal, “AR×AR w nugget” and “AR×AR w/o
nugget” to the AR×AR model with and without the nugget respectively.

Model
Row Col SpATS AR×AR w nugget AR×AR w/o nugget

Genotypic
RMSE

0.968 (0.016) 0.939 (0.016) 0.933 (0.016) 0.943 (0.016)

σ2g = 144 -2.425 (30.061) -1.516 (24.538) -1.563 (24.142) 15.281 (24.391)

H2
g 0.399 (0.062) 0.481 (0.054) 0.494 (0.053) 0.534 (0.051)
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5.2 Separable Gaussian Autoregressive Process

In this study, data was generated assuming a separable Gaussian AR process of order 1 in
the row and column directions. Specifically, the following model was considered:

y = Zgcg + ξ + ε︸ ︷︷ ︸
ε

, (23)

where cg denotes the genotypic effects, with cg ∼ N(0, σ2gImg), ξ ∼ N
(
0, σ2sΣ

)
where Σlp =

ρ
|ul−up|
r ρ

|vl−vp|
c , ε ∼ N

(
0, σ2In

)
, and ε = ξ + ε.

Different levels of genetic variation
(
σ2g ∈ {0.25; 1; 4}

)
and autocorrelations

(ρr = ρc ∈ {0.1; 0.5; 0.9}) were studied. In all cases, σ2 = σ2s = 1 and a total of mg = 100
genotypes, each replicated twice, were considered. The 100 genotypes were allocated to the
plots following an alpha design, in blocks of size 10. The field layout thus consisted of 10
blocks (rows) and 20 columns (n = 200).

For each data set simulated as described above, we fitted our SpATS model, including
the PS-ANOVA spatial field and the genetic random factor. For Gilmour et al. (1997)’s
approach we considered a model including the genetic random factor, the AR×AR process
and the nugget (ε). The procedure was repeated a total of R = 1000 times. For SpATS,
cubic B-spline bases of dimension 13 and 23 were assumed for the row and column positions,
respectively, and nested B-spline bases, with half the dimension, were used.

As for the simulation reported in Section 5.1, models’ performance was measured in terms
of the RMSE (for the genotypic BLUPs), and the bias for the REML estimates of the variances
(σ2g , σ

2 and σ2s).
Table 4 shows, for those runs for which both SpATS and AR×AR models converged,

the results for all levels of genetic variation and autocorrelations considered in the study.
The table lists the averages and standard deviations of the RMSEs for the genotypic BLUPs
and the bias and associated standard deviation for σ2g , σ

2 and σ2s . The percentage of fitting
models that converged (over 1000 runs) is also shown in the table, jointly with the effective
dimension associated to the PS-ANOVA spatial field (excluding the intercept). If we focus on
the genotypic random factor, both approaches behave similarly for all scenarios considered.
As could have been expected, the RMSE decreases as the genotypic signal increases. A
similar performance between both approaches is also observed for σ2g . The interpretation of
the results for σ2, σ2s and EDs requires however a more detailed analysis. First note that
when both ρr and ρc → 1, then Cov (ξ)→ σ2sI200, where In is a n× n matrix of ones. In this
case, for each realization of the stochastic process (23), the spatially dependent random error
ξ would be a constant vector, and no spatial variation would be therefore present. On the
other hand, when both ρr and ρc → 0 then Cov (ξ)→ σ2sI200. Thus, ξ is confounded with the
nugget or independent error ε, and Cov (ε) →

(
σ2s + σ2

)
I200. To some extent, it would also

imply that no spatial variation is present and that all is measurement error. As pointed out by
Piepho et al. (2015), these two extreme cases may cause convergence problems when fitting the
AR×AR model. Our results are in concordance with those previous findings, and we refer to
that paper for a more comprehensive discussion. Besides, it could also explain the systematic
bias (of opposite sign but similar magnitude) in the estimates of σ2s and σ2 provided by the
AR×AR model. As can be observed, the AR×AR model tends to underestimate σ2 (negative
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Table 4: Numerical results associated to the study when the underlying simulated model
follows an AR×AR process. For the REML estimates of σ2g , σ

2 and σ2s the results show
the bias. For the genotypic BLUPs, the log10(RMSE) is shown. EDs denotes the effective
dimension associated to the PS-ANOVA spatial field. In all cases, averages and standard
deviations are presented. The results correspond to those runs for which both SpATS and
AR×AR models converged.

σ2
g ρc = ρr Model

Conv. Genotypic
σ2
g σ2 σ2

s EDs(%) RMSE

0.25

0.9
SpATS 100.0 -0.375 (0.032) -0.014 (0.132) 0.021 (0.159) - 9.10 (2.82)
AR×AR 68.8 -0.374 (0.032) -0.017 (0.134) -0.136 (0.285) 0.199 (1.485) -

0.5
SpATS 100.0 -0.355 (0.030) -0.008 (0.159) 0.306 (0.211) - 15.27 (5.03)
AR×AR 96.2 -0.356 (0.030) -0.018 (0.159) -0.112 (0.316) 0.168 (0.486) -

0.1
SpATS 100.0 -0.341 (0.032) 0.002 (0.190) 0.769 (0.265) - 8.96 (4.16)
AR×AR 93.8 -0.341 (0.032) -0.013 (0.190) -0.368 (0.632) 0.376 (0.628) -

1

0.9
SpATS 100.0 -0.220 (0.031) -0.076 (0.192) 0.022 (0.162) - 8.35 (2.88)
AR×AR 63.7 -0.220 (0.031) -0.076 (0.189) -0.201 (0.329) 0.117 (1.299) -

0.5
SpATS 100.0 -0.180 (0.030) -0.080 (0.233) 0.327 (0.230) - 13.54 (4.67)
AR×AR 94.1 -0.186 (0.030) -0.085 (0.225) -0.153 (0.367) 0.231 (0.634) -

0.1
SpATS 100.0 -0.152 (0.030) -0.083 (0.276) 0.797 (0.293) - 8.10 (3.73)
AR×AR 90.8 -0.155 (0.030) -0.085 (0.273) -0.408 (0.663) 0.442 (0.640) -

4

0.9
SpATS 100.0 -0.143 (0.032) -0.299 (0.332) 0.021 (0.164) - 7.89 (2.76)
AR×AR 61.8 -0.143 (0.033) -0.305 (0.324) -0.272 (0.368) 0.187 (1.513) -

0.5
SpATS 100.0 -0.088 (0.031) -0.308 (0.388) 0.334 (0.235) - 12.01 (4.22)
AR×AR 90.7 -0.095 (0.031) -0.312 (0.375) -0.217 (0.406) 0.295 (0.548) -

0.1
SpATS 100.0 -0.048 (0.031) -0.315 (0.439) 0.792 (0.298) - 7.35 (3.36)
AR×AR 88.5 -0.053 (0.031) -0.324 (0.446) -0.492 (0.637) 0.515 (0.635) -

bias), and this is counteracted by overestimating σ2s . This effect is especially remarkable
for low autocorrelations. As far as the SpATS model is concerned, for large autocorrelation
values the approach performs as expected providing unbiased estimates of σ2. When the
autocorrelations decrease, the bias also increases. However, it is worth remembering that
in this case Cov (ε) →

(
σ2s + σ2

)
I200. Thus, our SpATS model is correct when estimating

the variance associated to the measurement error. Note that for all simulations σ2s = 1
was considered, and that the bias associated with σ2 approaches this value as ρr and ρc
decrease. Finally, the estimated effective dimension for the PS-ANOVA spatial field also
reflects the expected performance of the model: for low and large autocorrelations (small
spatial variation), the model provides smaller EDs than for medium values.

6 Applications

To further illustrate our proposal in large-scale experiments, we considered in this Section
two data sets, one of a field trial on wheat conducted in Chile and discussed in the paper by
Lado et al. (2013), and the other on sugar beet from a big field in France. This material was
kindly provided by the breeding company SESVanderHave (Tienen, Belgium).

6.1 Sugar beet data, France

In this section a big field of sugar beet is analyzed. The field experiment was located in France,
in the year 2011. Data were recorded for eight traits, and the results will be presented for
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the trait α-amino nitrogen in millimol per liter. All material was provided by the breeding
company SESVanderHave (Tienen, Belgium).

The field experiment consisted of 31 trials, with a total of 2411 plots and 1095 genotypes.
All the trials contained four common checks, the other 1091 genotypes were observed in one
of the trials. The trials were different in size, with the most common layout an alpha design
with 36 genotypes and two replicates. Four of the trials were unreplicated, 26 trials had an
alpha design with two replicates, and one trial had an alpha design with three replicates.

The field layout is shown in Figure 4(a). The 31 trials are represented by a different color.
Note that the layout of the field is irregular, that there are no trials in the lower right corner
(white areas). Nonetheless, no data manipulation, such as e.g. filling in the missing values to
make the layout regular, is required to use our approach.

For this experiment, we assumed a model including random factors for rows (cr) columns
(cc) and trials (ct). The genetic lines were also included in the model as random (cg) but the
genetic checks were included as fixed (βc). To be more precise, and using the same notation
as in Section 2, the following mixed model was fitted

y = f(u,v) +Xcβc +Zgcg +Zrcr +Zccc +Ztct + ε.

where Xc is the (n × 4) design matrix assigning observations to genetic checks and Zg is
the (n × 1091) design matrix associated to genetic lines, with cg = (cg1, . . . , cg1090)

t ∼
N
(
0, σ2gI1090

)
. The rows of these two matrices corresponding to genetic lines and genetic

checks, respectively, have all their elements equal to zero. For the rest of the random factors,
we assumed cr ∼ N

(
0, σ2rI26

)
, cc ∼ N

(
0, σ2c1113

)
and ct ∼ N

(
0, σ2t I31

)
. For the tensor-

product P-spline, a basis dimension of 29 and 53 was chosen for the row and column positions,
respectively, and nested bases, with half the dimension, were used. Accordingly, the model
has 1789 coefficients to be estimated and 2411 observations. Despite the large dimension, the
fitting process needed around 18 seconds.

Figure 4 depicts the raw yield data, the fitted values, the residuals, the fitted spatial trend
(i.e., the PS-ANOVA component but excluding the intercept), and the genotypic BLUPs. As
can be observed, the fitted spatial trend is successful in recovering the complex spatial pattern
across the field, and the residual plot suggest that the spatial independence assumption for
the error vector ε might be appropriate. Table 5 shows the model and (estimated) effective
dimensions associated to each of the five smooth components of the PS-ANOVA spatial trend
and each random factor. Note that the estimation procedure presented in Section 4 provides,
in some cases, effective dimensions that are exactly zero, meaning that this model component
does not contribute or have an impact on the trait of interest. If we focus on the genetic
signal, we have an effective dimension of about 590.5. In this case, it is easy to show that
rank ([X,Zg]) − rank (X) = 1090. Equivalently, there is only one eigenvalue equal to zero,
which implicitly induces a zero-mean constraint on the BLUPs for cg. As a consequence, an

estimate of the generalized heritability is Ĥg = 590.5/(1091− 1) = 0.54.

6.2 Wheat data, Chile

The study consisted on 384 advanced lines from two breeding programs in Chile and Uruguay
(South America). The lines were evaluated in two different environments, Santa Rosa (SR)
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Figure 4: For the sugar beet experiment in France: field layout, raw yield data, fitted values,
fitted spatial trend, residuals’ spatial plot and genotypic BLUPs.

Table 5: For the sugar beet experiment in France: model and effective dimensions associated
to the PS-ANOVA spatial trend and each random factor. The letter u denotes the row
position, v the column position, and cr, cr, ct and cg the row, column, trial and genetic line
random factors, respectively.

Dimensions
Model components

fu(u) fv(v) vhu(u) uhv(v) fu,v(u, v) cr cc ct cg
Model (mk) 27 51 27 51 364 26 113 31 1091

Effective (EDk) 0.0 12.4 21.1 0.0 120.1 18.3 13.1 22.8 590.5
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and Cauquenes (CQ), under three different levels of water supply and in two consecutive years,
2011 and 2012. More precisely, for both 2011 and 2012, the lines were evaluated in Santa Rosa
under mild water stress (MWS) and fully irrigated (FI) conditions, and for 2012 in Cauquenes,
a dry region, under severe water stress (WS). Different traits of interest were considered, as
grain yield (GY), thousand kernel weight (TKW), number of kernels per spike (NKS) and
days to heading (DH). It should be noted that, in 2012, only GY was considered. For each
trial, an alpha-lattice design with 20 incomplete blocks, each containing 20 genotypes, was
used, and two replicates were sown. Each block comprised 1 column and 40 rows, yielding a
total of 800 (20× 40× 2) plots on the field.

Based on these data, the final aim pursued in the paper by Lado et al. (2013) was to
perform genomic selection on the basis of genotyping-by-sequencing methods. As noted by
the authors, the modeling of the spatial variation of the phenotypic data in each trial has
an impact on the prediction accuracy of the subsequent genomic selection. As could have
been expected, the better the modeling, the larger the prediction accuracy. In this paper
we thus re-analyzed the phenotypic data using our approach. For the sake of simplicity we
only present here the results for 2011. For each trait (GY, TKW, NKS and DH) and water
condition (MWS and FI) the following model was assumed

y = f (v,u) +Zgcg +Zrcr +Zccc + ε,

with cg ∼ N
(
0, σ2gI384

)
, cr ∼ N

(
0, σ2rI40

)
and cc ∼ N

(
0, σ2cI20

)
. For the tensor-product

P-spline, a basis dimension of 43 and 23 was assumed for the row and column positions,
respectively, and, as usual, we used nested bases, with half the dimension. Under this repre-
sentation, each model has about 802 coefficients to be estimated and 800 observations (there
are missing values), but the fitting processes needed between 2 and 10 seconds.

Figures 5(a) and 6(a) depict the raw data for each trait and water condition. The fitted
spatial trends are shown in Figures 5(b) and 6(b), and Figures 5(c) and 6(c) shows the spatial
plot of the residuals. Table 6 shows the effective dimensions related to each of the five smooth
components of the PS-ANOVA spatial trend as well as those associated to the row and column
random factors. As for the previous example, some EDk are zero or close to zero. For instance,
for the DH and FI condition, the spatial variation is mainly modeled by the smooth trend
over the rows and the row random factor, with the rest of components having a rather low
or even null impact. All results suggest that for both, the MWS and FI conditions, the GY
is the trait presenting the largest spatial variation, and DH the one with the lowest. This is
in concordance with the estimated heritability also presented in Table 6, with the largest and
the lowest heritability having been obtained for DH and GY, respectively. It should be noted
that, in all cases, the heritability estimate obtained using SpATS is larger than the broad
sense heritability reported in the paper by Lado et al. (2013).

7 Discussion

We have presented a powerful and efficient new approach to the modeling of field trials. Effects
of genotypes are described by a mixed model in a standard way, on top of tensor product
P-splines to fit the spatial field.
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Figure 5: Raw data, fitted spatial trend and residuals’ spatial plot for the Chilean wheat data
in Santa Rosa, 2011, for each trait (GY: Grain Yield; TKW: thousand kernel weight; DH:
days to heading; NKS: number of kernels per spike) and mild water stress (MWS) condition.
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Figure 6: Raw data, fitted spatial trend and residuals’ spatial plot for the Chilean wheat data
in Santa Rosa, 2011, for each trait (GY: Grain Yield; TKW: thousand kernel weight; DH:
days to heading; NKS: number of kernels per spike) and fully irrigated (FI) condition.
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Table 6: For the Chilean wheat data: Effective dimensions associated to the spatial trend
and the row and column random factors, and generalized heritability. The letter u denotes
the row position, v the column position, and cr and cr the row and column random factors,
respectively. The results shown are for Santa Rosa in 2011 and for each trait (GY: Grain
Yield; TKW: thousand kernel weight; DH: days to heading; NKS: number of kernels per
spike) and condition (MWS: Mild water stress; FI: Fully irrigated).

Condition and Trait
MWS FI

GY TKW DH NKS GY TKW DH NKS

Effective dimension
(EDk)

fu(u) 8.8 8.5 6.6 2.4 10.2 2.9 7.2 1.3
fv(v) 0.0 0.7 0.5 0.0 0.6 0.7 0.0 0.0
vh(u) 16.8 16.7 1.1 7.6 8.4 0.4 1.4 0.5

uhv(v) 0.0 0.0 0.0 1.8 1.6 0.0 0.1 0.7
fu,v(u, v) 90.6 49.5 0.2 0.6 64.9 17.9 0.0 12.2
cr 20.2 5.2 3.7 12.5 13.7 17.8 7.7 23.7
cc 6.9 0.4 5.6 3.6 6.3 0.0 0.0 0.3
Total 143.3 81.0 17.7 28.5 105.7 39.7 16.4 38.8

H2
g 0.74 0.94 0.96 0.84 0.69 0.94 0.98 0.86

Our approach breaks with the current tradition to model the spatial component as corre-
lated noise. We believe that this offers large advantages. First, as shown in the simulations,
modeling spatial correlation by e.g. autoregressive processes may need a lot of manual ad hoc
tuning. In contrast, our SpATS model is very robust and runs without user intervention, as
our testing on very many real trials has shown. A second advantage is that model selection
is substantially simplified. Furthermore, the applications showed that our method can easily
deal with irregular field layouts, and local patches with special behavior become easily visible.
We believe that having an explicit estimate of the spatial field variation is very helpful. In
many cases it is more complex than an autoregressive process. Besides, the ANOVA-type
decomposition of tensor product P-splines provides interesting insights on the field trial being
analyzed.

An important result of this paper is the expression of the standard as well as generalized
heritability on the basis of the genetic effective dimension. This result provides, on the one
hand, a common definition of heritability that can be used for a broad range of statistical
models used for the analysis of field trials. On the other hand, we believe that the link between
the genetic effective dimension and the (generalized) heritability measure brings new insights
to the interpretation of both quantities. To the best of our knowledge, this is the first time
that this relation is presented in the literature. The study of the appropriateness of this result
to non-Gaussian responses represents an interesting area of research.

What has been said here about genetic variation (and the associated heritability measure)
also applies to other random effects incorporated into a mixed model. This suggests moving
the interpretation of the results obtained by fitting a mixed model from estimated variances
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components to estimated effective dimensions. Moreover, evaluating the results in terms of
effective dimensions also furnishes a common scale that will allow determining those random
model components that contribute the most to explaining the observed phenotypic variation.

A current line of research is focused on the extension of our SpATS model to the analysis
of multi-environment trials (METs, trials carried out in multiple environments or contexts,
see, e.g., Smith et al., 2009). In the analysis of METs we are faced with several challenges.
First, the modeling of a different spatial trend for each environment, and second the need to
account for the (possible) interaction between the genotype and the environment. The first
challenge may be approached by including an interaction between a factor (the environment)
and a smooth surface (the tensor product P-spline). The second challenge is related to the
inclusion of correlated random effects (whenever the genotype effect is treated as random).
This possibility will allow assuming a different genetic variance for each environment, and,
at the same time, modeling the (within environments) correlation between genotypes sharing
the same environment and the (across environments) correlation of genotype effects along
the different environments. Further work is warranted to develop computationally-efficient
estimation procedures in this setting.

Our calculations were done with the R-package SpATS that can be freely downloaded from
https://cran.r-project.org/package=SpATS. However, it is worth remembering that esti-
mation can also be accommodated using any standard mixed model software.
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Appendix A Nested bases

With large data sets the computation of Zs in (7), as well as its inner product, can demand
a lot of time, especially for large values of L and P . Lee et al. (2013) propose to speed up
computation by using nested bases. The idea is to reduce the dimension of the marginal
B-spline bases “B and B̆ (and therefore the associated number of coefficients to be estimated),
but only for the smooth-by-smooth interaction term , i.e., fu,v. As pointed out by the authors,
this simplification can be justified by the fact that the main effects, fu and fv, and the smooth
varying coefficient terms, hv and hu, would in fact explain most of the structure (or spatial
trend) presented in the data, and so a less rich representation of the interaction term could
be needed.

Let “BN and B̆N be two reduced marginal B-spline basis of dimension n× LN (LN < L)

and n × PN (PN < P ) with associated penalty matrices “D
t
N

“DN and D̆
t
ND̆N , respectively.
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Figure A1: Example of nested B-spline bases.

Then, the reduced mixed model matrix Zs for the PS-ANOVA model is constructed as follows

Zs =
[
Zv,Zu,Zv�u,v�Zu, Z̃v�Z̃u

]
,

where Z̃v = “BN Ũ
N

v and Z̃u = B̆N Ũ
N

v , with Ũ
N

v and Ũ
N

v being the matrices containing the

eigenvectors associated to the non-zero eigenvalues of “D
t
N

“DN and D̆
t
ND̆N , respectively.

In order to ensure that the reduced model is in fact nested in the model including only
the main effects, Lee et al. (2013) showed that the number of segments that define “BN and
B̆N should be a divisor of the number of segments used in the original bases “B and B̆. The
reasoning behind is graphically illustrated in Figure A1, that has been taken from the paper
by Lee et al. (2013). The two top plots depict two cubic B-spline bases of dimension 11 and
7, respectively. The squares and triangles denote the breakpoints (knots) that define each
segment. As can be observed, the knots of the small basis correspond to a subset of the knots
of the large basis. This implies that the space spanned by the small basis is a subset of the
space spanned by the large one. This can be seen on the plot at the bottom, where both bases
overlap.

Note that the use of nested bases reduces the number of coefficients associated to fu,v from
(L− 2)(P − 2) to (LN − 2)(PN − 2). This reduction allows being generous with the number
of B-spline basis functions used for the main effects and the smooth varying coefficient terms.
Our experience suggest using (a) as many segments for “B and B̆ as number of rows and
columns in the field, respectively; and (b) half the number of segments for the nested basis.
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Appendix B Some results on mixed models and hat matrices

For given values of the variance components (σ2 and σ2k, k = 1, . . . , q), BLUEs for β and
BLUPs for c can be obtained as the solution to the linear system of equations (Henderson,
1963) [

XtR−1X XtR−1Z
ZtR−1X G−1 +ZtR−1Z

]
︸ ︷︷ ︸

C

[
β̂
ĉ

]
=

[
XtR−1y
ZtR−1y

]
(24)

which gives rise to closed-form expressions

β̂ =
(
XtV −1X

)−1
XtV −1y, (25)

ĉ = GZtV −1(y −Xβ̂) = GZtQy, (26)

where V and Q have been defined in Section 4.1. As it will be seen, the last equivalence in
(26) plays an important role in our approach, and it is simply obtained by substituting β̂ by
(25). The previous expressions reveal that the hat matrices associated to the fixed, β, and

random, c, effects are HF = X
(
XtV −1X

)−1
XtV −1 and HR = ZGZtQ respectively (as

already discussed in Section 4.2).
It is worth remembering that in this paper we assume that Z = [Z1, . . . ,Zq], where

each Zk represents the design matrix associated to the k-th random factor ck, with c =(
ct1, . . . , c

t
q

)t
, and that the variance-covariance G =

⊕q
k=1Gk. As a consequence

ĉ =


ĉ1
ĉ2
...
ĉq

 =


G1 0 · · · 0
0 G2 · · · 0
...

...
. . .

...
0 0 · · · Gq



Zt

1

Zt
2

...
Zt
q

Qy

=


G1Z

t
1Qy

G2Z
t
2Qy
...

GqZ
t
qQy,

 .
This result implies that

HRy = Zĉ =

q∑
k=1

Zkĉk =

q∑
k=1

ZkGkZ
t
kQy =

q∑
k=1

Hky,

where Hk = ZkGkZ
t
kQ. Accordingly, the hat matrix associated to the random part of

model (12) can be decomposed as a sum of independent hat matrices, each related to a
specific random factor in the model, i.e.,

HR =

q∑
k=1

Hk.
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Finally, it can also be shown (see, e.g., eqn. (9d) and Appendix 1 in Johnson and Thompson,
1995) that

ε̂ = y −Xβ̂ +Zĉ = RQy, (27)

and the residuals’ hat matrix is thus Hε = RQ.

Appendix C Equivalence between effective dimensions defini-
tions

This section presents the equivalence between the definition given by Cui et al. (2010) of the
effective dimension associated to a model’s component and EDk. Specifically, Cui et al. (2010)
define the effective dimension of a random factor ck as

ED (Zk) = lim
ς→+∞

trace
(
ZkGkZ

t
k

(
V + ςXWXt

)+)
(28)

= trace
(
ZkGkZ

t
k [(In − PX)V (In − PX)]+

)
, (29)

where Γ+ denotes the Moore-Penrose pseudoinverse of Γ, W is a positive definite matrix, ς
is a positive scalar, and PX = X

(
XtX

)−1
. The expression given above defines the effective

dimension of a model’s component as the trace of the ratio of that “component’s modeled
variance matrix” (ZkGkZ

t
k) to “total variance matrix” (V + ςXWXt). Note that this

definition treats β as a random vector with variance-covariance ςW . However, as pointed out
by the authors, a fixed effect can be viewed as the limiting case of a random effect for which
the variance-covariance matrix goes to infinity (i.e., when ς → +∞). Similarly to ED (Zk),
Cui et al. (2010) define the effective dimension for the error term as

ED (ε) = lim
ς→+∞

trace
(
R
(
V + ςXWXt

)+)
(30)

= trace
(
R [(In − PX)V (In − PX)]+

)
,

and show that

n = ED(X) +

q∑
k=1

ED(Zk) + ED (ε)

= rank (X) +

q∑
k=1

ED(Zk) + ED (ε) .

The definition given in Cui et al. (2010) thus partitions the number of observations n into
independent effective dimensions for the model’s components and error. In author’s words,
this result jointly with (28) and (30), suggests interpreting the effective dimension of a model’s
component ED (Zk) as the fraction of response variation attributed to that individual effect,
and the same applies to the error term.

To show that EDk = ED (Zk), we use results derived in the paper by Hoog et al. (1990).
Given that (see identity (1) in Hoog et al., 1990)

Q = V −1 − V −1X
(
XtV −1X

)−1
XtV −1 = [(In − PX)V (In − PX)]+ ,
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we have

EDk = trace
(
Zt
kQZkG

)
= trace

(
ZkGZ

t
kQ
)

= trace
(
ZkGZ

t
k [(In − PX)V (In − PX)]+

)
= ED (Zk) .

We would like to note that the equivalence between (28) and (29) can also be proved using
results of Hoog et al. (1990). Furthermore, we also have that

EDε = trace (RQ)

= trace
(
R [(In − PX)V (In − PX)]+

)
= ED (ε) .

Appendix D SpATS package

This section contains a brief description of the developed R-package associated to this paper.
The package can be freely downloaded from https://cran.r-project.org/package=SpATS,
where a more detailed depiction of it use can be found. The main function of the package is
SpATS(), which fits the spatial model presented in Section 4. Numerical and graphical sum-
maries of the fitted spatial model can be obtained, as usual in R, by using summary.SpATS(),
variogram.SpATS(), predict.SpATS() and plot.SpATS(). In the implementation of the pack-
age, the sparse structure of the design matrix associated with the genotype has been taken
into account, which, in combination with the estimation procedure presented in Section 4.1
and the possible use of nested B-spline bases, makes the package computational efficient,
allowing the analysis of very large datasets.

By way of example, we present here the syntax for the Australian wheat trial example
discussed in the paper by Gilmour et al. (1997). The aim of this trial was the evaluation of
advance breeding lines and commercial varieties. The trial consisted of 107 varieties, which
were sown in three replicates, each replicate being a complete block. Each block comprised 5
columns and 22 rows, yielding a total of 330 (5× 22× 3) plots on the field. To meet the 110
plots per replicate, from the 107 varieties, three were sown twice in each of these. For more
details about the trial, we refer the readers to the cited paper. On the basis of the results
shown in Gilmour et al. (1997), the following statistical model was assumed

y = Xgβg + f (u,v) +Zrcr +Zccc + ε,

where βg is a (106× 1) vector of fixed variety (genetic) effects, and Xg is the corresponding
(330×106) design matrix. Note that the dimension of the genetic effect is mg−1 (where mg =
107) since the intercept is included in f (u,v). Here, cr ∼ N

(
0, σ2rI22

)
and cc ∼ N

(
0, σ2cI15

)
are vectors of row and column random effects respectively, and ε ∼ N

(
0, σ2I330

)
.

The dataset can be found in the R-package agridat, under the name gilmour.serpentine.
Here there is a brief summary of the data
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> library(agridat)
> GS <- gilmour.serpentine
> summary(GS)

col row rep gen yield
Min. : 1 Min. : 1.0 R1:110 TINCURRIN : 6 Min. :194.0
1st Qu.: 4 1st Qu.: 6.0 R2:110 VF655 : 6 1st Qu.:469.0
Median : 8 Median :11.5 R3:110 WW1477 : 6 Median :617.5
Mean : 8 Mean :11.5 (WWH*MM)*WR*: 3 Mean :591.8
3rd Qu.:12 3rd Qu.:17.0 (WqKPWmH*3Ag: 3 3rd Qu.:713.5
Max. :15 Max. :22.0 AMERY : 3 Max. :925.0

(Other) :303

The dataset contains the column and row positions (col and row variables), the block (variable
rep), the variety (gen) and the yield (yield). In order to incorporate in the model the random
factors of rows and columns, we need first to create the corresponding factor variables, that
we denote as col f and row f, and we then fit the model

> GS$col_f = factor(GS$col)
> GS$row_f = factor(GS$row)

> fit.SpATS <- SpATS(response = "yield", genotype = "gen", genotype.as.random = FALSE,
+ spatial = ˜ PSANOVA(col, row, nseg = c(16,20), degree = 3, nest.div = 2),
+ fixed = NULL, random = ˜ row_f + col_f,
+ data = GS, control = list(tolerance = 1e-03, monitoring = 1))

Timings:
SpATS 0.38 seconds
All process 0.57 seconds

Through response and genotype arguments, users specify the name of the variables in the
dataset that contains, respectively, the response variable (phenotype) of interest and the
genotype or variety. The genotype can be included in the model either as fixed (default) or
random (genotype.as.random = TRUE). For modeling the spatial trend, argument spatial,
we consider 16 segments (nseg) for the column position and 20 for the row. This, jointly
with the fact we use cubic B-splines, degree = 3, gives rise to B-spline bases of dimension
P = 16 + 3 = 19 and L = 20 + 3 = 23 for the columns and rows, respectively. By specifying
the argument nest.div = 2, we indicate the use of nested bases, with half the number of
segments of the original ones (see Appendix A). The fixed and random effects to be included
in the model are indicated in fixed and random, and argument control allows to modify
some default parameters that control the fitting process. For instance, the tolerance for the
convergence criterion for the variance components can be altered using this argument, as well
as the maximum number of iterations. Under this representation, the model has a total of
322 coefficients, but it took less than 1 seconds to be fitted. A numerical summary of the
fitted model can be obtained by calling the function summary(). By indicating the argument
which = "all", we obtain both the estimates of the variance components and the effective
dimensions
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> summary(fit.SpATS, which = "all")
[...]

Variance components:
Variance SD log10(lambda)

row_f 4.397e+02 2.097e+01 0.67320
col_f 4.442e+03 6.665e+01 -0.33128
f(col) 1.245e+04 1.116e+02 -0.77895
f(row) 7.240e+01 8.509e+00 1.45657
f(col):row 7.847e+02 2.801e+01 0.42159
col:f(row) 6.490e-06 2.548e-03 8.50408
f(col):f(row) 2.530e+03 5.030e+01 -0.08684

Residual 2.072e+03 4.552e+01

Dimensions:
Effective Model Nominal Ratio Type

gen 106.0 106 106 1.00 F
Intercept 1.0 1 1 1.00 F
row_f 12.6 22 21 0.60 R
col_f 10.3 15 14 0.74 R
col 1.0 1 1 1.00 S
row 1.0 1 1 1.00 S
row:col 1.0 1 1 1.00 S
f(col) 2.3 17 17 0.14 S
f(row) 1.0 21 21 0.05 S
f(col):row 2.6 17 17 0.15 S
col:f(row) 0.0 21 21 0.00 S
f(col):f(row) 7.5 99 99 0.08 S

Total 146.3 322 320 0.46
Residual 183.7
Nobs 330

Type codes: F ’Fixed’ R ’Random’ S ’Smooth/Semiparametric’

In this example, there are seven variance components, five associated to the spatial trend,
one associated to the row random effects, one to the column random effects, and the residual
variance σ2. The column log10(lambda) shows the logarithm of base 10 of the smoothing
parameters, i.e., the ratio between the residual variance and the variance component. As far
as the dimensions is concerned, for each component in the model (either fixed, random or
spatial), the function returns (a) the effective dimension or effective degrees of freedom,
(b) the model dimension, i.e., the number of parameters to be estimated, (c) the nominal
dimension, which, for the random components is the model dimension minus one, lost due to
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the constraint of zero-mean imposed to them; and (d) the ratio between the effective and
the nominal dimension. It is worth remembering that, if the variety had been included as
random, the ratio for the variety would have provided an estimate of the so-called generalized
heritability as proposed by Oakey et al. (2006). If we focus on the random effects for the rows
and columns, we have that the effective dimensions are, respectively, about the 60% and the
74% of the nominal dimensions. As discussed in Section 3.2, for the spatial trend we have,
in total, 8 components (excluding the intercept). The linear effects for the rows and the
columns (row and column), as well as the linear interaction (row:col), represent the fixed
or unpenalized part of the tensor-product P-spline. The remaining five components, i.e.,
the main effects (f(row) and f(col)), the smooth varying coefficient terms (f(col):row and
row:f(col)); and the smooth-by-smooth interaction component (f(col):f(row)) correspond
to the penalized or random part, and have been extensively discussed in Sections 3.1 and 4.2.
On the basis of the effective dimensions associated to each of these five components, we may
inferred that most of the trend has been captured by the main effect and the smooth varying
coefficient term along the column position, but also by the smooth-by-smooth interaction
term, for which we have an effective dimension of 7.6.

To complement those numerical results, the SpATS package furnishes different graphical
results that can be used to further explore the fitted model. Specifically, the sample variogram
can be obtained using the function variogram(), which can also be plotted; and the function
plot() depicts six different graphics: the raw data, the fitted data, the residuals, the estimated
spatial trend (excluding the intercept), the genotypic BLUEs (or BLUPs) and their histogram.
Except for the histogram, the plots are depicted in terms of the spatial coordinates (e.g., the
rows and columns of the field).

> plot(fit.SpATS)

> plot(variogram(fit.SpATS))

The result of the above code is shown in Figures D2 and D3. The spatial plots of the residuals
and the genotypic BLUEs (β̂g) do not suggest the presence of any extra spatial pattern that
should have been taken into account. A similar conclusion can be drawn from the sample
variogram of the residuals shown in Figure D3. Finally, note that the fitted spatial trend takes
values between −300 and 200, whereas the residuals vary between −100 and 100. This result
highlights what could have been expected based on the raw data, that spatial (plot-to-plot)
variation is larger than random (plot-to-plot) variation.
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