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CHAPTER  7

DESIGNING EXPERIMENTS

7.1  INTRODUCTION

In this chapter the use of generalized linear mixed models as a planning tool for the 
design of agronomic experiments is discussed. The reader might well ask, “Don’t 
generalized linear mixed models concern modeling and data analysis? What does 
this have to do with design?” To quote from the classic text Experimental Designs 
(Cochran and Cox, 1992), “It has come to be recognized that the time to think 
about statistical inference, or to seek [a statistician’s] advice, is when the experi-
ment is being planned.” Hahn (1984) put it more forcefully, “Statisticians make 
their most valuable contributions if they are consulted in the planning stages of 
an investigation. Proper experimental design is oft en more important than sophis-
ticated statistical analysis.” He continues, quoting H. Ginsburg as saying, “When 
I’m called in aft er it’s all over, I oft en feel like a coroner. I can sign the death cer-
tifi cate—but do litt le more.” Light et al. (1990) stated it slightly diff erently, “You 
cannot save by analysis what you bungle by design.”

In his text The Design of Experiments, Mead (1988) noted that the development 
of experimental design concepts was “restricted by the earlier need to develop 
mathematical theory for design in such a way that the results from the design can 
be analyzed without recourse to computers.” Because of the increasing sophis-
tication of statistical modeling and the dramatic increase in capacity of modern 
computers, Mead argued, “The fundamental concepts now require reexamination 
and re-interpretation outside the limits of classical mathematical theory so that the 
full range of design possibilities may be considered.”

Following his line of thought, while generalized linear mixed models provide 
researchers with expanded fl exibility to apply regression and analysis of vari-
ance approaches to data that are not normally distributed, conventional wisdom 
about the design of experiments refl ects the “restraints” referred to by Mead. For 
researchers to genuinely benefi t from generalized linear mixed models, experi-
ments must be designed to allow their full potential to be realized. This is done by 
using generalized linear mixed model power, precision, and sample-size analysis 
in the planning process.
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As an example of an area where this type of pre-experiment preparation is 
rigorously followed, consider the pharmaceutical industry. Regulations require 
that investigators fi nalize study protocols before their commencement. A protocol 
must describe the design of the study, identify and rank, in order of importance, 
the various hypotheses to be tested, and specify the models to be fi t and the statis-
tical methods to be used in performing the analyses. As part of these preparations, 
power analyses are conducted to ensure that the study will be adequate for its 
intended purpose. This is very important. Even aside from fi nancial consider-
ations, it would be unethical to expose subjects to the potential risks of a clinical 
trial without ensuring a reasonable chance of detecting a clinically relevant treat-
ment eff ect. In addition, it is undesirable to expose more subjects to the potential 
risks than are necessary to obtain a specifi ed level of power.

This level of pre-experiment preparation is not, and may never be, required 
of researchers in most academic fi elds. However, it can be considered a “best 
practice model,” a goal to strive for. In fact, we are seeing a movement in this 
direction in several fi elds. For example, grant-funding agencies such as NIH now 
require that power analyses be included in grant proposals. Even when not for-
mally required, including a power analysis gives a grant proposal a competitive 
advantage because it shows funding agencies that the researcher has thought care-
fully about the proposed design and its potential to obtain results. In all cases, it 
is in the researcher’s enlightened self-interest to assess the power and precision 
of a proposed design before data collection begins. This is especially true when 
generalized linear mixed models are to be used to analyze the data. A design that 
is optimal for analysis of variance or regression with normally distributed data 
may be unsuitable for non-normal data such as counts, percentages, and times to 
an event. What reasonable researcher would invest time, eff ort, and money in an 
experiment without fi rst gett ing an idea of the likelihood of successfully detecting 
scientifi cally relevant results, should they exist?

The purpose of this chapter is to show how generalized linear mixed model 
based tools can be used in planning experiments that will be analyzed using gen-
eralized linear mixed models. Specifi cally, we show how generalized linear mixed 
models can be used to assess the expected power profi le and the precision of a 
proposed experiment of a given size and type, and to guide modifi cations when 
they are necessary. In many cases, a given set of treatments and a given number of 
experimental units can be arranged into more than one plausible design, oft en with 
very diff erent power profi les with respect to the researcher’s objectives. Power and 
precision analysis can be used to assess the strengths and drawbacks of competing 
designs. The tools presented in this chapter should be considered essential in plan-
ning agronomic experiments and experiments in other fi elds as well.

7.2  POWER AND PRECISION

Power is defi ned as the probability of rejecting the null hypothesis when in fact 
the null hypothesis is false and therefore should be rejected. In practical terms, the 
null hypothesis states that a given treatment has no eff ect, while the research or 
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alternative hypothesis states that a treatment does indeed have an eff ect. Hence, 
power is the probability that one will be able to demonstrate the credibility of the 
research hypothesis, with acceptable scientifi c rigor, when the research hypothesis 
is in fact true.

Power analysis is, in essence, the computation of that probability. Specifi cally, 
one determines the minimum treatment eff ect one considers to be scientifi cally 
relevant and then computes the probability that a proposed design will show that 
diff erence to be statistically signifi cant. Precision analysis is similar, but instead of 
focusing on power, one determines how wide a confi dence interval for the treat-
ment eff ect is expected to be for the proposed design.

7.3   POWER AND PRECISION ANALYSES FOR GENERALIZED 
LINEAR MIXED MODELS

The fi rst step in conducting a power and a precision analysis is to identify the 
nature of the response variable, its distribution, and the eff ect(s) of interest. For 
example, in a one factor, completely randomized design, the model describing the 
treatment eff ect is β0 + Ti, i = 1, …, t, where Ti is the eff ect of the ith treatment and 
β0 is the intercept or overall mean. For normally distributed response variables, β0 
+ Ti directly models the treatment mean μi. For binomial responses, β0 + Ti usually 
models the logit of πi, where πi denotes the probability of the occurrence of the 
event of interest (success) for the ith treatment. For counts modeled by an appro-
priate counting distribution, β0 + Ti models log(μi), where μi is the expected count 
for the ith treatment.

The hypotheses to be tested are specifi ed in terms of treatment diff erences 
or, more generally, contrasts ΣikiTi, where the ki are constants chosen to defi ne the 
eff ect of interest. Under the null hypothesis, H0: ΣikiTi = 0 and under the research 
hypothesis, HA:

 
ΣikiTi ≠ 0. For example, sett ing k1 = 1, k2 = −1, and the remaining ki 

= 0 defi nes the contrast T1 − T2, the diff erence between treatments 1 and 2. In this 
case, H0: T1 − T2 = 0 and HA: T1 − T2 ≠ 0. A generalized linear mixed model test of 
this hypothesis is based on an F statistic. If H0 is true, this statistic has an approxi-
mate central F distribution, denoted F(0, Ndf, Ddf), where Ndf denotes the numerator 
degrees of freedom, and Ddf denotes the denominator degrees of freedom. Under 
the research hypothesis, the F statistic has an approximate non-central F distribu-
tion, denoted by F(ϕ, Ndf, Ddf), where ϕ denotes the non-centrality parameter. Without 
going into technical details, the non-centrality parameter depends on the quantity

( ) ( )sample size variance of treatment effecti i
i

k T
⎛ ⎞⎟⎜ ⎟⎜× ⎟⎜ ⎟⎜ ⎟⎝ ⎠
∑

A formal defi nition and technical details can be found in experimental design text-
books, for example, Hinkelmann and Kempthorne (1994). Note that under the null 
hypothesis, ΣikiTi = 0, and hence, the non-centrality parameter ϕ is also 0. Under 
the research hypothesis, ΣikiTi > 0, and hence, ϕ > 0. The non-centrality parameter 
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increases when either the eff ective sample size increases, the treatment eff ect in-
creases, or the variance of the treatment eff ect decreases.

Figure 7–1 illustrates the eff ect of the non-centrality parameter on the F dis-
tribution. In the fi gure, the central F is the highly right-skewed distribution in the 
left -most position and represents the distribution of the test statistic under the null 
hypothesis. The dashed vertical line represents the critical value of the test for α = 
0.05. An observed value of the F statistic greater than the critical value would lead 
to rejection of the null hypothesis. The two non-central F distributions show what 
happens as the non-centrality parameter increases; namely, the larger the value, 
the more the distribution is shift ed to the right. The area under the curve to the 
right of the critical value corresponds to the power of the test. As ϕ increases, the 
power of the test increases.

Precision analysis is based on interval estimation of the eff ect of interest, ΣikiTi. 
The ratio of the estimated contrast to its standard error has an approximate t dis-
tribution with Ddf degrees of freedom. Thus, a 100(1 − α)% confi dence interval for 
ΣikiTi is of the form

( ), Ddfestimate of standard error of i i i i
i i

k T t k Tα± ×∑ ∑

For a given design, one can use generalized linear mixed model soft ware to com-
pute the approximate standard error and hence, the expected confi dence interval 
width for the contrast.

FIG. 7–1. The effect of the non-centrality parameter on the F distribution.
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7.4  METHODS OF DETERMINING POWER AND PRECISION

There are two primary ways of evaluating the power and precision of an experi-
ment using generalized linear mixed model soft ware. The fi rst method, henceforth 
referred to as the probability distribution method, is applicable when we know (or 
can approximate) the sampling distribution of the test statistic under the condi-
tions of the research hypothesis. In this case, one determines the non-centrality 
parameter of the distribution of the test statistic at a particular point under the 
research hypothesis. One then approximates the power of the test using the area 
under this non-central distribution to the right of the critical value, as illustrated 
in Fig. 7–1. One can use GLIMMIX in conjunction with SAS's (SAS Institute, Cary, 
NC) probability functions to perform these calculations.

The second method uses simulation to estimate the power of a test and is 
applicable regardless of whether we know or can approximate the actual sampling 
distribution of the test statistic under the research hypothesis. All that is necessary 
to use this method is the ability to perform the test of interest and generate random 
numbers from the distribution of interest. To estimate power via simulation, one 
uses a random number generator to create a large number of independent data sets 
that match the proposed study design and refl ect the conditions under the research 
hypothesis to be detected. The SAS data step and random number functions can 
be used to create these data sets. One then performs the desired generalized linear 
mixed model analysis for each data set separately, in each case keeping track of 
whether the null hypothesis has been rejected. Since the simulated samples are 
independent, the number of samples for which the null hypothesis is rejected has 
a binomial distribution with the number of trials equal to the number of simu-
lated datasets and with probability equal to the true power of the hypothesis test. 
This fact provides a basis for making inferences about the true power of the test, 
including computing point and confi dence interval estimates and testing hypoth-
eses about the power. In particular, the proportion of simulated datasets for which 
the null hypothesis is rejected gives a point estimate of the power of the test. In 
addition, a confi dence interval for the power of the test can be computed from these 
simulation results. For precision analysis, one calculates the mean and variance of 
the width of the confi dence intervals over all simulated samples produced by the 
generalized linear mixed model. GLIMMIX can be used for both power analysis 
and precision analysis using the simulation method.

A major advantage of the probability distribution method over the simula-
tion method is that it is quicker and easier to set up, allowing rapid comparison of 
competing designs, diff erent eff ect sizes, diff erent levels of variation, or diff erent 
sample sizes. However, to use this method one must know (or know an approxi-
mation of) the actual sampling distribution of the test statistic. One advantage of 
the simulation method over the probability distribution method is that it is appli-
cable for any design and any type of analysis, regardless of whether the behavior 
of the test statistic is well understood. The only requirement is that one is able to 
generate data according to the study design.

A second advantage of the simulation method is that, since it involves analyz-
ing hundreds (or thousands) of datasets similar to those that are expected from 
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the study, it allows one to see exactly what the analysis will look like and how 
the GLIMMIX procedure will behave with data from the proposed design. The 
simulation method may reveal any troublesome behavior GLIMMIX may display 
for a contemplated design. Researchers can use such fair warning to make needed 
changes in the proposed design before the data are collected and it is too late. One 
disadvantage of the simulation method is that, because it requires analyzing a 
large number of samples, it can be much more time consuming, especially when 
evaluating power over a wide range of possibilities under the alternative hypoth-
esis. A benefi t of both methods is that the programs used to perform the power 
analysis can be used later, perhaps with minor alterations, to analyze the real data 
once they have been obtained.

The approach taken in this chapter and recommended for use in practice is 
to use the probability distribution method to compare the various design alter-
natives for a study and to identify one or more that provide the desired power 
characteristics. Then use the simulation method to verify the power approxima-
tions obtained from the probability distribution method. Again we emphasize that 
all of this should be done during the planning stages of an experiment, before data 
collection starts.

Four items of information are required to perform a power analysis:

• the minimum treatment eff ect size ΣikiTi considered scientifi cally 
relevant,

• the assumed probability distribution of the response variable,
• an approximate idea of the magnitude and nature of the variation and 

correlation present in the data,
• a clear idea of the structure of the proposed design.

A few clarifi cations about these required items are in order. First, providing the sci-
entifi cally relevant treatment eff ect size does not mean knowing in advance how 
big a diff erence there will be among treatment means. Many researchers short-
circuit power analysis by saying, “I can’t give you that. If I knew how diff erent 
the treatment means are, I wouldn’t have to run the experiment!” True, but that 
is not the question. The question is, “Given your knowledge about the research 
question that is motivating this study, what is the minimum diff erence that would 
be considered important if, in fact, it exists?” Would a 1 kg ha−1 increase in yield 
be considered too trivial to matt er? Would a 10 kg ha−1 diff erence be considered 
extremely important? What about a 5 kg ha−1 diff erence?

Second, to get an idea of the magnitude and nature of the variation and corre-
lation present in the data, one must identify the relevant sources of variation (e.g., 
blocking, experimental unit error), distinguishing between whole plot and split 
plot variance if a split plot experiment is being proposed, characterizing likely cor-
relation structures among measurements over time if a repeated measures design 
is proposed, and characterizing likely spatial variability if there is reason to believe 
it is present. Several of these issues will be addressed in the examples that follow.
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If it appears from these requirements that a great deal of conversation between 
the researcher and statistical scientist should be occurring early in the planning of 
the experiment, then the reader has the right idea.

7.5   IMPLEMENTATION OF THE PROBABILITY 
 DISTRIBUTION METHOD

This basic approach originated with linear models using PROC GLM in SAS (Litt ell, 
1980; O’Brien and Lohr, 1984; Lohr and O’Brien, 1984). Stroup (1999) extended the 
method to linear mixed models using PROC MIXED. Stroup (2002) described the 
implementation of the probability distribution method for linear mixed models 
using PROC MIXED, focusing on experiments in the presence of spatial variation, 
and provided evidence of the accuracy of these methods via simulation. Litt ell et 
al. (2006) provided additional detail and examples for linear mixed models. In this 
section, the method is extended to generalized linear mixed models.

Implementation of the probability distribution method requires four basic 
steps. These steps are listed here and are illustrated by a simple example using 
a two-treatment, completely randomized design for a normally distributed 
response. The steps are as follows:

1. Create an “exemplary data set” (O’Brien and Lohr, 1984), that is, a data set 
whose structure is identical to the data that would be collected using the 
proposed design but with the observed data replaced by means refl ecting 
the treatment diff erence to be detected under the research hypothesis.

2. Determine the numerator and denominator degrees of freedom and the 
non-centrality parameter that follows from the design and the research 
hypothesis. These can be obtained from the generalized linear mixed 
model soft ware.

3. Determine the critical value based on the numerator and denominator 
degrees of freedom found in Step 2.

4. Compute the power, that is, the probability that the test statistic exceeds 
the critical value using the numerator and denominator degrees of 
freedom and the non-centrality parameter determined in Step 2 and the 
critical value found in Step 3.

EXAMPLE 7.1

Suppose we want to compare two treatments, a reference (or control) and an 
experimental treatment, using a completely randomized design in which the re-
sponse is normally distributed. Suppose further that experience with the control 
treatment indicates it has a mean response of approximately 10 units with a stan-
dard deviation of roughly 10% of the mean. That is, for the control treatment μ = 
10 and σ = 1. The researcher believes that it would be scientifi cally relevant if the 
experimental treatment increases the mean response by 10% or more; i.e., to at 
least μ = 11. The researcher wants to know the probability that four replications 
per treatment would show the scientifi cally relevant diff erence to be statistically 
signifi cant. With this information, the probability distribution method is imple-
mented as follows.
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Step 1. Create the exemplary data set. 

This will have four lines of data per treatment (one per replication), each line con-
taining the treatment and the mean for that treatment under the research hypoth-
esis (10 for control, 11 for the experimental treatment).

The SAS data step to accomplish Step 1 is shown in Fig. 7–2, and the data fi le 
that it created is shown in Fig. 7–3. There are two input variables, trt (treatment) 
and mu (the mean for the treatment specifi ed by trt). trt takes two values, 0 for the 
control and 1 for the experimental treatment, and mu takes the values 10 and 11, 
respectively, corresponding to the minimum scientifi cally relevant diff erence as 
specifi ed by the researcher. The do, output, and end statements form a “do-loop” to 
create the required four lines of data per treatment.

Step 2. Analyze the exemplary dataset using GLIMMIX to obtain the terms 
needed to compute the power and the precision of the experiment.

The GLIMMIX statements for Step 2 are given in Fig. 7–4. The class and model 
statements are exactly as they would be when the actual data from the experi-
ment are analyzed. The parms statement sets the error variance to 1. The hold op-
tion instructs the procedure to fi x it at σ2 = 1 and to not treat it as a parameter to 
be estimated. (The parms statement and noprofi le option would be removed when 
analyzing the real data). The diff  and cl options in the LSMEANS statement direct 
the procedure to compute the projected 95% confi dence interval for the treatment 
diff erence. For this example, this is the precision analysis. The output shown in 
Fig. 7–5 gives the information needed for the precision analysis. The ods statement 
causes the GLIMMIX procedure to create a new data set, which we have named 
power_terms, that contains the various values needed for the power analysis (F 
value, numerator and denominator degrees of freedom). The contents of this fi le 
are shown in Fig. 7–6.

FIG. 7–2. SAS statements to create an 
exemplary data set for Example 7.1.

FIG. 7–3. The exemplary data 
set for Example 7.1 from the 
PROC PRINT in Fig. 7–2.
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From Fig. 7–5, the precision analysis shows that if this experiment is run with 
four replications, the expected standard error of a treatment mean will be 0.5, the 
expected standard error of a treatment diff erence will be 0.707, and the expected 
width of the 95% confi dence interval for the treatment diff erence will be 0.730 − 
(−2.730) = 3.46 units.

FIG. 7–6. The contents of the power_terms fi le for Example 7.1 from the PROC PRINT in Fig. 7–4.

FIG. 7–5. GLIMMIX output containing the information required for the precision analysis in 
Example 7.1.

FIG. 7–4. GLIMMIX statements to compute terms needed for the power/precision analysis for 
Example 7.1.
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Steps 3 and 4. The values in the data set created by the ods statement 
(power_terms) are used to obtain the critical value, compute the non-
centrality parameter, and then evaluate the power.

The SAS statements to perform Steps 3 and 4 are shown in Fig. 7–7. These state-
ments, perhaps with minor alterations, are used for all of the examples presented 
in this chapter. The data step creates a new data set called power from the data set 
power_terms produced by the GLIMMIX analysis. The non-centrality parameter 
under the research hypothesis is equal to the product of the numerator degrees of 
freedom (NumDF) and the F-value. In this example, α, the type I error probability, 
is set to 0.05. The critical value of F is calculated using the fi nv function. The state-
ment shown obtains the critical value from the central F-distribution (i.e., F under 
the null hypothesis) using the numerator and denominator degrees of freedom 
provided by GLIMMIX as a result of analyzing the exemplary dataset. The ProbF 
function determines the area under the non-central F distribution (i.e., F under 
the research hypothesis) to the left  of the critical value. Subtracting this area from 
one yields the power. The resulting information from the PROC PRINT statement 
appears in Fig. 7–8.

The approximated power of the proposed experiment is 0.2232. In other words, 
given the scientifi cally relevant diff erence specifi ed above and the assumed mag-
nitude of the error variance, the researcher has less than a one in four chance of 
obtaining data that will allow rejection of the null hypothesis. Clearly, four replica-
tions do not provide adequate power.

One can evaluate power for diff erent numbers of replications by modifying 
the upper limit in the do statement in the creation of the exemplary data set. To fi nd 
the minimum number of replications required to obtain a given power, one can 

FIG. 7–8. Power analysis results for Example 7.1 from the PROC PRINT in Fig. 7–5.

FIG. 7–7. SAS statements to compute power from the GLIMMIX output for Example 7.1.
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progressively change this upper limit until the desired level of power is obtained. 
For example, suppose we wish to determine the smallest number of replications 
for which the test has power at least 0.80. Varying the upper endpoint in the do 
statement in this way, we fi nd that 16 replications result in the power being 0.78, 
and 17 replications result in the power being 0.81. Therefore 17 is the minimum 
number of replications that will provide at least an 80% chance of detecting the 
treatment diff erence specifi ed above, assuming an error variance of 1. The power 
provided by other numbers of replications when the error variance is 1 is given in 
Table 7–1 under the column labeled approximated power.

TABLE 7–1. Approximated and estimated power for the comparison of two treatments in a 
completely randomized design with variance equal to 1 in Example 7.1.

Number of 
replications

Approximated 
power†

Estimated
power†

Lower confi dence 
limit‡

Upper confi dence 
limit‡

4 0.2232 0.2188 0.1934 0.2441

10 0.5620 0.5713 0.5410 0.6016

15 0.7529 0.7813 0.7559 0.8066

16 0.7814 0.7813 0.7559 0.8066

17 0.8070 0.7881 0.7631 0.8131

18 0.8300 0.8379 0.8153 0.8605

19 0.8506 0.8721 0.8516 0.8925

20 0.8690 0.8652 0.8443 0.8861

25 0.9337 0.9287 0.9130 0.9445

30 0.9677 0.9648 0.9536 0.9761

31 0.9721 0.9678 0.9570 0.9786

32 0.9760 0.9746 0.9650 0.9842

33 0.9793 0.9678 0.9570 0.9786

34 0.9822 0.9795 0.9708 0.9882

35 0.9848 0.9834 0.9756 0.9912

40 0.9930 0.9941 0.9895 0.9988

45 0.9968 0.9990 0.9971 1.0000

50 0.9986 0.9990 0.9971 1.0000

55 0.9994 0.9961 0.9923 0.9999

60 0.9997 0.9990 0.9971 1.0000

65 0.9999 1.0000 1.0000 1.0000

70 1.0000 1.0000 1.0000 1.0000

† Approximated power is based on the probability distribution method. Estimated power is based on the 
simulation method with 1024 simulated samples.

‡ 95% confi dence limits for the estimated power.
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What is the eff ect on power if we have underestimated the error variance? For 
example, how much power will 17 replications provide if the error variance σ2 is 
actually 2, or even worse if it is as large as 4? This is easily answered by changing 
the parms statement in the GLIMMIX procedure. Re-running the procedure above 
with parms (2), we see that with 17 replications the power drops to 0.52 when σ2 

= 2 (Table 7–2), and re-running with parms (4) shows that with 17 replications the 
power drops even further to 0.29 when σ2 = 4 (Table 7–3). By increasing the number 
of replications as described above we see that if σ2 were actually 4, it would take 65 
replications to achieve power of 0.80 (Table 7–3).

TABLE 7–2 Approximated and estimated power for the comparison of two treatments in a 
completely randomized design with variance equal to 2 in Example 7.1.

Number of 
replications

Approximated 
power†

Estimated
power†

Lower confi dence 
limit‡

Upper confi dence 
limit‡

4 0.1356 0.1357 0.1148 0.1567

10 0.3220 0.3408 0.3118 0.3699

15 0.4642 0.4551 0.4246 0.4856

16 0.4904 0.4932 0.4625 0.5238

17 0.5158 0.5029 0.4723 0.5336

18 0.5403 0.5547 0.5242 0.5851

19 0.5640 0.5684 0.5380 0.5987

20 0.5868 0.5908 0.5607 0.6209

25 0.6879 0.6885 0.6601 0.7168

30 0.7682 0.7578 0.7316 0.7841

31 0.7820 0.7715 0.7458 0.7972

32 0.7951 0.8008 0.7763 0.8252

33 0.8076 0.8008 0.7763 0.8252

34 0.8193 0.8135 0.7896 0.8373

35 0.8305 0.8262 0.8030 0.8494

40 0.8776 0.8711 0.8506 0.8916

45 0.9127 0.9199 0.9033 0.9365

50 0.9383 0.9424 0.9281 0.9567

55 0.9568 0.9531 0.9402 0.9661

60 0.9700 0.9678 0.9570 0.9786

65 0.9794 0.9795 0.9708 0.9882

70 0.9859 0.9873 0.9804 0.9942

† Approximated power is based on the probability distribution method. Estimated power is based on the 
simulation method with 1024 simulated samples.

‡ 95% confi dence limits for the estimated power.
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One could also change the variance in the PARMS statement to fi nd the larg-
est variance for which four replications provide an 80% chance of detecting the 
treatment diff erence. Doing this, we fi nd that the largest the variance can be in this 
case is σ2 = 0.18. Finally, one could modify the variable mu to determine the mini-
mum treatment diff erence four replications could detect at a signifi cance level of α 

= 0.05 and power = 0.80, with σ2 = 1. For example, mu = 10 and 12.4 for trt = 0 and 1, 
respectively (a 24% diff erence), yields a power of 0.806.

TABLE 7–3 Approximated and estimated power for the comparison of two treatments in a 
completely randomized design with variance equal to 4 in Example 7.1.

Number of 
replications

Approximated 
power†

Estimated
power†

Lower confi dence 
limit‡

Upper confi dence 
limit‡

4 0.0923 0.0908 0.0732 0.1084

10 0.1851 0.1943 0.1701 0.2186

15 0.2624 0.2695 0.2424 0.2967

16 0.2777 0.2803 0.2528 0.3078

17 0.2930 0.2871 0.2594 0.3148

18 0.3081 0.3018 0.2736 0.3299

19 0.3231 0.3281 0.2994 0.3569

20 0.3379 0.3398 0.3108 0.3689

25 0.4101 0.4102 0.3800 0.4403

30 0.4779 0.4873 0.4567 0.5179

31 0.4909 0.4785 0.4479 0.5091

32 0.5036 0.4922 0.4616 0.5228

33 0.5162 0.5449 0.5144 0.5754

34 0.5285 0.5146 0.4840 0.5453

35 0.5407 0.5352 0.5046 0.5657

40 0.5981 0.6074 0.5775 0.6373

45 0.6502 0.6523 0.6232 0.6815

50 0.6969 0.7158 0.6882 0.7434

55 0.7385 0.7393 0.7124 0.7661

60 0.7753 0.7773 0.7519 0.8028

65 0.8076 0.8057 0.7814 0.8299

70 0.8358 0.8525 0.8308 0.8743

† Approximated power is based on the probability distribution method. Estimated power is based on the 
simulation method with 1024 simulated samples.

‡ 95% confi dence limits for the estimated power.
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The power calculations above are based on a generalized linear mixed model 
analysis, and therefore are based on an F statistic. The F distribution is an approxi-
mation to the true sampling distribution of the generalized linear mixed model 
test statistic. Hence, the power values obtained above are approximations as well. 
We can assess the accuracy of these approximations by estimating the true power 
using the simulation method discussed in Section 7.4. To do this, 1024 indepen-
dent random samples were generated according to the model using the same 
combinations of assumed variance and number of blocks considered in the prob-
ability distribution method above. Each sample was analyzed using the GLIMMIX 
model shown in Fig. 7–4 (excluding the parms statement and the noprofi le option). 
The results of the analyses of the simulated samples were used to calculate point 
and confi dence interval estimates of the true power for each number of blocks 
under consideration. As can be seen in Tables 7–1, 7–2, and 7–3, in most cases 
the approximated power values are contained within the 95% confi dence interval 
estimates of the true power. From this we can conclude that the power approxi-
mations obtained from the probability distribution method are accurate in this 
scenario. This illustrates the general result that for response variables with a 
normal distribution, this approximation is very good, and therefore we can be 
confi dent in the results provided by the probability distribution method in such 
cases. For response variables with non-normal distributions, using simulation to 
verify the results obtained from the probability distribution method is much more 
important because the non-normal case has not been studied as extensively and 
less is known about its performance in certain cases, such as when the number of 
replications is small. ■

This simple example demonstrates the use of the probability distribution and 
simulation methods for evaluating power and precision. The remaining examples 
show how these methods can be used to perform power and precision analysis for 
several more realistic situations involving generalized linear mixed models.

7.6   A FACTORIAL EXPERIMENT WITH DIFFERENT 
DESIGN OPTIONS

The example in this section shows three alternative ways of sett ing up a two-factor 
factorial experiment with a given set of experimental units. Each design exhibits 
diff erent power and precision characteristics, thereby providing the scientist with 
choices on ways to obtain more information from a fi xed set of resources.

EXAMPLE 7.2

A researcher wants to conduct a fi eld experiment to compare two treatments at 
three rates of application. For example, the two treatments could be two methods 
of application, two tillage methods, or two varieties. The three rates of application 
could represent amounts of a fertilizer or pesticide or irrigation levels. Treatment 
designs identical or similar to this two-treatment × three-rate factorial occur fre-
quently in agronomic research. Assume that the response is normally distributed.
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Now suppose the resources available to the researcher consist of an 8 × 3 
grid of plots with a gradient parallel to the direction of the 8-plot rows. Figure 7–9 
shows the fi eld layout.

The variation among the three-plot columns due to the gradient suggests that 
some form of blocking is advisable. Since there are six treatment × rate combi-
nations in the treatment design, one obvious blocking strategy would combine 
pairs of adjacent columns into blocks, resulting in a randomized complete block 
(RCB) design with four blocks. However, with a strong enough gradient, adjacent 
columns may be dissimilar, resulting in excessively heterogeneous experimental 
units within blocks, a well-known poor design idea. An alternative design would 
use each 3-plot column as an incomplete block and set the experiment up as an 
incomplete block (IB) design with 8 blocks. A third approach would be to form 
blocks as in the randomized complete block design, assigning treatments to 3-plot 
columns within a block (whole plots), and then randomly assigning rates to sub-
plots within each whole plot, resulting in a split plot (SP) design with an RCB 
whole plot design structure. Figure 7–10 shows a layout for each design.

Each design in Fig. 7–10 requires a diff erent model for analysis, resulting in 
potentially diff erent power characteristics. Each model consists of a component 
related to the treatment structure and a component related to the design structure 
of the experiment (Milliken and Johnson, 2009). The treatment structure is the 
same for all three experiments. Each model has in common the treatment × rate 
structure given by

μĳ  = β0 + Ti + Dj + TDĳ 

where μĳ  is the mean for the ith treatment and jth rate, β0 is the intercept, Ti is the 
ith treatment eff ect, Dj is the jth rate eff ect, and TDĳ  is the eff ect of the treatment 
× rate interaction. The models diff er in their blocking and error structures, which 
make up the remainder of each model. The complete models are given below.

• Randomized complete block (RCB):

 
R ijk ij k ijkY R e= μ + +

where Rk is the kth block eff ect, assumed to be independent N(0, 2
Rσ ), and 

R
ijke  is the error term, assumed to be independent N(0, 2

Reσ ). The subscript 
and superscript R denotes the randomized complete block design.

FIG. 7–9. Field layout of the experimental plots for a 3 × 2 factorial treatment structure for 
Examples 7.2, 7.5, 7.6, and 7.7.



252 CHAPTER 7

• Incomplete block design (IB):

I ijk ij k ijkY B e= μ + +

where Bk is the kth incomplete block eff ect, assumed to be independent N(0, 
2
Bσ ), and I

ijke  is the error term, assumed to be independent N(0, 2
Ieσ ). The 

subscript and superscript I denotes the incomplete block design.

• Split plot (SP):

Yĳ k = μĳ  + Rk + wik + sĳ k 

where Rk is the kth block eff ect (as in the RCB), wik is the whole plot error, 
assumed to be independent N(0, 2

Wσ ), and sĳ k is the split plot error, assumed 
to be independent N(0, 2

Sσ ).

Once we specify the plausible designs and their associated models, we have a 
decision to make. Which one should the researcher use? Assuming that the design 
costs are the same for the above designs, the answer is the design that maximizes 
power and precision for the treatment comparisons that address the research-
er’s objectives. To do the power analysis required to make this determination, 
we need to specify values of the μĳ  under the research hypothesis; that is, what 

FIG. 7–10. Field layouts as a randomized complete block, an incomplete block, and a split plot 
with whole plots in blocks for Example 7.2.
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are the “agronomically relevant” diff erences among 
these treatments and what comparisons among them 
best address the objectives?

As an example, suppose treatment 1 histori-
cally showed a 5.72 unit increase each time the rate 
was increased; e.g., from “low” to “medium” or 
from “medium” to “high.” Suppose that the research 
hypothesis states that under treatment 2, the response 
to these rate increases would be greater. The researcher 
considered that a doubling of that rate would be 

“agronomically relevant.” A power analysis for this 
research hypothesis is accomplished by performing a 
test of the equality of the linear eff ect of rate across 
each treatment, i.e., by testing the treatment × linear 
rate interaction. This hypothesis is tested in GLIMMIX 
using the following contrast statement:

contrast ‘trt × lin_rate’ trt*rate −1 0 1 1 0 −1;

Figure 7–11 shows the SAS data step used to create an exemplary data set for this 
power and precision analysis based on four blocks. The values for mu follow from 
the discussion above and the assumption that the mean response in the absence of 
any treatment is 100 units (any value could be used for this baseline).

Once the exemplary data set is specifi ed, we need to specify the variance com-
ponents associated with each design so that we can determine the non-centrality 
parameter. The variance structure in each model is a combination of the variance 
among plots within each column and the magnitude of the gradient. Suppose that 
enough is known about this structure to give the following information about the 
probable variance components that would result from each design.

• Randomized complete block (RCB): 2
Rσ  = 15 and 2

Reσ  = 34
• Incomplete block design (IB): 2

Bσ  = 35 and 2
Ieσ  = 14

• Split plot (SP): 2
Rσ  = 15, 2

Wσ  = 20 and 2
Sσ  = 14

Notice the diff erence between the RCB and IB variance components. The 3-plot 
columns are natural blocks induced by the gradient. The complete blocks are ar-
tifi cial “convenience” blocks constructed by combining natural blocks. Creating 
artifi cial blocks in this way reduces the variance among blocks and increases the 
error variance within blocks. This will aff ect power and precision.

Table 7–4 shows results from the precision analysis for these designs, specifi -
cally, the standard errors for various diff erences under each design. Note that the 
incomplete block design is best suited for comparisons between treatments (both 
main eff ects and simple eff ects at given rates), whereas the split plot design is best 
suited for comparisons among rates (split plot factor) but is least suited for com-
parisons among treatments (whole plot factor). For every eff ect, the randomized 
complete block design is less precise than the incomplete block.

FIG. 7–11. SAS statements 
to create an exemplary data 
set for the split plot design for 
Example 7.2.
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Figure 7–12 shows the GLIMMIX statements needed to obtain the values for 
a power analysis for the split plot version of the experiment. The random state-
ment accounts for the design structure of the experiment by incorporating random 
eff ects for the block and whole plot error terms. The contrast statement tests the 
research hypothesis of interest and produces values needed for the power analysis. 
The ods statement saves these values in a dataset we have called research_h_test_
terms. These values are then processed as shown in Fig. 7–7 of Example 7.1. More 
than one contrast statement can be included and the ods statement can create mul-
tiple output data sets; for example, if one also wanted to output the type 3 test of 
fi xed eff ects (tests3) results. The lsmeans statement produces results for the preci-
sion analysis.

By changing the random statements diff erent design structures can be accom-
modated. This was done to calculate the power for the RCB and IB versions of 
the experiment as well. The power approximations for the three designs obtained 
using the probability distribution method are given below:

• Split plot (SP): approximated power 0.801
• Incomplete block (IB): approximated power 0.726

FIG. 7–12. GLIMMIX statements to compute terms needed for the power/precision analysis for 
the split plot for Example 7.2.

TABLE 7–4. Precision analysis of competing designs for 3 × 2 factorial experiment in Example 
7.2. Standard errors in bold indicate the best design for the corresponding eff ect.

Effect

Design

Randomized 
complete block Incomplete block Split plot

Treatment main eff ect 2.04 1.80 3.51

Rate main eff ect 2.50 1.98 1.87

Simple eff ect: treatment at jth rate 3.54 2.99 4.12

Simple eff ect: rate at ith treatment 3.54 2.86 2.65
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• Randomized complete block (RCB): approximated power 0.451

The three designs provide diff erent levels of power. These results underline the 
take-home message of this example; namely, over-simplifi cation of power analysis 
and sample size analysis oft en encourages misplaced focus in designing an experi-
ment. To emphasize this point, consider the following scenario. Imagine that the 
researcher has done all the planning up to the point where the power is actually 
computed. The researcher, having had only a semester of statistical methods, is 
familiar only with randomized complete block designs and, therefore, has con-
sidered only that design. Shortly before the grant proposal is to be submitt ed, the 
researcher brings the statistician the information about the variance components 
and the agronomically relevant diff erence and asks for a power calculation, using 
the standard greeting, “I know you’re busy, but I need this by noon today.”

Once the power is computed, the statistician delivers the bad news. The 
power for four blocks is only 0.45. “How many blocks do I need to get the power 
up to 0.80?” By running the power algorithm above with diff erent numbers of 
blocks, the statistician fi nds that nine blocks would be required. The researcher 
adjusts the budget to accommodate nine blocks and everyone lives happily ever 
aft er—except those whose money and labor have been wasted. The researcher 
has asked the wrong question. Rather than “How many blocks do I need?” the 
question should have been “What is the most effi  cient way to use the resources 
that I have available?” And, the researcher should also have asked this question 
much sooner. This conversation should have begun when the researcher was 
fi rst thinking about this project. This scenario illustrates a point that should have 
particular resonance in a time of budget defi cits, unpredictable energy costs, and 
tight money. ■

7.7   A MULTI-LOCATION EXPERIMENT WITH A BINOMIAL 
RESPONSE VARIABLE

This section illustrates another common experimental sett ing. From the statisti-
cal perspective, multi-location studies present the same basic statistical issues as 
laboratory studies conducted in multiple growth chambers or using other types of 

“identical” equipment or in studies conducted in multiple independent runs over 
time. In addition, some of the issues involved in designing experiments where 
the response of interest is a proportion are discussed. The considerations in these 
examples are applicable to any binomial response variable—dead/alive, damaged/
undamaged, germinate/did not germinate, etc. There are standard textbook for-
mulas for determining sample size with binomial response variables. However, 
as the examples will show, the standard formulas are inappropriate and inappli-
cable to the vast majority of agronomic experiments in which conclusions are to be 
based on binomial response variables. The examples demonstrate an alternative 
that is applicable to these types of experiments.
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EXAMPLE 7.3

In this example, the objective is to compare the eff ects of two treatments on the 
proportion of surviving plants when exposed to a certain disease. Suppose that a 
standard treatment is to be compared to a new experimental treatment, and that 
experience with the standard treatment suggests that the proportion of plants ex-
posed to the disease that survive averages 15%. It is believed that the experimental 
treatment can increase that proportion to 25%. The researcher wants to know how 
many plants per treatment must be observed to have a reasonable chance of de-
tecting such a change.

Some experimental design textbooks have tables giving the needed sample 
size based on standard formulas for binomial response variables (e.g., Cochran and 
Cox, 1992). Alternatively, one could use standard power and sample size soft ware, 
such as PROC POWER in SAS. Either approach yields a required sample size of 
250 plants per treatment to have power of 0.80 when a signifi cance level of α = 0.05 
is used. The GLIMMIX based probability distribution approach would yield the 
same answer if one uses the program shown in Fig. 7–13. This program assumes a 
binomial generalized linear model with a logit link. The model is given by

logit(πi) = β0 + Ti 

FIG. 7–13. GLIMMIX statements to obtain the power for a binomial response for Example 7.3.
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where πi is the probability that a plant survives when the ith treatment is applied, 
β0 is the intercept and Ti is the ith treatment eff ect. Note that this model is a true 
generalized linear model and, hence, uses a χ2 statistic to test the equality of the πi. 
The chisq option on the model statement requests the χ2 test. Figure 7–13 also shows 
the statements needed to compute the power for this model. Note that these state-
ments take into account the fact that the χ2 distribution is being used as the basis 
for inference for this model.

Unfortunately, this approach is overly simplistic and misleading for most 
agronomic research. Most agronomic experiments involve some form of block-
ing and are oft en conducted at multiple locations. To see how this aff ects power, 
suppose that the proposed experiment is to be performed at four locations. The 
researcher asks, “If I need 250 plants per treatment, should I divide them equally 
among the four locations?”

A model that refl ects this design is given by

logit(πĳ  | Lj , TLĳ ) = β0 + Ti + Lj + TLĳ  

where πĳ  is the probability that a plant survives when the ith treatment is applied 
at the jth location, Ti is the ith treatment eff ect, Lj is the jth location eff ect, and TLĳ  is 
the treatment × location interaction eff ect. If locations represent a random sample 
from the target population, then location and treatment × location are random ef-
fects, where Lj are independent N(0, 2

Lσ ), TLĳ  are independent N(0, 2
TLσ ), and the 

Lj and TLĳ  are assumed to be independent.
It is important to understand what the variance components for location and 

treatment × location signify because they are critical to gett ing the design correct 
for this experiment. In categorical data, the ratio π /(1 − π) represents the odds of 
the event of interest. The logit of π is the natural logarithm of these odds. The odds 
ratio is defi ned to be the odds for the experimental treatment divided by the odds 
for the reference treatment. The diff erence between the logits for the two treat-
ments is the log odds ratio. Therefore the variance component 2

Lσ  measures the 
variation in the log odds from location to location averaged over treatments and 

2
TLσ  measures the variation in the log odds ratio among treatments from location 

to location. For example, if the probability of a plant surviving averages 0.15 for 
the reference treatment (and as a result, the log-odds of survival averages −1.73), 
the actual probability varies from location to location and between treatments 
over locations. With a litt le refl ection this makes sense because the motivation for 
multi-site experiments is the implicit assumption that variation exists among loca-
tions and one wants to avoid experimental results that are site-specifi c.

How can one anticipate values of 2
Lσ  and 2

TLσ  for power or precision analy-
sis and planning experiments? Historical data could provide guidance. Otherwise, 
the researcher could “guesstimate” the lowest and highest values of π likely to 
occur among the locations in the population. For example, suppose, based on his-
torical data a researcher "guesstimates" that for the reference treatment π = 0.1 is the 
minimum probability of a plant surviving considered plausible at any give loca-
tion and that π = 0.2 is the maximum. Converting from the data scale to the model 
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scale, the plausible range of logits across locations is −2.20 to −1.39. The standard 
deviation can then be approximated as the diff erence between the maximum and 
the minimum divided by six, or roughly 0.135. Hence, the variance among logits is 
approximately (0.135)2 = 0.018. This can serve as an approximation for 2

Lσ . If similar 
variation occurs for the experimental treatment, then odds ratios could vary from 
1.0 (when π = 0.2 for both the reference and experimental treatments) to 3.86 (when 
π = 0.1 for the reference treatment and π = 0.3 for the experimental treatment). The 
log odds ratio would then vary from 0 to 1.35, yielding a variance of (0.135/6)2 = 0.05 
as an approximation for 2

TLσ . In this way approximate values for the variances of 
the location and treatment × location random eff ects can be obtained.

For this example, round off  the approximate variance components obtained 
above; that is, use “best guesses” of 2

Lσ  = 0.02 and 2
TLσ  = 0.05, respectively. Suppose 

the researcher proposes to observe 65 plants per treatment at each of the four loca-
tions. Figure 7–14 shows the SAS statements needed to approximate the power 
using the probability distribution method.

FIG. 7–14. SAS program to determine the approximated power for the multi-location binomial 
experiment in Example 7.3.
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Since this is a generalized linear mixed model, the test for no treatment eff ect 
on the logit scale uses an F statistic. As a result, the subsequent computations 
necessary to calculate the power are exactly as shown previously in Fig. 7–7. This 
approach yields a power of 0.36, far less than the power of 0.80 oft en used in 
sample size calculations. The reason for the discrepancy is that standard power 
computations for binomial responses do not account for the variance among loca-
tions and, as a result, are vulnerable to dramatically overstating the power and 
understating the actual sample size requirements. One can vary the number of 
plants per location by changing n and vary the number of locations by changing 
the do statement to examine various design alternatives. With 65 plants per treat-
ment group at each location, we see that eight locations are required to achieve 
power of at least 0.80 given the assumed variance components (Table 7–5).

Since the response variable is not normally distributed, this is a situation 
where it is important to use the simulation method to check of the accuracy of the 
probability distribution method. For various values for the number of sites and the 
total number of plants, 2048 independent samples were generated according to 
the model above. Each sample was analyzed using the GLIMMIX model shown in 
Fig. 7–14 aft er omitt ing the parms statement. The results obtained were then used 
to estimate the true power for each combination of the simulation parameters.

For example, both approximated and estimated power values that result 
by using four and eight sites with 65 plants per treatment group at each site 
are shown in Table 7–5. Note that the approximated power obtained from the 
probability distribution method using the GLIMMIX statements in Fig. 7–14 is 
higher than the power estimate obtained using the simulation method when four 
locations are used, but that the estimated power obtained using the simulation 
method is greater than the approximated power obtained from the probability dis-
tribution methods when eight locations are used. In other words, the probability 
distribution method gives a somewhat optimistic power approximation when the 
experiment is under-powered and a slightly pessimistic approximation when the 
experiment is adequately powered. Discrepancies aside, both the simulation and 
probability distribution power analyses give accurate assessments of whether the 
proposed number of locations is suffi  cient or not.

Table 7–6 gives results for additional combinations of number of locations and 
number of plants per treatment per location. Note that the total number of plants 

TABLE 7–5. Approximated and estimated power for 65 plants per location–treatment 
combination for Example 7.3.

Number of locations
Approximated

power†
Estimated
power†

Lower
confi dence limit‡

Upper
confi dence limit‡

4 0.36 0.277 0.257 0.296

8 0.80 0.838 0.822 0.854

† Approximated power is based on the probability distribution method. Estimated power is based on the 
simulation method with 2048 simulated samples.

‡ 95% confi dence limits for the estimated power.
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required decreases as the number of locations increases, but at no point is it pos-
sible to obtain 80% power with only 260 plants. Some researchers believe that the 
algorithm used by GLIMMIX does not produce accurate results when the “cluster 
size” (i.e., number of plants per location) is small. We observe this to be true for 
underpowered experiments (e.g., 2 plants per location and few locations), but not 
when the number of locations is suffi  cient for adequate power. This underlines the 
need to design experiments tailored to the distribution of the response variable to 
be analyzed and not to depend on conventional wisdom. ■

EXAMPLE 7.4

As a variation on Example 7.3 that clearly illustrates the eff ect of the number of 
locations on power, suppose there are a total of 600 plants available and that they 
are to be divided equally between treatments among a number of locations to 
be used in the experiment. As in the previous example suppose that 2

Lσ  = 0.02 
and 2

TLσ  = 0.05. Using these assumed values for the variance components, what 
power can be achieved for detecting the diff erence between the proportions 0.15 
and 0.25? Does the power depend on how many locations we use? If so, in what 
way does it matt er?

Table 7–7 shows the power for this test as a function of the number of loca-
tions used from 2 to a maximum of 150. There are several things to notice from 
this analysis. First, we see that across the entire range of the number of locations 
we could use, the power increases as the number of locations increases. As might 
be expected, the per-location increase in power is greatest when the number of 
locations is small. The maximum power att ainable is 0.85, which occurs when we 
use 150 locations. It appears that using between 25 and 30 locations results in a 

TABLE 7–6. Approximated and estimated power for various numbers of locations and plants 
per location–treatment combination for Example 7.3.

Number of 
locations

Plants per 
location–
treatment 

combination

Total number 
of plants per 

treatment
Approximated 

power†
Estimated 

power

Lower
confi dence 

limit‡

Upper
confi dence 

limit‡

10 26 260 0.63 0.622 0.601 0.643

10 43 430 0.80 0.823 0.806 0.839

20 13 260 0.72 0.742 0.723 0.761

20 15 300 0.78 0.771 0.753 0.790

20 16 320 0.80 0.799 0.782 0.817

50 6 300 0.83 0.833 0.817 0.850

132 2 264 0.80 0.811 0.794 0.828

† Approximated power is based on the probability distribution method. Estimated power is based on the 
simulation method with 2048 simulated samples.

‡ 95% confi dence limits for the estimated power.
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power of 0.80. In addition, there is litt le reason to use more than 30 locations, since 
beyond this point the per-location increase in power is very low.

This is a situation where it is important to use simulation to verify the power 
approximations provided by the probability distribution method. Again, 2048 
independent samples were generated for each combination of the number of loca-
tions and the number of plants per treatment per location. As can be seen in Table 
7–7, in several cases the approximated power obtained from the probability dis-
tribution method is actually larger than the upper endpoint of the 95% confi dence 
interval estimate of the power obtained from the simulation method. In particular, 
for this situation the values of the approximated power appear to be too large 
when fewer than fi ve locations are considered. The power approximations pro-
vided by the probability distribution method appear to be most accurate when 

TABLE 7–7. Approximated and estimated power for 600 total plants for Example 7.4.

Number of 
locations

Plants per 
Location

Approximated 
power†

Estimated 
power†

Lower 
confi dence 

limit‡

Upper 
confi dence 

limit‡
Number of 
samples†

2 300 0.1302 0.0000 0.0000 0.0000 2048

3 200 0.2640 0.0870 0.0747 0.0992 2047

4 150 0.3887 0.2954 0.2756 0.3151 2045

5 120 0.4818 0.4628 0.4412 0.4844 2044

6 100 0.5486 0.5340 0.5124 0.5556 2043

10 60 0.6844 0.6663 0.6459 0.6868 2041

12 50 0.7170 0.7383 0.7193 0.7574 2037

15 40 0.7485 0.7515 0.7327 0.7703 2024

20 30 0.7787 0.7756 0.7575 0.7938 2028

25 24 0.7960 0.7986 0.7812 0.8161 2031

30 20 0.8072 0.8286 0.8122 0.8451 2025

50 12 0.8288 0.8454 0.8295 0.8612 2011

60 10 0.8340 0.8321 0.8158 0.8484 2025

75 8 0.8391 0.8437 0.8279 0.8595 2028

100 6 0.8441 0.8559 0.8405 0.8712 2019

150 4 0.8491 0.8558 0.8405 0.8711 2018

† Approximated power is based on the probability distribution method. Estimated power is based on the 
simulation method. 2048 samples were simulated for each number of locations. The number of samples for 
which the GLIMMIX procedure converged successfully is given in the rightmost column. Section 2.7 briefl y 
discusses the computational issues involved with convergence of the numerical algorithms used.

‡ 95% confi dence limits for the estimated power.



262 CHAPTER 7

the number of locations is large, even though in those cases the number of plants 
at each location is small. This is a somewhat surprising result. The downside is 
that the proportion of samples for which the GLIMMIX estimation procedure con-
verges tends to decrease as the number of plants per location decreases. ■

7.8   A SPLIT PLOT REVISITED WITH A COUNT AS 
THE RESPONSE VARIABLE

In Example 7.2 the response variable was assumed to be continuous and normally 
distributed and the focus of the inference was the treatment × linear rate eff ect. 
Generalized linear mixed models were used to evaluate the power profi les of 
three potential designs (randomized complete block, incomplete block, and split 
plot) for the experiment. What if the response does not have a normal distribu-
tion? The approach presented in that example can be used to evaluate the power 
profi le of one or more designs for other types of responses. In this section we 
show how this can be accomplished when the response of interest is a count (e.g., 
number of weeds or insects).

The probability distribution of counts in biological sett ings has received con-
siderable att ention in recent years. Young and Young (1998) provided a good 
summary of the main issues. Historically the Poisson has been the presumptive 
distribution for counts. One important characteristic of the Poisson distribution 
is that the mean and variance of the distribution are equal. This is a very strong 
assumption, and there is now considerable empirical evidence suggesting that 
biological count data that satisfy the Poisson assumption are very much the excep-
tion (Young and Young, 1998). On the other hand, much evidence supporting the 
use of other distributions, such as the negative binomial (Section 2.3), has accumu-
lated from fi eld studies over the past several decades.

The motivation for using the negative binomial rather than the Poisson is over-
dispersion. Relative to the Poisson distribution, over-dispersion occurs whenever 
the variance is larger than the mean. It occurs with count data when biological 
entities (e.g., weeds, insects, mold, viruses) tend to cluster rather than disperse 
completely at random. The negative binomial distribution can account for events 
occurring at random with clustering, whereas the Poisson assumes events occur-
ring completely at random. Hence, the negative binomial tends to be a bett er 
model for biological counts in many situations, and planning research under the 
Poisson assumption can result in serious, even disastrous mistakes in assessing 
sample size requirements.

In this section we focus on the negative binomial distribution. In addition, 
because count data are oft en analyzed using a normal approximation with transfor-
mations, typically the natural logarithm or square root of the counts, the implications 
of power analysis from the transformation perspective are also considered.

EXAMPLE 7.5

Generalized linear mixed models for count data typically use the natural loga-
rithm as the link function. For the factorial treatment structure in Example 7.2, 
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when the response is a count that is assumed to have a negative binomial distribu-
tion, the conditional model for the split plot design with whole plots in blocks can 
be writt en as

log(μĳ k | Rk, wik) = μĳ  + Rk + wik 

where μĳ k is the mean count for the ith treatment and jth rate in the kth block, μĳ  is 
the mean count for the ith treatment and jth rate, Rk is the kth block eff ect, assumed 
to be independent N(0, 2

Rσ ), wik is the whole plot error, assumed to be indepen-
dent N(0, 2

Wσ ), and Rk and wik are assumed to be independent.
The variance component approximations required for a power analysis 

involving count data can be obtained using an approach similar to that used in 
Example 7.3 for a binomial response. One begins by determining the variability 
among counts, from the minimum to the maximum plausible among blocks and 
among whole plot experimental units for a given treatment × rate combination. 
Since the generalized linear mixed model models log-counts, we convert the mini-
mum and maximum counts from the data scale (counts) to the model scale (log 
counts). The range on the log scale divided by six gives an approximation of the 
standard deviation, which when squared yields the approximate variance. In a 
split plot this procedure must be used to approximate the block variance as well 
as the whole plot variance.

If the mean of the negative binomial is denoted by μ then the variance is given 
by μ + kμ2, where k is the scale or aggregation parameter (k = 1/δ in Table 2–2). The 
scale parameter must be positive. The negative binomial distribution is fl exible 
in that the degree to which the variance exceeds the mean is allowed to vary. In 
particular, for a fi xed value of the mean, the variance varies directly with the value 
of the aggregation parameter. For values of k close to zero, there is litt le over-
dispersion and the variance is close to the mean, as in the Poisson distribution. 
The over-dispersion increases as k increases. In specifying a value of k for power 
and precision analysis using GLIMMIX, one chooses a value of k that reasonably 
approximates the anticipated mean–variance relationship.

One way to obtain a reasonable value of k is as follows. Identify the treatment 
conditions under which the researcher is most familiar with the distribution of 
counts. For example, in an experiment where an experimental treatment is being 
compared to a standard treatment, the researcher may be familiar with the distri-
bution of counts under the standard treatment. The researcher can then identify 
the count that would be expected (μ) under that treatment, as well as the largest 
and smallest counts that would likely be expected under that treatment. Then an 
approximate value of k can be obtained from

2

2

(max min) / 6
k

⎡ ⎤− − μ⎣ ⎦≅
μ

where max is the largest expected count and min is the smallest expected count 
under that treatment.
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This technique requires the same kind of information regarding the variabil-
ity of the response as in previous examples and should give a reasonable value of 
k to use in the calculations.

Suppose that the block variance has been determined to be approximately 
0.25 and the whole plot variance approximately 0.15. In addition, the researcher 
has indicated that when the expected count is 10, then about 50 would be the larg-
est count and 4 the smallest count they would expect to see. With these values, an 
approximate value for the scale parameter is

2

2

(50 4) / 6 10
0.49

10
k

⎡ ⎤− −⎣ ⎦≅ =

which will be rounded off  to k = 0.5.
As before, the focus is on inference about the treatment × linear rate eff ect. 

Suppose that the researcher is interested in detecting a diff erence in the linear rate 
eff ect when it is three times higher under treatment 2 than it is under treatment 1. 
In addition, she is interested in determining the number of blocks required to have 
80% power of detecting such a diff erence.

Figure 7–15 shows the SAS statements to create an exemplary data set for 
this analysis when four blocks are used. The response variable is labeled expected_
count. Figure 7–16 shows the GLIMMIX statements that provide the values needed 
to obtain the non-centrality parameter and the degrees of freedom for the power 
analysis. The initglm option on the proc statement instructs GLIMMIX to use general-
ized linear model estimates as initial values for fi tt ing the generalized linear mixed 
model. The fi rst two terms in the parms statement are the block and whole plot vari-
ance estimates, respectively. The third term is the aggregation parameter k. While 
Fig. 7–15 and 7–16 are for a split plot design, they can be modifi ed to accommo-
date other design structures such as the randomized complete block and incomplete 

FIG. 7–15. SAS statements to create an exemplary data set for Example 7.5.
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block alternatives discussed previously. This can be done regardless of the distri-
bution assumed for the counts. As in the case of the normal distribution, the block 
variance changes depending on the proposed design. That is, if natural blocks of 
size three are combined into complete but heterogeneous blocks of size six, block 
to block variability will necessarily decrease as within block (whole plot) variability 
increases. Increasing within block heterogeneity will also increase over-dispersion.

The power associated with diff erent numbers of blocks can be obtained by 
varying the upper bound in the do statement in Fig. 7–15. The results for various 
numbers of blocks are given in Table 7–8 for the split plot. With four blocks, there 
is only approximately a 17% chance of detecting a threefold diff erence in linear 
rate eff ects. To achieve 80% power, 28 blocks would be needed. ■

Two questions arise at this point. First, if we assume a Poisson distribution for 
the counts, will the results change? If so, how? Second, what if the power analysis is 
based on a normal approximation using a transformation such as the logarithm or 
square root of the counts? These questions are considered in the following examples.

FIG. 7–16. GLIMMIX statements for the power analysis for negative binomial model for Example 7.5.

TABLE 7–8. Approximated and estimated power for the split plot design with the negative 
binomial distribution in Example 7.5.

Number 
of blocks

Approximated 
power†

Estimated
power†

Lower confi dence 
limit‡

Upper confi dence 
limit‡

Number 
of samples†

4 0.1670 0.1906 0.1662 0.2150 997

10 0.3782 0.4011 0.3689 0.4333 890

20 0.6576 0.6410 0.6100 0.6720 922

27 0.7877 0.8000 0.7744 0.8256 940

28 0.8024 0.7871 0.7611 0.8130 958

† Approximated power is based on the probability distribution method. Estimated power is based on the 
simulation method. 1024 samples were simulated for each number of blocks. The number of samples for which 
the GLIMMIX procedure converged successfully is given in the rightmost column. Section 2.7 briefl y discusses the 
computational issues involved with convergence of the numerical algorithms used.

‡ 95% confi dence limits for the estimated power.
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EXAMPLE 7.6

This example is a continuation of Example 7.5 for the split plot design in which the 
response is assumed to follow a Poisson distribution. Since the Poisson generalized 
linear mixed model is also on the log scale, the process that led us to assuming 
block and whole plot variances of 0.25 and 0.15, respectively, for the negative bino-
mial would lead us to the same anticipated variance components for the Poisson. 
However, estimation of the scale parameter k in the negative binomial would not be 
applicable. If one computes the approximated power under the Poisson assumption, 
a power of 50% for four blocks is obtained. Only eight blocks are needed to obtain a 
power over 80%. The power for this situation, accounting for over-dispersion using 
the negative binomial distribution, would only be 31%. Failing to account for over-
dispersion by assuming a Poisson distribution generally results in severely underes-
timating the resources needed for adequate power. ■

EXAMPLE 7.7

This example is a continuation of Example 7.5 for the split plot design in which the 
transformed counts are assumed to be approximately normally distributed. To as-
sess the power using the methods in Example 7.2 following a transformation such 
as the logarithm or square root of the count, we would use the same exemplary 
data set as shown in Fig. 7–15. As with the negative binomial power assessment 
(Fig. 7–16) we would need to determine the approximate variance components. If 
the log transformation were used, the variance components for block and whole 
plot error would be the same as for the generalized linear mixed model with log 
link. If the square root transformation were used, the variances from the log scale 
would need to be rescaled to the square root scale. Only the log scale will be con-
sidered in detail here. While not shown, the square root transformation produced 
similar results.

If the normal approximation is used, an estimate of the split plot error vari-
ance is required in addition to the block and whole plot variance components. 
This is where the problem with using the normal approximation to assess power 
occurs. Assume that as before, the expected smallest count is 4 and the expected 
largest is 50. Then we could anticipate the split plot variance to be approximately

2log(50) log(4) 0.177
6

⎡ ⎤−⎢ ⎥ =⎢ ⎥⎣ ⎦

Alternatively, the formula for the variance of the negative binomial could be used 
to produce an estimate which is then transformed to the log scale. For k = 0.5 and 
μ = 10, the split plot variance of the counts would be μ + kμ2 = 10 + 0.5(10)2 = 60. This 
is important because it might very well be the variance of counts that appears in 
literature reviews of similar experiments that are oft en the source of the variance 
information in power analyses. Using the delta method (Section 3.2), if the vari-
ance on the count scale is 60, the variance on the log scale is given by



DESIGNING EXPERIMENTS 267

2 2 2log( ) 1 1var( ) var( ) 60 0.60
10

count count
⎡ ⎤ ⎛ ⎞ ⎛ ⎞∂ μ ⎟ ⎟⎜ ⎜⎢ ⎥ ⎟ ⎟= = =⎜ ⎜⎟ ⎟⎜ ⎜⎢ ⎥ ⎟⎟⎜∂μ μ ⎝ ⎠⎝ ⎠⎣ ⎦

The GLIMMIX statements shown in Fig. 7–17 can be used to assess the power 
assuming that the estimated split plot variance is 0.177. However, the results will 
be quite diff erent if the estimated split plot variance is 0.60. Two defensible ap-
proaches in this case lead to diff erent variances. Which should be used? There is 
no clear answer.

For the normal approximation assuming a split-plot variance of 0.177, the 
resulting power for four blocks is 48.2% (not shown). For 28 blocks (the required 
number of blocks assuming the negative binomial), the power is greater than 
99.9%. Eight blocks are required to obtain power of at least 80%. This result is 
similar to what would be obtained with the Poisson distribution. On the other 
hand, if the power analysis is based on a split-plot variance of 0.60, the power for 
four blocks is 18.1%, for 28 blocks it is 84.2%, and the required number of blocks 
for 80% power is 26. All of this assumes that the log counts have an approximately 
normal distribution.

These results suggest two things. First, using the normal approximation, very 
diff erent variance estimates and, hence, very diff erent power assessments can be 
obtained. Using the crude approximation of variance,

2log(max) log(min)
6

⎡ ⎤−⎢ ⎥
⎢ ⎥⎣ ⎦

where max is the highest plausible count and min is the lowest plausible count, 
can result in a very optimistic split plot variance and, hence, a power assessment 
as misleading as the one based on the Poisson distribution. On the other hand, if 
the variance from the negative binomial is transformed to the log scale for use 

FIG. 7–17. GLIMMIX statements for power analysis for log counts assumed to be approximately 
normally distributed for Example 7.7.
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with the log count normal approximation, the resulting power calculations are 
quite diff erent. In this case, they were quite similar to results obtained with the 
negative binomial, but there is no guarantee what will happen in general.

The second conclusion about the normal approximation follows from the 
fi rst. There are multiple plausible ways to approximate the variance and, as illus-
trated above, these include an approach that seems perfectly reasonable but gives 
a disastrously optimistic assessment of power. Therefore, we suggest avoiding the 
normal approximation as a tool for power analysis with count data. ■

There are two overriding take-home messages for handling count data. First, 
do not use the Poisson distribution to plan experiments for count data. There will 
almost certainly be some level of over-dispersion present in count data. As has 
been demonstrated above, use of the Poisson distribution can drastically under-
estimate the number of replications needed. Even in those situations where the 
amount of over-dispersion is very small and the Poisson may give acceptable 
results, the negative binomial distribution can still be used since small values of 
over-dispersion can be accounted for through a small value of the scale parameter 
k. Now that soft ware is available that can fi t the negative binomial distribution, we 
recommend that it be used in planning experiments involving count data. There 
appears to be no compelling reason to use the Poisson distribution, at least at the 
planning stages of such an experiment.

Second, planning experiments where count data are the primary responses 
requires good preliminary information about the anticipated variability. Power 
computations are sensitive to the scale parameter when using the negative bino-
mial and to the error variance when using the normal approximation. Without 
good preliminary information, one risks potentially serious errors in planning. 
One may either overestimate power and hence understate the amount of needed 
replication or underestimate power and hence overstate the number of replica-
tions needed. Obviously, the goal is to avoid either case.

7.9  SUMMARY AND CONCLUSIONS

The generalized linear mixed model based methods to assess power and preci-
sion can be applied to any proposed design for which a generalized linear mixed 
model will be used to analyze the data. The following information is needed:

• the anticipated distribution of the response variable,
• the anticipated magnitude of the variance components implied by the 

proposed design—for non-normal generalized linear mixed models, 
care must be taken to express the variance components on the model 
scale and not the data scale,

• the objectives expressed as testable hypotheses (for power analysis) or 
interval estimates (for precision analysis),

• for power analysis, the minimum scientifi cally relevant magnitude of 
the eff ect to be detected.
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One of the benefi ts of this approach to power and precision analysis is the require-
ment that an exemplary data set must be created and GLIMMIX statements to 
analyze that data set must be writt en to obtain the needed terms for the power 
analysis. This is essentially a dress-rehearsal for actual analysis once the data are 
collected. Subsequently, the researcher is less likely to think, “Now what?” once 
the data are collected and ready to be analyzed.

Generalized linear mixed model based power or precision analysis also 
encourages, or should encourage, an early conversation between the researcher 
and the statistical scientist. As Examples 7.2 and 7.3 clearly illustrate, the terms 
power analysis and sample size determination oft en lead researchers to misun-
derstand the point. Sample size requirements for a badly conceived design can be 
needlessly high. There are frequently much more effi  cient designs that researchers 
cannot be expected to know about, but statistical scientists, given adequate infor-
mation, can easily suggest. The real question is how to use experimental resources 
most effi  ciently, which absolutely mandates involving the statistical scientist in 
the discussion much earlier than is unfortunately common practice in far too many 
cases. In an era of tight budgets, this point cannot be emphasized too forcefully.

Finally, the generalized linear mixed model based probability distribution 
method, in knowledgeable hands, off ers a quick way to consider plausible design 
alternatives. The caveat is that because these methods are relatively new and 
knowledge about their behavior, especially at the margins, is an active area of 
research in statistics, the fi nal design choices should be verifi ed via simulation to 
reduce the chances of unpleasant surprises once the data are collected.
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