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a b s t r a c t

An important aim of the analysis of agricultural field experiments
is to obtain good predictions for genotypic performance, by cor-
recting for spatial effects. In practice these corrections turn out to
be complicated, since there can be different types of spatial effects;
those due to management interventions applied to the field plots
and those due to various kinds of erratic spatial trends. This paper
explores the use of two-dimensional smooth surfaces to model
random spatial variation. We propose the use of anisotropic tensor
product P-splines to explicitly model large-scale (global trend) and
small-scale (local trend) spatial dependence. On top of this spatial
field, effects of genotypes, blocks, replicates, and/or other sources
of spatial variation are described by a mixed model in a standard
way. Each component in the model is shown to have an effective
dimension. They are closely related to variance estimation, and
helpful for characterising the importance of model components.
An important result of this paper is the formal proof of the rela-
tion between several definitions of heritability and the effective
dimension associated with the genetic component. The practical
value of our approach is illustrated by simulations and analyses of
large-scale plant breeding experiments. An R-package, SpATS, is
provided.
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1. Introduction

Spatial variation is common in agricultural field trials, especially in plant breeding, where large
numbers of genotypes are compared. Many factors combine to generate micro-environments that
differ from plot to plot, strongly influencing yield and other traits. It is necessary to correct for them
when estimating treatment and/or genotypic effects. A part of the spatial variation can be attributed to
systematic effects, caused by the way the field was prepared before and during sowing or planting. A
familiar example are rowand columneffects, causedby themovements ofmachines duringploughing,
tilling and other procedures. It is relatively easy to add factors to a statistical model to account for
them. Random spatial variation, such as fertility trends, is harder to model.

Roughly speaking, there are two ways to model trends: one based on spatial variance–covariance
structures, the other on smoothing techniques. In the first case, the model contains a spatially
correlated stochastic component. This is non-trivial, as correlation in two directions, in the directions
of the rows and columns of the field, has to be modeled. To keep the effort manageable, several
simplifications are usually made, and it has become standard to assume separability and stationarity
(see e.g. Zimmerman and Harville, 1991). Important contributions in this area are the separable
autoregressivemodel proposed byCullis andGleeson (1991) and extended inGilmour et al. (1997), the
separable linear variancemodel discussed in Piepho andWilliams (2010), or the Bayesianmodel with
a prior based on first differences along rows and columnsmodel (Besag andHigdon, 1999). In contrast,
smoothing methods model spatial trends explicitly. Their use in the agricultural context dates back
to Green et al. (1985), and it has been extended, among others, by Durban et al. (2003) and Verbyla
et al. (1999). The main applications have been to the one-dimensional case, i.e., through separate
(or additive) smoothed trend effects along the rows and columns of the field. However, while these
approaches have proved to be useful for modelling large-scale dependence (or global trend), they
suffer from the limitation of not always being able to capture small-scale dependence (local trend).
As a consequence of this limitation, the inclusion of spatially correlated components might still be
necessary (Gilmour et al., 1997; Verbyla et al., 1999).

As an alternative, this paper explores the use of two-dimensional smooth surfaces. We propose
the use of tensor product P-splines (Eilers and Marx, 2003) to explicitly model both sources of spatial
dependence. P-splines approach smoothing as penalised regression: a rich B-spline basis is combined
with a penalty on (higher order) differences of the B-spline coefficients to avoid over-fitting, and
estimation is based on penalised least squares. As will be seen, the mixed model representation
of P-splines (Currie and Durban, 2002; Wand, 2003) provides us with a general framework for the
analysis of field trials. It allows additional fixed and random components, such as genotypic effects
or the correction for rows and columns. Besides, using nested B-spline bases (Lee et al., 2013) the
computational effort of our approach, which we call SpATS (Spatial Analysis of field Trials with
Splines), is moderate, even for large field trials. The model has attractive properties: (1) an explicit
estimate of the spatial trend in the field is obtained; (2) estimation is stable and fast; (3) missing
plots, even a large number of them, are easily handled; and (4) extension to a non-normal response,
along the lines of the generalised linear model, is straightforward.

Our approach is similar to the work of Taye and Njuho (2008) and Robbins et al. (2012) in field
trials, and that of Cappa and Cantet (2008) in forest research. We go further, using an anisotropic
penalty in a mixed model framework. The P-spline ANOVA (PS-ANOVA) decomposition (Lee et al.,
2013), leads to amodelwith five smooth spatial components each having a clear interpretation. Partial
effective model dimensions, a well-known complexity measure in the smoothing context (Hastie and
Tibshirani, 1990), play a crucial role in the estimation of variances, but they also provide an appealing
summary of the relative importance ofmodel components.We show the remarkable link between the
generalised definitions of heritability proposed by Cullis et al. (2006) and Oakey et al. (2006) and the
effective dimension of the genetic component. Software is provided in the R package (R Core Team,
2016) SpATS.

The rest of the paper is structured as follows. We start with a motivating example in Section 2.
Section 3 presents background on P-splines in two dimensions, including their representation as
mixed models. They form the basis for spatial models, which are presented in Section 4. Simulations
comparing our SpATS model and those of Gilmour et al. (1997) and Piepho and Williams (2010) can
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be found in Section 5. Section 6 presents several applications to large-scale plant breeding trials.
Conclusion and Discussion sections close the paper. Some technical details and extra simulations are
available in (Web) Appendices, where we also describe the R-package that accompanies this paper.

2. Motivating example

Uniformity field trials are trials in which a single genotype or variety is evaluated. In practice, the
interest of such field trials is that its statistical analysis can help understanding the different sources of
spatial variation present in a field, and thus serve as guidance for the design and subsequent analyses
when genetic effects are to be evaluated. This section presents a series of analyses of a set of barley
uniformity data discussed in the paper by Williams and Luckett (1988). We focus here on presenting
the big picture of SpATS, leaving the more technical details to subsequent sections.

In this experiment, plots were laid out in a 15 row by 48 column grid, and the phenotypic trait of
interest was yield. Fig. 1(a) depicts the raw data. Note that there is a rather complex spatial pattern,
with patches presenting larger/smaller yield. Let yi denotes the yield data (in kg per hectare divided
by 10) obtained at plot i (i = 1, . . . , 720), and ui and vi the row and column position respectively,
both centred and scaled. A common strategy in the analysis of field trial experiments is to start with
a model involving only (random) effects for rows and columns. Williams and Luckett (1988) applied
this model to the barley data, and noticed the presence of a three-column cycle pattern, possibly due
to the seeder used in the experiment. Thus, we consider the following model as starting point

y = 1nβ0 + xdβd + Zrcr + Zccc + ε, (1)

where n = 720, y = (y1, . . . , yn)t , 1n is a column vector of ones of length n, and xd = (xd1, . . . , xdn)t ,
with xdi = I (vi modulo 3 = 1). This component is responsible for capturing the aforementioned
three-column cycle pattern. The vectors cr = (cr1, . . . , cr15)t and cc = (cc1, . . . , cc48)t are, re-
spectively, the random effect coefficients for the rows and columns with cr ∼ N

(
0, σ 2

r I15
)
and

cc ∼ N
(
0, σ 2

c I48
)
and associated design matrices Zr and Zc . Finally, the random error vector ε =

(ε1, . . . , εn)
t

∼ N
(
0, σ 2In

)
. Figs. 1(c) and 1(d) depict the empirical best linear unbiased predictors

(BLUPs) for the row and column random factors, respectively. As can be observed, and especially for
the rows, the BLUPs show a clear evidence of a pattern, indicating that the independence assumption
does not hold. Besides, the residuals’ spatial plot shown in Fig. 1(b) suggests that the spatial pattern
has not been completely captured, and thus a more complex statistical analysis is required. To that
end, we add a smooth bivariate surface, f (u, v), defined over the row and column positions, i.e.,

y = f (u, v) + xdβd + Zrcr + Zccc + ε, (2)

where u = (u1, . . . , un)
t , v = (v1, . . . , vn)

t , and f (u, v) = (f (u1, v1) , . . . , f (un, vn))
t . Note that the

intercept, β0, is embedded as part of f (u, v). To have a better understanding of the interpretation of
f (·, ·), we can further decompose it in a nested-type ANOVA structure (PS-ANOVA, Lee et al., 2013)

f (u, v) = 1nβ0 + uβ1 + vβ2 + u ⊙ vβ3  
Bilinear polynomial

+ fu (u) + fv (v) + u ⊙ hv (v) + v ⊙ hu (u) + fu,v (u, v)  
Smooth part

,

where ⊙ denotes the element-wise vector (matrix) product. There are now two components: the
bilinear polynomial and the smooth part. The bilinear (or parametric) component includes the
intercept (β0), the linear trends along the row (β1) and column (β2) directions, as well as the linear



M.X. Rodríguez-Álvarez et al. / Spatial Statistics 23 (2018) 52–71 55

(a) Raw data. (b) Simple model. (c) Simple model. (d) Simple model.

(e) SpATS model. (f) SpATS model. (g) SpATS model. (h) SpATS model.

Fig. 1. For the barley uniformity data: (a) Raw data, (b) and (f) residuals’ spatial plot, (c) and (g) best linear unbiased predictions
(BLUPs) for the row random factor, (d) and (h) BLUPs for the column random factor; and (e) contour plot of the estimated
smooth spatial trend. Simple model refers the model including the row and column random factors and the correction for the
three-column cycle (Eq. (1)) and SpATS model to that also including the smooth spatial trend (Eq. (2)).

interaction trend (β3). In addition, the smooth component is responsible for modelling the deviation
from this compound linear trend. Here,

• fu(u) and fv(v) are smooth trends along the rows (columns), identical for all columns (rows),
i.e., main smooth effects.

• vhu(u) and uhv(v) are linear-by-smooth interaction trends (or varying coefficient surface
trends). For instance, uhv(v) are linear trends in the rows (u) butwith slopes (hv(v)) that change
smoothly along the columns (the same holds for vhu(u)).

• fu,v(u, v) is a smooth-by-smooth interaction trend jointly defined over the row and column
directions.

The functions fu, fv , hu and hv are constructed with variations on one dimensional P-splines, while
fu,v is based on tensor product P-splines. This decomposition translatesmodel (2) directly to a standard
mixed model (Lee et al., 2013). In fact, for each of the smooth components the desirable amount of
smoothing is computed using restrictedmaximum likelihood (REML, Patterson and Thompson, 1971).
The technical details will be presented in Section 3 and Appendix A.

Fig. 1(e) shows the estimated spatial trend across the field, i.e. f̂ (·, ·), but excluding the intercept. A
nice property of our proposal is that it allows depicting the spatial trend in a grid finer than the number
of rows and columns, facilitating interpretation of results. Note that we recover quite successfully
the spatial variation observed in the raw data. The residuals’ spatial plot and BLUPs for cr and cc ,
shown in Figs. 1(f)–1(h) respectively, suggest that the spatial independence assumption for the error
vector εmight be appropriate, and that no trend is now present in the BLUPs. Fig. 2 shows the bilinear
and smooth components of the PS-ANOVA decomposition discussed above. Note that the estimated
smooth functions defined over the rows (f̂u) and columns (f̂v) capture the trends observed in the BLUPs
for the row and column analysis (model (1) and Figs. 1(c) and 1(d)). When we compare the estimated
linear-by-smooth interactions trends, we observe that the contribution of vĥu(u) to the fitted spatial
trend is stronger than that due to uĥv(v). Finally, the smooth-by-smooth interaction term recovers
the local patches observed in the raw data, that the other components would not be able to capture.
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Fig. 2. Bilinear and smooth components of the PS-ANOVAdecomposition of the estimated spatial trend for the barley uniformity
data.

3. Modelling surfaces by means of P-splines

This section provides background information on P-splines, their tensor products and equivalent
mixed model formulations. We avoid technicalities (some are described in Appendix A), and refer
the interested reader to Eilers et al. (2015) (and references therein) for an extensive account of many
aspects of P-splines.

For clarity’s sake, we concentrate here on the modelling of the smooth bivariate surface of (2). A
simplified model is thus considered

yi = f (ui, vi) + εi, with εi ∼ N(0, σ 2). (3)

Recall that yi denotes the response variable, e.g. a phenotype in a trial, and ui and vi denote the posi-
tions, e.g., rows and columns (i = 1, . . . , n). In the P-spline framework, the smooth bivariate function
f (ui, vi) is modelled by the tensor product of B-spline bases (Dierckx, 1993). We form two B-spline
bases, “B, with “bil = “Bl(ui) and B̆, with b̆ip = B̆p(vi), where “Bl(ui) is the lth B-spline function evaluated
at ui (and the same holds for B̆p(vi)), and take f (ui, vi) =

∑“m
l=1

∑m̆
p=1

“Bl(ui)B̆p(vi)αlp, where α =

(α11, . . . , α1m̆, . . . , α“mm̆)t is a vector of unknown regression coefficients of dimension ( “mm̆× 1). Note
that “B and B̆ are matrices of order n× “m and n× m̆ respectively, where “m and m̆ are the number of the
B-spline basis functions. Under this representation, model (3) can be expressed in matrix notation as

y = Bα + ε, with ε ∼ N
(
0, σ 2In

)
, (4)

where

B = B̆□“B =

(
B̆ ⊗ 1t

“m

)
⊙

(
1t
m̆ ⊗ “B

)
,

with ⊗ denoting the Kronecker product and □ the ‘box’ product (the row-wise Kronecker product)
(Eilers et al., 2006). To prevent over-fitting, difference penalties down the columns and along the
rows are added, and estimation is based on penalised-likelihood methods (Eilers and Marx, 2003). In
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particular, for our application we exploit the formal similarity between P-splines and mixed models
(Currie and Durban, 2002; Wand, 2003), as it provides a general framework for the analysis of field
trials. As described in Appendix A, model (4) can be expressed as a mixed model

y = Xsβs + Zscs + ε, with ε ∼ N
(
0, σ 2In

)
and cs ∼ N (0,Gs) ,

where Xs = [1n|u|v|u ⊙ v], βs = (β0, β1, β2, β3)t , Zs = [Zv|Zu|Zv□u|v□Zu|Zv□Zu], and cs =(
c ts1, . . . , c

t
s5

)t , with csk (k = 1, . . . , 5) containing the elements of cs that correspond to the kth block
of Zs. Finally, Gs =

⨁5
k=1σ

2
skΛsk. The specific form of Zu, Zv , and Λsk is given in Appendix A.

The previous reformulation of the tensor product P-spline model as a mixed model directly
provides the interesting PS-ANOVA decomposition discussed in Section 2 (Lee et al., 2013)

f (u, v) = Xsβs + Zscs
= 1nβ0 + uβ1 + vβ2 + u ⊙ vβ3  

Xsβs

+ fv(v)
Zvcs1

+ fu(u)
Zucs2

+ u ⊙ hv(v)  
[Zv□u]cs3

+ v ⊙ hu(u)  
[v□Zu]cs4

+ fu,v(u, v)  
[Zv□Zu]cs5

.

The amount of smoothing for each function fu, fv , hu, hv and fu,v is determined by the variance
parameter σ 2

sk associated with the corresponding random vector csk. We note that the dimension of
csk (k = 1, . . . , 5) depends on “m and m̆, the dimensions of the B-spline basis used for the tensor
product. Web Appendix A contains a proposal to use smaller, nested, B-spline bases (Lee et al., 2013)
that allow reducing the dimension associated with the smooth-by-smooth interaction term fu,v , and,
as a consequence, the computational effort.

4. Spatial models for field trials

The tensor product P-spline presented in Section 3 constitutes the basis for the analysis of
agricultural field trials. On top of this spatial field, we build more complex models, to account for the
genetic variation, the presence of block and/or replication effects, or other sources of spatial variation
like those due to the way the field was prepared. From now on, we therefore consider the following
linear mixed model

y = Xsβs + Zscs  
f (u,v)

+Xdβd + Zdcd + ε, with cs ∼ N (0,Gs) and cd ∼ N (0,Gd) , (5)

where Xs, Zs and Gs are defined in (15), (16) and (18) in Appendix A. Xd and Zd represent column-
partitioned matrices, associated respectively with extra fixed and random components, as for in-
stance, row, column, replicate and/or genotypic effects. We assume that Xd has full rank, Zd =

[Zd1|. . .|Zdb], and cd =
(
c td1, . . . , c

t
db

)t . Each Zdk corresponds to the design matrix of the kth random
component cdk, with cdk being a (mdk × 1) vector (k = 1, . . . , b). We assume further that cs and cd are
independent, and that Gd =

⨁b
k=1Gdk =

⨁b
k=1σ

2
dkΛdk, where Λdk are diagonal matrices. To keep the

notation simple, we rewrite model (5) as

y = Xβ + Zc + ε, with c ∼ N (0,G) and ε ∼ N
(
0, σ 2In

)
, (6)

where X = [Xs|Xd], Z = [Zs|Zd] =
[
Z1|. . .|Zq

]
, c =

(
c ts , c

t
d

)t
=

(
c t1, . . . , c

t
q

)t (q = 5 + b), and

G = blockdiag (Gs,Gd) =

q⨁
k=1

Gk =

q⨁
k=1

σ 2
k Λk. (7)

4.1. SpATS model estimation

Estimates of the fixed and random effect coefficients in model (6), for given values of the variance
components, follow from standard mixed-model theory, and variance components can be obtained,
as usual, by maximising the REML log-likelihood function. For the sake of brevity, the detailed
description of the estimation procedure implemented in the R-package SpATS that accompanies
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this paper is presented in Web Appendix B. However, we present here the expression of the REML
estimates of the variance components. The reason is the interesting link between the denominator of
these expressions and the notion of effective dimension that is discussed in detail in Section 4.2.

As said, REML estimates of the variance components are obtained by maximising the REML
log-likelihood function. Taking derivatives of the REML log-likelihood function with respect to the
variance components σ 2

k (k = 1, . . . , q), and equating the obtained expressions to zero (see Web
Appendix B for more details), we obtain that

σ̂ 2
k =

ĉ tkΛ
−1
k ĉk

EDk
, k = 1, . . . , q, (8)

with

EDk = trace
(
Z t
kQZkGk

)
.

Here Q = V−1
− V−1X

(
X tV−1X

)−1X tV−1 with V = R + ZGZ t and R = σ 2In. An estimate of σ 2 can
also be easily obtained following the same reasoning

σ̂ 2
=

ε̂t ε̂

EDε

, (9)

where ε̂ = y − X β̂ − Zĉ and

EDε = trace (RQ ) = n − rank(X) −

q∑
k=1

EDk. (10)

4.2. Effective dimensions

Denoting the denominator of (8) and (9) as ED{·} (for ‘‘effective dimension’’) has not been done
without purpose. In the smoothing context, the notion of effective dimension or effective degrees of
freedom is well known (see, e.g., Hastie and Tibshirani, 1990). The effective dimension (denoted by
ED) of a ‘‘smooth’’ model is defined as the trace of the so-called ‘‘hat’’ matrix H , defined as ŷ = Hy. In
this setting, ED can be interpreted as a measure of the complexity of the model: the larger the ED, the
more complex (or the less smooth) the model (see also Eilers et al., 2015).

In recent years, several new definitions and generalisations of the concept of effective dimension
that are applicable to (generalised) linear mixed models have been proposed in the statistical
literature (see, e.g., You et al., 2016, and references therein). In almost all cases, the aim has been
to provide a complexity measure that allows model comparison and selection (via, for instance, the
Akaike’s Information Criterion). However, we are more interested in obtaining a separate complexity
measure for each component in model (6), that can give us insights about the contribution of that
effect when explaining the response (phenotypic) variation. This issue has been already discussed by
Cui et al. (2010). In that paper the authors define the effective dimension of a model’s component as
the trace of the ratio of the component modelled variance matrix to the total variance matrix.

In line with previous work in the smoothing context (e.g., Hastie and Tibshirani, 1990; Ruppert
et al., 2003), this paper considers defining the effective dimension of a model’s component as the
trace of the corresponding hat matrix. As shown in Web Appendix C, for the linear mixed model (6)
we have that

Hy = ŷ = X β̂ + Zĉ = HFy + HRy = HFy +

q∑
k=1

Hky,

where HF = X
(
X tV−1X

)−1X tV−1 and HR = ZGZ tQ are, respectively, the ‘‘hat’’ matrices of the fixed
and the random parts of the model, and

Hk = ZkGkZ t
kQ (k = 1, . . . , q),
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is the ‘‘hat’’ matrix corresponding to the kth random component ck (either a component of the PS-
ANOVA spatial field or a ‘‘pure’’ random factor). The effective dimension for ck is then defined as the
trace of Hk. Web Appendix D shows the equivalence between this definition and that by Cui et al.
(2010). Using trace properties, we have

trace (Hk) = trace
(
ZkGkZ t

kQ
)

= trace
(
Z t
kQZkGk

)
= EDk,

and the total effective dimension of model (6) is thus decomposed as the sum of independent
contributions

ED = trace (H) = trace (HF ) + trace (HR) = trace (HF ) +

q∑
k=1

trace (Hk)

= rank(X) +

q∑
k=1

EDk.

Besides, result ε̂ = Hεy = RQy (see Web Appendix C) also suggests defining the effective dimension
for the residuals as the trace of Hε, and thus, trace (Hε) = trace (RQ ) = EDε (see also Eq. (10)). Note
that

n = rank (X) +

q∑
k=1

EDk + EDε.

Thus, the number of observations n is partitioned into independent effective dimensions for the
model’s components and error. This is in concordance with the definition given by Cui et al. (2010)
(see Web Appendix D). As extensively discussed by the authors, EDε avoids the problem that is posed
by most of the traditional definitions for the residual effective dimension in the smoothing context,
that is to say, that ED + EDε is not equal to the number of observations n.

For all components EDk (k = 1, . . . , q)will vary between 0 and (mk − ζk), where ζk is the number of
zero eigenvalues ofZ t

kQZkGk. In Cui et al. (2010) the authors show that this upper bound, (mk − ζk), can
also be expressed as: rank ([X, Zk]) − rank (X). The signal-to-noise ratio σ 2

k /σ 2 modulates the value
of EDk: when σ 2

k /σ 2
→ 0 then EDk → 0; and when σ 2

k /σ 2
→ ∞, then EDk → (mk − ζk). Arguably,

EDk can therefore be interpreted as a measure of the complexity of the corresponding component,
which in turns gives a separate measure of its contribution. A value of zero would indicate that this
component does not contribute to the response variability. What is more, when the genetic effect
is included in model (6) as random, the associated (scaled) effective dimension corresponds to the
generalised heritability proposed by Oakey et al. (2006). This equivalence emphasises interpreting
EDk as a measure of the shrinkage. A formal derivation and deeper discussion is provided in next
section.

4.3. Heritability and effective dimension

To introduce the standard definition of heritability, let us start with the classical quantitative
genetic model. Here, mg genotypes, each replicated r times, are evaluated and no other model
components (either spatial, fixed or random) are considered, that is, y = 1nβ0 + Zgcg + ε, where
Zg = Img ⊗ 1r , cg ∼ N(0, σ 2

g Img ) and ε ∼ N(0, σ 2In). Under this model, the standard heritability
measure, with respect to genotypic means, is defined as

H2
s =

σ 2
g

(σ 2
g + σ 2/r)

. (11)

That is to say, the standard heritability is the proportion of the total (phenotypic) variation that is
attributable to the genetic component.

We turn now to the notion of effective dimension defined above. For the genetic effects cg , the
associated effective dimension is EDg = trace

(
Z t
gQZgGg

)
, where Gg = σ 2

g Img . By eqn. (3.7) in
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Harville (1977), we have

Z t
gQZgGg =

(
1
λ
Img + ZT

g SZg

)−1

ZT
g SZg ,

where λ =
σ2
g

σ2 and S = In − 1n(1t
n1n)−11t

n. It can be shown that ZT
g SZg has (mg − 1) eigenvalues equal

to r (the number of replicates), and 1 eigenvalue equal to zero. Moreover, 1
λ
Img hasmg eigenvalues all

equal to 1
λ
. As a consequence

EDg =

mg∑
i=1

λi =

(mg−1)∑
i=1

(
1
λ

+ r
)−1

r = (mg − 1)
σ 2
g

(σ 2
g + σ 2/r)

,

where λi are the eigenvalues of Z t
gQZgGg . Hence, there is direct link between the standard heritability

measure H2
s defined in (11) and the genetic effective dimension, with

H2
s =

EDg

mg − 1
.

When the statistical analysis of a field trial experiment involves modelling more sources of variation
(as, e.g., spatial and/or extraneous variation), the standard definition of heritability given in (11) does
not longer apply, and several generalisations have been proposed in the literature. For instance, Cullis
et al. (2006) present a generalised definition of heritability – applicable whenever Gg = σ 2

g Img – based
on the prediction error variance of genetic effects

H2
c = 1 −

1
σ 2
g

mg∑
i=1

pev(cgi)
mg

,

where pev(cgi) = var (̂cgi − cgi). Using the equivalence

Z t
gQZgGg = Img − G−1

g C∗

gg = Img −
1
σ 2
g
C∗

gg ,

where C∗
= C−1 (see Web Appendix B) and C∗

gg is that partition of C∗ corresponding to cg , and noting
that C∗

gg corresponds to Cov
(̂
cg − cg

)
(i.e., the prediction error covariance matrix for the genetic

effects), the generalised heritability measure proposed by Cullis et al. (2006) can also be expressed
in terms of the genetic effective dimension

H2
c = 1 −

1
σ 2
g

mg∑
i=1

pev(cgi)
mg

=

trace(Img −
1

σ2
g
C∗
gg )

mg
=

trace(Z t
gQZgGg )

mg
=

EDg

mg
.

In Oakey et al. (2006) amore general definition of heritability is presented that can be used regardless
of the structure of genetic covariance matrix Gg . As can be seen in Eq. (7) of that paper, the definition
the authors propose turns out to be

H2
g =

EDg

mg − ζg
. (12)

As said before, the denominator of (12) represents the upper bound of the genetic effective dimension,
and H2

g can therefore be interpreted as a shrinkage factor. The generalised heritability proposed by
Cullis et al. (2006) would be a special case, ignoring the number of zero eigenvalues.

5. Simulation study

This section presents the results of a simulation study performed to evaluate the behaviour of our
SpATSmodel under controlled scenarios, and its comparison with the separable autoregressive (AR×

AR) model proposed by Gilmour et al. (1997). In the context of single-trial experiments, this proposal
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has become the standard modelling strategy, specially among applied breeders, and therefore it has
been chosen as the benchmark model. However, as extensively discussed by Piepho et al. (2015),
the AR × AR model may present severe convergence problems, and the authors recommend as an
alternative the use of the linear variance (LV) models proposed by Williams (1986) and extended in
two dimensions by Williams et al. (2006) and Piepho and Williams (2010). Thus, comparisons with
the separable LV × LV model also have been included in this study. All simulations were done using
the R-packages SpATS and ASreml-R (Butler, 2009). Extra simulation results can be found in Web
Appendix E. The R-code used can be downloaded fromhttp://bitbucket.org/mxrodriguez/spats-paper.

To evaluate the SpATS approach under an a priori unfavourable scenario, data was generated
assuming a separable Gaussian AR process of order 1 in the row and column directions. The following
model was considered

y = Zgcg + ξ + ε  
ϵ

, (13)

where cg denotes the genotypic effects, with cg ∼ N(0, σ 2
g Img ). ξ is a spatially dependent random

vector with cov
(
ξl, ξp

)
= σ 2

s ρ
|ul−up|
r ρ

|vl−vp|
c , where ρr and ρc are the autocorrelation parameters for

row and column, respectively. Finally, ε ∼ N
(
0, σ 2In

)
and ϵ = ξ+ε. We note that in the geostatistics

literature, ε is usually referred to as measurement error or nugget effect.
Different levels of genetic variation

(
σ 2
g ∈ {0.25; 1; 4}

)
and autocorrelation (ρr = ρc ∈ {0.1; 0.5;

0.9; 0.99}) were studied. In all cases, σ 2
= σ 2

s = 1 and mg = 100 genotypes, each replicated twice,
were allocated to the plots following an alpha design, in blocks of size 10. The R-package agricolae
(de Mendiburu, 2017) was used for that purpose. The field layout thus consisted of 10 blocks (rows)
and 20 columns.

We fitted our SpATS model including the PS-ANOVA spatial field and the genetic random factor.
For Gilmour et al. (1997)’s approach we considered a model including the genetic random factor, the
AR × AR process and the nugget (ε). Note that this model corresponds to the true model generating
the data (see (13)). Finally, for the separable linear variance model we included the row and column
random factors (which are part of the baselinemodel), the genetic random factor, the LV× LV process
(see Eq. (10) in Piepho and Williams (2010)) and the nugget. The procedure was repeated a total
of 1000 times. For SpATS, cubic B-spline bases of dimension “m = 13 and m̆ = 23 were assumed
for the row and column positions, respectively, and nested B-spline bases, with half the dimension,
were used. Tomeasure performance, the discrepancy between the BLUPs for the genotypic effects and
the corresponding true (simulated) quantities was measured in terms of the empirical version of the
global root mean squared error (RMSE)

RMSE =

√ 1
100

100∑
i=1

(̂
cgi − cgi

)2
.

As far as the REML estimates of σ 2
g , σ

2 and σ 2
s is concerned, the behaviour was evaluated in terms of

the bias.
Table 1 shows the results for those runs for which the AR × AR model converged. If we focus on

the genetic random factor, all approaches behave similarly for all scenarios considered. As expected,
the RMSE decreases as the genotypic signal increases. A similar performance of all approaches is also
observed for σ 2

g . The conclusion is that, with respect to genotype predictions, both SpATS and the
LV × LV model perform as well as the true model.

The interpretation of the results for σ 2, σ 2
s and EDs as well as comparisons among all approaches

require a more detailed analysis. First note that when both ρr and ρc → 1, then Cov (ξ) → σ 2
s I200,

where In is a n × n matrix of ones. In this case, for each realisation of the stochastic process (13),
the spatially dependent random error ξ would be a constant vector, and no spatial variation would
be therefore present. On the other hand, when both ρr and ρc → 0 then Cov (ξ) → σ 2

s I200. Thus,
ξ is confounded with the nugget or independent error ε, and Cov (ϵ) →

(
σ 2
s + σ 2

)
I200. To some

extent, it would also imply that no spatial variation is present and that all is measurement error. As
pointed out by Piepho et al. (2015), these two extreme cases may cause convergence problems when
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Table 1
Numerical results associated with the simulation study when the underlying simulated model follows an AR × AR process.
For the REML estimates of σ 2

g , σ
2 and σ 2

s the results show the bias. For the genotypic BLUPs, the log10(RMSE) is shown. EDs
denotes the effective dimension associated with the PS-ANOVA spatial field (excluding the intercept). In all cases, averages
and standard deviations are presented. The results correspond to those runs for which the AR × AR model converged.

σ 2
g ρc = ρr Model Conv.

(%)
Genotypic
RMSE

σ 2
g σ 2 σ 2

s EDs

0.25

0.99
SpATS 100.0 −0.380 (0.031) −0.015 (0.127) −0.019 (0.149) – 5.91 (2.33)
AR × AR 57.1 −0.377 (0.032) −0.021 (0.133) −0.480 (0.450) −0.329 (0.537) –
LV × LV 100.0 −0.380 (0.032) −0.016 (0.129) −0.037 (0.151) – –

0.9
SpATS 100.0 −0.355 (0.029) −0.008 (0.135) 0.086 (0.162) – 11.23 (3.46)
AR × AR 83.0 −0.356 (0.030) −0.012 (0.138) −0.081 (0.237) 0.375 (1.442) –
LV × LV 100.0 −0.370 (0.031) −0.017 (0.138) 0.006 (0.165) – –

0.5
SpATS 100.0 −0.345 (0.031) −0.001 (0.178) 0.566 (0.247) – 13.12 (5.24)
AR × AR 97.1 −0.346 (0.031) −0.015 (0.176) −0.222 (0.485) 0.244 (0.493) –
LV × LV 100.0 −0.344 (0.031) −0.010 (0.185) 0.544 (0.260) – –

0.1
SpATS 100.0 −0.340 (0.032) 0.000 (0.189) 0.903 (0.273) – 5.55 (2.48)
AR × AR 83.0 −0.338 (0.033) −0.011 (0.195) −0.513 (0.746) 0.510 (0.730) –
LV × LV 100.0 −0.338 (0.033) −0.006 (0.197) 0.891 (0.272) – –

1

0.99
SpATS 100.0 −0.231 (0.030) −0.081 (0.182) −0.018 (0.153) – 5.67 (2.18)
AR × AR 56.3 −0.228 (0.030) −0.082 (0.192) −0.565 (0.434) −0.277 (0.516) –
LV × LV 100.0 −0.233 (0.031) −0.076 (0.180) −0.043 (0.152) – –

0.9
SpATS 100.0 −0.211 (0.030) −0.075 (0.198) 0.084 (0.180) – 10.44 (3.34)
AR × AR 78.8 −0.213 (0.030) −0.078 (0.194) −0.123 (0.272) 0.370 (1.440) –
LV × LV 100.0 −0.214 (0.030) −0.071 (0.196) 0.001 (0.173) – –

0.5
SpATS 100.0 −0.161 (0.030) −0.079 (0.260) 0.595 (0.269) – 11.62 (4.73)
AR × AR 93.6 −0.167 (0.030) −0.085 (0.253) −0.264 (0.520) 0.302 (0.503) –
LV × LV 100.0 −0.162 (0.030) −0.082 (0.261) 0.576 (0.279) – –

0.1
SpATS 100.0 −0.148 (0.030) −0.085 (0.281) 0.920 (0.300) – 5.43 (2.33)
AR × AR 84.6 −0.147 (0.030) −0.083 (0.291) −0.512 (0.795) 0.544 (0.722) –
LV × LV 100.0 −0.149 (0.030) −0.088 (0.278) 0.906 (0.297) – –

4

0.99
SpATS 100.0 −0.158 (0.030) −0.306 (0.305) −0.026 (0.154) – 5.52 (2.05)
AR × AR 57.8 −0.155 (0.031) −0.309 (0.334) −0.619 (0.409) −0.217 (0.720) –
LV × LV 100.0 −0.162 (0.030) −0.297 (0.305) −0.049 (0.152) – –

0.9
SpATS 100.0 −0.130 (0.031) −0.298 (0.336) 0.085 (0.182) – 9.49 (3.19)
AR × AR 74.7 −0.133 (0.032) −0.303 (0.336) −0.184 (0.317) 0.425 (1.620) –
LV × LV 100.0 −0.135 (0.030) −0.302 (0.336) −0.001 (0.179) – –

0.5
SpATS 100.0 −0.061 (0.031) −0.312 (0.421) 0.604 (0.279) – 10.14 (4.23)
AR × AR 90.1 −0.069 (0.031) −0.321 (0.407) −0.355 (0.540) 0.395 (0.548) –
LV × LV 100.0 −0.062 (0.031) −0.314 (0.415) 0.589 (0.286) – –

0.1
SpATS 100.0 −0.043 (0.031) −0.319 (0.444) 0.916 (0.303) – 5.20 (2.05)
AR × AR 82.5 −0.043 (0.031) −0.302 (0.537) −0.585 (0.720) 0.615 (0.678) –
LV × LV 100.0 −0.046 (0.031) −0.323 (0.438) 0.890 (0.298) – –

fitting the AR×ARmodel. Our results are in concordancewith those previous findings, andwe refer to
Piepho et al. (2015) for amore comprehensive discussion. Besides, it could also explain the systematic
bias (of opposite sign but similar magnitude, except for very large autocorrelation) in the estimates of
σ 2
s and σ 2 provided by the AR × AR model. The AR × AR model tends to underestimate σ 2 (negative

bias), and this is counteracted by overestimating σ 2
s . This effect is especially remarkable for medium

and low autocorrelations.
With respect to SpATS, for large autocorrelation, it provides unbiased estimates of σ 2. When the

autocorrelation decreases, the bias increases. It is worth remembering that in this case Cov (ϵ) →(
σ 2
s + σ 2

)
I200 (all ismeasurement error). In all simulations σ 2

s = 1, and the bias in σ̂ 2 approaches this
value as ρr and ρc decrease. Thus, our SpATSmodel is correct when estimating the variance associated
with the measurement error. The estimated effective dimension for the PS-ANOVA spatial field also
reflects the expected performance: for low and large autocorrelations (small spatial variation) the
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model provides smaller EDs than for medium values. Finally, it is interesting to note that both SpATS
and the LV× LVmodel present a very similar behaviour for allmeasures of performance considered. As
indicated in the discussion of Piepho andWilliams (2010), the LV× LVmodel bears close relationships
to the first-differencing model in rows and columns proposed by Besag and Higdon (1999), which in
turn is closely related to our SpATS model. We discuss this connection in more detail in Section 8.

6. Applications

In this section we analyse two data sets, one of a field trial on wheat conducted in Chile and
discussed in the paper by Lado et al. (2013), and the other on sugar beet from a big field in France.

6.1. Sugar beet data, France

The field experiment on sugar beet was performed in France, in 2011. The results will be presented
for the trait α-amino nitrogen content (in millimole per litre). All material was kindly provided by the
breeding company SESVanderHave (Tienen, Belgium).

The field experiment consisted of 31 trials, with a total of 2411 plots and 1095 genotypes. All the
trials contained four common checks, the other 1091 genotypeswere observed in one of the trials. The
trials were different in size, with themost common layout an alpha designwith 36 genotypes and two
replicates. Four of the trials were unreplicated, 26 trials had an alpha design with two replicates, and
one trial had an alpha design with three replicates.

The field layout is shown in Fig. 3(a). The 31 trials are represented by a different colour. Note
that the layout of the field is irregular, that there are no trials in the lower right corner (white areas).
Nonetheless, no data manipulation (e.g., filling in the missing values to make the layout regular) is
required to use SpATS.

For this experiment, we assumed a model including random factors for rows (cr ) columns (cc)
and trials (ct ). The candidate genotypes were also included in the model as random (cg ) but the check
genotypeswere included as fixed (βd). To bemore precise, and using the same notation as in Section 2,
the following mixed model was fitted

y = f (u, v) + Xdβd + Zgcg + Zrcr + Zccc + Ztct + ε.

whereXd is the (n×4) designmatrix assigning observations to check genotypes andZg is the (n×1091)
design matrix associated with candidate genotypes, with cg ∼ N

(
0, σ 2

g I1091
)
. The rows of Xd and

Zg corresponding, respectively, to candidate and check genotypes have all their elements equal to
zero. For the rest of the random factors, we assumed cr ∼ N

(
0, σ 2

r I26
)
, cc ∼ N

(
0, σ 2

c 1113
)
and

ct ∼ N
(
0, σ 2

t I31
)
. For the tensor-product P-spline, basis dimensions of 29 and 53 were chosen for

the row and column positions, respectively, and nested bases, with half the dimension, were used.
The model has 1789 coefficients, and 2411 observations, and the fitting process needed around 18 s
(3.00 GHz Intel Core i7 processor computer with 12 GB of RAM and Windows R⃝ 7 operating system).

Fig. 3 depicts the raw yield data, the fitted values, the residuals, the fitted spatial trend (i.e., the
PS-ANOVA component but excluding the intercept), and the genotypic BLUPs. As can be observed,
the fitted spatial trend is successful in recovering the complex spatial pattern across the field, and
the residual plot suggest that the spatial independence assumption for the error vector ε might be
appropriate. Table 2 shows the model and (estimated) effective dimensions associated with each
of the five smooth components of the PS-ANOVA spatial trend, each random factor and the error
term. Note that the estimation procedure presented in Section 4 provides, in some cases, effective
dimensions that are exactly zero, meaning that this model component does not contribute or have
an impact on the trait of interest. If we focus on the genetic signal, we have an effective dimension of
about 590.5. In this case, it is easy to show that rank

([
X, Zg

])
− rank (X) = 1090. Equivalently, there

is only one eigenvalue equal to zero, which implicitly induces a zero-mean constraint on the BLUPs
for cg . As a consequence, an estimate of the generalised heritability is Ĥg = 590.5/(1091− 1) = 0.54
(see Eq. (12)).
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(a) Field layout. (b) Raw yield data. (c) Fitted values.

(d) Residuals’ spatial plot. (e) Fitted spatial trend. (f) Genotypic BLUPs.

Fig. 3. For the sugar beet experiment in France: field layout, raw yield data, fitted values (including all terms, fixed and random),
residuals’ spatial plot, fitted spatial trend and genotypic BLUPs. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Table 2
For the sugar beet experiment in France: model and effective dimensions associated with the PS-ANOVA spatial trend, each
random factor, and the error term. The letter u denotes the row position, v the column position, and cr , cr , ct and cg the row,
column, trial and genetic line random factors, respectively.

Dimensions Model components

fu(u) fv(v) vhu(u) uhv(v) fu,v(u, v) cr cc ct cg ε

Model 27 51 27 51 364 26 113 31 1091 2411
Effective 0.0 12.4 21.1 0.0 120.1 18.3 13.1 22.8 590.5 1604.5

6.2. Wheat data, Chile

The study consisted of 384 advanced lines from two breeding programs in Chile and Uruguay. We
focus here on the experiments conducted in 2011, all located in the same environment. The lineswere
evaluated under two different levels of water supply: mild water stress (MWS) and fully irrigated
(FI) conditions. The traits of interest were grain yield (GY), thousand kernel weight (TKW), number
of kernels per spike (NKS) and days to heading (DH). The experimental design was an alpha design
in two replicates, each replicate containing 20 incomplete blocks of size 20. Incomplete blocks were
placed in the row direction, as well as the replicates, placed on top of each other. The dimension of the
trial was therefore 40 rows × 20 columns (800 plots). More details can be found in Lado et al. (2013).

In this paper we re-analyse the phenotypic data using SpATS. For each trait (GY, TKW, NKS and DH)
and water condition (MWS and FI) the following model was assumed

y = f (v, u) + Zgcg + Zrcr + Zccc + ε,

with cg ∼ N
(
0, σ 2

g I384
)
, cr ∼ N

(
0, σ 2

r I40
)
and cc ∼ N

(
0, σ 2

c I20
)
. For the tensor product P-splines,

basis dimensions of 43 and 23 were assumed for the row and column positions, respectively, and, as
usual, we used nested bases, with half the dimension. Each model has about 802 coefficients and 800
observations (there are missing values); the fitting processes needed between 2 and 10 s.



M.X. Rodríguez-Álvarez et al. / Spatial Statistics 23 (2018) 52–71 65

(a) Raw data.

(b) Fitted spatial trend.

(c) Residuals’ spatial plot.

Fig. 4. Raw data, fitted spatial trend and residuals’ spatial plot for the Chilean wheat data (Lado et al., 2013), for each trait
(GY: Grain Yield; TKW: thousand kernel weight; DH: days to heading; NKS: number of kernels per spike) andmild water stress
(MWS) condition.

Figs. 4 and 5 depict, for respectively MWS and FI water conditions, the raw data, the fitted spatial
trends and the spatial plot of the residuals for each trait. Table 3 shows the effective dimensions related
to all model components. Note that some EDk are zero or close to zero. For instance, for the DH and
FI condition, the spatial variation is mainly modelled by the smooth trend over the rows and the row
random factor, with the rest of components having a rather lowor even null impact. All results suggest
that for both theMWS and FI conditions, GY is the trait presenting the largest spatial variation, and DH
the one with the lowest. This is in concordance with the estimated heritability presented in Table 3,
with the largest and the lowest heritability having been obtained for DH andGY, respectively. It should
be noted that, in all cases, the heritability estimate obtained using SpATS is larger than the broad sense
heritability reported in the paper by Lado et al. (2013).

7. Conclusion

This paper presents a new approach to the modelling of field trials in plant breeding, called SpATS.
It has many useful properties.

• The spatial effect ismodelled explicitly as a surface, using anisotropic tensor-product P-splines.
Graphical display of this surface is of considerable value when interpreting a trial.

• The surface is decomposed into a number of fixed and random components, to allow the use of
mixed model technology to automatically determine the amount of smoothing.
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(a) Raw data.

(b) Fitted spatial trend.

(c) Residuals’ spatial plot.

Fig. 5. Raw data, fitted spatial trend and residuals’ spatial plot for the Chilean wheat data (Lado et al., 2013), for each trait (GY:
Grain Yield; TKW: thousand kernel weight; DH: days to heading; NKS: number of kernels per spike) and fully irrigated (FI)
condition.

• The (fixed or random) effects of genotypes, rows and columns, blocks and other known
systematic pattern can be included as usual.

• The diagnostic value of the effective dimension of model components is demonstrated and
connected to classical measures of heritability.

• Themodel has been applied tomany hundreds of field trials, showing fast and robust operation
without any need for user interaction.

• Thanks to the use of nested B-splines, very large fields can be analysed in moderate amounts
of time.

• Missing observations, evenmany of them, and possibly in large patches, are handled gracefully
and automatically.

• The observations do not have to be located on a rectangular grid.
• An R package is available. It performs the computations and presents informative and attractive

tables and graphs.

SpATS is an attractive alternative to classical analyses of field trials that model spatial variation as
correlated noise. In those classical analysis, human intervention is required and a painful model
selection process, by a skilled user, is needed. Our simulations document the instability of AR × AR
models. LV × LV worked much better, showing a similar performance to SpATS. However, especially
for larger fields, LV × LV is much slower and it does not provide an explicit estimate of the spatial
surface.
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Table 3
For the Chilean wheat data: Effective dimensions associated with the spatial trend, the row and column random factors, the
genetic random factor, and the residuals. The generalised heritability is also shown. The letter u denotes the row position, v
the column position, and cr and cr the row and column random factors, respectively. The results shown are for Santa Rosa
in 2011 and for each trait (GY: Grain Yield; TKW: thousand kernel weight; DH: days to heading; NKS: number of kernels per
spike) and condition (MWS: Mild water stress; FI: Fully irrigated)

Condition and trait

MWS FI

GY TKW DH NKS GY TKW DH NKS

Effective dimension
spatial components
(EDk)

fu(u) 8.8 8.5 6.6 2.4 10.2 2.9 7.2 1.3
fv(v) 0.0 0.7 0.5 0.0 0.6 0.7 0.0 0.0
vh(u) 16.8 16.7 1.1 7.6 8.4 0.4 1.4 0.5
uhv(v) 0.0 0.0 0.0 1.8 1.6 0.0 0.1 0.7
fu,v(u, v) 90.6 49.5 0.2 0.6 64.9 17.9 0.0 12.2
cr 20.2 5.2 3.7 12.5 13.7 17.8 7.7 23.7
cc 6.9 0.4 5.6 3.6 6.3 0.0 0.0 0.3
Total 143.3 81.0 17.7 28.5 105.7 39.7 16.4 38.8

EDg 281.8 357.4 368.5 318.3 264.5 354.4 373.4 326.6
H2

g 0.74 0.94 0.96 0.84 0.69 0.94 0.98 0.86

EDε 368.9 344.6 404.8 438.2 419.8 388.9 402.2 417.6
Number of observations 798 787 795 789 794 787 796 787

8. Discussion

Themodelling strategy followed in this paper represents a continuation of previouswork by Green
et al. (1985) and Besag andHigdon (1999), among others. In particular, the connection between SpATS
and the first-differencing model in rows and columns proposed by Besag and Higdon (1999) becomes
evident under the Bayesian formulation of P-splines (Lang and Brezger, 2004; Kneib, 2006). In contrast
to the proposal by Besag andHigdon (1999), SpATS relies on B-splineswhich considerably reduces the
computational cost, and allows the analysis of very large fields and of non-lattice data. In addition,
SpATS, as presented in the paper, is based on second order difference penalties for the tensor product
P-splines. These second order differences are responsible for the presence in the PS-ANOVA spatial
field of the bilinear polynomial (except the intercept) and the linear-by-smooth interaction trends.
However, SpATS permits the use of other penalty orders, as e.g., first order differences. Comparisons
among different penalty orders is a subject for further research.

Looking to the future, we see many interesting challenges. An obvious generalisation is the
modelling of non-Gaussian data like counts or fractions. SpATS is based on penalised linear regression,
framed in the mixed model framework. In principle, the theory of generalised linear mixed models
applies, with a linear predictor composed from fixed and random effects. The iterative re-weighted
REML algorithm essentially fits a linear mixed model to a ‘‘working variable’’ (see, e.g., Schall, 1991;
Engel and Keen, 1994). This lends itself well to the estimation of effective dimensions and variances.
The theory will be presented elsewhere, but wemention that the R-package SpATS that accompanies
this paper already allows a non-Gaussian response.

Partial effective dimensions are key elements of ourmodel. They are needed to estimate variances,
but they also summarise the importance of each component in a single number with strong intuitive
appeal. Although in the smoothing literature there is growing attention for effective dimensions,
this is not yet the case for mixed models. The paper by Cui et al. (2010) represents an important
contribution. In that paper, the authors propose a new conception of components’ effective dimension
formixed effectsmodels that can be loosely interpreted as the fraction of response variation attributed
to individual components. As shown in Web Appendix D, it turns out that the definition of partial
effective dimensions used in this paper (borrowed from the smoothing context) and that of Cui et al.
(2010) are equivalent. We also show the strong connection between the generalised heritability
proposed by Cullis et al. (2006) and Oakey et al. (2006) and the genetic effective dimension. All
these results support moving the interpretation of the results obtained by fitting a mixed model
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from estimated variance components to estimated effective dimensions. Partial effective dimensions
furnish a common scale that allows comparing the contribution of each random/smooth model
component (and the error term) to the observed phenotypic variation. This subject deserves further
research. An immediate question is how things work out with non-Gaussian responses.

A current line of research is focused on the extension of SpATS to the analysis ofmulti-environment
trials (METs, trials carried out in multiple environments or contexts, see, e.g., Smith et al., 2001). In
the analysis of METs we are faced with several challenges. First, the modelling of a different spatial
trend for each environment, and second the need to account for the (possible) interaction between
the genotype and the environment. The first challenge may be approached by including a separate
P-spline surface for each trial. The second challenge is related to the inclusion of correlated random
effects (whenever the genotype effect is treated as random).

Traditionally, in field trial experiments the traits of interest are only measured at the end of the
study (or a rather low number of times). However, with the arrival of high-throughput phenotyping
platforms, long time-series measurements of traits are nowadays available. This requires a spatio-
temporal perspective (Fahlgren et al., 2015; Cobb et al., 2013) for the analysis of field trials. An exciting
field for further study is thus the generalisation of the methodology presented in this paper to the
analysis of high-throughput data. Further work is also needed to develop computationally efficient
estimation procedures in the aforementioned settings.

Our calculations were done with the R-package SpATS that can be downloaded from https://cran.
r-project.org/package=SpATS. It is written in pure R, only using the package fields for attractive
display of results. Thus one can easily convert the software, if desired, to other languages like Python,
Matlab R⃝ or Julia. Alsomixedmodel packages like ASreml-R, nlme and lme4 can be used, or the PROC
MIXED procedure in SAS R⃝.

The R-code used for the simulation studies presented in Section 5 and Web Appendix E, and the
analyses of the Chilean wheat trial discussed in Section 6 can be downloaded from http://bitbucket.
org/mxrodriguez/spats-paper.
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Appendix A. P-splines and mixed models

The two-dimensional P-spline model (4) can be estimated by minimising the penalised least
squares objective function (Eilers and Marx, 2003)

S∗
= ∥y − Bα∥

2
+ αtPα, (14)

where P = “λ(Im̆ ⊗ “Dt “D) + λ̆(D̆t D̆ ⊗ I“m) is the penalty matrix, “λ and λ̆ are the smoothing parameters
acting, respectively, along the u (rows) and v (columns) directions, and “D and D̆ are matrices that
form differences of order du and dv respectively (in this paper we use second order differences,
i.e., du = dv = 2).

The minimiser of (14), given “λ and λ̆, is α̂ = (BtB + P)−1Bty. The only tuning mechanism for
smoothness is the strength of the penalty P , i.e the value of the smoothing parameters λ̆ and “λ.
The number of B-splines will be purposely chosen so large as to get over-fitting without a penalty.
Accordingly, a critical issue is setting the right value for the smoothing parameters, which we like to
see determined by the data. In this paper, we rely on the connection between P-splines and mixed
models (Currie and Durban, 2002; Wand, 2003). In this approach, the smooth functions are treated
as sums of fixed and random components, and the smoothing parameters are replaced by ratios of
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variances which are estimated by REML.We present here themain ideas, and refer to Lee et al. (2013)
(and references therein) for a more detailed description.

Let “Dt “D = UuEuU t
u and D̆t D̆ = UvEvU t

v be the eigenvalue decomposition of the marginal penalties
“Dt “D and D̆t D̆ respectively. Here Uj denotes the matrix of eigenvectors and Ej the diagonal matrix of
eigenvalues (j = u, v). For second order differences, Eu and Ev contain “m − 2 and m̆ − 2 non-zero
values respectively. Let us also denote by Ũj and Ẽj the sub-matrices corresponding to the non-zero
eigenvalues. Setting

Xs = [Xv□Xu] ≡ [1n | u | v | u ⊙ v] , (15)
Zs = [Zv□Xu | Xv□Zu] ≡ [Zv | Zu | Zv□u | v□Zu | Zv□Zu] . (16)

where Xu = [1n | u], Xv = [1n | v], Zu = B̆Ũu and Zv = “BŨv , the penalised least squares problem (14)
becomes

S∗
= ∥y − Xsβs − Zscs∥2

+ c ts P̃cs, (17)

where P̃ = blockdiag
(
λ̆̃Ev, “λ̃Eu, λ̆̃Ev, “λ̃Eu, λ̆̃Ev ⊗ I“m−2 + “λIm̆−2 ⊗ Ẽu

)
is the new penalty matrix. Each

block in P̃ corresponds to a block in Zs. This reformulation provides the ANOVA-type decomposition
discussed in Section 2. The block-structure of both Xs and Zs implies

f (u, v) = Xsβs + Zscs
= 1nβ0 + uβ1 + vβ2 + u ⊙ vβ3  

Xsβs

+ fv(v)
Zvcs1

+ fu(u)
Zucs2

+ u ⊙ hv(v)  
[Zv□u]cs3

+ v ⊙ hu(u)  
[v□Zu]cs4

+ fu,v(u, v)  
[Zv□Zu]cs5

,

where csk (k = 1, . . . , 5) contains the elements of cs that correspond to the kth block of Zs, i.e., cs =(
c ts1, . . . , c

t
s5

)t .
The solution to (17), for given λ̆ and “λ, corresponds to the empirical best linear unbiased estimator

(BLUE) for the (4×1) vector βs, and the BLUPs for the (( “mm̆−4)×1) vector cs under the linear mixed
model

y = Xsβs + Zscs + ε, with ε ∼ N
(
0, σ 2In

)
and cs ∼ N (0,Gs) ,

where Gs = σ 2P̃−1. Note that, despite the five smooth components, Gs involves only two variance
parameters σ̆ 2

= σ 2/λ̆ and “σ 2
= σ 2/“λ. In fact, the same variance parameters control the smoothness

of both main effects and interaction terms. This prevents the use of standard mixed model software
for estimation, since Gs has its last block depending on σ̆ 2 and “σ 2, but in a non-linear way. Specialised
algorithms and software have been presented (e.g., Rodríguez-Álvarez et al., 2015), but this paper
adopts the so-called PS-ANOVA model (Lee et al., 2013), allowing our proposal to be implemented
using standard mixed model estimation procedures. Specifically, in Lee et al. (2013) the ANOVA-type
decomposition is further exploited, and the authors propose to use a different variance component
for each smooth component. For ease of notation, let Λ−1

s1 = Λ
−1
s3 = Ẽv , Λ−1

s2 = Λ
−1
s4 = Ẽu, and Λ

−1
s5 =

Ẽv ⊗ I“m−2 + Im̆−2 ⊗ Ẽu. For the PS-ANOVA model the precision matrix is then defined as G−1
s =

blockdiag
(

1
σ2
s1
Λ

−1
s1 , 1

σ2
s2
Λ

−1
s2 , 1

σ2
s3
Λ

−1
s3 , 1

σ2
s4
Λ

−1
s4 , 1

σ2
s5
Λ

−1
s5

)
, and thus the covariance matrix Gs is a linear

function of variance parameters

Gs =

5⨁
k=1

σ 2
skΛsk =

5⨁
k=1

Gsk = blockdiag (Gs1,Gs2,Gs3,Gs4,Gs5) , (18)

where Gsk = σ 2
skΛsk (k = 1, . . . , 5). In other words, here the tensor product P-spline mixed model

is represented as the sum of 5 sets of mutually independent Gaussian random components csk, each
depending on one variance σ 2

sk (k = 1, . . . , 5).

Appendix B. Supplementary data

Web Appendices A–F are available with this paper. They can be found online at https://doi.org/10.
1016/j.spasta.2017.10.003.
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