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In early generations of a plant breeding program, a 
large number of entries need to be tested. Also, seed avail-
ability is oft en limited, meaning that only one plot can be 

planted per entry. To be able to estimate an error variance and 
allow for local adjustments by blocking, a common strategy is 
to allocate a certain fraction of the plots to check cultivars. For 
a good review of early developments in the design and analy-
sis of unreplicated fi eld trials, see Kempton (1984). Federer 
(1956, 1961) proposed augmented designs for this purpose. 
Th e general idea is to use a blocked design for the replicated 
check cultivars and then to augment the blocks of this design 
with unreplicated entries. Randomization of entries and checks 
within each augmented block provides the basis for an estimate 
of the error variance and adjustments for block eff ects.

Th e fi rst proposals of augmented designs involved random-
ized complete block designs and resolvable incomplete block 
designs for the checks, which permit one-way elimination 
of heterogeneity. Later, the basic idea was extended to row–
column designs where the numbers of rows and columns 
are equal (Federer et al., 1975). Lin and Poushinsky (1983) 
proposed row–column designs for check cultivars where 
check plots are arranged on a regular grid and unreplicated 
entry plots are systematically arranged around the replicated 
checks. Federer (2002) advocated the use of augmented lat-
tice square designs, which were later extended to so-called 
a-a-designs by Williams and John (2003). Th ese randomized 
designs are specifi cally suited for augmented designs with a 
larger number of check cultivars, whereas those by Federer et 
al. (1975) and Lin and Poushinsky (1983) work for a smaller 
number of check cultivars. All of these proposed designs are 
somewhat restricted regarding the number of check plots, the 
number of new cultivars, and the number of rows and col-
umns that can be accommodated.

In this study, we were specifi cally concerned with augmented 
row–column designs for a smaller number of check cultivars 
that allow randomized allocation of genotypes (entries and 
checks) to plots and an estimation of row and column eff ects 
using a linear model with simple eff ects for genotypes, rows, 
and columns. Our aim was to improve on the fl exibility com-
pared with the designs mentioned above. For illustration, 
consider an example given in the review by Federer and Crossa 
(2005) for k = 6 rows, s = 9 columns, vc = 3 check cultivars, 
each of which is replicated six times, and ve = 36 unreplicated 
entries. Th e plan is given in Fig. 1. With respect to the check 
cultivars, each row is a complete block and each column is an 
incomplete block, thus potentially permitting the estimation 
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core ideas
•	 For augmented designs, the number of unreplicated entries and 

blocking unit dimensions needs fl exibility.
•	 Blocking in rows and columns is desirable for local error control.
•	 Super-blocks can be defi ned based on groups of adjacent rows 

and columns.
•	 Units formed by the intersection of row and column groups can 

be a further blocking unit.
•	 Th ese blocking units provide a convenient mechanism to distrib-

ute replications of check cultivars.
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of row and column effects (although with the particular alloca-
tion of check plots in Fig. 1, they turn out to be non-estimable; 
see Example 1 below). Federer and Crossa (2005) required the 
checks (letters) to appear on diagonals of the unrandomized 
layout. Randomization of the design involves randomized allo-
cation of unreplicated entries to plots and the permutation of 
rows and columns. The distribution of replications for the same 
check cultivar may turn out to be somewhat uneven due to this 
randomization procedure.

Inspection of Fig. 1 suggests that a third blocking structure 
can be imposed that regards a 3 ´ 3 array of plots as a block for 
the checks. In Fig. 1, each such block has three check plots, and 
so these blocks could be required to provide one plot for each 
check. An example of this alternate allocation is given in Fig. 2, 
which for simplicity shows only treatment labels for the repli-
cated checks. In this design, each row is a complete block for 
checks and each column an incomplete block, as in Fig. 1. In 
addition, each 3 ´ 3 array of plots forms a complete block for 
checks. As a result of the third blocking structure imposed, the 
layout provides a more regular distribution of the replications 
for each check. Randomization of check plots for this layout 
can proceed by permuting rows within each group of three 
adjacent rows and by an analogous permutation of columns 
within groups of three adjacent columns. Furthermore, groups 
of rows as well as groups of columns can be permuted.

Our objective in this study was to provide a strategy for gener-
ating designs like the one in Fig. 2 such that all row and column 

effects, as well as effects for blocks given by a superimposed 
rectangular array of plots, can be estimated. Moreover, there 
should be flexibility regarding the total number of entries that 
can be tested and a provision for the randomized allocation of 
checks. To exemplify the versatility of our approach, we consider 
three examples. The first is the small design shown in Fig. 2. The 
second example (Fig. 3) concerns a larger design for 576 unrepli-
cated entries and 648 plots with superimposed blocks of six rows 
and columns, each constituting a complete block with respect 
to four checks. The third example (Fig. 4) deals with a design 
involving blocks of unequal size, some of which are incomplete 
with respect to a set of four checks and some others of which 
have extra replication for one of the four checks.

a strateGy to Generate an 
auGMented row–coluMn desiGn with 

suPeriMPosed rectanGular Blocks
The proposed design strategy proceeds in six steps as follows:
1. For a row–column layout, define blocks as the units 

formed by the intersection of groups of adjacent rows (row 
groups, super-rows) and groups of adjacent columns (col-
umn groups, super-columns) (groups can be unequal size). 
When grouping rows and columns, note that the size of 
the groups determines the size of the blocks formed by the 
intersection of row and column groups. Define the number 
of plots for each block that are to be allocated to checks 
(this number need not be a constant).

2. Allocate check cultivars to check plots based on this 
model for design factors: rowgroup + colgroup + 
rowgroup×colgroup, where rowgroup and colgroup are 
factors identifying groups of adjacent rows and groups of 
adjacent columns defined in Step 1, and hence the crossed 
effect rowgroup×colgroup identifies the blocks formed by the 
intersection of row groups and column groups.

3. In each row group, consider the classification of rows by 
column groups (colgroup). From Step 2, we have a design 
for the check cultivar-by-column groups classification. 
Consider both check cultivar and column group of this 
design as block factors and optimize the allocation of 
rows so that effects for rows can be estimated with good 
efficiency. This produces a row–column group design for 
check cultivars.

4. In each column group, consider the classification of row 
groups (rowgroup) by columns. From Step 2, we have a 
design for the check cultivar-by-row group classification. 
Consider both check cultivar and row groups of this design 
as block factors and optimize the allocation of columns 
so that effects for columns can be estimated with good 
efficiency. This produces a row group–column design for 
check cultivars.

5. Merge the two designs obtained in Steps 3 and 4 to obtain 
the final design for checks.

6. Allocate entries to free plots in completely randomized 
order.

We implemented the optimizations required in Steps 2, 3, 
and 4 using the OPTEX procedure of SAS. This procedure 
performs a numerical search for an efficient design based on 
the D-optimality criterion (Atkinson et al., 2009). One may 

Fig.	1.	An	augmented	row-column	design,	reproduced	from	
Federer	and	Crossa	(2005).	Checks:	A–C.	Entries:	1–36.	The	
design	is	unrandomized.

Fig.	2.	An	augmented	row–column	design	with	a	third	block	
factor	defined	by	3	´	3	arrays	of	plots	(blocks	delineated	by	solid	
lines).	Checks:	A–C.	The	36	unreplicated	entries	are	allocated	
to	the	empty	cells	(labels	omitted	for	simplicity).	Specification	
(vc,	gk,	gs,	kb,	sb,	pb)	=	(3,	2,	3,	3,	3,	3).
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specify a model for the given blocking structure and provide the 
set of treatments to be used in the design. Optimization is then 
based on the determinant of the treatment information matrix. 
Details on the use of OPTEX may be found in Piepho (2015). 
Generation using the OPTEX procedure ensures that the design 
is randomized. The implicit randomization involves permutation 
of groups or rows (columns) and of rows (columns) within groups 
of rows (columns). The use of two macros written for this purpose 
is described in the Appendix, and the macros are made available 
in the supplementary material (file: augmented design.sas). The 
notation used to describe the designs is summarized in Table 1.

A few observations can be made on designs generated by this 
algorithm:

1. By crossing the gk row groups with the gs column groups, 
we obtain gkgs blocks. If k and s are multiples of gk and gs, 
respectively, the blocks have kb = k/gk rows and sb = s/gs 
columns each. More flexibility is possible by allowing the 
number of rows per row group and the number of columns 

per column group to vary between groups.
2. The blocks will be complete blocks for the checks when 

the number of check plots per block equals the number of 
check cultivars. But it is also possible to have incomplete 
blocks or blocks with extra replication for some or all of 
the check cultivars. Furthermore, the number of check 
plots need not be constant across blocks, giving great flex-
ibility regarding the total number ve of unreplicated entries 
that can be accommodated.

3. The number of entries that can be tested with this design is

( ),
1 1

k sg g

e b i j
i j

v ks p
= =

= -åå

where pb(i,j) is the number of check plots in the block 
formed by the intersection of the ith row group and jth 
column group. In case each block has the same number pb 
of check plots, this becomes

Fig.	3.	An	augmented	row–column	design	for	the	specification	(vc,	gk,	gs,	kb,	sb,	pb)	=	(4,	6,	3,	6,	6,	4)	(blocks	delineated	by	solid	lines).	
Checks:	A–D.	The	ve	=	576	unreplicated	entries	are	allocated	to	the	empty	cells.	There	are	72	plots	allocated	to	the	check	cultivars	and	
648	plots	overall.
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4. Restrictions must be observed regarding the number of 
check cultivars in relation to the number of levels for the 
design factors. For example, in each row group, the effects 
of the row–column group design for check cultivars must 
be estimable for the design Step 3 to return a valid design. 
This means that the total degrees of freedom for effects of 
intercept, check cultivars, column groups, and rows must 

not exceed the number of plots in the row group. Thus, we 
require for the ith row group that

( ) ( ) ( )( ) ,
1

1 1 1 1
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c s b i b i j
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Similarly, in order for Step 4 to produce a valid row group–
column design, for the jth column group we must have
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5. The idea to superimpose a third blocking factor in addition 
to rows and columns is akin to SuDoKu-type experimental 
designs proposed for replicated experiments by Saba and 
Sinha (2014), but they did not consider augmented designs.

analysis
Augmented row–column designs may be analyzed using 

models with effects for genotypes on the one hand and 
block factors row and column on the other hand (Wolfinger 
et al., 1997). For the designs proposed here, further block 
effects are also needed for row group, column group, and row 
group–column group combinations due to the restriction on 
randomization imposed in Step 2. Thus, the full model for a 
response y can be written as

rowgroup colgroup
rowgroup colgroup rowgroup row
colgroup col genotype

y

e

=m + +
+ × + ×
+ × + +

 [1]

where m denotes a general intercept and e is a residual plot error. 
Table 2 displays a skeleton analysis of variance table showing 
all sources of variation and their associated degrees of freedom. 
Block effects, i.e., all effects in Eq. [1] except that for genotype, 
can be taken as random for recovery of interblock information 
(Wolfinger et al., 1997). Generally, when a block effect does 
not represent complete replicates for the checks, there will be 
information to be recovered and it will usually be worthwhile 
to take the effect as random (Möhring et al., 2015). An alterna-
tive approach is to consider spatial models for plot error (Clarke 
and Stefanova, 2011). In particular, spatial model components 
can be used as an add-on to the baseline effects model Eq. 
[1]. Thus, we may fit model Eq. [1], imposing a spatial covari-
ance model for the plot errors (e). Spatial models assume that 
the covariance among plots is a decreasing function of spatial 

Fig.	4.	An	augmented	row–column	design	for	the	specification	(vc,	
gk,	gs)	=	(4,	4,	3)	(blocks	delineated	by	solid	lines).	Checks:	A–D.	
The	ve	=	173	entries	are	allocated	to	the	empty	cells.	There	are	
47	plots	allocated	to	the	check	cultivars	and	220	plots	overall.

Table	1.	Notation	used	to	describe	the	augmented	row–column	designs	with	superimposed	blocks.
Symbol Description

k no.	of	rows
s no.	of	columns
gk no.	of	row	groups
gs no.	of	column	groups
kb no.	of	rows	per	row	group	[if	this	is	not	constant,	this	needs	to	be	indexed	by	row	group,	i.e.,	kb(i)]
sb no.	of	columns	per	column	group		[if	this	is	not	constant,	this	needs	to	be	indexed	by	column	group,	i.e.,	sb(j)]
pb no.	of	plots	per	block		[if	this	is	not	constant	this	needs	to	be	indexed	by	blocks,	i.e.,	pb(i,j)]
vc no.	of	check	cultivars
ve no.	of	unreplicated	entries



2260	 Agronomy	 Journa l 	 • 	 Volume	108,	 Issue	6	 • 	 2016

distance, and they may improve the precision of the analysis 
(Piepho and Williams, 2010).

It is advisable to check that a generated design can be 
analyzed using model Eq. [1], taking all effects as fixed. This 
can be done by generating a simulated response value for 
each plot in the design and subjecting these data to a dummy 
analysis. This was done for all three examples (see SAS files in 
the supplemental material).

Model Eq. [1] has a simple effect for genotypes. This may be 
further partitioned to separate out check cultivars and entries 
(Piepho et al., 2006). In particular, there may be interest in 
modeling entries as random because they stem from a common 
breeding population, while check cultivars are fixed because they 
are purposely selected. To illustrate how the extended model can 
be coded, assume that there are three replicated check cultivars 
(Genotypes 1, 2, and 3) and four unreplicated entries (4, 5, 6, and 
7). Table 3 shows the coding of variables needed.

The genotype effects can be modeled using the following 
fixed and random effects:

Fixed: conf + conf.check

Random: conv.entry

The variate conv acts as a switch, which switches random 
effects on for entries (conv = 1) and off for checks (conv = 0). 
In using this device, it is important to make sure the mixed 
model package does not automatically mean-center covariates. 
Estimates for entry effects can be obtained by best linear 
unbiased prediction (BLUP). Means for the effect conf.check 
will produce a mean for each check cultivar and an additional 
mean for the mean of the population of entries.

exaMPles
We here consider three examples for the generation of aug-

mented designs using the proposed method. The SAS files for 
all three examples are provided in the supplemental material.

example 1
The example in Fig. 2 has the specification (vc, gk, gs, kb, sb, pb) 

= (3, 2, 3, 3, 3, 3). We find that for each row group
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and for each column group
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Due to the equality in the second equation, this design leaves 

no error degrees of freedom (Table 2). This will become appar-
ent in the dummy analysis for this design in that no F tests are 
produced for any of the effects in model Eq. [1] and the denom-
inator degrees of freedom are reported as zero for all tests (not 
shown). Thus, if a valid estimate of error is required, this design 
cannot be used and a larger design needs to be chosen.

Occasionally for the settings of this example, our algorithm 
returns a design such as that in Fig. 1. The key feature of that 
design is that for all rows, the same type of row appears in both 
row groups, where the type of row refers to the columns in which 
the check plots occur (this implies that identical column types 
appear in column groups as well). Thus, Rows 1 and 4 are identical 
types, as are Rows 2 and 5, as well as Rows 3 and 6. As noted by 
Federer and Crossa (2005), row and column effects are not estima-
ble in this case, even when effects pertaining to row and column 
groups are not fitted. Essentially this occurs because the design is 
not connected, i.e., there is no closed path from each row to each 
other row moving from check plot to check plot only within rows 
or within columns (Searle, 1987, p. 140). A simple check of esti-
mability is to compute adjusted means for all effects in model Eq. 
[1] using simulated data and taking all effects as fixed. In the case 
of a design as in Fig. 1, means for rows and columns as well as for 
the unreplicated entries will be reported to be nonestimable. In the 
rare event that this should happen, our macro reruns the algorithm 

Table	2.	Skeleton	analysis	of	variance	table	for	an	augmented	design	with	sources	of	variation	and	their	degrees	of	freedom.

Source General†
df

Example	1 Example	2 Example	3
Row	groups gk	–	1 1 5 3
Rows,	nested	within	row	groups k	–	gk	–	1 4 30 18
Column	groups gs	–	1 2 2 2
Columns,	nested	within	column	groups s	–	gs	–	1 6 15 7

Row	groups	´	column	groups	(blocks) (gk	–	1)(gs	–	1) 2 10 6

Genotypes vc	+	ve	–	1 38 579 176
Error (k	–	1)(s	–	1)	–	(gk	–	1)(gs	–	1)	–	(vc	+	ve	–	1) 0 6 7
Corrected	total ks	–	1 53 647 219
†	See	Table	1	for	the	definition	of	symbols.

Table	3.	Variables	and	their	coded	levels	for	separating	out	checks	
(fixed	effects)	and	entries	(random	effects).	All	variables	are	coded	as	
qualitative	factors	except	conv,	which	is	coded	as	a	quantitative	variate.
genotype conv conf entry check

1 0 0 0 1
2 0 0 0 2
3 0 0 0 3
4 1 1 4 0
5 1 1 5 0
6 1 1 6 0
7 1 1 7 0
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to generate a new design. If after 10 reruns no connected design is 
found, a message to this effect is printed in the log window.

example 2

Consider a design for the specification (vc, gk, gs, kb, sb, pb) = 
(4, 6, 3, 6, 6, 4) displayed in Fig. 3. The superimposed 6 ´ 6 
blocks are complete blocks with regard to the four check cul-
tivars. Each column is a complete block with four check plots 
and each row an incomplete block with two check plots. The 
design permits estimation of all effects for rows, columns, and 
blocks. It accommodates 576 unreplicated entries and has 648 
plots in total. We find that for each row group
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and for each column group
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as required.

example 3

Assume there are ve = 173 entries to be tested and vc = 4 check 
cultivars. Forty-seven plots are to be allocated to checks, so the 
layout must have 220 plots in total (Fig. 4). These are arranged 
in k = 22 rows and s = 10 columns. The number of check plots 
allows 12 blocks to be superimposed, seven of which comprise 
all four checks (and hence are complete) and five of which com-
prise only three check plots. The blocks are 6 ´ 3, 6 ´ 4, 5 ´ 3, 
and 5 ´ 4 arrays of plots as delineated in Fig. 4. The number 
of plots per block was chosen deliberately to range from three 
to five, with the number of plots allocated depending on block 
size. Thus, e.g., the two 6 ´ 4 blocks have five check plots each, 
whereas the four 5 ´ 3 blocks have three check plots. Each 
column comprises each check at least once. In each of the four 
blocks down the central group of columns, there are five check 
plots and one check is replicated twice. The rows are incomplete 
blocks, each comprising two or three check plots.

discussion
The design strategy proposed here involves several levels of 

blocking to ensure a regular distribution of check plots across 
the experiment. Alternatively, one may just consider row and 
column blocking in non-resolvable row–column designs. 
Such designs are easily generated using software with capabili-
ties to accommodate unequal treatment replication such as 
OPTEX (Piepho, 2015, Box 10) and CycDesigN 5.1 (VSN 
International). While these row–column designs also allow 
adjustments for row and column effects, the distribution of 
check plots is not as even as with the designs proposed here.

The designs we propose here can be randomized, as is the case 
with many of the contending augmented designs. An alternative 
strategy is to use a systematic arrangement of check plots, such 
as planting a check on every nth plot or arranging check plots 
in a diagonal or knight’s move pattern. Clarke and Stefanova 
(2011) provided a very good summary of such options. Based 
on analysis of several uniformity trials, they concluded that “the 
arrangement of check plots, within reason, has little influence” 
compared with the number of check plots. We consider the 
randomization protection afforded in augmented designs as an 
advantage compared with unrandomized designs.

Kempton (1984) asserted that allocating more than 20% of 
the plots to checks is seldom worthwhile. Clarke and Stefanova 
(2011) recommended determining the number of check plots 
so that around 50 error degrees of freedom are available. The 
designs considered in the examples have substantially fewer 
degrees of freedom (Table 2). A general disadvantage with 
augmented designs is that a considerable share of the plots is 
devoted to genotypes that are not of primary interest. Also, if 
the checks respond to environmental gradients differently than 
the entries of interest, the adjustments made in the analysis may 
be biased. If seed availability permits, a very useful alternative 
is to partially replicate some of the entries of interest instead of 
the checks (Smith et al., 2006). Partially replicated designs can 
be generated using any blocked design for the replicated entries 
and then augmenting the design with the unreplicated entries 
in much the same way as with augmented designs (Williams 
et al., 2011, 2014). In early generations, however, seed may be 
so limited that partial replication is not an option, and it is in 
these circumstances that augmented designs such as the ones 
proposed here have their greatest merit.

aPPendix
Steps 2, 3, and 4 of the method proposed here were imple-

mented with the SAS procedure OPTEX, which comes with 
the QC module (not STAT!). There are two macros, which are 
available as supplemental material. The main one is %get_design. 
It requires the provision of three input files, as described below. 
When the groups of rows and groups of columns are equal in size 
and the number of check plots is constant, these files can be gen-
erated using the macro %get_initial_files, specifying the design 
parameters (gk, gs, kb, sb, pb) (otherwise these three files need to 
be provided separately, as detailed further below). For example, 
to generate the design in Fig. 2, we used this code:

%get_initial_files(g_k=2, g_s=3, k_b=3, 
s_b=3, p_b=3);

To generate a design with three check cultivars as in Fig. 2, 
the main macro is subsequently called as

%get_design(v_c=3);

The generated design is printed as a table that is essentially 
equivalent in form to those shown in Fig. 2 to 4, showing only 
the replicated checks. Also, tables are printed showing the num-
ber of plots for each of the checks as well as the total number 
of plots for checks and unreplicated entries. In addition, a SAS 
file named design is generated that contains the full design and 
includes the block factors row, col, rowgroup, and colgroup as 
well as the treatment factor trt for the cultivars (genotypes). The 
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checks are labeled by numbers (levels of trt) ranging from 1 to vc. 
The unreplicated entries are labeled vc + 1 to vc + ve. Note that 
this code will not reproduce the design exactly as reported in Fig. 
2 to 4 because we cannot control the seed of the random number 
generator used in the repeated calls of OPTEX needed for our 
method. Thus, each time the macro is run, a different design is 
generated with the seed initialized from the computer clock.

When at least one of the design parameters gk, gs, and pb is 
not constant, the three initial files need to be provided manu-
ally. This is illustrated with the code used for generating the 
design in Fig. 4. The first file (layout) specifies the block sizes 
pb(i,j) for the different blocks (rowgroup–colgroup combina-
tions). The second and third files (rows_per_rowgroup and 
cols_per_colgroup) specify the number of rows and columns 
[kb(i), sb( j)] per row and column group, respectively. After gen-
erating these files, the macro %get_design is called:

data layout;
input rowgroup colgroup no_of_plots_per_
block;
datalines;
1 1 4
1 2 5
1 3 4
2 1 3
2 2 5
2 3 3
3 1 3
3 2 5
3 3 4
4 1 3
4 2 5
4 3 3
;
data rows_per_rowgroup;
input rowgroup no_of_rows;
datalines;
1 6
2 5
3 6
4 5
;
data cols_per_colgroup;
input colgroup no_of_cols;
datalines;
1 3
2 4
3 3
;
%get_design(v_c=4);
proc print data=design;
run;

suPPleMental Material
The following files are made available as supplemental material:
•	 augmented design.sas: contains the two macros
•	 Example1.sas, Example2.sas, and Example3.sas: contain the code 

for generating designs as in Examples 1 to 3.
To run the code for the examples, the macro must first be made available. 
This can be done by loading the file augmented design.sas into the pro-
gram editor window and submitting all code. Alternatively, an %include 
statement can be used, specifying the path to where the file augmented 

design.sas is located. This is shown in the code for the three examples.
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