

Nano medicines, a essential component of tissue engineering strategies

Anne des Rieux Université Catholique de Louvain Louvain Drug Research Institute Belgium

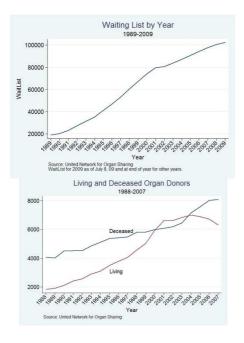
- 1. Introduction
- 2. Cells
- 3. Scaffolds
- 4. Signaling molecules
- 5. Application: bone healing

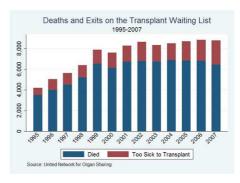
Tissue regeneration

- In certain tissues, cells capable of initiating regeneration or repair after injury.
 - Constant renewing: skin, bone marrow, intestinal epithelium and mucosa, ...
 - Liver, bones, ...
- Depend of
 - Cell type
 - Nature/extend of injury
 - Age
- Not for neurons, heart muscles, ...
- Tissue engineering is one strategy.

Regenerative medicine/Tissue Engineering

2




Regenerative medicine

- Restore structure and function of damaged tissues and organs.
- Create solutions for organs that become permanently damaged.
- Cure previously untreatable injuries and diseases.

http://www.regenerativemedicine.net/What.html

A few numbers...

http://www.econlib.org/library/Columns/y2009/Tabarroklifesaving.html

Current therapies

• <u>Autografting</u>: tissue from one location in the patient's body transplanted to an other location in the same patient.

examples: coronary bypass

- + : best clinical results, no rejection
- : lack of suitable harvest sites, pain, infection, blood loss from harvesting procedure

Current therapies

• <u>Allografting</u>: tissue from one donor transplanted to an other donor.

examples: heart, lung, ... transplant

+ : live saving by total replacement of failing/non functional organs

- : rejection (life-long medication), donor/organ shortage

Current therapies

• <u>Xenografting</u>: tissue from animal sources transplanted to humans.

examples: heart, lung, ... transplant

+ : readily available potential supply, possibility to standardize (transgenic animals recognized as humans)

- : rejection (life-long medication), disease transmission

Current therapies

 <u>Man-Made, biomimetic devices</u> to replicate functions performed by biological systems.
 examples: artificial hearts, valves, orthopedic prosthesis, ...

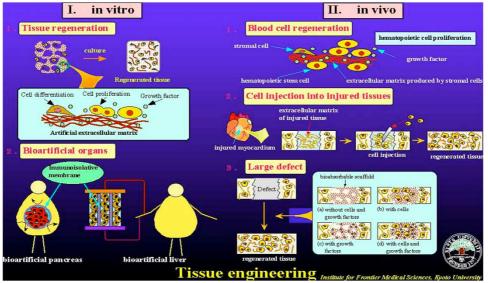
+ : solve many problems, delay the need for transplantation

- : fatigue, fracture, toxicity of the devices, no remodeling (growth), no physiological behavior

Regenerative medicine

- Four concentrations in the field of regenerative medicine:
 - Medical devices and artificial organs
 - Tissue engineering and biomaterials
 - Cellular therapies
 - Clinical translation

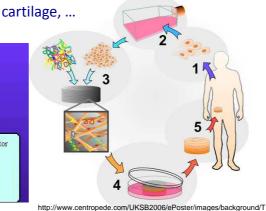
http://www.regenerativemedicine.net/What.html


Tissue engineering

• The first definition from Drs. Langer and Vacanti:

"An interdisciplinary field that applies the principles of engineering and life sciences toward the development of biological substitutes that restore, maintain, or improve tissue function or a whole organ."

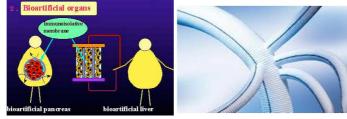
Tissue engineering


• 2 general approaches:

Design and grow human tissues outside the body for later implantation

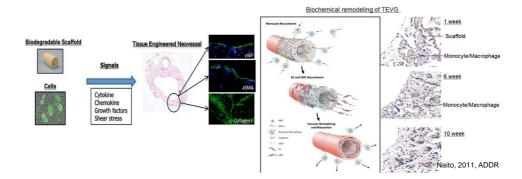
- Reduce tissue harvest, surgical and post operative costs and pain
- ex: skin graft, bone, cartilage, ...

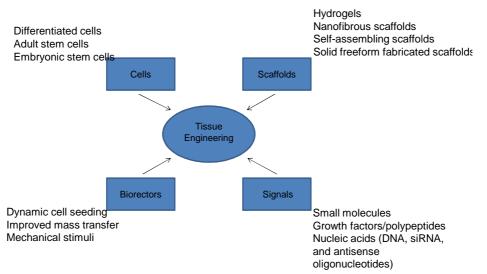
Artificial extracellular matrix


Direct injection of bolus cells into the tissue of interest

• Myocardium regeneration

External/internal devices containing human tissues to replace the function of diseased tissues


- Perform organ function without transplantation/improve biocompatibility of implanted artificial device
- Artificial liver, pancreas, cell-lined vascular grafts


http://www.shubhanmedical.com

Implantation of scaffold-based delivery systems to induce the regeneration of functional tissues

- Scaffolds + bioactive molecules + cells
- Remodeling/disappearance of implant
- Bone, cartilage, skin, vascular grafts, ...

Tissue engineering

Nanotechnology and Tissue Engineering: The Scaffold, CRC Press; 1 edition (June

Steps in Tissue engineering

- Appropriate cell source must be identified, isolated and produced in sufficient numbers. Cells seeded onto or into material, maintaining function, morphology
- Appropriate biocompatible material that can be used as a cell substrate or cell encapsulation material
- Appropriate signals for cell infiltration, survival, proliferation, differentiation, ...

Cells sources

- Primary cells
- Stem cells
 - Embryonic stem cells
 - Adult stem cells

Primary cells

- Mature cells from a specific tissue type (ex: osteoblastes from femoral heads during hip replacement)
- Harvested by surgery
- Advantages


 Immunilogical biocompatibility
- Disadvantages
 - Differentiated: no proliferation, de-differentiation

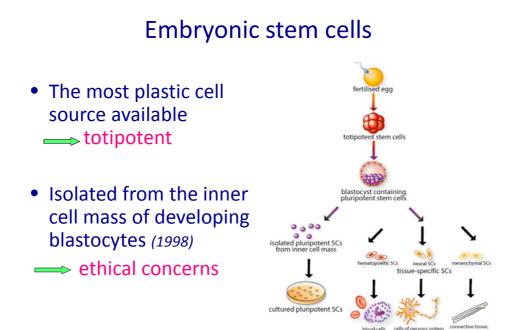
Primary cells

• Example:

- Langerhans cells encapsulated in alginate beads to treat type I diabetes
- Porcine islets implanted in humans (Prof. Dufrane's work, UCL, Belgium)

Stem cells

"Undifferentiated cells that can proliferate and have the capacity of both self-renew and differentiate to one or more types of specialized cells"


Umbilical cord blood

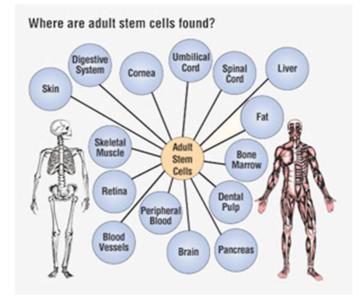
- Placenta and umbilical cord: source of hematopoietic stem cells.
- A higher chance of matching family members than stem cells from bone marrow.
- late 1980s, used to treat a number of blood and immune-system related genetic diseases, cancers, and disorders (+/- 75 diseases).
- In 1993, the first two successful unrelated donor cord blood

http://www.thefastertimes.com/pediatrics/2010/08/2 6/umbilical-cord-blood-banking-is-it-worth-it/

http://www.scq.ubc.ca/stem-cell-

Embryonic stem cells

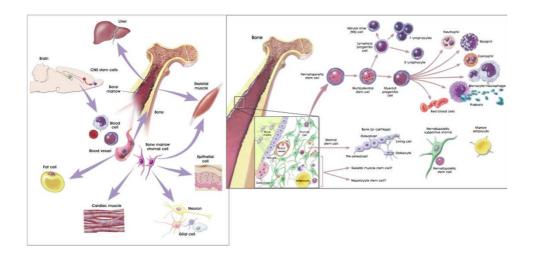
- Advantages:
 - Proliferate indefinitely in the undifferenciated state
 - Retain the capacity to differentiate to all mature somatic phenotypes under the appropriate signals
- Disadvantages:
 - Ethical concerns
 - Tricky culture conditions
 - Potential risk of genetic mutations, teratocarcinoma
 - Lack of hindsight


Adult stem cells

- Advantages:
 - Multipotency (mesenchymal and non mesenchymal origin)
 - Long-term self-renewing (life time)
 - Immunomodulatory properties
 - Autograft/allograft
 - Isolation/expansion doable

• Disadvantages:

- Source/access: morbidity at the site of sampling
- Low occurrence


Adult stem cells

Mesenchymal stem cells

- Bone marrow stem cells
- Umbilical stem cells
- Fat stem cells
- Easy access, autograft, acceptable morbidity.
- The most studied/used.

MSC differentiation

http://stemcells.nih.gov/info/scireport/chapter4.asp

Cell therapy Clinical trials

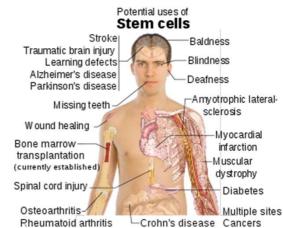
http://www.clinicaltrials.gov/

Cell therapy Clinical trials

Conditions	Interventions	Phases	Start Date
Ischemia Stroke	Genetic: Autologous mesenchymal stem cells	Phase 2	August 2010
Pened Chest Surgery for Programmes Coronary Bypass	Procedure: harvest of a small bone marrow sample		November 2008
Chronic Myocardial Ischemia Left Ventricular Dysfunction	Genetic: Mesenchymal stem cells	Phase 1 Phase 2	October 2009
Osteoarthritis Knee Arthrosis Osteochondral Defects Osteonecrosis	Procedure: Transplantation of Bone Marrow Stem Cells Activated in Knee Arthrosis	Phase 0	July 2010
Prostate Cancer Erectile Dysfunction	Biological: injection of bone marrow mononucleated cells	Phase 1 Phase 2	April 2010
Tibial Fractures Fractures, Open Bone Marrow Transplantation	Procedure: Osteosynthesis		September 2007
Osteoarthritis	Biological: Autologous adipose derived stem cells administrated for intra-articular use	Phase 1	April 2012
Osidoarumus	In intra-anticular use Biological: dactinomycin Biological: filgrastim Drug: carboplatin Drug: cyclophosphamide Drug: doxorubicin hydrochloride Procedure: peripheral blood stem cell		Αφτιί 2012
Ovarian Cancer Sarcoma Small			http://www.clinicaltrials.gov/

Dental stem cells

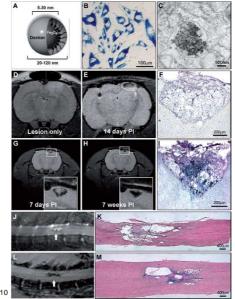
Dental Stem Cells


Dental Follicle Stem Cells Stem Cells from Apical Papilla

- Easy access
- Autograft
- High proliferation rate
- From neural crest: good candidate for CNS regeneration

Stem cells

- Stem cells can provide a virtually inexhaustible cell source for a lot of applications.
- Stability, potential risks have yet to be fully evaluated.


Stem cells for tissue engineering

- Actions
 - Cell replacement
 - Bioactive molecule secretion
- Challenges
 - Survival
 - Delivery
 - In vivo tracking post implantation

In vivo tracking

Magnetic nanoparticles for labeling stem cells

- Superparamagnetic iron oxyde nanoparticles (SPIO)-MRI
- Gadoliniumrhodamine-dextran conjugates
- Manganese oxide nanoparticles

Kubinova et al. 2010

SCAFFOLDS

Scaffolds

Central components of tissue engineering strategies

 Architectural context in which extracellular matrix, cell-cell and growth factors interactions combine

• Challenges

- Design and manufacture of scaffolds
 - Highly porous structure
 - Controlled release kinetic of growth factors

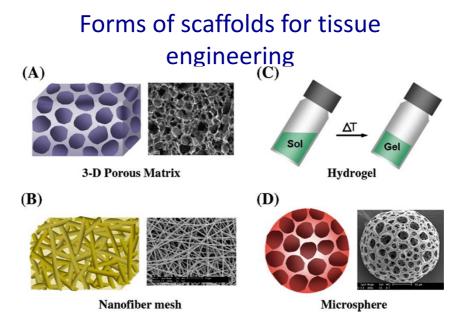
Sokolsky et al., 2007

Materials forming scaffolds

- Selection criteria
 - Appropriate mechanical properties matching targeted tissue.
 - Acceptable biocompatibility
 - Mimic native extracellular matrix
 - Interface adherence: cell adhesion and proliferation
 - Adapted degradation rate

Sokolsky et al., 2007

Drug releasing scaffolds


- High loading capacity (therapeutic levels)
- Homogenous drug distribution
- Appropriate binding affinity to allow slow release
- Controlled release kinetic
- Maintain drug stability

Natural materials

- Minimized chronic inflammation
- Intrinsic biological activity
- Often soluble in water: mild fabrication conditions
- Examples: silk, collagen, gelatin, chitosan, alginate, agarose, hyaluronic acids, fibrin, ...

Synthetic materials

- Biocompatible, biodegradable
- Tunable
- More controlled structure and properties
- Longer degradation rates
- Examples: poly(a-hydroxyester)s, polyanhydrides, polyorthoesters,...

Chung et al., 2007

3/03/2016

SIGNALING MOLECULES

Signaling factors

- Precise control over the signaling of factors in a local area may potentially allow control over a regenerative process.
- Growth factors: proteins which affect cell migration, proliferation and differentiation.

Table 2 Manifestations of growth factors on cellular effects are multifaceted. Action of growth factors on cells An onset of yowin actors on cens
 An onset of vectorial migration (chemotaxis effect)
 An onset of random migration (chemotaxis effect)
 A stimulation of cell division (mingenic effect)
 An induction of cell differentiation (control cell fate)
 Fatteming of cells (morphogenesis)
 An initiation of programmed cell death (apoptotic effect)
 An induction of metabolic activity
 A combination of above

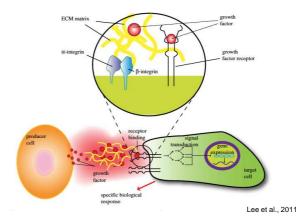
Lee et al., 2011, Metha et al., 2012

Popular growth factors

abbreviation	tissues treated	representative function		
Ang-1 blood vessel, heart, muscle		blood vessel maturation and stability		
Ang-2	blood vessel	destabilize, regress and disassociate endothelial cells from surrounding tissues		
FGF-2	blood vessel, bone, skin, nerve, spine, muscle	migration, proliferation and survival of endothelial cells, inhibition of differentiation of embryonic stem cells		
BMP-2	bone, cartilage	differentiation and migration of osteoblasts		
BMP-7	bone, cartilage, kidney	differentiation and migration of osteoblasts, renal development		
EGF	skin, nerve	regulation of epithelial cell growth, proliferation and differentiation		
EPO	nerve, spine, wound healing	promoting the survival of red blood cells and development of precursors to red blood cells.		
HGF	bone, liver, muscle	proliferation, migration and differentiation of mesenchymal sten cells		
IGF-1	muscle, bone, cartilage, bone liver, lung, kidney, nerve, skin	r, cell proliferation and inhibition of cell apoptosis		
NGF	nerve, spine, brain	survival and proliferation of neural cells		
PDGF-AB (or -BB)	blood vessel, muscle, bone, cartilage, skin	embryonic development, proliferation, migration, growth of endothelial cells		
TGF-a	brain, skin	proliferation of basal cells or neural cells		
TGF-β	bone, cartilage	proliferation and differentiation of bone-forming cells, anti- proliferative factor for epithelial cells		
VEGF	blood vessel	migration, proliferation and survival of endothelial cells.		

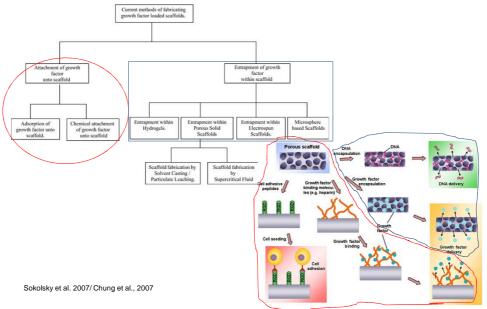
Lee et al., 2011

Commercially available growth factors


Growth factor	Commercial name	Administration	Clinical condition	Company	
BMP-2	INFUSE® Bone Graft/LT-Cage	BMP-2 absorbed in collagen sponge	Degenerative disc disease	Medironic (http://www.medironic.com/for-healthcare professionals/products-therapies/spinal-orthopedics/ bone-graft-options/infuse-bone-graft/index.htm)	
BMP-7	OP-1™ Implant/ Putty ^a	BMP-7 in collagen-based carrier	Fractures of long bones, lumbar fusions	Olympus Biotech Corporation (http:// www.olympusbiotech.com/us/index.html)	
KGF	Kepivance® (palifermin)	Injected intravenously	Oral mucositis	Amgen/Biovitrum (http://www.kepivance.com/)	
PDGF	REGRANEX® (becaplermin)	PDGF impregnated in a hydrogel	Lower extremity neuropathic ulcers	OMJ Pharmaceuticals (http://www.ncbi.nlm.nih.gov/ pubmedhealth/PMH0001057/)	
PDGF-BB	Augment ^{™ b}	PDGF in tricalcium phosphate matrix	Open orthopedic surgical procedures	Biomimetic (http://biomimetics.com/products.htm)	
PDGF-BB	GEM 21S [®]	Synthetic bone matrix (8-TCP)	Periodontal bone defects and associated gingival recession	Osteohealth (http://www.osteohealth.com/ GEM21S.aspx)	

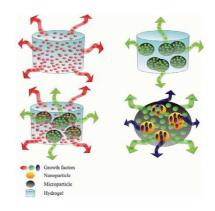
p-TCP = beta-tricalcium phosphate; BMP = bone morphogenetic protein; KGF = keratinocyte growth factor; PDGF = platelet-derived growth factor.

Koria et al., 2012


Mechanism of action

• Growth factors instructs cell behavior through binding to specific trans-membrane receptors on targeted cells.

Clinical studies


- Growth factors tested in clinical trials (GF injected locally).
 - Promising Phase I
 - Not the expected results for Phase II
- Causes: formulation, dose, route of administration.
- Often neglected: mode of delivery
- Administration of supraphysiological concentrations may lead to severe side effects.

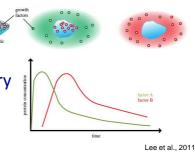
Delivery strategies for tissue engineering

Incorporation in polymeric matrices

- Growth factor directly incorporated into the matrix
- Growth factor encapsulated in nano/microparticles before incorporation in implants

• Combination of both

Stevens, 2008

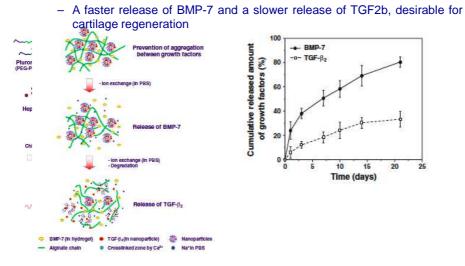

Delivery strategies for tissue engineering

- Integrative approach: nanoparticulate systems with hydrogels or scaffolds.
 - Delivery of multiple growth factors
 - Better control of release (decrease of burst release and diffusion)
 - Spatio/temporal

delivery of distinct factors

- Results in controlled

sequential waves of GF delivery



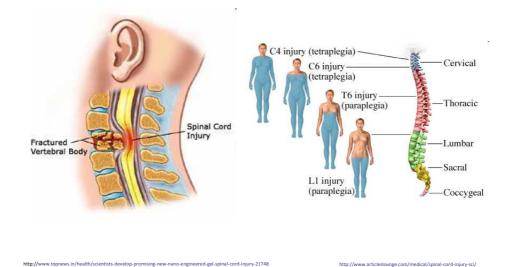
Combinatorial approaches

- Improved efficacy of growth factors in tissue regeneration.
- Sequential release critical for tissue regeneration: improper sequence=little effect and undesirable effects

Combinatorial approaches

• TGFb2-loaded poly-ion complex nanoparticles in a BMP-7 containing hydrogel for cartilage tissue engineering (Lim et al., 2010).

APPLICATIONS


INFLUENCE OF **GDNF** DELIVERY FROM HYDROGELS ON SPINAL CORD REGENERATION

Spinal cord injury

- 1.2 million individuals worldwide
- Young adults (82%=males 16-30 years old)
- Incomplete/complete injury
- Loss of function

Spinal cord injury resource center http://www.spinalinjury.net/

Spinal cord injury

Spinal cord injury

• Acute phase: spinal shock Myelin ocyte Astr Oligodendrocyte Sub-acute phase ٠ Destructive T-Cells Blood Damaged Oligodendrocyte Astrocyte Scar White blood cell Chronic phase ٠ Macrophage Naked Axon Astrocyte

Spinal Cord Injury:Progress, Promise, and Priorities, C. T. Liverman et al., 2005

Hypothesis

Precise control over the signaling of growth factors in a local area may potentially allows control over a regenerative process.

Spinal cord regeneration

Requirements:

Injectable hydrog Biocompatible Biodegradable Stimulate regener

Growth factors Free Encapsulated

Cells Stem/primary cells To do:

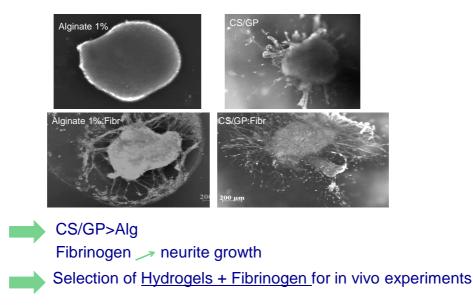
Injectable hydrogel Select In vitro/In vivo

compatibility

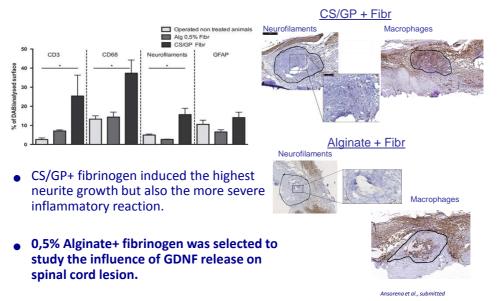
<u>Growth factors</u> Develop formulations Study release from hydrogels

<u>Cells</u> Incorporation in hydrogels Influence in vivo

Injectable Hydrogels


• Composition

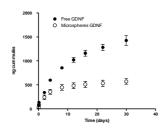
- 0,5 % MVG Alginate (Novamatrix[™])
- 1.5%Chitosan / $\beta\text{-Glycerophosphate}$ disodium salt hydrate (Crabe shell, Sigma)
- +/- Fibrinogen (Tisseel[™] fibrin sealant kit, Baxter International Inc.)


Characterization

- Mechanical properties (Rheology): Alginate 0.5% close to spinal cord modulus (+/- 200 Pa.s) and CS/GP modulus very low (31 Pa.s).
- Biocompatibility (MTS): No influence of fibrinogen addition to alginate but higher proliferation on CS/GP + fibrinogen.

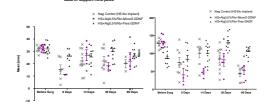
Ex vivo neurite growth

Ansorena et al., submitte


Influence on spinal cord injury in vivo

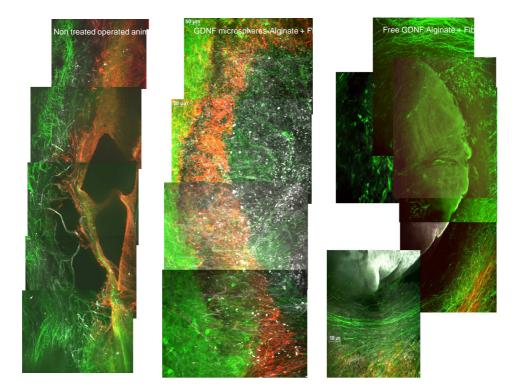
GDNF delivery from hydrogels

- □ Formulation
 - Microspheres or free GDNF (solution) incorporated in alginate hydrogels
- Incorporation in hydrogels
 - In vitro release
 - □ Influence on spinal cord injury (3 months implantation)- functional test and IF


GDNF release from hydrogel

• Release profiles

- Sustained release of GDNF for the 2 formulations.
- Very slow release of GDNF from microspheres-loaded hydrogel.

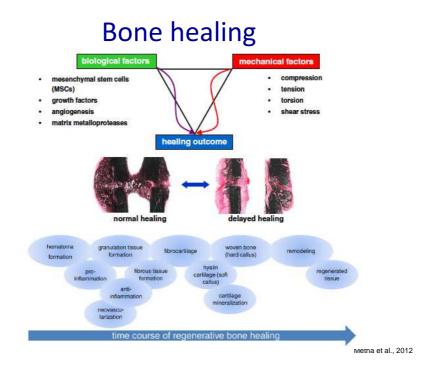

Influence on
 functional parameters

• Improvement of certain CatwalkTM parameters over 1 month for rats injected with free GNDF-alginate.

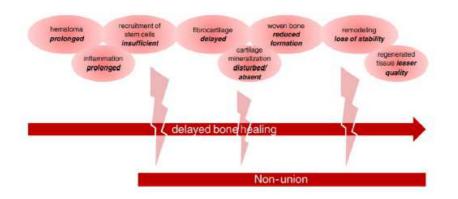
GDNF release from hydrogel

• Influence on spinal cord lesion

Conclusion


- Promising results but not efficient enough.
- Test other hydrogels that will stimulate neurite growth without triggering inflammation.
- Reinforce GDNF action by other growth factors.
- Introduce stem cells.

Large bone defect treatment


- 1. Bone healing
- 2. Current tissue engineering strategies for bone
- 3. Growth factor and delivery methods in treatment of bone defect
- 1. Future outlook

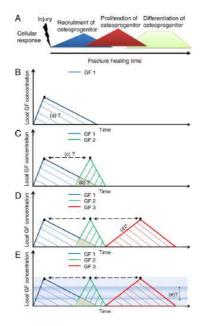
Bone healing

- Bone transplantation one of the most common clinical procedure.
- Bone loss from trauma, tissue resection, necrosis, spinal deformities, infections ... leading to poor healing.
- Major clinical and socioeconomic problem.

Failure in bone healing

Metha et al., 2012

Classical treatments

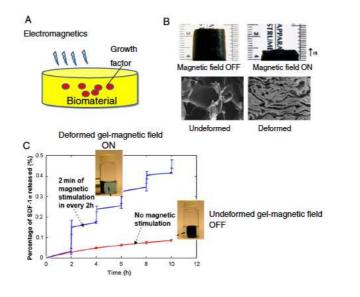

- Historically, amputation.
- In the past decades, bone autografts + metal implants but delayed union, prolonged treatment time and revision surgeries.
- The gold standard: autogenous bone grafting. But: donor site morbidity, pain, paresthesia, prolonged hospitalisation, risks of deep infection, inflammation, restricted availability.
- Other options
 - Allografts and xenograft. But: risk of infection and immune response.
 - Synthetic bone graft substitutes. But not reached yet clinical efficacy

Metha et al., 2012

New strategies

- Bone tissue engineering based on delivery of cells, matrix and bioactive molecules.
- Still inferior to the gold standard, mainly due to poor control over the delivery of growth factors, rapid degradation, and insufficient local concentration.
- Need to orchestrate spatiotemporal delivery of cues.

Delivery of multiple signals


Metha et al., 2012

Delivery of multiple signals

Multiple growth factor system	Carrier	Species	Model	Testing temporal regulation	Ref.
PDGF/IGF-1	Titanium implant	Dog	Jaw bone	No	[107]
IGF-I/TGF-B1	Poly(o,t-lactide)-coated titanium K-wires	Rat	Tibia	No	178
BMP-2/FGF	Collagen sponge	Rat	Femur	No	179
BMP-2/TGF-B3	Alginate scaffold	Rat	Femoral defect	No	255
BMP-2/TGF-B3	Composite scaffold	Mice	Musde	No	256
BMP-4/VEGF	PIGA scaffold	Mice	Subcutaneous	No	170
BMP-7/TGF-B1	Collagen	Baboon	Extraskeletal sites	No	257
Bone Protein/PDGF/IGF	Collagen/PIG	Rat	Skull caps	No	[177
BMP-2/VEGF	Composite scaffold	Rat	Cranial	Yes	1258
BMP-2/VEGF	Composite scaffold	Rat	Subcutaneous and femoral defect	Yes	259

Metha et al., 2012

On-demand release

Metha et al., 2012

TAKE AWAY MESSAGE

- Importance of the extracellular environment in determining cell behaviour: need for regenerative materials to provide cells with biological cues.
- Outcome of growth factor administration can be improved enormously with the use of technically simple slow-release schemes.
- Over-engineering devices difficult to translate to clinical use.