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CHAPTER
ONE

PREFACE

This textbook came from a frustration of first main author. Many authors choose to write a textbook because there are
no textbooks in their field or because they are not satisfied with the existing textbooks. This frustration has produced
several excellent textbooks in the networking community. At a time when networking textbooks were mainly theoret-
ical, Douglas Comer chose to write a textbook entirely focused on the TCP/IP protocol suite [Comer1988], a difficult
choice at that time. He later extended his textbook by describing a complete TCP/IP implementation, adding practical
considerations to the theoretical descriptions in [Comer1988]. Richard Stevens approached the Internet like an explorer
and explained the operation of protocols by looking at all the packets that were exchanged on the wire [Stevens1994].
Jim Kurose and Keith Ross reinvented the networking textbooks by starting from the applications that the students use
and later explained the Internet protocols by removing one layer after the other [KuroseRoss09].

The frustrations that motivated this book are different. When I started to teach networking in the late 1990s, students
were already Internet users, but their usage was limited. Students were still using reference textbooks and spent time
in the library. Today’s students are completely different. They are avid and experimented web users who find lots
of information on the web. This is a positive attitude since they are probably more curious than their predecessors.
Thanks to the information that is available on the Internet, they can check or obtain additional information about the
topics explained by their teachers. This abundant information creates several challenges for a teacher. Until the end of
the nineteenth century, a teacher was by definition more knowledgeable than his students and it was very difficult for the
students to verify the lessons given by their teachers. Today, given the amount of information available at the fingertips
of each student through the Internet, verifying a lesson or getting more information about a given topic is sometimes
only a few clicks away. Websites such as wikipedia provide lots of information on various topics and students often
consult them. Unfortunately, the organization of the information on these websites is not well suited to allow students
to learn from them. Furthermore, there are huge differences in the quality and depth of the information that is available
for different topics.

The second reason is that the computer networking community is a strong participant in the open-source movement.
Today, there are high-quality and widely used open-source implementations for most networking protocols. This in-
cludes the TCP/IP implementations that are part of linux, freebsd or the ulP stack running on 8bits controllers, but also
servers such as bind, unbound, apache or sendmail and implementations of routing protocols such as xorp or quagga
. Furthermore, the documents that define almost all of the Internet protocols have been developed within the Internet
Engineering Task Force (IETF) using an open process. The IETF publishes its protocol specifications in the publicly
available RFC and new proposals are described in Internet drafts.

This open textbook aims to fill the gap between the open-source implementations and the open-source network specifi-
cations by providing a detailed but pedagogical description of the key principles that guide the operation of the Internet.
The book is released under a creative commons license. Such an open-source license is motivated by two reasons. The
first is that we hope that this will allow many students to use the book to learn computer networks. The second is that
I hope that other teachers will reuse, adapt and improve it. Time will tell if it is possible to build a community of
contributors to improve and develop the book further. As a starting point, the first release contains all the material for
a one-semester first upper undergraduate or a graduate networking course.

The first edition of this ebook has been written by Olivier Bonaventure. Laurent Vanbever, Virginie Van den Schriek,
Damien Saucez and Mickael Hoerdt have contributed to exercises. Pierre Reinbold designed the icons used to represent
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switches and Nipaul Long has redrawn many figures in the SVG format. Stephane Bortzmeyer sent many suggestions
and corrections to the text.

Over the years, students and colleagues contributed to parts of the text, including:

Virginie Van den Schriek contributed to various exercises
Laurent Vanbever contributed to various exercises
Damien Saucez contributed to various exercises

Mickael Hoerdt contributed to various exercises

Pierre Reinbold designed the icons used to represent routers, switches, ... and provided all the sysadmin support
to host the book

Nipaul Long converted most of the figures to SVG format
Daire O’Doherty helped to improve the writing throughout the book

Quentin De Coninck improved the text and exercises

The first and second versions of the e-book were developed on GitHub. A lot of text for the third edition was part of
the two previous editions. Here is the list of contributors to these two first editions:

Alexis Nootens
Antoine Paris
Benoit Legat
Daire O’Doherty
David Lebrun
Diego Havenstein
Eduardo Grosclaude
Florian Knop
Mathieu Jadin
Juan Antonio Cordero
Joris Van Hecke
Léonard Julement
Laurent Lantsogh
Laurent Vanbever
Marcel Waldvogel
Matthieu Baerts
Melanie Sedda
Mickael Hoerdt
motateko

Nicolas Pettiaux
Nipaul Long
Olivier Tilmans

Pablo Gonzalez
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* Raphael Bauduin

* Robin Descamps

* Hélene Verhaeghe

* Virginie Vandenschriek

The main contributors to the third edition were Olivier Bonaventure and Quentin De Coninck. Other contributions to
this edition include:

e Adrien Defer

* Anthony Gégo

* Francois Michel

* Benjamin Caudron
¢ Mohamed Elshawaf
* Amadéo David
 Fabien Duchene

* Florent Dardenne

* Nicolas Rosar

* Gauthier de Moffarts
* Marcin Wilk

* Greg Skinner

The entire source code for the ebook is available on https://github.com/CNP3/ebook If you spot any error, typo or want
to improve the ebook, please add issues or suggest pull requests.

The HTML version of the ebook is available from https://www.computer-networking.info It includes various online
exercises hosted on the https://www.inginious.org/course/cnp3 platform.

The ebook covers only a small subset of the Computer Networking domain. To encourage the readers to explore other
aspects of this field, we regularly post pointers to relevant information on the Networking Notes blog at https://blog.
computer-networking.info You can also follow us on twitter via @cnp3_ebook.

Note: Computer Networking : Principles, Protocols and Practice, (¢) 2011-2021, Olivier Bonaventure, Université
catholique de Louvain (Belgium) and the collaborators listed above, used under a Creative Commons Attribution (CC
BY) license made possible by funding from The Saylor Foundation’s Open Textbook Challenge in order to be incorpo-
rated into Saylor.org’ collection of open courses available at https://www.saylor.org. Full license terms may be viewed
at : https://creativecommons.org/licenses/by/3.0/
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CHAPTER
TWO

PART 1: PRINCIPLES

2.1 Connecting two hosts

The first step when building a network, even a worldwide network such as the Internet, is to connect two hosts together.

This is illustrated in the figure below.

Fig. 1: Connecting two hosts together

To enable the two hosts to exchange information, they need to be linked together by some kind of physical media.
Computer networks have used various types of physical media to exchange information, notably :

* electrical cable. Information can be transmitted over different types of electrical cables. The most common ones
are the twisted pairs (that are used in the telephone network, but also in enterprise networks) and the coaxial
cables (that are still used in cable TV networks, but are no longer used in enterprise networks). Some networking
technologies operate over the classical electrical cable.

* optical fiber. Optical fibers are frequently used in public and enterprise networks when the distance between the
communication devices is larger than one kilometer. There are two main types of optical fibers : multi-mode
and single-mode. Multi-mode is much cheaper than single-mode fiber because a LED can be used to send a
signal over a multi-mode fiber while a single-mode fiber must be driven by a laser. Due to the different modes of
propagation of light, multi-mode fibers are limited to distances of a few kilometers while single-mode fibers can
be used over distances greater than several tens of kilometers. In both cases, repeaters can be used to regenerate
the optical signal at one endpoint of a fiber to send it over another fiber.

* wireless. In this case, a radio signal is used to encode the information exchanged between the communicating
devices. Many types of modulation techniques are used to send information over a wireless channel and there
is lot of innovation in this field with new techniques appearing every year. While most wireless networks rely
on radio signals, some use a laser that sends light pulses to a remote detector. These optical techniques allow to
create point-to-point links while radio-based techniques can be used to build networks containing devices spread
over a small geographical area.
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2.1.1 The physical layer

These physical media can be used to exchange information once this information has been converted into a suitable
electrical signal. Entire telecommunication courses and textbooks are devoted to the problem of converting analog or
digital information into an electrical signal so that it can be transmitted over a given physical /ink. In this book, we
only consider two very simple schemes that allow to transmit information over an electrical cable. This enables us to
highlight the key problems when transmitting information over a physical link. We are only interested in techniques
that allow transmitting digital information through the wire. Here, we will focus on the transmission of bits, i.e. either
Oorl.

Note: Bit rate

In computer networks, the bit rate of the physical layer is always expressed in bits per second. One Mbps is one million
bits per second and one Gbps is one billion bits per second. This is in contrast with memory specifications that are
usually expressed in bytes (8 bits), KiloBytes (1024 bytes) or MegaBytes (1048576 bytes). Transferring one MByte
through a 1 Mbps link lasts 8.39 seconds.

Bit rate  Bits per second

1 Kbps  10°
1 Mbps  10°
1 Gbps 10
1 Tbps  10'2

To understand some of the principles behind the physical transmission of information, let us consider the simple case of
an electrical wire that is used to transmit bits. Assume that the two communicating hosts want to transmit one thousand
bits per second. To transmit these bits, the two hosts can agree on the following rules :

* On the sender side :
— set the voltage on the electrical wire at +5V during one millisecond to transmit a bit set to /
— set the voltage on the electrical wire at -5V during one millisecond to transmit a bit set to 0
* On the receiver side :

— every millisecond, record the voltage applied on the electrical wire. If the voltage is set to +5V, record
the reception of bit /. Otherwise, record the reception of bit 0

This transmission scheme has been used in some early networks. We use it as a basis to understand how hosts commu-
nicate. From a Computer Science viewpoint, dealing with voltages is unusual. Computer scientists frequently rely on
models that enable them to reason about the issues that they face without having to consider all implementation details.
The physical transmission scheme described above can be represented by using a time-sequence diagram.

A time-sequence diagram describes the interactions between communicating hosts. By convention, the communicating
hosts are represented in the left and right parts of the diagram while the electrical link occupies the middle of the
diagram. In such a time-sequence diagram, time flows from the top to the bottom of the diagram. The transmission
of one bit of information is represented by three arrows. Starting from the left, the first horizontal arrow represents
the request to transmit one bit of information. This request is represented by a primitive which can be considered as a
kind of procedure call. This primitive has one parameter (the bit being transmitted) and a name (DATA.request in this
example). By convention, all primitives that are named something.request correspond to a request to transmit some
information. The dashed arrow indicates the transmission of the corresponding electrical signal on the wire. Electrical
and optical signals do not travel instantaneously. The diagonal dashed arrow indicates that it takes some time for the
electrical signal to be transmitted from Host A to Host B. Upon reception of the electrical signal, the electronics on
Host B’s network interface detects the voltage and converts it into a bit. This bit is delivered as a DATA.indication
primitive. All primitives that are named something.indication correspond to the reception of some information. The

6 Chapter 2. Part 1: Principles
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dashed lines also represents the relationship between two (or more) primitives. Such a time-sequence diagram provides
information about the ordering of the different primitives, but the distance between two primitives does not represent a
precise amount of time.

Host A Physical link Host B
DATA.req(0)

___________________________ DATA.in

Time-sequence diagrams are useful when trying to understand the characteristics of a given communication scheme.
When considering the above transmission scheme, it is useful to evaluate whether this scheme allows the two com-
municating hosts to reliably exchange information. A digital transmission is considered as reliable when a sequence
of bits that is transmitted by a host is received correctly at the other end of the wire. In practice, achieving perfect
reliability when transmitting information using the above scheme is difficult. Several problems can occur with such a
transmission scheme.

The first problem is that electrical transmission can be affected by electromagnetic interference. Interference can have
various sources including natural phenomenons (like thunderstorms, variations of the magnetic field,...) but also other
electrical signals (such as interference from neighboring cables, interference from neighboring antennas,...). Due to
these various types of interference, there is unfortunately no guarantee that when a host transmit one bit on a wire, the
same bit is received at the other end. This is illustrated in the figure below where a DATA.request(0) on the left host
leads to a Data.indication(1) on the right host.

Host A Physical link Host B
DATA.r

DATA.ind(1

With the above transmission scheme, a bit is transmitted by setting the voltage on the electrical cable to a specific value
during some period of time. We have seen that due to electromagnetic interference, the voltage measured by the receiver
can differ from the voltage set by the transmitter. This is the main cause of transmission errors. However, this is not the
only type of problem that can occur. Besides defining the voltages for bits 0 and /, the above transmission scheme also
specifies the duration of each bit. If one million bits are sent every second, then each bit lasts 1 microsecond. On each
host, the transmission (resp. the reception) of each bit is triggered by a local clock having a 1 MHz frequency. These
clocks are the second source of problems when transmitting bits over a wire. Although the two clocks have the same
specification, they run on different hosts, possibly at a different temperature and with a different source of energy. In
practice, it is possible that the two clocks do not operate at exactly the same frequency. Assume that the clock of the
transmitting host operates at exactly 1000000 Hz while the receiving clock operates at 999999 Hz. This is a very small
difference between the two clocks. However, when using the clock to transmit bits, this difference is important. With its
1000000 Hz clock, the transmitting host will generate one million bits during a period of one second. During the same
period, the receiving host will sense the wire 999999 times and thus will receive one bit less than the bits originally
transmitted. This small difference in clock frequencies implies that bits can “disappear” during their transmission on
an electrical cable. This is illustrated in the figure below.

Host A Physical link Host B
DATA.req(0) N

> DATA.ind(0) >

DATA.reg(0) P!

DATA.req(1) N

> DATA.ind(1) >

A similar reasoning applies when the clock of the sending host is slower than the clock of the receiving host. In this

2.1. Connecting two hosts 7



Computer Networking : Principles, Protocols and Practice, Release 2021

case, the receiver will sense more bits than the bits that have been transmitted by the sender. This is illustrated in the
figure below where the second bit received on the right was not transmitted by the left host.

Host A Physical link Host B
DATA.req(0) N

> DATA.ind(0) >

DATA.ind(0) >

DATA.req(1) N

> DATA.ind(1) >

From a Computer Science viewpoint, the physical transmission of information through a wire is often considered as
a black box that allows transmitting bits. This black box is commonly referred to as the physical layer service and is
represented by using the DATA.request and DATA.indication primitives introduced earlier. This physical layer service
facilitates the sending and receiving of bits, by abstracting the technological details that are involved in the actual
transmission of the bits as an electromagnetic signal. However, it is important to remember that the physical layer
service is imperfect and has the following characteristics :

e the Physical layer service may change, e.g. due to electromagnetic interference, the value of a bit being trans-
mitted

o the Physical layer service may deliver more bits to the receiver than the bits sent by the sender
* the Physical layer service may deliver fewer bits to the receiver than the bits sent by the sender

Many other types of encodings have been defined to transmit information over an electrical cable. All physical layers
are able to send and receive physical symbols that represent values 0 and /. However, for various reasons that are
outside the scope of this chapter, several physical layers exchange other physical symbols as well. For example, the
Manchester encoding used in several physical layers can send four different symbols. The Manchester encoding is a
differential encoding scheme in which time is divided into fixed-length periods. Each period is divided in two halves
and two different voltage levels can be applied. To send a symbol, the sender must set one of these two voltage levels
during each half period. To send a I (resp. 0), the sender must set a high (resp. low) voltage during the first half of the
period and a low (resp. high) voltage during the second half. This encoding ensures that there will be a transition at the
middle of each period and allows the receiver to synchronize its clock to the sender’s clock. Apart from the encodings
for 0 and 1, the Manchester encoding also supports two additional symbols : InvH and InvB where the same voltage
level is used for the two half periods. By definition, these two symbols cannot appear inside a frame which is only
composed of 0 and /. Some technologies use these special symbols as markers for the beginning or end of frames.

101 070 171 0

P e
| L

Fig. 2: Manchester encoding

Physical Bits Physical

01010010100010101001010

Physical transmission medium

Fig. 3: The Physical layer
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All the functions related to the physical transmission or information through a wire (or a wireless link) are usually
known as the physical layer. The physical layer allows thus two or more entities that are directly attached to the same
transmission medium to exchange bits. Being able to exchange bits is important as virtually any information can be
encoded as a sequence of bits. Electrical engineers are used to processing streams of bits, but computer scientists usually
prefer to deal with higher level concepts. A similar issue arises with file storage. Storage devices such as hard-disks
also store streams of bits. There are hardware devices that process the bit stream produced by a hard-disk, but computer
scientists have designed filesystems to allow applications to easily access such storage devices. These filesystems are
typically divided into several layers as well. Hard-disks store sectors of 512 bytes or more. Unix filesystems group
sectors in larger blocks that can contain data or inodes representing the structure of the filesystem. Finally, applications
manipulate files and directories that are translated in blocks, sectors and eventually bits by the operating system.

Computer networks use a similar approach. Each layer provides a service that is built above the underlying layer and
is closer to the needs of the applications. The datalink layer builds upon the service provided by the physical layer. We
will see that it also contains several functions.

2.1.2 The datalink layer

Computer scientists are usually not interested in exchanging bits between two hosts. They prefer to write software that
deals with larger blocks of data in order to transmit messages or complete files. Thanks to the physical layer service,
it is possible to send a continuous stream of bits between two hosts. This stream of bits can include logical blocks of
data, but we need to be able to extract each block of data from the bit stream despite the imperfections of the physical
layer. In many networks, the basic unit of information exchanged between two directly connected hosts is often called
a frame. A frame can be defined as a sequence of bits that has a particular syntax or structure. We will see examples
of such frames later in this chapter.

To enable the transmission/reception of frames, the first problem to be solved is how to encode a frame as a sequence
of bits, so that the receiver can easily recover the received frame despite the limitations of the physical layer.

If the physical layer were perfect, the problem would be very simple. We would simply need to define how to encode
each frame as a sequence of consecutive bits. The receiver would then easily be able to extract the frames from the
received bits. Unfortunately, the imperfections of the physical layer make this framing problem slightly more complex.
Several solutions have been proposed and are used in practice in different network technologies.

Framing

The framing problem can be defined as : “How does a sender encode frames so that the receiver can efficiently extract
them from the stream of bits that it receives from the physical layer”.

A first solution to this problem is to require the physical layer to remain idle for some time after the transmission of
each frame. These idle periods can be detected by the receiver and serve as a marker to delineate frame boundaries.
Unfortunately, this solution is not acceptable for two reasons. First, some physical layers cannot remain idle and always
need to transmit bits. Second, inserting an idle period between frames decreases the maximum bit rate that can be
achieved.

Note: Bit rate and bandwidth

Bit rate and bandwidth are often used to characterize the transmission capacity of the physical service. The original
definition of bandwidth, as listed in the Webster dictionary is a range of radio frequencies which is occupied by a mod-
ulated carrier wave, which is assigned to a service, or over which a device can operate. This definition corresponds to
the characteristics of a given transmission medium or receiver. For example, the human ear is able to decode sounds
in roughly the 0-20 KHz frequency range. By extension, bandwidth is also used to represent the capacity of a com-
munication system in bits per second. For example, a Gigabit Ethernet link is theoretically capable of transporting one
billion bits per second.

2.1. Connecting two hosts 9
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Given that multi-symbol encodings cannot be used by all physical layers, a generic solution which can be used with any
physical layer that is able to transmit and receive only bits 0 and / is required. This generic solution is called stuffing
and two variants exist : bit stuffing and character stuffing. To enable a receiver to easily delineate the frame boundaries,
these two techniques reserve special bit strings as frame boundary markers and encode the frames so that these special
bit strings do not appear inside the frames.

Bit stuffing reserves the 01111110 bit string as the frame boundary marker and ensures that there will never be six
consecutive / symbols transmitted by the physical layer inside a frame. With bit stuffing, a frame is sent as follows.
First, the sender transmits the marker, i.e. 01111110. Then, it sends all the bits of the frame and inserts an additional
bit set to 0 after each sequence of five consecutive I bits. This ensures that the sent frame never contains a sequence of
six consecutive bits set to /. As a consequence, the marker pattern cannot appear inside the frame sent. The marker is
also sent to mark the end of the frame. The receiver performs the opposite to decode a received frame. It first detects
the beginning of the frame thanks to the 07171110 marker. Then, it processes the received bits and counts the number
of consecutive bits set to /. If a 0 follows five consecutive bits set to /, this bit is removed since it was inserted by the
sender. If a / follows five consecutive bits sets to /, it indicates a marker if it is followed by a bit set to 0. The table
below illustrates the application of bit stuffing to some frames.

Original frame Transmitted frame

0001001001001001001000011  01111110000100100100100100100001101111110
or1or11111111111111110010 01111110011011111011111011111011001001111110
0111110 011111100111110001111110

01111110 0111111001111101001111110

For example, consider the transmission of 071/0111111111111111110010. The sender will first send the 07111110
marker followed by 011011111. After these five consecutive bits set to /, it inserts a bit set to 0 followed by /17/711. A
new 0 is inserted, followed by /7/711. A new 0 is inserted followed by the end of the frame /70010 and the 01111110
marker.

Bit stuffing increases the number of bits required to transmit each frame. The worst case for bit stuffing is of course a
long sequence of bits set to / inside the frame. If transmission errors occur, stuffed bits or markers can be in error. In
these cases, the frame affected by the error and possibly the next frame will not be correctly decoded by the receiver,
but it will be able to resynchronize itself at the next valid marker.

Bit stuffing can be easily implemented in hardware. However, implementing it in software is difficult given the com-
plexity of performing bit manipulations in software. Software implementations prefer to process characters than bits,
software-based datalink layers usually use character stuffing. This technique operates on frames that contain an integer
number of characters. In computer networks, characters are usually encoded by relying on the ASCII table. This table
defines the encoding of various alphanumeric characters as a sequence of bits. RFC 20 provides the ASCII table that
is used by many protocols on the Internet. For example, the table defines the following binary representations :

* A:1000011b

0: 0110000 b
z:1111010b

e @ : 1000000 b

e space : 0100000 b

In addition, the ASCII table also defines several non-printable or control characters. These characters were designed
to allow an application to control a printer or a terminal. These control characters include CR and LF, that are used to
terminate a line, and the BEL character which causes the terminal to emit a sound.

* NUL: 0000000 b
e BEL: 0000111 b
* CR:0001101b

10 Chapter 2. Part 1: Principles
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LF : 0001010 b

DLE: 0010000 b
e STX: 0000010 b
e ETX: 0000011 b

Some characters are used as markers to delineate the frame boundaries. Many character stuffing techniques use the
DLE, STX and ETX characters of the ASCII character set. DLE STX (resp. DLE ETX) is used to mark the beginning
(end) of a frame. When transmitting a frame, the sender adds a DLE character after each transmitted DLE character.
This ensures that none of the markers can appear inside the transmitted frame. The receiver detects the frame boundaries
and removes the second DLE when it receives two consecutive DLE characters. For example, to transmit frame / 2
3 DLE STX 4, a sender will first send DLE STX as a marker, followed by / 2 3 DLE. Then, the sender transmits an
additional DLE character followed by STX 4 and the DLE ETX marker.

Original frame Transmitted frame
1234 DLE STX 1234 DLE ETX
123 DLE STX 4 DLE STX 123 DLE DLE STX 4 DLE ETX

DLE STX DLE ETX DLE STX DLE DLE STX DLE DLE ETX DLE ETX

Character stuffing, like bit stuffing, increases the length of the transmitted frames. For character stuffing, the worst
frame is a frame containing many DLE characters. When transmission errors occur, the receiver may incorrectly
decode one or two frames (e.g. if the errors occur in the markers). However, it will be able to resynchronize itself with
the next correctly received markers.

Bit stuffing and character stuffing allow recovering frames from a stream of bits or bytes. This framing mechanism
provides a richer service than the physical layer. Through the framing service, one can send and receive complete
frames. This framing service can also be represented by using the DATA.request and DATA.indication primitives. This
is illustrated in the figure below, assuming hypothetical frames containing four useful bits and one bit of framing for
graphical reasons.

Framing-A Phys-A Phys-B Framing-B
DATA.reg(1...1l,
DATA.req(0) 3| -
—DATALdD 0
-l DATA.ind(0) 4,
DATA.req(1) yl -
—DATAredD . 1
------- pDATA.ind(1) y,
|_DATAreq(t) ..
__________ 1
------- p|DATA.ind(1) ,
DATA.r
—DATAreqQ) . - Q.
----- p|DATA.ind(0)
DATA.ind(1...1),

We can now build upon the framing mechanism to allow the hosts to exchange frames containing an integer number of
bits or bytes. Once the framing problem has been solved, we can focus on designing a technique that allows reliably
exchanging frames.
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Recovering from transmission errors

In this section, we develop a reliable datalink protocol running above the physical layer service. To design this protocol,
we first assume that the physical layer provides a perfect service. We will then develop solutions to recover from the
transmission errors.

The datalink layer is designed to send and receive frames on behalf of a user. We model these interactions by using the
DATA.req and DATA.ind primitives. However, to simplify the presentation and to avoid confusion between a DATA.req
primitive issued by the user of the datalink layer entity, and a DATA.req issued by the datalink layer entity itself, we
will use the following terminology :

* the interactions between the user and the datalink layer entity are represented by using the classical DATA.req
and the DATA.ind primitives

* the interactions between the datalink layer entity and the framing sub-layer are represented by using send instead
of DATA.req and recvd instead of DATA.ind

When running on top of a perfect framing sub-layer, a datalink entity can simply issue a send(SDU) upon arrival
of a DATA.req(SDU)'. Similarly, the receiver issues a DATA.ind(SDU) upon receipt of a recvd(SDU). Such a simple
protocol is sufficient when a single SDU is sent. This is illustrated in the figure below.

Host A Host B
DATA.req(SDU

--------------------- DATA.ind(SD

Unfortunately, this is not always sufficient to ensure a reliable delivery of the SDUs. Consider the case where a client
sends tens of SDUs to a server. If the server is faster than the client, it will be able to receive and process all the frames
sent by the client and deliver their content to its user. However, if the server is slower than the client, problems may
arise. The datalink entity contains buffers to store SDUs that have been received as a Data.request but have not yet
been sent. If the application is faster than the physical link, the buffer may become full. At this point, the operating
system suspends the application to let the datalink entity empty its transmission queue. The datalink entity also uses
a buffer to store the received frames that have not yet been processed by the application. If the application is slow to
process the data, this buffer may overflow and the datalink entity will not able to accept any additional frame. The
buffers of the datalink entity have a limited size and if they overflow, the arriving frames will be discarded, even if they
are correct.

To solve this problem, a reliable protocol must include a feedback mechanism that allows the receiver to inform the
sender that it has processed a frame and that another one can be sent. This feedback is required even though there are
no transmission errors. To include such a feedback, our reliable protocol must process two types of frames :

e data frames carrying a SDU

* control frames carrying an acknowledgment indicating that the previous frames was correctly processed
These two types of frames can be distinguished by dividing the frame in two parts :

¢ the header that contains one bit set to 0 in data frames and set to / in control frames

* the payload that contains the SDU supplied by the application

The datalink entity can then be modeled as a finite state machine, containing two states for the receiver and two states
for the sender. The figure below provides a graphical representation of this state machine with the sender above and
the receiver below.

The above FSM shows that the sender has to wait for an acknowledgment from the receiver before being able to transmit
the next SDU. The figure below illustrates the exchange of a few frames between two hosts.

! SDU is the acronym of Service Data Unit. We use it as a generic term to represent the data that is transported by a protocol.
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Data.req(SDU)
send (D (SDU))

start
recvd(C(0K))

recvd(D(SDU))

Data.ind(SDU)

Process

start SDU

send (C(0K))

Fig. 4: Finite state machines of the simplest reliable protocol (sender above, receiver below)

Host A Host B
DATA.reg(a) >

....................... DATA.ind
COK)--oremmremmem p— DATAind(a)

DATA.reg(b) P!

...................... DATA.
C(QK).--emmmemremr T p— DATA.ind(b)

Note: Services and protocols

An important aspect to understand before studying computer networks is the difference between a service and a protocol.
For this, it is useful to start with real world examples. The traditional Post provides a service where a postman delivers
letters to recipients. The Post precisely defines which types of letters (size, weight, etc) can be delivered by using
the Standard Mail service. Furthermore, the format of the envelope is specified (position of the sender and recipient
addresses, position of the stamp). Someone who wants to send a letter must either place the letter at a Post Office or
inside one of the dedicated mailboxes. The letter will then be collected and delivered to its final recipient. Note that
for the regular service the Post usually does not guarantee the delivery of each particular letter. Some letters may be
lost, and some letters are delivered to the wrong mailbox. If a letter is important, then the sender can use the registered
service to ensure that the letter will be delivered to its recipient. Some Post services also provide an acknowledged
service or an express mail service that is faster than the regular service.
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Reliable data transfer on top of an imperfect link

The datalink layer must deal with the transmission errors. In practice, we mainly have to deal with two types of errors
in the datalink layer :

 Frames can be corrupted by transmission errors
» Frames can be lost or unexpected frames can appear

A first glance, loosing frames might seem strange on a single link. However, if we take framing into account, transmis-
sion errors can affect the frame delineation mechanism and make the frame unreadable. For the same reason, a receiver
could receive two (likely invalid) frames after a sender has transmitted a single frame.

To deal with these types of imperfections, reliable protocols rely on different types of mechanisms. The first problem
is transmission errors. Data transmission on a physical link can be affected by the following errors :

 random isolated errors where the value of a single bit has been modified due to a transmission error
 random burst errors where the values of n consecutive bits have been changed due to transmission errors
* random bit creations and random bit removals where bits have been added or removed due to transmission errors

The only solution to protect against transmission errors is to add redundancy to the frames that are sent. Information
Theory defines two mechanisms that can be used to transmit information over a transmission channel affected by ran-
dom errors. These two mechanisms add redundancy to the transmitted information, to allow the receiver to detect or
sometimes even correct transmission errors. A detailed discussion of these mechanisms is outside the scope of this
chapter, but it is useful to consider a simple mechanism to understand its operation and its limitations.

Information theory defines coding schemes. There are different types of coding schemes, but let us focus on coding
schemes that operate on binary strings. A coding scheme is a function that maps information encoded as a string of m
bits into a string of n bits. The simplest coding scheme is the (even) parity coding. This coding scheme takes an m bits
source string and produces an m+1 bits coded string where the first m bits of the coded string are the bits of the source
string and the last bit of the coded string is chosen such that the coded string will always contain an even number of
bits set to /. For example :

e J00] is encoded as 10010
e 1101 is encoded as 11011

This parity scheme has been used in some RAMs as well as to encode characters sent over a serial line. It is easy to
show that this coding scheme allows the receiver to detect a single transmission error, but it cannot correct it. However,
if two or more bits are in error, the receiver may not always be able to detect the error.

Some coding schemes allow the receiver to correct some transmission errors. For example, consider the coding scheme
that encodes each source bit as follows :

e Jisencodedas 171
¢ (is encoded as 000

For example, consider a sender that sends ///. If there is one bit in error, the receiver could receive 011 or 101 or 110.
In these three cases, the receiver will decode the received bit pattern as a / since it contains a majority of bits set to /.
If there are two bits in error, the receiver will not be able anymore to recover from the transmission error.

This simple coding scheme forces the sender to transmit three bits for each source bit. However, it allows the receiver
to correct single bit errors. More advanced coding systems that allow recovering from errors are used in several types
of physical layers.

Besides framing, datalink layers also include mechanisms to detect and sometimes even recover from transmission
errors. To allow a receiver to notice transmission errors, a sender must add some redundant information as an error
detection code to the frame sent. This error detection code is computed by the sender on the frame that it transmits.
When the receiver receives a frame with an error detection code, it recomputes it and verifies whether the received
error detection code matches the computed error detection code. If they match, the frame is considered to be valid.
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Many error detection schemes exist and entire books have been written on the subject. A detailed discussion of these
techniques is outside the scope of this book, and we will only discuss some examples to illustrate the key principles.

To understand error detection codes, let us consider two devices that exchange bit strings containing N bits. To allow
the receiver to detect a transmission error, the sender converts each string of N bits into a string of N+r bits. Usually,
the r redundant bits are added at the beginning or the end of the transmitted bit string, but some techniques interleave
redundant bits with the original bits. An error detection code can be defined as a function that computes the r redundant
bits corresponding to each string of N bits. The simplest error detection code is the parity bit. There are two types of
parity schemes : even and odd parity. With the even (resp. odd) parity scheme, the redundant bit is chosen so that an
even (resp. odd) number of bits are set to / in the transmitted bit string of N+r bits. The receiver can easily recompute
the parity of each received bit string and discard the strings with an invalid parity. The parity scheme is often used
when 7-bit characters are exchanged. In this case, the eighth bit is often a parity bit. The table below shows the parity
bits that are computed for bit strings containing three bits.

3 bits string  Odd parity Even parity

000 1 0
001
010
100
111
110
101
011

—_—_—_0 o oo

OO O = = = =

The parity bit allows a receiver to detect transmission errors that have affected a single bit among the transmitted N+r
bits. If there are two or more bits in error, the receiver may not necessarily be able to detect the transmission error.
More powerful error detection schemes have been defined. The Cyclical Redundancy Checks (CRC) are widely used
in datalink layer protocols. An N-bits CRC can detect all transmission errors affecting a burst of less than N bits in the
transmitted frame and all transmission errors that affect an odd number of bits. Additional details about CRCs may be
found in [Williams1993].

It is also possible to design a code that allows the receiver to correct transmission errors. The simplest error correction
code is the triple modular redundancy (TMR). To transmit a bit set to / (resp. 0), the sender transmits 711 (resp. 000).
When there are no transmission errors, the receiver can decode /71 as /. If transmission errors have affected a single
bit, the receiver performs majority voting as shown in the table below. This scheme allows the receiver to correct all
transmission errors that affect a single bit.

Received bits Decoded bit

000 0
001
010
100
111
110
101
011

—_—m = = OO O

Other more powerful error correction codes have been proposed and are used in some applications. The Hamming
Code is a clever combination of parity bits that provides error detection and correction capabilities.

Reliable protocols use error detection schemes, but none of the widely used reliable protocols rely on error correction
schemes. To detect errors, a frame is usually divided into two parts :

2.1. Connecting two hosts 15


https://en.wikipedia.org/wiki/Hamming_code
https://en.wikipedia.org/wiki/Hamming_code

Computer Networking : Principles, Protocols and Practice, Release 2021

* a header that contains the fields used by the reliable protocol to ensure reliable delivery. The header contains a
checksum or Cyclical Redundancy Check (CRC) [Williams1993] that is used to detect transmission errors

* apayload that contains the user data
Some headers also include a length field, which indicates the total length of the frame or the length of the payload.

The simplest error detection scheme is the checksum. A checksum is basically an arithmetic sum of all the bytes that
a frame is composed of. There are different types of checksums. For example, an eight bit checksum can be computed
as the arithmetic sum of all the bytes of (both the header and trailer of) the frame. The checksum is computed by the
sender before sending the frame and the receiver verifies the checksum upon frame reception. The receiver discards
frames received with an invalid checksum. Checksums can be easily implemented in software, but their error detection
capabilities are limited. Cyclical Redundancy Checks (CRC) have better error detection capabilities [SGP9S8], but
require more CPU when implemented in software.

Note: Checksums, CRCs,...

Most of the protocols in the TCP/IP protocol suite rely on the simple Internet checksum in order to verify that a received
packet has not been affected by transmission errors. Despite its popularity and ease of implementation, the Internet
checksum is not the only available checksum mechanism. Cyclical Redundancy Checks (CRC) are very powerful
error detection schemes that are used notably on disks, by many datalink layer protocols and file formats such as
zip or png. They can easily be implemented efficiently in hardware and have better error-detection capabilities than
the Internet checksum [SGP98] . However, CRCs are sometimes considered to be too CPU-intensive for software
implementations and other checksum mechanisms are preferred. The TCP/IP community chose the Internet checksum,
the OSI community chose the Fletcher checksum [Sklower89]. Nowadays there are efficient techniques to quickly
compute CRCs in software [Feldmeier95].

Since the receiver sends an acknowledgment after having received each data frame, the simplest solution to deal with
losses is to use a retransmission timer. When the sender sends a frame, it starts a retransmission timer. The value of this
retransmission timer should be larger than the round-trip-time, i.e. the delay between the transmission of a data frame
and the reception of the corresponding acknowledgment. When the retransmission timer expires, the sender assumes
that the data frame has been lost and retransmits it. This is illustrated in the figure below.

DATA.req(a)
start timer )(a).
-------------------- > DATA.ind(a) ,

cancel timer €T

DATA.req(b) >
start timer D(b)
timer expires

......................... p DATAind(b) 4,

Unfortunately, retransmission timers alone are not sufficient to recover from losses. Let us consider, as an example, the
situation depicted below where an acknowledgment is lost. In this case, the sender retransmits the data frame that has
not been acknowledged. However, as illustrated in the figure below, the receiver considers the retransmission as a new
frame whose payload must be delivered to its user.
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Host A
DATA.reg(a)_>
starttimer ¥ Tt D(a).
(o
cancel timer &
DATA.reab) 1
starttimer ™| TTTueeeee D(b)._
C(OK
timer expires [
------------------- D).
e SHOK) e
R

> DATA.ind(a) >

> DATA.ind(b) >

To solve this problem, datalink protocols associate a sequence number to each data frame. This sequence number is one
of the fields found in the header of data frames. We use the notation D(x,...) to indicate a data frame whose sequence
number field is set to value x. The acknowledgments also contain a sequence number indicating the data frames that
it is acknowledging. We use OKx to indicate an acknowledgment frame that confirms the reception of D(x,...). The
sequence number is encoded as a bit string of fixed length. The simplest reliable protocol is the Alternating Bit Protocol

(ABP).

The Alternating Bit Protocol uses a single bit to encode the sequence number. It can be implemented easily. The sender
(resp. the receiver) only require a four-state (resp. three-state) Finite State Machine.

Data.req(SDU)

recvd(C(0K1))
or timer expires

send(D(0,SDU, CRC))
start_timer()

Wait
for
C(OKO0)

start

recvd(C(OK1))

send(D(0,SDU, CRC))
restart_timer()

recvd(C(OK0))

cancel_timer()

Wait
for
C(OK1)

‘ Data.req(SDU)
send(D(1,SDU, CRO)

start_timer()

recvd(C(OK0))
or timer expires
send(D(1,SDU,CRC))
restart_timer()

cancel_timer()

All corrupted
frames are
discarded in all states

Fig. 5: Alternating bit protocol: Sender FSM
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The initial state of the sender is Wait for D(0,. .. ). In this state, the sender waits for a Data.request. The first data frame
that it sends uses sequence number 0. After having sent this frame, the sender waits for an OKO acknowledgment. A
frame is retransmitted upon expiration of the retransmission timer or if an acknowledgment with an incorrect sequence
number has been received.

The receiver first waits for D(0,... ). If the frame contains a correct CRC, it passes the SDU to its user and sends OKO.
If the frame contains an invalid CRC, it is immediately discarded. Then, the receiver waits for D(1,... ). In this state, it
may receive a duplicate D(0,... ) or a data frame with an invalid CRC. In both cases, it returns an OKO frame to allow
the sender to recover from the possible loss of the previous OKO frame.

recvd(D(0®,SDU,CRC))

recvd(D(1,SDU,CRC)) AND is_ok(CRC,SDU)
AND is_ok(CRC,SDU) Data.ind(SDU)
send(C(OK1))
Process All corrupted
start D(O....) frames are
discarded in all states
“send(COK1)) send(C(0K0))

Process

() recvd(D(0, SDU,CRC))

AND is_ok(CRC,SDU)

recvd(D(1,SDU,CRC)) Send (C(OK®))

AND is_ok(CRC,SDU)
Data.ind(SDU)

Fig. 6: Alternating bit protocol: Receiver FSM

Note: Dealing with corrupted frames

The receiver FSM of the Alternating bit protocol discards all frames that contain an invalid CRC. This is the safest
approach since the received frame can be completely different from the frame sent by the remote host. A receiver
should not attempt at extracting information from a corrupted frame because it cannot know which portion of the
frame has been affected by the error.

The figure below illustrates the operation of the alternating bit protocol.
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Host A Host B
DATA.r
starttimer 7| Tt D(0,a)
---------------------- DATA.ind(a) >
- GIOKO)eemersr T
cancel timer T
DATA.r
start timer
T D(Lb)
--------------------- DATA.ind(b) >
GUQK ) ceneeeeeree
cancel timer T
DATA.req(c) Pl
starttimer ¥ Tt ) D(0,¢)
---------------- > DATA.ind(c
- CIOKO)veermrrr
cancel timer P

The Alternating Bit Protocol can recover from the losses of data or control frames. This is illustrated in the two figures
below. The first figure shows the loss of one data frame.

Host A Host B
DATA.reg(a) pi...
starttimer 7| TTTTTtveeeee D(0,a)
................ > DATA.in
- SUQKO)eemeremeee T
cancel timer T
DATA.reqg(b) 'S
start timer D(1,b)
timer expires |
-------------------- D(L.b).
............. > DATA.in
el S
cancel timer T

The second figure illustrates how the hosts handle the loss of one control frame.

2.1. Connecting two hosts
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DATA.req(a)

start timer

cancel timer

DATA.rea(b) >
start timer

timer expires

cancel timer

o Host B
R D(0.a)
_____________________ p| DATA.ind(a)
______ CAOKO) orroer T
DR
e D(1.b). .
____________________ > DATA.ind(b
C(OK1
R D(1,b).___
.................... Duplicate frame
> pignored
_____ GO nremrrr T
P

The Alternating Bit Protocol can recover from transmission errors and frame losses. However, it has one important
drawback. Consider two hosts that are directly connected by a 50 Kbits/sec satellite link that has a 250 milliseconds
propagation delay. If these hosts send 1000 bits frames, then the maximum throughput that can be achieved by the
alternating bit protocol is one frame every 20 + 250 + 250 = 520 milliseconds if we ignore the transmission time of
the acknowledgment. This is less than 2 Kbits/sec !

Go-back-n and selective repeat

To overcome the performance limitations of the alternating bit protocol, reliable protocols rely on pipelining. This
technique allows a sender to transmit several consecutive frames without being forced to wait for an acknowledgment
after each frame. Each data frame contains a sequence number encoded as an # bits field.

A

Data.req(a)
Data.req(b)

Data.req(e)

%

Data.ind(a)

Data.ind(e)

Fig. 7: Pipelining improves the performance of reliable protocols

Pipelining allows the sender to transmit frames at a higher rate. However this higher transmission rate may overload
the receiver. In this case, the frames sent by the sender will not be correctly received by their final destination. The
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reliable protocols that rely on pipelining allow the sender to transmit W unacknowledged frames before being forced
to wait for an acknowledgment from the receiving entity.

This is implemented by using a sliding window. The sliding window is the set of consecutive sequence numbers that
the sender can use when transmitting frames without being forced to wait for an acknowledgment. The figure below
shows a sliding window containing five frames (6,7,8,9 and 10). Two of these sequence numbers (6 and 7) have been
used to send frames and only three sequence numbers (8, 9 and /0) remain in the sliding window. The sliding window
is said to be closed once all sequence numbers contained in the sliding window have been used.

Acked Forbidden seq. num.

/
...01\2345678910_‘[1 1213 14 15 ....

/ ™ Available seq. nums
Unacknowledged

Fig. 8: The sliding window

The figure below illustrates the operation of the sliding window. It uses a sliding window of three frames. The sender
can thus transmit three frames before being forced to wait for an acknowledgment. The sliding window moves to
the higher sequence numbers upon the reception of each acknowledgment. When the first acknowledgment (OKO) is
received, it enables the sender to move its sliding window to the right and sequence number 3 becomes available. This
sequence number is used later to transmit the frame containing d.

A B
Sending window

012345678 Data.reg(a)

012/345678 N
012345678 Datareq(b)| ~D(0,a)

012345678

Data.req(c) Data.ind(a)

Data.ind(b
012345678 ~o-rDatain d{(c))
_C(OK1)™ B

012345678 Data.req(d)| ~ C(OK2)~
012345678 — o
012345678 Datareq(e)]-—"
012(345/678 Data.ind(d)

Fig. 9: Sliding window example

In practice, as the frame header includes an #n bits field to encode the sequence number, only the sequence numbers
between 0 and 2" — 1 can be used. This implies that, during a long transfer, the same sequence number will be used for
different frames and the sliding window will wrap. This is illustrated in the figure below assuming that 2 bits are used
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to encode the sequence number in the frame header. Note that upon reception of OKI, the sender slides its window
and can use sequence number 0 again.

A B
Sending window
%g Data.req(a)
0123 Data.req(b) \D(O,a)
0123
R Data.req(c D(1.b)
a )\ Data.ind(a)
D(2,0) " Datai d(b)
JR— ata.in
0[723 __C(OK0) e ;
L= oKy .. Data.ind(c)
Data.req(d)| < C(OK2)

HIEE
SINE

S

Data.req(e)|-— -

D(3,d)

\

Data.ind(d)

D(0,e)

Fig. 10: Utilization of the sliding window with modulo arithmetic

Unfortunately, frame losses do not disappear because a reliable protocol uses a sliding window. To recover from losses,
a sliding window protocol must define :

¢ a heuristic to detect frame losses
* a retransmission strategy to retransmit the lost frames

The simplest sliding window protocol uses the go-back-n recovery. Intuitively, go-back-n operates as follows. A go-
back-nreceiver is as simple as possible. It only accepts the frames that arrive in-sequence. A go-back-n receiver discards
any out-of-sequence frame that it receives. When go-back-n receives a data frame, it always returns an acknowledgment
containing the sequence number of the last in-sequence frame that it has received. This acknowledgment is said to be
cumulative. When a go-back-n receiver sends an acknowledgment for sequence number x, it implicitly acknowledges the
reception of all frames whose sequence number is earlier than x. A key advantage of these cumulative acknowledgments
is that it is easy to recover from the loss of an acknowledgment. Consider for example a go-back-n receiver that received
frames 7, 2 and 3. It sent OKI, OK2 and OK3. Unfortunately, OKI and OK2 were lost. Thanks to the cumulative
acknowledgments, when the sender receives OK3, it knows that all three frames have been correctly received.

The figure below shows the FSM of a simple go-back-n receiver. This receiver uses two variables : lastack and next.
next is the next expected sequence number and lastack the sequence number of the last data frame that has been
acknowledged. The receiver only accepts the frame that are received in sequence. maxseq is the number of different
sequence numbers (27).

A go-back-n sender is also very simple. It uses a sending buffer that can store an entire sliding window of frames’. The
frames are sent with increasing sequence numbers (modulo maxseq). The sender must wait for an acknowledgment

2 The size of the sliding window can be either fixed for a given protocol or negotiated during the connection establishment phase. Some protocols
allow to change the maximum window size during the data transfer. We will explain these techniques with real protocols later.
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recvd(D(next, SDU,CRC))
AND is_ok(CRC,SDU)

Data.ind(SDU)
All corrupted
Process
start frames are
Sbu discarded in all stat
recvd(D(t != next,SDU,CRC)) peardec i afl states
AND is_ok(CRC,SDU)
discard(SDU); -
send(C(OK, lastack,CRC)); send(C(OK, next,CRC));

lastack = next;
next = (next + 1) % maxseq;

Fig. 11: Go-back-n: receiver FSM

once its sending buffer is full. When a go-back-n sender receives an acknowledgment, it removes from the sending
buffer all the acknowledged frames and uses a retransmission timer to detect frame losses. A simple go-back-n sender
maintains one retransmission timer per connection. This timer is started when the first frame is sent. When the go-back-
n sender receives an acknowledgment, it restarts the retransmission timer only if there are still unacknowledged frames
in its sending buffer. When the retransmission timer expires, the go-back-n sender assumes that all the unacknowledged
frames currently stored in its sending buffer have been lost. It thus retransmits all the unacknowledged frames in the
buffer and restarts its retransmission timer.

timer expires

for all (i, SDU) in buffer {
send(D(i,SDU,CRQC);

}

restart_timer();

Data.req(SDU)
AND size(buffer) < W

tart if (seq == unack) { start_timer(); }
star buffer.insert(seq, SDU);

send(D(seq, SDU,CRC));
seq = (seq + 1) % maxseq;

recvd(C(OK, t,CRC))
AND is_crc_ok(C(OK,t,CRC))
buffer.remove_acked_frames()

unack = (t + 1) % maxseq; All corrupted
if (unack == seq) { frames are
cancel_timer(); discarded in all states
} else {

restart_timer();

}

Fig. 12: Go-back-n: sender FSM

The operation of go-back-n is illustrated in the figure below. In this figure, note that upon reception of the out-of-
sequence frame D(2,c), the receiver returns a cumulative acknowledgment C(OK,0) that acknowledges all the frames
that have been received in sequence. The lost frame is retransmitted upon the expiration of the retransmission timer.

The main advantage of go-back-n is that it can be easily implemented, and it can also provide good performance when
only a few frames are lost. However, when there are many losses, the performance of go-back-n quickly drops for two
reasons :
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A B

Sending window

o
]

Data.req(a)
Data.req(b)

o
—
[\

—
W Wwwow

o
-
AN

Data.req(c) Data.ind(a)

0 Retransmission

timer expires Not expected seq num,

— Data.req(d) discarded
0723 Data.req(e)|”
Sending window is full Data.lndétgm ind(c)
e will be accepted Dat " d(d
and sent later ata.ind(d)

Fig. 13: Go-back-n : example

* the go-back-n receiver does not accept out-of-sequence frames
* the go-back-n sender retransmits all unacknowledged frames once it has detected a loss

Selective repeat is a better strategy to recover from losses. Intuitively, selective repeat allows the receiver to accept
out-of-sequence frames. Furthermore, when a selective repeat sender detects losses, it only retransmits the frames that
have been lost and not the frames that have already been correctly received.

A selective repeat receiver maintains a sliding window of W frames and stores in a buffer the out-of-sequence frames
that it receives. The figure below shows a five-frame receive window on a receiver that has already received frames 7
and 9.

..0123456789101112131415 ....

/" Acceptable T outside receiving
Out of sequence window

Acknowledged

Fig. 14: The receiving window with selective repeat

A selective repeat receiver discards all frames having an invalid CRC, and maintains the variable lastack as the sequence
number of the last in-sequence frame that it has received. The receiver always includes the value of lastack in the
acknowledgments that it sends. Some protocols also allow the selective repeat receiver to acknowledge the out-of-
sequence frames that it has received. This can be done for example by placing the list of the correctly received, but
out-of-sequence frames in the acknowledgments together with the lastack value.

When a selective repeat receiver receives a data frame, it first verifies whether the frame is inside its receiving window.
If yes, the frame is placed in the receive buffer. If not, the received frame is discarded and an acknowledgment containing
lastack is sent to the sender. The receiver then removes all consecutive frames starting at lastack (if any) from the receive
buffer. The payloads of these frames are delivered to the user, lastack and the receiving window are updated, and an
acknowledgment acknowledging the last frame received in sequence is sent.

The selective repeat sender maintains a sending buffer that can store up to W unacknowledged frames. These frames
are sent as long as the sending buffer is not full. Several implementations of a selective repeat sender are possible. A
simple implementation associates one retransmission timer to each frame. The timer is started when the frame is sent
and canceled upon reception of an acknowledgment that covers this frame. When a retransmission timer expires, the
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corresponding frame is retransmitted and this retransmission timer is restarted. When an acknowledgment is received,
all the frames that are covered by this acknowledgment are removed from the sending buffer and the sliding window is
updated.

The figure below illustrates the operation of selective repeat when frames are lost. In this figure, C(OK,x) is used to
indicate that all frames, up to and including sequence number x have been received correctly.

A B
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Fig. 15: Selective repeat : example

Pure cumulative acknowledgments work well with the go-back-n strategy. However, with only cumulative acknowl-
edgments a selective repeat sender cannot easily determine which frames have been correctly received after a data
frame has been lost. For example, in the figure above, the second C(OK,0) does not inform explicitly the sender of
the reception of D(2,c) and the sender could retransmit this frame although it has already been received. A possible
solution to improve the performance of selective repeat is to provide additional information about the received frames
in the acknowledgments that are returned by the receiver. For example, the receiver could add in the returned acknowl-
edgment the list of the sequence numbers of all frames that have already been received. Such acknowledgments are
sometimes called selective acknowledgments. This is illustrated in the figure above.

In the figure above, when the sender receives C(OK,0,[2]), it knows that all frames up to and including D(0....) have
been correctly received. It also knows that frame D(2,...) has been received and can cancel the retransmission timer
associated to this frame. However, this frame should not be removed from the sending buffer before the reception of a
cumulative acknowledgment (C(OK,2) in the figure above) that covers this frame.

Note: Maximum window size with go-back-n and selective repeat

A reliable protocol that uses n bits to encode its sequence number can send up to 2" successive frames. However, to
ensure a reliable delivery of the frames, go-back-n and selective repeat cannot use a sending window of 2" frames.
Consider first go-back-n and assume that a sender sends 2" frames. These frames are received in-sequence by the
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destination, but all the returned acknowledgments are lost. The sender will retransmit all frames. These frames will all
be accepted by the receiver and delivered a second time to the user. It is easy to see that this problem can be avoided if
the maximum size of the sending window is 2" — 1 frames. A similar problem occurs with selective repeat. However,
as the receiver accepts out-of-sequence frames, a sending window of 2 — 1 frames is not sufficient to ensure a reliable
delivery. It can be easily shown that to avoid this problem, a selective repeat sender cannot use a window that is larger
than 27 frames.

Reliable protocols often need to send data in both directions. To reduce the overhead caused by the acknowledgments,
most reliable protocols use piggybacking. Thanks to this technique, a datalink entity can place the acknowledgments
and the receive window that it advertises for the opposite direction of the data flow inside the header of the data frames
that it sends. The main advantage of piggybacking is that it reduces the overhead as it is not necessary to send a
complete frame to carry an acknowledgment. This is illustrated in the figure below where the acknowledgment number
is underlined in the data frames. Piggybacking is only used when data flows in both directions. A receiver will generate
a pure acknowledgment when it does not send data in the opposite direction as shown in the bottom of the figure.
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Fig. 16: Piggybacking example

2.2 Building a network

In the previous section, we have explained how reliable protocols allow hosts to exchange data reliably even if the
underlying physical layer is imperfect and thus unreliable. Connecting two hosts together through a wire is the first step
to build a network. However, this is not sufficient. Hosts usually need to interact with other hosts that are not directly
connected through a direct physical layer link. This can be achieved by adding one layer above the datalink layer: the
network layer.

The main objective of the network layer is to allow hosts, connected to different networks, to exchange information
through intermediate systems called router. The unit of information in the network layer is called a packet.

Before explaining the operation of the network layer, it is useful to remember the characteristics of the service provided
by the datalink layer. There are many variants of the datalink layer. Some provide a reliable service while others
do not provide any guarantee of delivery. The reliable datalink layer services are popular in environments such as
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wireless networks where transmission errors are frequent. On the other hand, unreliable services are usually used
when the physical layer provides an almost reliable service (i.e. only a negligible fraction of the frames are affected by
transmission errors). Such almost reliable services are frequently used in wired and optical networks. In this chapter,
we will assume that the datalink layer service provides an almost reliable service since this is both the most general
one and also the most widely deployed one.

Network Network
. Frames ]
Datalink Datalink
Physical layer Physical layer

Fig. 17: The point-to-point datalink layer

There are two main types of datalink layers. The simplest datalink layer is when there are only two communicating
systems that are directly connected through the physical layer. Such a datalink layer is used when there is a point-to-
point link between the two communicating systems. These two systems can be hosts or routers. PPP (Point-to-Point
Protocol), defined in RFC 1661, is an example of such a point-to-point datalink layer. Datalink layer entities exchange
frames. A datalink frame sent by a datalink layer entity on the left is transmitted through the physical layer, so that it can
reach the datalink layer entity on the right. Point-to-point datalink layers can either provide an unreliable service (frames
can be corrupted or lost) or a reliable service (in this case, the datalink layer includes retransmission mechanisms).

The second type of datalink layer is the one used in Local Area Networks (LAN). Conceptually, a LAN is a set of
communicating devices such that any two devices can directly exchange frames through the datalink layer. Both hosts
and routers can be connected to a LAN. Some LANSs only connect a few devices, but there are LANs that can connect
hundreds or even thousands of devices. In this chapter, we focus on the utilization of point-to-point datalink layers. We
describe later the organization and the operation of Local Area Networks and their impact on the network layer.

Even if we only consider the point-to-point datalink layers, there is an important characteristic of these layers that
we cannot ignore. No datalink layer is able to send frames of unlimited size. Each datalink layer is characterized
by a maximum frame size. There are more than dozen different datalink layers and unfortunately most of them use a
different maximum frame size. This heterogeneity in the maximum frame sizes will cause problems when we will need
to exchange data between hosts attached to different types of datalink layers.

As a first step, let us assume that we only need to exchange a small amount of data. In this case, there is no issue with
the maximum length of the frames. However, there are other more interesting problems that we need to tackle. To
understand these problems, let us consider the network represented in the figure below.

@ R1 R3 R5

R2 R4

Fig. 18: A simple network containing three hosts and five routers

This network contains two types of devices. The hosts, represented with circles and the routers, represented as boxes.
A host is a device which is able to send and receive data for its own usage in contrast with routers that most of the
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time simply forward data towards their final destination. Routers have multiple links to neighboring routers or hosts.
Hosts are usually attached via a single link to the network. Nowadays, with the growth of wireless networks, more and
more hosts are equipped with several physical interfaces. These hosts are often called multihomed. Still, using several
interfaces at the same time often leads to practical issues that are beyond the scope of this document. For this reason,
we only consider single-homed hosts in this e-book.

To understand the key principles behind the operation of a network, let us analyze all the operations that need to be
performed to allow host A in the above network to send one byte to host B. Thanks to the datalink layer used above the
A-RI link, host A can easily send a byte to router R/ inside a frame. However, upon reception of this frame, router R/
needs to understand that this byte is destined to host B and not to itself. This is the objective of the network layer.

The network layer enables the transmission of information between hosts that are not directly connected through inter-
mediate routers. This transmission is carried out by putting the information to be transmitted inside a data structure
which is called a packet. As a frame that contains useful data and control information, a packet also contains both data
supplied by the user and control information. An important issue in the network layer is the ability to identify a node
(host or router) inside the network. This identification is performed by associating an address to each node. An address
is usually represented as a sequence of bits. Most networks use fixed-length addresses. At this stage, let us simply
assume that each of the nodes in the above network has an address which corresponds to the binary representation of
its name on the figure.

To send one byte of information to host B, host A needs to place this information inside a packet. In addition to the data
being transmitted, the packet also contains either the addresses of the source and the destination nodes or information
that indicates the path that needs to be followed to reach the destination.

There are two possible organizations for the network layer :
* datagram

e virtual circuits

2.2.1 The datagram organization

The first and most popular organization of the network layer is the datagram organization. This organization is inspired
by the organization of the postal service. Each host is identified by a network layer address. To send information to a
remote host, a host creates a packet that contains:

* the network layer address of the destination host
* its own network layer address
* the information to be sent

To understand the datagram organization, let us consider the figure below. A network layer address, represented by a
letter, has been assigned to each host and router. To send some information to host J, host A creates a packet containing
its own address, the destination address and the information to be exchanged.

With the datagram organization, routers use hop-by-hop forwarding. This means that when a router receives a packet
that is not destined to itself, it looks up the destination address of the packet in its forwarding table. A forwarding
table is a data structure that maps each destination address (or set of destination addresses) to the outgoing interface
over which a packet destined to this address must be forwarded to reach its final destination. The router consults its
forwarding table to forward each packet that it handles.

The figure illustrates some possible forwarding tables in this network. By inspecting the forwarding tables of the
different routers, one can find the path followed by packets sent from a source to a particular destination. In the example
above, host A sends its packet to router R/. R consults its forwarding table and forwards the packet towards R2. Based
on its own table, R2 decides to forward the packet to R5 that can deliver it to its destination. Thus, the path from A to
JisA->RI->R2->R5->J.
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Fig. 19: A simple internetwork

The computation of the forwarding tables of all the routers inside a network is a key element for the correct operation
of the network. This computation can be carried out by using either distributed or centralized algorithms. These
algorithms provide different performance, may lead to different types of paths, but their composition must lead to valid
paths.

In a network, a path can be defined as the list of all intermediate routers for a given source destination pair. For a given
source/destination pair, the path can be derived by first consulting the forwarding table of the router attached to the
source to determine the next router on the path towards the chosen destination. Then, the forwarding table of this router
is queried for the same destination... The queries continue until the destination is reached. In a network that has valid
forwarding tables, all the paths between all source/destination pairs contain a finite number of intermediate routers.
However, if forwarding tables have not been correctly computed, two types of invalid paths can occur.

A path may lead to a black hole. In a network, a black hole is a router that receives packets for at least one given
source/destination pair but does not have an entry inside its forwarding table for this destination. Since it does not know
how to reach the destination, the router cannot forward the received packets and must discard them. Any centralized
or distributed algorithm that computes forwarding tables must ensure that there are not black holes inside the network.

A second type of problem may exist in networks using the datagram organization. Consider a path that contains a
cycle. For example, router R/ sends all packets towards destination D via router R2. Router R2 forwards these packets
to router R3 and finally router R3’s forwarding table uses router R/ as its nexthop to reach destination D. In this case, if
a packet destined to D is received by router R/, it will loop on the R/ -> R2 -> R3 -> R cycle and will never reach its
final destination. As in the black hole case, the destination is not reachable from all sources in the network. In practice
the loop problem is more annoying than the black hole problem because when a packet is caught in a forwarding loop,
it unnecessarily consumes bandwidth. In the black hole case, the problematic packet is quickly discarded. We will see
later that network layer protocols include techniques to minimize the impact of such forwarding loops.

Any solution which is used to compute the forwarding tables of a network must ensure that all destinations are reachable
from any source. This implies that it must guarantee the absence of black holes and forwarding loops.

The forwarding tables and the precise format of the packets that are exchanged inside the network are part of the data
plane of the network. This data plane contains all the protocols and algorithms that are used by hosts and routers
to create and process the packets that contain user data. On high-end routers, the data plane is often implemented in
hardware for performance reasons.

Besides the data plane, a network is also characterized by its control plane. The control plane includes all the protocols
and algorithms (often distributed) that compute the forwarding tables that are installed on all routers inside the network.

2.2. Building a network 29



Computer Networking : Principles, Protocols and Practice, Release 2021

While there is only one possible data plane for a given networking technology, different networks using the same
technology may use different control planes.

The simplest control plane for a network is to manually compute the forwarding tables of all routers inside the network.
This simple control plane is sufficient when the network is (very) small, usually up to a few routers.

In most networks, manual forwarding tables are not a solution for two reasons. First, most networks are too large to
enable a manual computation of the forwarding tables. Second, with manually computed forwarding tables, it is very
difficult to deal with link and router failures. Networks need to operate 24h a day, 365 days per year. Many events
can affect the routers and links that compose a network. Link failures are regular events in deployed networks. Links
can fail for various reasons, including electromagnetic interference, fiber cuts, hardware or software problems on the
terminating routers,... Some links also need to be either added to or removed from the network because their utilization
is too low or their cost is too high.

Similarly, routers also fail. There are two types of failures that affect routers. A router may stop forwarding packets
due to hardware or software problems (e.g., due to a crash of its operating system). A router may also need to be halted
from time to time (e.g., to upgrade its operating system or to install new interface cards). These planned and unplanned
events affect the set of links and routers that can be used to forward packets in the network. Still, most network users
expect that their network will continue to correctly forward packets despite all these events. With manually computed
forwarding tables, it is usually impossible to pre-compute the forwarding tables while taking into account all possible
failure scenarios.

An alternative to manually computed forwarding tables is to use a network management platform that tracks the network
status and can push new forwarding tables on the routers when it detects any modification to the network topology.
This solution gives some flexibility to the network managers in computing the paths inside their network. However,
this solution only works if the network management platform is always capable of reaching all routers even when
the network topology changes. This may require a dedicated network that allows the management platform to push
information on the forwarding tables. Openflow is a modern example of such solutions [MAB2008]. In a nutshell,
Openflow is a protocol that enables a network controller to install specific entries in the forwarding tables of remote
routers and much more.

Another interesting point that is worth being discussed is when the forwarding tables are computed. A widely used
solution is to compute the entries of the forwarding tables for all destinations on all routers. This ensures that each
router has a valid route towards each destination. These entries can be updated when an event occurs and the network
topology changes. A drawback of this approach is that the forwarding tables can become large in large networks since
each router must always maintain one entry for each destination inside its forwarding table.

Some networks use the arrival of packets as the trigger to compute the corresponding entries in the forwarding tables.
Several technologies have been built upon this principle. When a packet arrives, the router consults its forwarding
table to find a path towards the destination. If the destination is present in the forwarding table, the packet is forwarded.
Otherwise, the router needs to find a way to forward the packet and update its forwarding table.

Computing forwarding tables

Networks deployed several techniques to update the forwarding tables upon the arrival of a packet. In this section, we
briefly present the principles that underlie three of these techniques.

The first technique assumes that the underlying network topology is a tree. A tree is the simplest network to be con-
sidered when forwarding packets. The main advantage of using a tree is that there is only one path between any pair
of nodes inside the network. Since a tree does not contain any cycle, it is impossible to have forwarding loops in a
tree-shaped network.

In a tree-shaped network, it is relatively simple for each node to automatically compute its forwarding table by inspecting
the packets that it receives. For this, each node uses the source and destination addresses present inside each packet.
Thanks to the source address, a node can learn the location of the different sources inside the network. Each source
has a unique address. When a node receives a packet over a given interface, it learns that the source (address) of this
packet is reachable via this interface. The node maintains a data structure that maps each known source address to an
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incoming interface. This data structure is often called the port-address table since it indicates the interface (or port) to
reach a given address.

Learning the location of the sources is not sufficient, nodes also need to forward packets towards their destination.
When a node receives a packet whose destination address is already present inside its port-address table, it simply
forwards the packet on the interface listed in the port-address table. In this case, the packet will follow the port-address
table entries in the downstream nodes and will reach the destination. If the destination address is not included in the
port-address table, the node simply forwards the packet on all its interfaces, except the interface from which the packet
was received. Forwarding a packet over all interfaces is usually called broadcasting in the terminology of computer
networks. Sending the packet over all interfaces except one is a costly operation since the packet is sent over links that
do not reach the destination. Given the tree-shape of the network, the packet will explore all downstream branches of
the tree and will finally reach its destination. In practice, the broadcasting operation does not occur too often and its
performance impact remains limited.

To understand the operation of the port-address table, let us consider the example network shown in the figure below.
This network contains three hosts: A, B and C and five routers, R to R5. When the network boots, all the forwarding

tables of the nodes are empty.

R3 R4 B

R5

Fig. 20: A simple tree-shaped network

Host A sends a packet towards B. When receiving this packet, R/ learns that A is reachable via its West interface. Since
it does not have an entry for destination B in its port-address table, it forwards the packet to both R2 and R3. When
R2 receives the packet, it updates its own forwarding table and forward the packet to C. Since C is not the intended
recipient, it simply discards the received packet. Router R3 also receives the packet. It learns that A is reachable via its
North-West interface and broadcasts the packet to R4 and R5. R5 also updates its forwarding table and finally forwards
it to destination B. Let us now consider what happens when B sends a reply to A. R5 first learns that B is attached to its
North-East port. It then consults its port-address table and finds that A is reachable via its North-West interface. The
packet is then forwarded hop-by-hop to A without any broadcasting. Later on, if C sends a packet to B, this packet will
reach R/ that contains a valid forwarding entry in its forwarding table.

By inspecting the source and destination addresses of packets, network nodes can automatically derive their forwarding
tables. As we will discuss later, this technique is used in Ethernet networks. Despite being widely used, it has two
important drawbacks. First, packets sent to unknown destinations are broadcasted in the network even if the destination
is not attached to the network. Consider the transmission of ten packets destined to Z in the network above. When a
node receives a packet towards this destination, it can only broadcast that packet. Since Z is not attached to the network,
no node will ever receive a packet whose source is Z to update its forwarding table. The second and more important
problem is that few networks have a tree-shaped topology. It is interesting to analyze what happens when a port-address
table is used in a network that contains a cycle. Consider the simple network shown below with a single host.

Assume that the network has started and all port-address and forwarding tables are empty. Host A sends a packet
towards B. Upon reception of this packet, R/ updates its port-address table. Since B is not present in the port-address
table, the packet is broadcasted. Both R2 and R3 receive a copy of the packet sent by A. They both update their port-
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Fig. 21: A simple and redundant network

address table. Unfortunately, they also both broadcast the received packet. B receives a first copy of the packet, but R3
and R2 receive it again. R3 will then broadcast this copy of the packet to B and R/ while R2 will broadcast its copy to
RI. Although B has already received two copies of the packet, it is still inside the network and continues to loop. Due
to the presence of the cycle, a single packet towards an unknown destination generates many copies of this packet that
loop and will eventually saturate the network. Network operators who are using port-address tables to automatically
compute the forwarding tables also use distributed algorithms to ensure that the network topology is always a tree.

Another technique called source routing can be used to automatically compute forwarding tables. It has been used in
interconnecting Token Ring networks and in some wireless networks. Intuitively, source routing enables a destination to
automatically discover the paths from a given source towards itself. This technique requires nodes to encode information
inside some packets. For simplicity, let us assume that the data plane supports two types of packets :

e the data packets
e the control packets

Data packets are used to exchange data while control packets are used to discover the paths between hosts. With source
routing, routers can be kept as simple as possible and all the complexity is placed on the hosts. This is in contrast with
the previous technique where the nodes had to maintain a port-address and a forwarding table while the hosts simply
sent and received packets. Each node is configured with one unique address and there is one identifier per outgoing
link. For simplicity and to avoid cluttering the figures with those identifiers, we assume that each node uses as link
identifiers north, west, south,... In practice, a node would associate one integer to each outgoing link.

R2

Fig. 22: A simple network with two hosts and four routers

In the network above, router R2 is attached to two outgoing links. R2 is connected to both R/ and R3. R2 can easily
determine that it is connected to these two nodes by exchanging packets with them or observing the packets that it
receives over each interface. Assume for example that when a node (either host or router) starts, it sends a special
control packet over each of its interfaces to advertise its own address to its neighbors. When a node receives such a
packet, it automatically replies with its own address. This exchange can also be used to verify whether a neighbor, either
router or host, is still alive. With source routing, the data plane packets include a list of identifiers. This list is called a
source route. It indicates the path to be followed by the packet as a sequence of link identifiers. When a node receives
such a data plane packet, it first checks whether the packet’s destination is a direct neighbor. In this case, the packet is
forwarded to this neighbor. Otherwise, the node extracts the next address from the list and forwards it to the neighbor.
This allows the source to specify the explicit path to be followed for each packet. For example, in the figure above
there are two possible paths between A and B. To use the path via R2, A would send a packet that contains R1,R2,R3 as
source route. To avoid going via R2, A would place RI,R3 as the source route in its transmitted packet. If A knows the
complete network topology and all link identifiers, it can easily compute the source route towards each destination. It
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can even use different paths, e.g. for redundancy, to reach a given destination. However, in a real network hosts do not
usually have a map of the entire network topology.

In networks that rely on source routing, hosts use control packets to automatically discover the best path(s). In addition
to the source and destination addresses, control packets contain a list that records the intermediate nodes. This list is
often called the record route because it allows recording the route followed by a given packet. When a node receives
such a control packet, it first checks whether its address is included in the record route. If yes, the packet has already
been forwarded by this node and it is silently discarded. Otherwise, it adds its own address to the record route and
forwards the packet to all its interfaces, except the interface over which the packet has been received. Thanks to this,
the control packet can explore all paths between a source and a given destination.

For example, consider again the network topology above. A sends a control packet towards B. The initial record route
is empty. When R/ receives the packet, it adds its own address to the record route and forwards a copy to R2 and
another to R3. R2 receives the packet, adds itself to the record route and forwards it to R3. R3 receives two copies
of the packet. The first contains the [R1,R2] record route and the second [R1]. In the end, B will receive two control
packets containing [R1,R2,R3,R4] and [R1,R3,R4] as record routes. B can keep these two paths or select the best one
and discard the second. A popular heuristic is to select the record route of the first received packet as being the best
one since this likely corresponds to the shortest delay path.

With the received record route, B can send a data packet to A. For this, it simply reverses the chosen record route.
However, we still need to communicate the chosen path to A. This can be done by putting the record route inside a
control packet which is sent back to A over the reverse path. An alternative is to simply send a data packet back to A.
This packet will travel back to A. To allow A to inspect the entire path followed by the data packet, its source route must
contain all intermediate routers when it is received by A. This can be achieved by encoding the source route using a
data structure that contains an index and the ordered list of node addresses. The index always points to the next address
in the source route. It is initialized at 0 when a packet is created and incremented by each intermediate node.

The third technique to compute forwarding tables is to rely on a control plane using a distributed algorithm. Routers
exchange control messages to discover the network topology and build their forwarding table based on them. We
dedicate a more detailed description of such distributed algorithms later in this section.

Flat or hierarchical addresses

The last, but important, point to discuss about the data plane of the networks that rely on the datagram mode is their
addressing scheme. In the examples above, we have used letters to represent the addresses of the hosts and network
nodes. In practice, all addresses are encoded as a bit string. Most network technologies use a fixed size bit string to
represent source and destination address. These addresses can be organized in two different ways.

The first organization, which is the one that we have implicitly assumed until now, is the flar addressing scheme.
Under this scheme, each host and network node has a unique address. The unicity of the addresses is important for
the operation of the network. If two hosts have the same address, it can become difficult for the network to forward
packets towards this destination. Flat addresses are typically used in situations where network nodes and hosts need
to be able to communicate immediately with unique addresses. These flat addresses are often embedded inside the
network interface cards. The network card manufacturer creates one unique address for each interface and this address
is stored in the read-only memory of the interface. An advantage of this addressing scheme is that it easily supports
unstructured and mobile networks. When a host moves, it can attach to another network and remain confident that its
address is unique and enables it to communicate inside the new network.

With flat addressing the lookup operation in the forwarding table can be implemented as an exact match. The forward-
ing table contains the (sorted) list of all known destination addresses. When a packet arrives, a network node only needs
to check whether this address is included in the forwarding table or not. In software, this is an O(log(n)) operation if
the list is sorted. In hardware, Content Addressable Memories can efficiently perform this lookup operation, but their
size is usually limited.

A drawback of the flat addressing scheme is that the forwarding tables linearly grow with the number of hosts and
routers in the network. With this addressing scheme, each forwarding table must contain an entry that points to every
address reachable inside the network. Since large networks can contain tens of millions of hosts or more, this is a major
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problem on routers that need to be able to quickly forward packets. As an illustration, it is interesting to consider the
case of an interface running at 10 Gbps. Such interfaces are found on high-end servers and in various routers today.
Assuming a packet size of 1000 bits, a pretty large and conservative number, such interface must forward ten million
packets every second. This implies that a router that receives packets over such a link must forward one 1000 bits packet
every 100 nanoseconds. This is the same order of magnitude as the memory access times of old DRAM:s.

A widely used alternative to the flat addressing scheme is the hierarchical addressing scheme. This addressing scheme
builds upon the fact that networks usually contain much more hosts than routers. In this case, a first solution to reduce
the size of the forwarding tables is to create a hierarchy of addresses. This is the solution chosen by the post office since
postal addresses contain a country, sometimes a state or province, a city, a street and finally a street number. When an
envelope is forwarded by a post office in a remote country, it only looks at the destination country, while a post office
in the same province will look at the city information. Only the post office responsible for a given city will look at
the street name and only the postman will use the street number. Hierarchical addresses provide a similar solution
for network addresses. For example, the address of an Internet host attached to a campus network could contain in
the high-order bits an identification of the Internet Service Provider (ISP) that serves the campus network. Then, a
subsequent block of bits identifies the campus network which is one of the customers of the ISP. Finally, the low order
bits of the address identify the host in the campus network.

This hierarchical allocation of addresses can be applied in any type of network. In practice, the allocation of the
addresses must follow the network topology. Usually, this is achieved by dividing the addressing space in consecutive
blocks and then allocating these blocks to different parts of the network. In a small network, the simplest solution is to
allocate one block of addresses to each network node and assign the host addresses from the attached node.

R2

Fig. 23: A simple network with two hosts and four routers

In the above figure, assume that the network uses 16 bits addresses and that the prefix 01001010 has been as-
signed to the entire network. Since the network contains four routers, the network operator could assign one
block of sixty-four addresses to each router. R/ would use address 0700101000000000 while A could use address
0100101000000001. R2 could be assigned all addresses from 07100101001000000 to 0100101001111111. R4 could
then use 0100101011000000 and assign 0100101011000001 to B. Other allocation schemes are possible. For example,
R3 could be allocated a larger block of addresses than R2 and R4 could use a sub-block from R3 ‘s address block.

The main advantage of hierarchical addresses is that it is possible to significantly reduce the size of the forwarding
tables. In many networks, the number of routers can be several orders of magnitude smaller than the number of hosts.
A campus network may contain a dozen routers and thousands of hosts. The largest Internet Services Providers typically
contain no more than a few tens of thousands of routers but still serve tens or hundreds of millions of hosts.

Despite their popularity, hierarchical addresses have some drawbacks. Their first drawback is that a lookup in the
forwarding table is more complex than when using flar addresses. For example, on the Internet, network nodes have
to perform a longest-match to forward each packet. This is partially compensated by the reduction in the size of the
forwarding tables, but the additional complexity of the lookup operation has been a difficulty to implement hardware
support for packet forwarding. A second drawback of the utilization of hierarchical addresses is that when a host
connects for the first time to a network, it must contact one router to determine its own address. This requires some
packet exchanges between the host and some routers. Furthermore, if a host moves and is attached to another routers,
its network address will change. This can be an issue with some mobile hosts.
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Dealing with heterogeneous datalink layers

Sometimes, the network layer needs to deal with heterogeneous datalink layers. For example, two hosts connected
to different datalink layers exchange packets via routers that are using other types of datalink layers. Thanks to the
network layer, this exchange of packets is possible provided that each packet can be placed inside a datalink layer frame
before being transmitted. If all datalink layers support the same frame size, this is simple. When a node receives a
frame, it decapsulates the packet that it contains, checks the header and forwards it, encapsulated inside another frame,
to the outgoing interface. Unfortunately, the encapsulation operation is not always possible. Each datalink layer is
characterized by the maximum frame size that it supports. Datalink layers typically support frames containing up to a
few hundreds or a few thousands of bytes. The maximum frame size that a given datalink layer supports depends on its
underlying technology. Unfortunately, most datalink layers support a different maximum frame size. This implies that
when a host sends a large packet inside a frame to its nexthop router, there is a risk that this packet will have to traverse
a link that is not capable of forwarding the packet inside a single frame. In principle, there are three possibilities to
solve this problem. To discuss them, we consider a simple scenario with two hosts connected to a router as shown in
the figure below.

R L0
Max 1000 B Max 500 B Max 1000 B

Fig. 24: A simple heterogeneous network

Consider in the network above that host A wants to send a 900 bytes packet (870 bytes of payload and 30 bytes of
header) to host B via router R/. Host A encapsulates this packet inside a single frame. The frame is received by router
RI which extracts the packet. Router R/ has three possible options to process this packet.

1. The packet is too large and router R/ cannot forward it to router R2. It rejects the packet and sends a control
packet back to the source (host A) to indicate that it cannot forward packets longer than 500 bytes (minus the
packet header). The source could react to this control packet by retransmitting the information in smaller packets.

2. The network layer is able to fragment a packet. In our example, the router could fragment the packet in two
parts. The first part contains the beginning of the payload and the second the end. There are two possible ways
to perform this fragmentation.

3. Router R/ fragments the packet into two fragments before transmitting them to router R2. Router R2 reassembles
the two packet fragments in a larger packet before transmitting them on the link towards host B.

4. Each of the packet fragments is a valid packet that contains a header with the source (host A) and destination (host
B) addresses. When router R2 receives a packet fragment, it treats this packet as a regular packet and forwards it
to its final destination (host B). Host B reassembles the received fragments.

These three solutions have advantages and drawbacks. With the first solution, routers remain simple and do not need to
perform any fragmentation operation. This is important when routers are implemented mainly in hardware. However,
hosts must be complex since they need to store the packets that they produce if they need to pass through a link that
does not support large packets. This increases the buffering required on the hosts.

Furthermore, a single large packet may potentially need to be retransmitted several times. Consider for example a
network similar to the one shown above but with four routers. Assume that the link R/->R2 supports 1000 bytes
packets, link R2->R3 800 bytes packets and link R3->R4 600 bytes packets. A host attached to RI that sends large
packet will have to first try 1000 bytes, then 800 bytes and finally 600 bytes. Fortunately, this scenario does not occur
very often in practice and this is the reason why this solution is used in real networks.

Fragmenting packets on a per-link basis, as presented for the second solution, can minimize the transmission overhead
since a packet is only fragmented on the links where fragmentation is required. Large packets can continue to be
used downstream of a link that only accepts small packets. However, this reduction of the overhead comes with two
drawbacks. First, fragmenting packets, potentially on all links, increases the processing time and the buffer requirements
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on the routers. Second, this solution leads to a longer end-to-end delay since the downstream router has to reassemble
all the packet fragments before forwarding the packet.

The last solution is a compromise between the two others. Routers need to perform fragmentation but they do not
need to reassemble packet fragments. Only the hosts need to have buffers to reassemble the received fragments. This
solution has a lower end-to-end delay and requires fewer processing time and memory on the routers.

The first solution to the fragmentation problem presented above suggests the utilization of control packets to inform
the source about the reception of a too long packet. This is only one of the functions that are performed by the control
protocol in the network layer. Other functions include :

« sending a control packet back to the source if a packet is received by a router that does not have a valid entry in
its forwarding table

* sending a control packet back to the source if a router detects that a packet is looping inside the network
* verifying that packets can reach a given destination

We will discuss these functions in more details when we will describe the protocols that are used in the network layer
of the TCP/IP protocol suite.

2.2.2 Virtual circuit organization

The second organization of the network layer, called virtual circuits, has been inspired by the organization of telephone
networks. Telephone networks have been designed to carry phone calls that usually last a few minutes. Each phone
is identified by a telephone number and is attached to a telephone switch. To initiate a phone call, a telephone first
needs to send the destination’s phone number to its local switch. The switch cooperates with the other switches in the
network to create a bi-directional channel between the two telephones through the network. This channel will be used
by the two telephones during the lifetime of the call and will be released at the end of the call. Until the 1960s, most of
these channels were created manually, by telephone operators, upon request of the caller. Today’s telephone networks
use automated switches and allow several channels to be carried over the same physical link, but the principles roughly
remain the same.

In a network using virtual circuits, all hosts are also identified with a network layer address. However, packet forwarding
is not performed by looking at the destination address of each packet. With the virtual circuit organization, each data
packet contains one label'. A label is an integer which is part of the packet header. Routers implement label switching
to forward labelled data packet. Upon reception of a packet, a router consults its label forwarding table to find the
outgoing interface for this packet. In contrast with the datagram mode, this lookup is very simple. The label forwarding
table is an array stored in memory and the label of the incoming packet is the index to access this array. This implies
that the lookup operation has an O(1) complexity in contrast with other packet forwarding techniques. To ensure that
on each node the packet label is an index in the label forwarding table, each router that forwards a packet replaces the
label of the forwarded packet with the label found in the label forwarding table. Each entry of the label forwarding
table contains two pieces of information :

* the outgoing interface for the packet
* the label for the outgoing packet

For example, consider the label forwarding table of a network node below.

index outgoing interface label

0 South 7
1 none none
2 West 2
3 East 2

' We will see later a more detailed description of Multiprotocol Label Switching, a networking technology that is capable of using one or more
labels.
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If this node receives a packet with label=2, it forwards the packet on its West interface and sets the label of the outgoing
packet to 2. If the received packet’s label is set to 3, then the packet is forwarded over the East interface and the label
of the outgoing packet is set to 2. If a packet is received with a label field set to /, the packet is discarded since the
corresponding label forwarding table entry is invalid.

Label switching enables a full control over the path followed by packets inside the network. Consider the network below
and assume that we want to use two virtual circuits : R/->R3->R4->R2->R5 and R2->R[->R3->R4->R5.

R1

R3 R2

R4

RS

Fig. 25: An example of network where label switching can be applied to tune its paths

To create these virtual circuits, we need to configure the label forwarding tables of all routers. For simplicity, assume
that a label forwarding table only contains two entries. Assume that R5 wants to receive the packets from the virtual
circuit created by R/ (resp. R2) with label=1 (label=0). R4 could use the following label forwarding table:

R4’s label forwarding table

index outgoing interface  label
0 ->R2 1
1 ->R5 0

Since a packet received with label=1 must be forwarded to R5 with label=1, R2’s label forwarding table could contain

R2’s label forwarding table

index outgoing interface  label
0 none none
1 ->R5 1

Two virtual circuits pass through R3. They both need to be forwarded to R4, but R4 expects label=1 for packets
belonging to the virtual circuit originated by R2 and label=0 for packets belonging to the other virtual circuit. R3 could
choose to leave the labels unchanged.

R3’s label forwarding table

index outgoing interface  label
0 ->R4 0
1 ->R4 1
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With the above label forwarding table, R needs to originate the packets that belong to the R/->R3->R4->R2->R5
circuit with label=0. The packets received from R2 and belonging to the R2->R[->R3->R4->R5 circuit would then
use label=1 on the R1-R3 link. R] ‘s label forwarding table could be built as follows :

R1’s label forwarding table

index outgoing interface  label
0 ->R3 0
1 ->R3 1

The figure below shows the path followed by the packets on the R/->R3->R4->R2->R5 path in red with on each arrow
the label used in the packets.

RI
v 0 ’
R3 R2
0 \ 0
R4 '1I
;
RS

Fig. 26: The path followed by packets for a specific circuit

MultiProtocol Label Switching (MPLS) is the example of a deployed networking technology that relies on label switch-
ing. MPLS is more complex than the above description because it has been designed to be easily integrated with data-
gram technologies. However, the principles remain. Asynchronous Transfer Mode (ATM) and Frame Relay are other
examples of technologies that rely on label switching.

Nowadays, most deployed networks rely on distributed algorithms, called routing protocols, to compute the forwarding
tables that are installed on the routers. These distributed algorithms are part of the control plane. They are usually
implemented in software and are executed on the main CPU of the routers. There are two main families of routing
protocols : distance vector routing and link state routing. Both are capable of discovering autonomously the network
and react dynamically to topology changes.

2.2.3 The control plane

One of the objectives of the control plane in the network layer is to maintain the routing tables that are used on all
routers. As indicated earlier, a routing table is a data structure that contains, for each destination address (or block of
addresses) known by the router, the outgoing interface over which the router must forward a packet destined to this
address. The routing table may also contain additional information such as the address of the next router on the path
towards the destination or an estimation of the cost of this path.

In this section, we discuss the main techniques that can be used to maintain the forwarding tables in a network.
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Distance vector routing

Distance vector routing is a simple distributed routing protocol. Distance vector routing allows routers to automatically
discover the destinations reachable inside the network as well as the shortest path to reach each of these destinations.
The shortest path is computed based on metrics or costs that are associated to each link. We use /.cost to represent the
metric that has been configured for link / on a router.

Each router maintains a routing table. The routing table R can be modeled as a data structure that stores, for each known
destination address d, the following attributes :

* R[d].link is the outgoing link that the router uses to forward packets towards destination d
* R[d].cost is the sum of the metrics of the links that compose the shortest path to reach destination d
* R[d].time is the timestamp of the last distance vector containing destination d

A router that uses distance vector routing regularly sends its distance vector over all its interfaces. This distance vector
is a summary of the router’s routing table that indicates the distance towards each known destination. This distance
vector can be computed from the routing table by using the pseudo-code below.

Every N seconds:
v = Vector()

for d in R[]:
# add destination d to vector
v.add(Pair(d, R[d].cost))

for i in interfaces
# send vector v on this interface

send(v, 1)

When a router boots, it does not know any destination in the network and its routing table only contains its local
address(es). It thus sends to all its neighbors a distance vector that contains only its address at a distance of 0. When a
router receives a distance vector on link /, it processes it as follows.

# V : received Vector
# 1 : link over which vector is received
def received(V, 1):
# received vector from link 1
for d in VI[]
if not (d in R[]):
# new route
R[d].cost = V[d].cost + l.cost
R[d].link =1
R[d].time now
else:
# existing route, is the new better ?
if ((V[d].cost + l.cost) < R[d].cost) or (R[d].link == 1):
# Better route or change to current route

R[d].cost = V[d].cost + 1l.cost
R[d].link = 1
R[d].time = now

The router iterates over all addresses included in the distance vector. If the distance vector contains a destination address
that the router does not know, it inserts it inside its routing table via link / and at a distance which is the sum between
the distance indicated in the distance vector and the cost associated to link /. If the destination was already known by
the router, it only updates the corresponding entry in its routing table if either :

* the cost of the new route is smaller than the cost of the already known route ((V/d].cost + Lcost) < R[d].cost)
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¢ the new route was learned over the same link as the current best route towards this destination (R/d].link == 1)

The first condition ensures that the router discovers the shortest path towards each destination. The second condition is
used to take into account the changes of routes that may occur after a link failure or a change of the metric associated
to a link.

To understand the operation of a distance vector protocol, let us consider the network of five routers shown below.

———————————— | Routing table | Poo---------
' Routing table ' "B: 0 [Local] | | Routing table |
' A:0[Local] | S - y ' C:0[Local] |
,,,,,,,,, < - | —_———————— =
N | p
~ o . : / . -
A B C
| Routing table 17 —Ip E|---- . _Routing table l
| D: 0 [Local] | i E: 0 [Local] |

Fig. 27: Operation of distance vector routing in a simple network

Assume that router A is the first to send its distance vector [A=0].
* Band D process the received distance vector and update their routing table with a route towards A.
¢ D sends its distance vector [D=0,A=1] to A and E. E can now reach A and D.
e (C sends its distance vector [C=0] to B and E
e F sends its distance vector [E=0,D=1,A=2,C=1] to D, B and C. B can now reach A, C, D and E

¢ B sends its distance vector [B=0,A=1,C=1,D=2,E=1]to A, C and E. A, B, C and E can now reach all five routers
of this network.

¢ A sends its distance vector [A=0,B=1,C=2,D=1,E=2] to B and D.

At this point, all routers can reach all other routers in the network thanks to the routing tables shown in the figure below.

To deal with link and router failures, routers use the timestamp stored in their routing table. As all routers send their
distance vector every N seconds, the timestamp of each route should be regularly refreshed. Thus no route should have
a timestamp older than N seconds, unless the route is not reachable anymore. In practice, to cope with the possible loss
of a distance vector due to transmission errors, routers check the timestamp of the routes stored in their routing table
every N seconds and remove the routes that are older than 3 x N seconds.

When a router notices that a route towards a destination has expired, it must first associate an oo cost to this route
and send its distance vector to its neighbors to inform them. The route can then be removed from the routing table
after some time (e.g. 3 x NN seconds), to ensure that the neighboring routers have received the bad news, even if some
distance vectors do not reach them due to transmission errors.

Consider the example above and assume that the link between routers A and B fails. Before the failure, A used B to reach
destinations B, C and E while B only used the A-B link to reach A. The two routers detect the failure by the timeouts in
the affected entries in their routing tables. Both routers A and B send their distance vector.
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Fig. 28: Routing tables computed by distance vector in a simple network

* A sends its distance vector [A = 0, B = 00, = 00, D = 1, E = o0|. D knows that it cannot reach B anymore
viaA

* D sends its distance vector [D = 0, B = 00, A =1,C =2, E = 1] to A and E. A recovers routes towards C and
E via D.

* B sends its distance vector [B = 0,A = 00,C = 1,D = 2, E = 1] to E and C. C learns that there is no route
anymore to reach A via B.

* E sends its distance vector [E =0,A=2,C =1,D =1,B = 1] to D, B and C. D learns a route towards B. C
and B learn a route towards A.

At this point, all routers have a routing table allowing them to reach all other routers, except router A, which cannot yet
reach router B. A recovers the route towards B once router D sends its updated distance vector [A = 1,B = 2,C =
2,D =0, E = 1]. This last step is illustrated in figure below, which shows the routing tables on all routers.

Consider now that the link between D and E fails. The network is now partitioned into two disjoint parts: (A , D) and
(B, E, C). The routes towards B, C and E expire first on router D. At this time, router D updates its routing table.

If Dsends [D =0,A=1,B = 00,C = 00, E = o], A learns that B, C and E are unreachable and updates its routing
table.

Unfortunately, if the distance vector sent to A is lost or if A sends its own distance vector ([A =0,D =1,B =3,C =
3, E = 2]) at the same time as D sends its distance vector, D updates its routing table to use the shorter routes advertised
by A towards B, C and E. After some time D sends a new distance vector: [D =0,A=1,F=3,C =4,B=4]. A
updates its routing table and after some time sends its own distance vector [A = 0,D = 1,B =5,C = 5, E = 4], etc.
This problem is known as the count to infinity problem in the networking literature.

Routers A and D exchange distance vectors with increasing costs until these costs reach co. This problem may occur
in other scenarios than the one depicted in the above figure. In fact, distance vector routing may suffer from count to
infinity problems as soon as there is a cycle in the network. Unfortunately, cycles are widely used in networks since they
provide the required redundancy to deal with link and router failures. To mitigate the impact of counting to infinity,
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Fig. 29: Routing tables computed by distance vector after a failure

some distance vector protocols consider that 16 = oco. Unfortunately, this limits the metrics that network operators can
use and the diameter of the networks using distance vectors.

This count to infinity problem occurs because router A advertises to router D a route that it has learned via router D. A
possible solution to avoid this problem could be to change how a router creates its distance vector. Instead of computing
one distance vector and sending it to all its neighbors, a router could create a distance vector that is specific to each
neighbor and only contains the routes that have not been learned via this neighbor. This could be implemented by the
following pseudocode.

# split horizon
Every N seconds:
# one vector for each interface
for 1 in interfaces:
v = Vector()
for d in R[]:
if (R[d].link != 1):
v = v + Pair(d, R[d].cost)
send(v, 1)
# end for d in R[]
# end for 1 in interfaces

This technique is called split-horizon. With this technique, the count to infinity problem would not have happened in
the above scenario, as router A would have advertised [A = 0] after the failure, since it learned all its other routes via
router D. Another variant called split-horizon with poison reverse is also possible. Routers using this variant advertise
a cost of oo for the destinations that they reach via the router to which they send the distance vector. This can be
implemented by using the pseudo-code below.

# split horizon with poison reverse
Every N seconds:

for 1 in interfaces:
(continues on next page)
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(continued from previous page)

# one vector for each interface
v = Vector()
for d in R[]:
if (R[d].link != 1):
v = v + Pair(d, R[d].cost)
else:
v = v + Pair(d, infinity)
send(v, 1)
# end for d in R[]
# end for 1 in interfaces

Unfortunately, split-horizon is not sufficient to avoid all count to infinity problems with distance vector routing. Con-
sider the failure of link A-B in the four routers network shown below.
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Fig. 30: Count to infinity problem

After having detected the failure, router B sends its distance vectors:
* [A=00,B=0,C =00, E = 1] to router C
s [A=00,B=0,C =1,F = 0] to router E

If, unfortunately, the distance vector sent to router C is lost due to a transmission error or because router C is overloaded,
a new count to infinity problem can occur. If router C sends its distance vector [A = 2,B = 1,C = 0, F = o] to
router E, this router installs a route of distance 3 to reach A via C. Router E sends its distance vectors [A = 3, B =
00,C = 1,E = 1] torouter B and [A = o0, B = 1,C = o0, E = 0] to router C. This distance vector allows B to
recover a route of distance 4 to reach A.

Note: Forwarding tables versus routing tables

Routers usually maintain at least two data structures that contain information about the reachable destinations. The
first data structure is the routing table. The routing table is a data structure that associates a destination to an outgoing
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interface or a nexthop router and a set of additional attributes. Different routing protocols can associate different
attributes for each destination. Distance vector routing protocols will store the cost to reach the destination along the
shortest path. Other routing protocols may store information about the number of hops of the best path, its lifetime or
the number of sub paths. A routing table may store different paths towards a given destination and flag one of them as
the best one.

The routing table is a software data structure which is updated by (one or more) routing protocols. The routing table is
usually not directly used when forwarding packets. Packet forwarding relies on a more compact data structure which
is the forwarding table. On high-end routers, the forwarding table is implemented directly in hardware while lower
performance routers will use a software implementation. A forwarding table contains a subset of the information
found in the routing table. It only contains the nexthops towards each destination that are used to forward packets and
no attributes. A forwarding table will typically associate each destination to one or more outgoing interface or nexthop
router.

Link state routing

Link state routing is the second family of routing protocols. While distance vector routers use a distributed algorithm
to compute their routing tables, link-state routers exchange messages to allow each router to learn the entire network
topology. Based on this learned topology, each router is then able to compute its routing table by using a shortest path
computation such as Dijkstra’s algorithm [Dijkstral959]. A detailed description of this shortest path algorithm may be
found in [Wikipedia:Dijkstra].

For link-state routing, a network is modeled as a directed weighted graph. Each router is a node, and the links between
routers are the edges in the graph. A positive weight is associated to each directed edge and routers use the shortest
path to reach each destination. In practice, different types of weights can be associated to each directed edge :

* unit weight. If all links have a unit weight, shortest path routing prefers the paths with the least number of
intermediate routers.

» weight proportional to the propagation delay on the link. If all link weights are configured this way, shortest path
routing uses the paths with the smallest propagation delay.

* weight = m where C is a constant larger than the highest link bandwidth in the network. If all link
weights are configured this way, shortest path routing prefers higher bandwidth paths over lower bandwidth
paths.

Usually, the same weight is associated to the two directed edges that correspond to a physical link (i.e. R1 — R2 and
R2 — R1). However, nothing in the link state protocols requires this. For example, if the weight is set in function
of the link bandwidth, then an asymmetric ADSL link could have a different weight for the upstream and downstream
directions. Other variants are possible. Some networks use optimization algorithms to find the best set of weights to
minimize congestion inside the network for a given traffic demand [FRT2002].

When a link-state router boots, it first needs to discover to which routers it is directly connected. For this, each router
sends a HELLO message every N seconds on all its interfaces. This message contains the router’s address. Each router
has a unique address. As its neighboring routers also send HELLO messages, the router automatically discovers to
which neighbors it is connected. These HELLO messages are only sent to neighbors that are directly connected to a
router, and a router never forwards the HELLO messages that it receives. HELLO messages are also used to detect link
and router failures. A link is considered to have failed if no HELLO message has been received from a neighboring
router for a period of k x N seconds.

Once a router has discovered its neighbors, it must reliably distribute all its outgoing edges to all routers in the network
to allow them to compute their local view of the network topology. For this, each router builds a link-state packet (LSP)
containing the following information:

¢ LSP.Router: identification (address) of the sender of the LSP
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Fig. 31: The exchange of HELLO messages

* LSP.age: age or remaining lifetime of the LSP

* LSP.seq: sequence number of the LSP

e LSP.Links[]: links advertised in the LSP. Each directed link is represented with the following information:
— LSP.Links[i].Id: identification of the neighbor
— LSP.Links[i].cost: cost of the link

These LSPs must be reliably distributed inside the network without using the router’s routing table since these tables
can only be computed once the LSPs have been received. The Flooding algorithm is used to efficiently distribute the
LSPs of all routers. Each router that implements flooding maintains a link state database (LSDB) containing the most
recent LSP sent by each router. When a router receives a LSP, it first verifies whether this LSP is already stored inside
its LSDB. If so, the router has already distributed the LSP earlier and it does not need to forward it. Otherwise, the
router forwards the LSP on all its links except the link over which the LSP was received. Flooding can be implemented
by using the following pseudo-code.

# links is the set of all links on the router
# Router R's LSP arrival on link 1
if newer (LSP, LSDB(LSP.Router))

LSDB.add(LSP) # implicitly removes older LSP from same router

for i in links:

if il=1:
send(LSP, 1)

# else, LSP has already been flooded

In this pseudo-code, LSDB(r) returns the most recent LSP originating from router r that is stored in the LSDB.
newer(lspl, Isp2) returns true if Ispl is more recent than Isp2. See the note below for a discussion on how newer
can be implemented.

Note: Which is the most recent LSP ?

A router that implements flooding must be able to detect whether a received LSP is newer than the stored LSP. This
requires a comparison between the sequence number of the received LSP and the sequence number of the LSP stored in
the link state database. The ARPANET routing protocol [MRR1979] used a 6 bits sequence number and implemented
the comparison as follows RFC 789

def newer( 1lspl, 1lsp2 ):
return ( ((lspl.seq > 1lsp2.seq) and ((lspl.seq - lsp2.seq) <= 32)) or
( (1spl.seq < 1sp2.seq) and ((1lsp2.seq - lspl.seq) > 32)) )
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This comparison takes into account the modulo 2° arithmetic used to increment the sequence numbers. Intuitively, the
comparison divides the circle of all sequence numbers into two halves. Usually, the sequence number of the received
LSP is equal to the sequence number of the stored LSP incremented by one, but sometimes the sequence numbers of
two successive LSPs may differ, e.g. if one router has been disconnected for some time. The comparison above worked
well until October 27, 1980. On this day, the ARPANET crashed completely. The crash was complex and involved
several routers. At one point, LSP 40 and LSP 44 from one of the routers were stored in the LSDB of some routers in
the ARPANET. As LSP 44 was the newest, it should have replaced LSP 40 on all routers. Unfortunately, one of the
ARPANET routers suffered from a memory problem and sequence number 40 (/101000 in binary) was replaced by 8
(001000 in binary) in the buggy router and flooded. Three LSPs were present in the network and 44 was newer than 40
which is newer than 8, but unfortunately 8 was considered to be newer than 44... All routers started to exchange these
three link state packets forever and the only solution to recover from this problem was to shutdown the entire network
RFC 789.

Current link state routing protocols usually use 32 bits sequence numbers and include a special mechanism in the
unlikely case that a sequence number reaches the maximum value (with a 32 bits sequence number space, it takes 136
years to cycle the sequence numbers if a link state packet is generated every second).

To deal with the memory corruption problem, link state packets contain a checksum or CRC. This checksum is com-
puted by the router that generates the LSP. Each router must verify the checksum when it receives or floods an LSP.
Furthermore, each router must periodically verify the checksums of the LSPs stored in its LSDB. This enables them to
cope with memory errors that could corrupt the LSDB as the one that occurred in the ARPANET.

Flooding is illustrated in the figure below. By exchanging HELLO messages, each router learns its direct neighbors.
For example, router E learns that it is directly connected to routers D, B and C. Its first LSP has sequence number 0
and contains the directed links E->D, E->B and E->C. Router E sends its LSP on all its links and routers D, B and C
insert the LSP in their LSDB and forward it over their other links.

| Links i

=== = ----- ‘ . B> Al 1 R ‘
' _Links | ' BCil o | Links !
| A—B:1 | ' B—E:1 |  C—=B:1
 A—D:1 : B —— : CoSE'1 :
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Fig. 32: Flooding: example

Flooding allows LSPs to be distributed to all routers inside the network without relying on routing tables. In the example
above, the LSP sent by router E is likely to be sent twice on some links in the network. For example, routers B and C
receive E’s LSP at almost the same time and forward it over the B-C link. To avoid sending the same LSP twice on
each link, a possible solution is to slightly change the pseudo-code above so that a router waits for some random time
before forwarding a LSP on each link. The drawback of this solution is that the delay to flood an LSP to all routers in
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the network increases. In practice, routers immediately flood the LSPs that contain new information (e.g. addition or
removal of a link) and delay the flooding of refresh LSPs (i.e. LSPs that contain exactly the same information as the
previous LSP originating from this router) [FFEB2005].

To ensure that all routers receive all LSPs, even when there are transmissions errors, link state routing protocols use
reliable flooding. With reliable flooding, routers use acknowledgments and if necessary retransmissions to ensure that
all link state packets are successfully transferred to each neighboring router. Thanks to reliable flooding, all routers
store in their LSDB the most recent LSP sent by each router in the network. By combining the received LSPs with its
own LSP, each router can build a graph that represents the entire network topology.
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Fig. 33: Link state databases received by all routers

Note: Static or dynamic link metrics ?

As link state packets are flooded regularly, routers are able to measure the quality (e.g. delay or load) of their links
and adjust the metric of each link according to its current quality. Such dynamic adjustments were included in the
ARPANET routing protocol [MRR1979] . However, experience showed that it was difficult to tune the dynamic ad-
justments and ensure that no forwarding loops occur in the network [KZ1989]. Today’s link state routing protocols
use metrics that are manually configured on the routers and are only changed by the network operators or network
management tools [FRT2002].

When a link fails, the two routers attached to the link detect the failure by the absence of HELLO messages received
during the last £ x N seconds. Once a router has detected the failure of one of its local links, it generates and floods a
new LSP that no longer contains the failed link. This new LSP replaces the previous LSP in the network. In practice,
the two routers attached to a link do not detect this failure exactly at the same time. During this period, some links may
be announced in only one direction. This is illustrated in the figure below. Router E has detected the failure of link E£-B
and flooded a new LSP, but router B has not yet detected this failure.

When a link is reported in the LSP of only one of the attached routers, routers consider the link as having failed and
they remove it from the directed graph that they compute from their LSDB. This is called the two-way connectivity
check. This check allows link failures to be quickly flooded as a single LSP is sufficient to announce such bad news.
However, when a link comes up, it can only be used once the two attached routers have sent their LSPs. The two-way
connectivity check also allows for dealing with router failures. When a router fails, all its links fail by definition. These
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Fig. 34: The two-way connectivity check

failures are reported in the LSPs sent by the neighbors of the failed router. The failed router does not, of course, send
a new LSP to announce its failure. However, in the graph that represents the network, this failed router appears as a
node that only has outgoing edges. Thanks to the two-way connectivity check, this failed router cannot be considered
as a transit router to reach any destination since no outgoing edge is attached to it.

When a router has failed, its LSP must be removed from the LSDB of all routers’. This can be done by using the age
field that is included in each LSP. The age field is used to bound the maximum lifetime of a link state packet in the
network. When a router generates a LSP, it sets its lifetime (usually measured in seconds) in the age field. All routers
regularly decrement the age of the LSPs in their LSDB and a LSP is discarded once its age reaches 0. Thanks to the
age field, the LSP from a failed router does not remain in the LSDBs forever.

To compute its forwarding table, each router computes the spanning tree rooted at itself by using Dijkstra’s shortest
path algorithm [Dijkstral959]. The forwarding table can be derived automatically from the spanning as shown in the
figure below.

2 1t should be noted that link state routing assumes that all routers in the network have enough memory to store the entire LSDB. The routers
that do not have enough memory to store the entire LSDB cannot participate in link state routing. Some link state routing protocols allow routers to
report that they do not have enough memory and must be removed from the graph by the other routers in the network, but this is outside the scope
of this e-book.
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Fig. 35: Computation of the forwarding table, the paths used by packets sent by R3 are shown in red

2.3 Applications

There are two important models used to organize a networked application. The first and oldest model is the client-
server model. In this model, a server provides services to clients that exchange information with it. This model is
highly asymmetrical: clients send requests and servers perform actions and return responses. It is illustrated in the
figure below.

Queries

Client Server

+ Responses +

Service provider ("the network™)

Fig. 36: The client-server model

The client-server model was the first model to be used to develop networked applications. This model comes naturally
from the mainframes and minicomputers that were the only networked computers used until the 1980s. A minicomputer
is a multi-user system that is used by tens or more users at the same time. Each user interacts with the minicomputer by
using a terminal. Such a terminal was mainly a screen, a keyboard and a cable directly connected to the minicomputer.

There are various types of servers as well as various types of clients. A web server provides information in response
to the query sent by its clients. A print server prints documents sent as queries by the client. An email server forwards
towards their recipient the email messages sent as queries while a music server delivers the music requested by the client.
From the viewpoint of the application developer, the client and the server applications directly exchange messages (the
horizontal arrows labeled Queries and Responses in the above figure), but in practice these messages are exchanged
thanks to the underlying layers (the vertical arrows in the above figure). In this chapter, we focus on these horizontal
exchanges of messages.

Networked applications do not exchange random messages. In order to ensure that the server is able to understand the
queries sent by a client, and also that the client is able to understand the responses sent by the server, they must both
agree on a set of syntactical and semantic rules. These rules define the format of the messages exchanged as well as
their ordering. This set of rules is called an application-level protocol.

An application-level protocol is similar to a structured conversation between humans. Assume that Alice wants to
know the current time but does not have a watch. If Bob passes close by, the following conversation could take place :
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Alice : Hello
Bob : Hello

* Alice : What time is it ?
e Bob: 11:55

* Alice : Thank you

* Bob : You're welcome

Such a conversation succeeds if both Alice and Bob speak the same language. If Alice meets Tchang who only speaks
Chinese, she won’t be able to ask him the current time. A conversation between humans can be more complex. For
example, assume that Bob is a security guard whose duty is to only allow trusted secret agents to enter a meeting room.
If all agents know a secret password, the conversation between Bob and Trudy could be as follows :

* Bob : What is the secret password ?
e Trudy: 1234
* Bob : This is the correct password, you're welcome
If Alice wants to enter the meeting room but does not know the password, her conversation could be as follows :
* Bob : What is the secret password ?
e Alice: 3.1415
* Bob : This is not the correct password.

Human conversations can be very formal, e.g. when soldiers communicate with their hierarchy, or informal such as
when friends discuss. Computers that communicate are more akin to soldiers and require well-defined rules to ensure a
successful exchange of information. There are two types of rules that define how information can be exchanged between
computers :

 Syntactical rules that precisely define the format of the messages that are exchanged. As computers only process
bits, the syntactical rules specify how information is encoded as bit strings.

* Organization of the information flow. For many applications, the flow of information must be structured and
there are precedence relationships between the different types of information. In the time example above, Alice
must greet Bob before asking for the current time. Alice would not ask for the current time first and greet Bob
afterwards. Such precedence relationships exist in networked applications as well. For example, a server must
receive a username and a valid password before accepting more complex commands from its clients.

Let us first discuss the syntactical rules. We will later explain how the information flow can be organized by analyzing
real networked applications.

Application-layer protocols exchange two types of messages. Some protocols such as those used to support electronic
mail exchange messages expressed as strings or lines of characters. As the transport layer allows hosts to exchange
bytes, they need to agree on a common representation of the characters. The first and simplest method to encode
characters is to use the ASCII table. RFC 20 provides the ASCII table that is used by many protocols on the Internet.
For example, the table defines the following binary representations :

* A:1000011b

* 0:0110000b

z: 1111010b

@ : 1000000b

* space : 0100000b
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In addition, the ASCII table also defines several non-printable or control characters. These characters were designed
to allow an application to control a printer or a terminal. These control characters include CR and LF, that are used to
terminate a line, and the Bell character which causes the terminal to emit a sound.

e carriage return (CR) : 0001101b
e line feed (LF) : 0001010b
* Bell: 0000111b

The ASCII characters are encoded as a seven bits field, but transmitted as an eight-bits byte whose high order bit is
usually set to 0. Bytes are always transmitted starting from the high order or most significant bit.

Most applications exchange strings that are composed of fixed or variable numbers of characters. A common solution
to define the character strings that are acceptable is to define them as a grammar using a Backus-Naur Form (BNF)
such as the Augmented BNF defined in RFC 5234. A BNF is a set of production rules that generate all valid character
strings. For example, consider a networked application that uses two commands, where the user can supply a username
and a password. The BNF for this application could be defined as shown in the figure below.

command = usercommand / passwordcommand
usercommand = "user" SP username CRLF
passwordcommand = "pass" SP password CRLF
username = 1*8ALPHA

password = (ALPHA) *(ALPHA/DIGIT)

ALPHA = %x41-5A / %x61-7A

CR = %x0D

CRLF = CR LF

DIGIT = "Q" / "1" / "2" / "3 / "4 / "5" / "e" / "“7" / "8" / "9"
LF = %X0A

SP = %x20 / %x09

Fig. 37: A simple BNF specification

The example above defines several terminals and two commands : usercommand and passwordcommand. The ALPHA
terminal contains all letters in upper and lower case. In the ALPHA rule, %x41 corresponds to ASCII character code
41 in hexadecimal, i.e. capital A. The CR and LF terminals correspond to the carriage return and linefeed control
characters. The CRLF rule concatenates these two terminals to match the standard end of line termination. The DIGIT
terminal contains all digits. The SP terminal corresponds to the white space characters. The usercommand is composed
of two strings separated by white space. In the ABNF rules that define the messages used by Internet applications, the
commands are case-insensitive. The rule “user” corresponds to all possible cases of the letters that compose the
word between brackets, e.g. user, uSeR, USER, usER, ... A username contains at least one letter and up to 8 letters.
User names are case-sensitive as they are not defined as a string between brackets. The password rule indicates that a
password starts with a letter and can contain any number of letters or digits. The white space and the control characters
cannot appear in a password defined by the above rule.

Besides character strings, some applications also need to exchange 16 bits and 32 bits fields such as integers. A naive
solution would have been to send the 16- or 32-bits field as it is encoded in the host’s memory. Unfortunately, there are
different methods to store 16- or 32-bits fields in memory. Some CPUs store the most significant byte of a 16-bits field
in the first address of the field while others store the least significant byte at this location. When networked applications
running on different CPUs exchange 16 bits fields, there are two possibilities to transfer them over the transport service

* send the most significant byte followed by the least significant byte
* send the least significant byte followed by the most significant byte

The first possibility was named big-endian in a note written by Cohen [Cohen1980] while the second was named
little-endian. Vendors of CPUs that used big-endian in memory insisted on using big-endian encoding in networked
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applications while vendors of CPUs that used little-endian recommended the opposite. Several studies were written
on the relative merits of each type of encoding, but the discussion became almost a religious issue [Cohen1980].
Eventually, the Internet chose the big-endian encoding, i.e. multi-byte fields are always transmitted by sending the
most significant byte first, REC 791 refers to this encoding as the network-byte order. Most libraries' used to write
networked applications contain functions to convert multi-byte fields from memory to the network byte order and the
reverse.

Besides 16 and 32 bit words, some applications need to exchange data structures containing bit fields of various lengths.
For example, a message may be composed of a 16 bits field followed by eight, one bit flags, a 24 bits field and two 8
bits bytes. Internet protocol specifications will define such a message by using a representation such as the one below.
In this representation, each line corresponds to 32 bits and the vertical lines are used to delineate fields. The numbers
above the lines indicate the bit positions in the 32-bits word, with the high order bit at position 0.

0 1 2 3
©012345678901234567890123456789¢01
E  n h s s S e e S e S S i e e ek e s e e A E Ah ik bk Ok P S

| First field (16 bits) |[A|B|C|D|E|F|G|H]| Second |
e S e R R R e L TP P T
| field (24 bits) | First Byte | Second Byte |

+-d-t-t-t-t-t-t-t-dt-t-t-t-t-F-t-t-t-t-t-t-t-t-t-t-F-t-t-F-+-+-+-+
Fig. 38: Message format

The message mentioned above will be transmitted starting from the upper 32-bits word in network byte order. The first
field is encoded in 16 bits. It is followed by eight one bit flags (A-H), a 24 bits field whose high order byte is shown
in the first line and the two low order bytes appear in the second line followed by two one byte fields. This ASCII
representation is frequently used when defining binary protocols. We will use it for all the binary protocols that are
discussed in this book.

The peer-to-peer model emerged during the last ten years as another possible architecture for networked applications. In
the traditional client-server model, hosts act either as servers or as clients and a server serves a large number of clients.
In the peer-to-peer model, all hosts act as both servers and clients and they play both roles. The peer-to-peer model has
been used to develop various networked applications, ranging from Internet telephony to file sharing or Internet-wide
filesystems. A detailed description of peer-to-peer applications may be found in [BYL2008]. Surveys of peer-to-peer
protocols and applications may be found in [AS2004] and [LCP2005].

2.4 The transport layer

A network is always designed and built to enable applications running on hosts to exchange information. In a previous
chapter, we have explained the principles of the network layer that enables hosts connected to different types of datalink
layers to exchange information through routers. These routers act as relays in the network layer and ensure the delivery
of packets between any pair of hosts attached to the network.

The network layer ensures the delivery of packets on a hop-by-hop basis through intermediate nodes. As such, it
provides a service to the upper layer. In practice, this layer is usually the transport layer that improves the service
provided by the network layer to make it usable by applications.

Most networks use a datagram organization and provide a simple service which is called the connectionless service.

! For example, the htonl(3) (resp. ntohl(3)) function the standard C library converts a 32-bits unsigned integer from the byte order used
by the CPU to the network byte order (resp. from the network byte order to the CPU byte order). Similar functions exist in other programming
languages.

52 Chapter 2. Part 1: Principles


https://datatracker.ietf.org/doc/html/rfc791.html

Computer Networking : Principles, Protocols and Practice, Release 2021

Transport Segments Transport

Network Network Network

Datalink Datalink Datalink
Physical layer Physical layer Physical layer

Fig. 39: The transport layer

The figure below provides a representation of the connectionless service as a time-sequence diagram. The user on the
left, having address S, issues a Data.request primitive containing Service Data Unit (SDU) M that must be delivered
by the service provider to destination D. The dashed line between the two primitives indicates that the Data.indication
primitive that is delivered to the user on the right corresponds to the Data.request primitive sent by the user on the left.

Source Destination
DATA.req(S.D."M")

DATA.in D."M"

There are several possible implementations of the connectionless service. Before studying these realizations, it is useful
to discuss the possible characteristics of the connectionless service. A reliable connectionless service is a service where
the service provider guarantees that all SDUs submitted in Data.requests by a user will eventually be delivered to their
destination. Such a service would be very useful for users, but guaranteeing perfect delivery is difficult in practice. For
this reason, network layers usually support an unreliable connectionless service.

An unreliable connectionless service may suffer from various types of problems compared to a reliable connectionless
service. First of all, an unreliable connectionless service does not guarantee the delivery of all SDUs. This can be
expressed graphically by using the time-sequence diagram below.

Source Destination
DATA.req(S.D.,"M")

D(b)

\(

In practice, an unreliable connectionless service will usually deliver a large fraction of the SDUs. However, since the
delivery of SDUs is not guaranteed, the user must be able to recover from the loss of any SDU.

A second imperfection that may affect an unreliable connectionless service is that it may duplicate SDUs. Some packets
may be duplicated in a network and be delivered twice to their destination. This is illustrated by the time-sequence
diagram below.

Source Destination
DATA.req(S.D."M") >

P> DATA.ind(S.D."M") >

DATA.ind(S.D."M") >

Finally, some unreliable connectionless service providers may deliver to a destination a different SDU than the one that
was supplied in the Data.request. This is illustrated in the figure below.
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Source Destination
DATA.r D."abc"

As the transport layer is built on top of the network layer, it is important to know the key features of the network layer
service. In this book, we only consider the connectionless network layer service which is the most widespread. Its
main characteristics are :

* the connectionless network layer service can only transfer SDUs of limited size

* the connectionless network layer service may discard SDUs

o the connectionless network layer service may corrupt SDUs

* the connectionless network layer service may delay, reorder or even duplicate SDUs

These imperfections of the connectionless network layer service are caused by the operations of the network layer. This
layer is able to deliver packets to their intended destination, but it cannot guarantee their delivery. The main cause of
packet losses and errors are the buffers used on the network nodes. If the buffers of one of these nodes becomes full,
all arriving packets must be discarded. This situation frequently happens in practice’. Transmission errors can also
affect packet transmissions on links where reliable transmission techniques are not enabled or because of errors in the
buffers of the network nodes.

2.4.1 Transport layer services

When two applications need to communicate, they need to structure their exchange of information. Structuring this
exchange of information requires solving two different problems. The first problem is how to represent the information
being exchanged knowing that the two applications may be running on hosts that use different operating systems,
different processors and have different conventions to store information. This requires a common syntax to transfer
the information between the two applications. For this chapter, let us assume that this syntax exists and that the two
applications simply need to exchange bytes. We will discuss later how more complex data can be encoded as sequences
of bytes to be exchanged. The second problem is how to organize the interactions between the application and the
underlying network. From the application’s viewpoint, the network will appear as the transport layer service. This
transport layer can provide three types of services to the applications :

¢ the connectionless service
e the connection oriented service

* the request-response service

The connectionless service

The connectionless service that we have described earlier is frequently used by users who need to exchange small SDUs.
It can be easily built on top of the connectionless network layer service that we have described earlier. Users needing
to either send or receive several different and potentially large SDUs, or who need structured exchanges often prefer
the connection-oriented service.

2 In the application layer, most servers are implemented as processes. The network and transport layer on the other hand are usually implemented
inside the operating system and the amount of memory that they can use is limited by the amount of memory allocated to the entire kernel.
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The connection-oriented service

An invocation of the connection-oriented service is divided into three phases. The first phase is the establishment of a
connection. A connection is a temporary association between two users through a service provider. Several connections
may exist at the same time between any pair of users. Once established, the connection is used to transfer SDUs.
Connections usually provide one bidirectional stream supporting the exchange of SDUs between the two users that are
associated through the connection. This stream is used to transfer data during the second phase of the connection called
the data transfer phase. The third phase is the termination of the connection. Once the users have finished exchanging
SDUs, they request the service provider to terminate the connection. As we will see later, there are also some cases
where the service provider may need to terminate a connection itself.

The establishment of a connection can be modeled by using four primitives : Connect.request, Connect.indication,
Connect.response and Connect.confirm. The Connect.request primitive is used to request the establishment of a con-
nection. The main parameter of this primitive is the address of the destination user. The service provider delivers a
Connect.indication primitive to inform the destination user of the connection attempt. If it accepts to establish a con-
nection, it responds with a Connect.response primitive. At this point, the connection is considered to be established and
the destination user can start sending SDUs over the connection. The service provider processes the Connect.response
and will deliver a Connect.confirm to the user who initiated the connection. The delivery of this primitive terminates
the connection establishment phase. At this point, the connection is considered to be open and both users can send
SDUs. A successful connection establishment is illustrated below.

Source Provider Destination
CONNECT.req >

P> CONNECT.ind >

< CONNECT.resp

< CONNECT.conf

The example above shows a successful connection establishment. However, in practice not all connections are success-
fully established. One reason is that the destination user may not agree, for policy or performance reasons, to establish
a connection with the initiating user at this time. In this case, the destination user responds to the Connect.indication
primitive by a Disconnect.request primitive that contains a parameter to indicate why the connection has been refused.
The service provider will then deliver a Disconnect.indication primitive to inform the initiating user.

Source Provider Destination
CONNECT.req i

P> CONNECT.ind >

< DISCONNECT.req

DI NNECT.in <

A second reason is when the service provider is unable to reach the destination user. This might happen because the
destination user is not currently attached to the network or due to congestion. In these cases, the service provider
responds to the Connect.request with a Disconnect.indication primitive whose reason parameter contains additional
information about the failure of the connection.

Source Provider Destination

CONNECT.req
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Once the connection has been established, the service provider supplies two data streams to the communicating users.
The first data stream can be used by the initiating user to send SDUs. The second data stream allows the responding
user to send SDUs to the initiating user. The data streams can be organized in different ways. A first organization is
the message-mode transfer. With the message-mode transfer, the service provider guarantees that one and only one
Data.indication will be delivered to the endpoint of the data stream for each Data.request primitive issued by the other
endpoint. The message-mode transfer is illustrated in the figure below. The main advantage of the message-transfer
mode is that the recipient receives exactly the SDUs that were sent by the other user. If each SDU contains a command,
the receiving user can process each command as soon as it receives a SDU.

Source Provider Destination
CONNECT.req >

Pl CONNECT.ind >
< CONNECT.resp

NNECT.conf <

DATA.req("A") i

P> DATA.ind("A") >

DATA.req("BCD") >

P> DATA.ind("BCD") >

DATA.req("EF") 'S

DATA.ind("EF") >

Unfortunately, the message-mode transfer is not widely used on the Internet. On the Internet, the most popular
connection-oriented service transfers SDUs in stream-mode. With the stream-mode, the service provider supplies a
byte stream that links the two communicating users. The sending user sends bytes by using Data.request primitives
that contain sequences of bytes as SDUs. The service provider delivers SDUs containing consecutive bytes to the re-
ceiving user by using Data.indication primitives. The service provider ensures that all the bytes sent at one end of the
stream are delivered correctly in the same order at the other endpoint. However, the service provider does not attempt
to preserve the boundaries of the SDUs. There is no relation enforced by the service provider between the number
of Data.request and the number of Data.indication primitives. The stream-mode is illustrated in the figure below. In
practice, a consequence of the utilization of the stream-mode is that if the users want to exchange structured SDUs,
they will need to provide the mechanisms that allow the receiving user to separate successive SDUs in the byte stream
that it receives. Application layer protocols often use specific delimiters such as the end of line character to delineate
SDUs in a bytestream.
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Source Provider Destination
CONNECT.req >

P> CONNECT.ind >

< CONNECT.resp

< CONNECT.conf

DATA.req("AB") >

» DATA.ind("A") >
DATA.ind("B") >

DATA.req("CD") ...
----------- > DATA.ind("C") >

DATA.req("EF") 'S

P> DATA.ind("DEFE") >

The third phase of a connection is its release. As a connection involves three parties (two users and one service
provider), any of them can request the termination of the connection. Usually, connections are terminated upon request
of one user once the data transfer is finished. However, sometimes the service provider may be forced to terminate
a connection. This can be due to lack of resources inside the service provider or because one of the users is not
reachable anymore through the network. In this case, the service provider will issue Disconnect.indication primitives
to both users. These primitives will contain, as parameter, some information about the reason for the termination of the
connection. Unfortunately, as illustrated in the figure below, when a service provider is forced to terminate a connection
it cannot guarantee that all SDUs sent by each user have been delivered to the other user. This connection release is
said to be abrupt as it can cause losses of data.

Source Provider Destination

Connection Connection
established established

DATA.req("A") >

» DATA.ind("A") >

DATA.req("B") >

< DATA.req("C")

DI NNECT.in DI NNECT.in

An abrupt connection release can also be triggered by one of the users. If a user needs, for any reason, to terminate a
connection quickly, it can issue a Disconnect.request primitive and to request an abrupt release. The service provider
will process the request, stop the two data streams and deliver the Disconnect.indication primitive to the remote user
as soon as possible. As illustrated in the figure below, this abrupt connection release may cause losses of SDUs.
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Source Provider Destination
Connection Connection
established established
DATA.req("A" Bl
"""""""""""""""" > DATA.ind("A") >
DATA.req("B") ,\(
/ < DATA.req("C")
DISCONNECT.req(abrupt) N
----------------- > DISCONNECT.nd 3,

To ensure a reliable delivery of the SDUs sent by each user over a connection, we need to consider the two streams
that compose a connection as independent. A user should be able to release the stream that it uses to send SDUs
once it has sent all the SDUs that it planned to send over this connection, but still continue to receive SDUs over
the opposite stream. This graceful connection release is usually performed as shown in the figure below. One user
issues a Disconnect.request primitive to its provider once it has issued all its Data.request primitives. The service
provider will wait until all Data.indication primitives have been delivered to the receiving user before issuing the
Disconnnect.indication primitive. This primitive informs the receiving user that it will no longer receive SDUs over
this connection, but it is still able to issue Data.request primitives on the stream in the opposite direction. Once the user
has issued all of its Data.request primitives, it issues a Disconnnect.request primitive to request the termination of the
remaining stream. The service provider will process the request and deliver the corresponding Disconnect.indication to
the other user once it has delivered all the pending Data.indication primitives. At this point, all data has been delivered,

the two streams have been released successfully and the connection is completely closed.

Source Provider Destination
Connection Connection
established established
DATA.req("A") pi-....
................. DATA.ind("A") >
DATA.req("B") Bl
---------------- > DATA.ind("B") >
DISCONNECT req(gracefully,|.
------------------ Pl DISCONNECT.ind(graceful)’
______ < DATA.req("C")
< DATAUNA("C") | g
______ DI NNECT.r raceful
‘DISCONNECT.ind(gracefuI) P
Connection Connection
closed closed

Note: Reliability of the connection-oriented service
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An important point to note about the connection-oriented service is its reliability. A connection-oriented service can
only guarantee the correct delivery of all SDUs provided that the connection has been released gracefully. This implies
that while the connection is active, there is no guarantee for the actual delivery of the SDUs exchanged as the connection
may need to be abruptly released at any time.

The request-response service

The request-response service is a compromise between the connectionless service and the connection-oriented service.
Many applications need to send a small amount of data and receive a small amount of information back. This is similar
to procedure calls in programming languages. A call to a procedure takes a few arguments and returns a simple answer.
In a network, it is sometimes useful to execute a procedure on a different host and receive the result of the computation.
Executing a procedure on another host is often called Remote Procedure Call. It is possible to use the connectionless
service for this application. However, since this service is usually unreliable, this would force the application to deal
with any type of error that could occur. Using the connection oriented service is another alternative. This service
ensures the reliable delivery of the data, but a connection must be created before the beginning of the data transfer.
This overhead can be important for applications that only exchange a small amount of data.

The request-response service allows to efficiently exchange small amounts of information in a request and associate it
with the corresponding response. This service can be depicted by using the time-sequence diagram below.

Host A Service Host B
DATA.req(request

> DATA.ind( regugsl),
QATA.rgsp( response)

DQTA.confirm(responsi“

Note: Services and layers

In the previous sections, we have described services that are provided by the transport layer. However, it is important
to note that the notion of service is more general than in the transport layer. As explained earlier, the network layer
also provides a service, which in most networks is an unreliable connectionless service. There are network layers that
provide a connection-oriented service. Similarly, the datalink layer also provides services. Some datalink layers will
provide a connectionless service. This will be the case in Local Area Networks for examples. Other datalink layers,
e.g. in public networks, provide a connection oriented service.

2.4.2 The transport layer

The transport layer entity interacts with both a user in the application layer and the network layer. It improves the
network layer service to make it usable by applications. From the application’s viewpoint, the main limitations of the
network layer service come from its unreliable service:

* the network layer may corrupt data;

¢ the network layer may loose data;

* the network layer may not deliver data in-order;

* the network layer has an upper bound on maximum length of the data;

* the network layer may duplicate data.
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To deal with these issues, the transport layer includes several mechanisms that depend on the service that it provides.
It interacts with both the applications and the underlying network layer.

Datareq Data.ind
| | Transport t
I entity | ‘

®

Send Recvd
Fig. 40: Interactions between the transport layer, its user, and its network layer provider

We have already described in the datalink layers mechanisms to deal with data losses and transmission errors. These
techniques are also used in the transport layer.

Connectionless transport

The simplest service that can be provided in the transport layer is the connectionless transport service. Compared to
the connectionless network layer service, this transport service includes two additional features :

* an error detection mechanism that allows detecting corrupted data

* a multiplexing technique that enables several applications running on one host to exchange information with
another host

To exchange data, the transport protocol encapsulates the SDU produced by its user inside a segment. The segment is
the unit of transfer of information in the transport layer. Transport layer entities always exchange segments. When a
transport layer entity creates a segment, this segment is encapsulated by the network layer into a packet which contains
the segment as its payload and a network header. The packet is then encapsulated in a frame to be transmitted in the
datalink layer.

Transport Segments Transport

Network Network Network

Datalink Datalink Datalink
Physical layer Physical layer Physical layer

Fig. 41: Segments are the unit of transfer at transport layer

A segment also contains control information, usually stored inside a header and the payload that comes from the
application. To detect transmission errors, transport protocols rely on checksums or CRCs like the datalink layer
protocols.
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Compared to the connectionless network layer service, the transport layer service allows several applications running on
a host to exchange SDUs with several other applications running on remote hosts. Let us consider two hosts, e.g. a client
and a server. The network layer service allows the client to send information to the server, but if an application running
on the client wants to contact a particular application running on the server, then an additional addressing mechanism is
required. The network layer address identifies a host, but it is not sufficient to differentiate the applications running on
a host. Port numbers provides this additional addressing. When a server application is launched on a host, it registers
a port number. This port number will be used by the clients to contact the server process.

The figure below shows a typical usage of port numbers. The client process uses port number /234 while the server
process uses port number 5678. When the client sends a request, it is identified as originating from port number /234
on the client host and destined to port number 5678 on the server host. When the server process replies to this request,
the server’s transport layer returns the reply as originating from port 5678 on the server host and destined to port /234
on the client host.

Request

Source port: 1234
Destination port: 5678

Client Server

Source port: 5678
Destination port: 1234

Response

Fig. 42: Utilization of port numbers

To support the connection-oriented service, the transport layer needs to include several mechanisms to enrich the
connectionless network-layer service. We discuss these mechanisms in the following sections.

Connection establishment

Like the connectionless service, the connection-oriented service allows several applications running on a given host
to exchange data with other hosts. The port numbers described above for the connectionless service are also used by
the connection-oriented service to multiplex several applications. Similarly, connection-oriented protocols use check-
sums/CRCs to detect transmission errors and discard segments containing an invalid checksum/CRC.

An important difference between the connectionless service and the connection-oriented one is that the transport entities
in the latter maintain some state during lifetime of the connection. This state is created when a connection is established
and is removed when it is released.

The simplest approach to establish a transport connection would be to define two special control segments : CR (Con-
nection Request) and CA (Connection Acknowledgment). The CR segment is sent by the transport entity that wishes
to initiate a connection. If the remote entity wishes to accept the connection, it replies by sending a CA segment. The
CR and CA segments contain port numbers that allow identifying the communicating applications. The transport con-
nection is considered to be established once the CA segment has been received. At that point, data segments can be
sent in both directions.
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Source Provider Destination
CONNECT.req pio...
T GR_
----------- » CONNECT.ind >
.-1d CONNECT.resp
GAeT
< CONNECT.conf <«
Connection Connection
established established

Unfortunately, this scheme is not sufficient given the unreliable network layer. Since the network layer is imperfect, the
CR or CA segments can be lost, delayed, or suffer from transmission errors. To deal with these problems, the control
segments must be protected by a CRC or a checksum to detect transmission errors. Furthermore, since the CA segment
acknowledges the reception of the CR segment, the CR segment can be protected using a retransmission timer.

Unfortunately, this scheme is not sufficient to ensure the reliability of the transport service. Consider for example a
short-lived transport connection where a single, but important transfer (e.g. money transfer from a bank account) is
sent. Such a short-lived connection starts with a CR segment acknowledged by a CA segment, then the data segment
is sent, acknowledged and the connection terminates. Unfortunately, as the network layer service is unreliable, delays
combined to retransmissions may lead to the situation depicted in the figure below, where a delayed CR and data
segments from a former connection are accepted by the receiving entity as valid segments, and the corresponding data
is delivered to the user. Duplicating SDUs is not acceptable, and the transport protocol must solve this problem.

Source Provider Destination
CONNECT.req Bl
Tl GR__
---------- Pl CONNECT.ind >
-1 CONNECT.resp
CGA e
< CONNECT.conf <
First connection First connection
established established
First connection First connection
closed closed
“plHow to detect duplicates ? ,
CA ----------
P
.......... D»

To avoid these duplicates, transport protocols require the network layer to bound the Maximum Segment Lifetime (MSL).
The organization of the network must guarantee that no segment remains in the network for longer than MSL seconds.
For example, on today’s Internet, MSL is expected to be 2 minutes. To avoid duplicate transport connections, transport
protocol entities must be able to safely distinguish between a duplicate CR segment and a new CR segment, without
forcing each transport entity to remember all the transport connections that it has established in the past.

A classical solution to avoid remembering the previous transport connections to detect duplicates is to use a clock
inside each transport entity. This transport clock has the following characteristics :

« the transport clock is implemented as a k bits counter and its clock cycle is such that 2% x ¢ycle >> M SL. Fur-
thermore, the transport clock counter is incremented every clock cycle and after each connection establishment.
This clock is illustrated in the figure below.
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* the transport clock must continue to be incremented even if the transport entity stops or reboots

Transport clock
21

MEL,
_'H‘_ Time

Fig. 43: Transport clock

It should be noted that transport clocks do not need and usually are not synchronized to the real-time clock. Precisely
synchronizing real-time clocks is an interesting problem, but it is outside the scope of this document. See [Mills2006]
for a detailed discussion on synchronizing the real-time clock.

This transport clock can now be combined with an exchange of three segments, called the three way handshake, to
detect duplicates. This three way handshake occurs as follows :

1. The initiating transport entity sends a CR segment. This segment requests the establishment of a
transport connection. It contains a port number (not shown in the figure) and a sequence number
(seq=x in the figure below) whose value is extracted from the transport clock. The transmission of
the CR segment is protected by a retransmission timer.

2. The remote transport entity processes the CR segment and creates state for the connection attempt. At
this stage, the remote entity does not yet know whether this is a new connection attempt or a duplicate
segment. It returns a CA segment that contains an acknowledgment number to confirm the reception
of the CR segment (ack=x in the figure below) and a sequence number (seq=y in the figure below)
whose value is extracted from its transport clock. At this stage, the connection is not yet established.

3. The initiating entity receives the CA segment. The acknowledgment number of this segment confirms
that the remote entity has correctly received the CR segment. The transport connection is considered
to be established by the initiating entity and the numbering of the data segments starts at sequence
number x. Before sending data segments, the initiating entity must acknowledge the received CA
segments by sending another CA segment.

4. The remote entity considers the transport connection to be established after having received the seg-
ment that acknowledges its CA segment. The numbering of the data segments sent by the remote
entity starts at sequence number y.

The three way handshake is illustrated in the figure below.

Thanks to the three way handshake, transport entities avoid duplicate transport connections. This is illustrated by
considering the three scenarios below.

The first scenario is when the remote entity receives an old CR segment. It considers this CR segment as a connection
establishment attempt and replies by sending a CA segment. However, the initiating host cannot match the received CA
segment with a previous connection attempt. It sends a control segment (REJECT in the figure below) to cancel the
spurious connection attempt. The remote entity cancels the connection attempt upon reception of this control segment.

A second scenario is when the initiating entity sends a CR segment that does not reach the remote entity and receives
a duplicate CA segment from a previous connection attempt. This duplicate CA segment cannot contain a valid ac-
knowledgment for the CR segment as the sequence number of the CR segment was extracted from the transport clock
of the initiating entity. The CA segment is thus rejected and the CR segment is retransmitted upon expiration of the
retransmission timer.
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- current_seq = x

Connection established
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Fig. 44: Three-way handshake

CR (seg=2)

\

REJECT (ack=y)

No connection is established

Host B

Sequence number y read from
local transport clock

CA sent to ack CR

Local state :
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- Wait for ack for CA(y)

Local state :
Connectionto A :
- established

- current_seq=y
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used for the data segments
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Fig. 45: Three-way handshake : recovery from a duplicate CR
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Connection established

Fig. 46: Three-way handshake : recovery from a duplicate CA

The last scenario is less likely, but it is important to consider it as well. The remote entity receives an old CR segment.
It notes the connection attempt and acknowledges it by sending a CA segment. The initiating entity does not have a
matching connection attempt and replies by sending a REJECT. Unfortunately, this segment never reaches the remote
entity. Instead, the remote entity receives a retransmission of an older CA segment that contains the same sequence
number as the first CR segment. This CA segment cannot be accepted by the remote entity as a confirmation of the
transport connection as its acknowledgment number cannot have the same value as the sequence number of the first CA
segment.

Data transfer

Now that the transport connection has been established, it can be used to transfer data. To ensure a reliable delivery of
the data, the transport protocol will include sliding windows, retransmission timers and go-back-n or selective repeat.
However, we cannot simply reuse the techniques from the datalink because a transport protocol needs to deal with more
types of errors than a reliable protocol in datalink layer. The first difference between the two layers is the transport layer
must face with more variable delays. In the datalink layer, when two hosts are connected by a link, the transmission
delay or the round-trip-time over the link is almost fixed. In a network that can span the globe, the delays and the round-
trip-times can vary significantly on a per packet basis. This variability can be caused by two factors. First, packets sent
through a network do not necessarily follow the same path to reach their destination. Second, some packets may be
queued in the buffers of routers when the load is high and these queuing delays can lead to increased end-to-end delays.
A second difference between the datalink layer and the transport layer is that a network does not always deliver packets
in sequence. This implies that packets may be reordered by the network. Furthermore, the network may sometimes
duplicate packets. The last issue that needs to be dealt with in the transport layer is the transmission of large SDUs.
In the datalink layer, reliable protocols transmit small frames. Applications could generate SDUs that are much larger
than the maximum size of a packet in the network layer. The transport layer needs to include mechanisms to fragment
and reassemble these large SDUs.

To deal with all these characteristics of the network layer, we need to adapt the techniques that we have introduced in
the datalink layer.

The first point which is common between the two layers is that both use CRCs or checksums to detect transmission
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Fig. 47: Three-way handshake : recovery from duplicates CR and CA

errors. Each segment contains a CRC/checksum which is computed over the entire segment (header and payload) by the
sender and inserted in the header. The receiver recomputes the CRC/checksum for each received segment and discards
all segments with an invalid CRC.

Reliable transport protocols also use sequence numbers and acknowledgment numbers. While reliable protocols in the
datalink layer use one sequence number per frame, reliable transport protocols consider all the data transmitted as a
stream of bytes. In these protocols, the sequence number placed in the segment header corresponds to the position
of the first byte of the payload in the bytestream. This sequence number allows detecting losses but also enables the
receiver to reorder the out-of-sequence segments. This is illustrated in the figure below.

Host A T
MM)_} """
................... 1:abcde
______________________ »Mﬁbﬁ.‘i@.’
..................... 6:fghiikl
______________________ »Mgmlﬂ)_»

Using sequence numbers to count bytes has also one advantage when the transport layer needs to fragment SDUs in
several segments. The figure below shows the fragmentation of a large SDU in two segments. Upon reception of the
segments, the receiver will use the sequence numbers to correctly reorder the data.

Host A Host B
DATA.r fahijkl)

-------------------- > FATA.ind(abcdefghi'; )

Compared to reliable protocols in the datalink layer, reliable transport protocols encode their sequence numbers using
more bits. 32 bits and 64 bits sequence numbers are frequent in the transport layer while some datalink layer protocols
encode their sequence numbers in an 8 bits field. This large sequence number space is motivated by two reasons. First,
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since the sequence number is incremented for each transmitted byte, a single segment may consume one or several
thousands of sequence numbers. Second, a reliable transport protocol must be able to detect delayed segments. This
can only be done if the number of bytes transmitted during the MSL period is smaller than the sequence number space.
Otherwise, there is a risk of accepting duplicate segments.

Go-back-n and selective repeat can be used in the transport layer as in the datalink layer. Since the network layer does
not guarantee an in-order delivery of the packets, a transport entity should always store the segments that it receives
out-of-sequence. For this reason, most transport protocols will opt for some form of selective repeat mechanism.

In the datalink layer, the sliding window has usually a fixed size which depends on the amount of buffers allocated to the
datalink layer entity. Such a datalink layer entity usually serves one or a few network layer entities. In the transport layer,
the situation is different. A single transport layer entity serves a large and varying number of application processes.
Each transport layer entity manages a pool of buffers that needs to be shared between all these processes. Transport
entity are usually implemented inside the operating system kernel and shares memory with other parts of the system.
Furthermore, a transport layer entity must support several (possibly hundreds or thousands) of transport connections
at the same time. This implies that the memory which can be used to support the sending or the receiving buffer of
a transport connection may change during the lifetime of the connection® . Thus, a transport protocol must allow the
sender and the receiver to adjust their window sizes.

To deal with this issue, transport protocols allow the receiver to advertise the current size of its receiving window in
all the acknowledgments that it sends. The receiving window advertised by the receiver bounds the size of the sending
buffer used by the sender. In practice, the sender maintains two state variables : swin, the size of its sending window
(that may be adjusted by the system) and rwin, the size of the receiving window advertised by the receiver. At any
time, the number of unacknowledged segments cannot be larger than min(swin, rwin)* . The utilization of dynamic
windows is illustrated in the figure below.

The receiver may adjust its advertised receive window based on its current memory consumption, but also to limit the
bandwidth used by the sender. In practice, the receive buffer can also shrink as the application may not able to process
the received data quickly enough. In this case, the receive buffer may be completely full and the advertised receive
window may shrink to 0. When the sender receives an acknowledgment with a receive window set to 0, it is blocked
until it receives an acknowledgment with a positive receive window. Unfortunately, as shown in the figure below, the
loss of this acknowledgment could cause a deadlock as the sender waits for an acknowledgment while the receiver is
waiting for a data segment.

To solve this problem, transport protocols rely on a special timer : the persistence timer. This timer is started by the
sender whenever it receives an acknowledgment advertising a receive window set to 0. When the timer expires, the
sender retransmits an old segment in order to force the receiver to send a new acknowledgment, and hence send the
current receive window size.

To conclude our description of the basic mechanisms found in transport protocols, we still need to discuss the impact of
segments arriving in the wrong order. If two consecutive segments are reordered, the receiver relies on their sequence
numbers to reorder them in its receive buffer. Unfortunately, as transport protocols reuse the same sequence number
for different segments, if a segment is delayed for a prolonged period of time, it might still be accepted by the receiver.
This is illustrated in the figure below where segment D(1,b) is delayed.

To deal with this problem, transport protocols combine two solutions. First, they use 32 bits or more to encode the
sequence number in the segment header. This increases the overhead, but also increases the delay between the trans-
mission of two different segments having the same sequence number. Second, transport protocols require the network
layer to enforce a Maximum Segment Lifetime (MSL). The network layer must ensure that no packet remains in the
network for more than MSL seconds. In the Internet the MSL is assumed® to be 2 minutes RFC 793. Note that this
limits the maximum bandwidth of a transport protocol. If it uses n bits to encode its sequence numbers, then it cannot
send more than 2" segments every MSL seconds.

3 For a discussion on how the sending buffer can change, see e.g. [SMM1998]

4 Note that if the receive window shrinks, it might happen that the sender has already sent a segment that is not anymore inside its window. This
segment will be discarded by the receiver and the sender will retransmit it later.

5 In reality, the Internet does not strictly enforce this MSL. However, it is reasonable to expect that most packets on the Internet will not remain
in the network during more than 2 minutes. There are a few exceptions to this rule, such as RFC 1149 whose implementation is described in
http://www.blug.linux.no/rfc1149/ but there are few real links supporting RFC 1149 in the Internet.

2.4. The transport layer 67


https://datatracker.ietf.org/doc/html/rfc793.html
https://datatracker.ietf.org/doc/html/rfc1149.html
http://www.blug.linux.no/rfc1149/
https://datatracker.ietf.org/doc/html/rfc1149.html

Computer Networking : Principles, Protocols and Practice, Release 2021

A B
Swin=3, rwin=1 Rwin=1

@ 123 Data.req(a)
“boa)

_—

Ems

Data.ind(a) “ﬁ| 213

(OK,0,w=1)
of1]23 |
Data.req(b)
C(OK,0,w=3) ﬁvna?r;bli-:ffers become
Data.req(c) (1,b) 0123
Swin=3, rwin=3
0i23] Datareq(d) Data.ind(b)

—_—

7 0]1[2 3]

C{CII'C_Z_,__'! w=3)1

Fig. 48: Dynamic receiving window
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Fig. 49: Risk of deadlock with dynamic windows

68 Chapter 2. Part 1: Principles



Computer Networking : Principles, Protocols and Practice, Release 2021
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Fig. 50: Ambiguities caused by excessive delays

Connection release
When we discussed the connection-oriented service, we mentioned that there are two types of connection releases :
abrupt release and graceful release.

The first solution to release a transport connection is to define a new control segment (e.g. the DR segment for Dis-
connection Request) and consider the connection to be released once this segment has been sent or received. This is
illustrated in the figure below.

CR (seq=z)

CA (seq=z, ack=w)
Data.req() gm
Data-requ—-m .Data.ind()

Disc.req/()

. Connection closed
Disc.req()

Connection closed

These segments will not be delivered !
Fig. 51: Abrupt connection release

As the entity that sends the DR segment cannot know whether the other entity has already sent all its data on the
connection, SDUs can be lost during such an abrupt connection release.

The second method to release a transport connection is to release independently the two directions of data transfer.
Once a user of the transport service has sent all its SDUs, it performs a DISCONNECT req for its direction of data
transfer. The transport entity sends a control segment to request the release of the connection after the delivery of
all previous SDUs to the remote user. This is usually done by placing in the DR the next sequence number and by
delivering the DISCONNECT.ind only after all previous DATA.ind. The remote entity confirms the reception of the
DR segment and the release of the corresponding direction of data transfer by returning an acknowledgment. This is
illustrated in the figure below.
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Fig. 52: Graceful connection release

2.5 Naming and addressing

The network and the transport layers rely on addresses that are encoded as fixed size bit strings. A network layer address
uniquely identifies a host. Several transport layer entities can use the service of the same network layer. For example,
a reliable transport protocol and a connectionless transport protocol can coexist on the same host. In this case, the
network layer multiplexes the segments produced by these two protocols. This multiplexing is usually achieved by
placing in the network packet header a field that indicates which transport protocol should process the segment. Given
that there are few different transport protocols, this field does not need to be long. The port numbers play a similar role
in the transport layer since they enable it to multiplex data from several application processes.

While addresses are natural for the network and transport layer entities, humans prefer to use names when interacting
with network services. Names can be encoded as a character string and a mapping services allows applications to map
a name into the corresponding address. Using names is friendlier for humans, but it also provides a level of indirection
which is very useful in many situations.

In the early days of the Internet, only a few hosts (mainly minicomputers) were connected to the network. The most
popular applications were remote login and file transfer. By 1983, there were already five hundred hosts attached to
the Internet [Zakon]. Each of these hosts were identified by a unique address. Forcing human users to remember
the addresses of the hosts that they wanted to use was not user-friendly. Humans prefer to remember names, and use
them when needed. Using names as aliases for addresses is a common technique in Computer Science. It simplifies
the development of applications and allows the developer to ignore the low level details. For example, by using a
programming language instead of writing machine code, a developer can write software without knowing whether the
variables that it uses are stored in memory or inside registers.

Because names are at a higher level than addresses, they allow (both in the example of programming above, and on the
Internet) to treat addresses as mere technical identifiers, which can change at will. Only the names are stable.

The first solution that allowed applications to use names was the /osts.zxt file. This file is similar to the symbol table
found in compiled code. It contains the mapping between the name of each Internet host and its associated address'.
It was maintained by the SRI International Network Information Center (NIC). When a new host was connected to the
network, the system administrator had to register its name and address at the NIC. The NIC updated the hosts.zxt file
on its server. All Internet hosts regularly retrieved the updated hosts.zxt file from the SRI server. This file was stored at
a well-known location on each Internet host (see RFC 952) and networked applications could use it to find the address
corresponding to a name.

! The hosts.1xt file is not maintained anymore. A historical snapshot from April 1984 is available from https://www.saildart.org/HOSTS. TXTY%
SBHST,NET%5D15
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A hosts.txt file can be used when there are up to a few hundred hosts on the network. However, it is clearly not suitable
for a network containing thousands or millions of hosts. A key issue in a large network is to define a suitable naming
scheme. The ARPANet initially used a flat naming space, i.e. each host was assigned a unique name. To limit collisions
between names, these names usually contained the name of the institution and a suffix to identify the host inside the
institution (a kind of poor man’s hierarchical naming scheme). On the ARPANet few institutions had several hosts
connected to the network.

However, the limitations of a flat naming scheme became clear before the end of the ARPANet and RFC 819 proposed
a hierarchical naming scheme. While RFC 819 discussed the possibility of organizing the names as a directed graph,
the Internet opted for a tree structure capable of containing all names. In this tree, the top-level domains are those that
are directly attached to the root. The first top-level domain was .arpa’. This top-level name was initially added as a
suffix to the names of the hosts attached to the ARPANet and listed in the hosts.txt file. In 1984, the .gov, .edu, .com,
.mil and .org generic top-level domain names were added. RFC 1032 proposed the utilization of the two letter /SO-
3166 country codes as top-level domain names. Since /SO-3166 defines a two letter code for each country recognized
by the United Nations, this allowed all countries to automatically have a top-level domain. These domains include .be
for Belgium, .fr for France, .us for the USA, .ie for Ireland or .#v for Tuvalu, a group of small islands in the Pacific or
.tm for Turkmenistan. The set of top-level domain-names is managed by the Internet Corporation for Assigned Names
and Numbers (/CANN). ICANN adds generic top-level domains that are not related to a country and the .cat top-level
domain has been registered for the Catalan language. There are ongoing discussions within /CANN to increase the
number of top-level domains.

Each top-level domain is managed by an organization that decides how sub-domain names can be registered. Most
top-level domain names use a first-come first served system, and allow anyone to register domain names, but there are
some exceptions. For example, .gov is reserved for the US government, .int is reserved for international organizations
and names in the .ca are mainly reserved for companies or users that are present in Canada. The syntax of the domain

Fig. 53: The tree of domain names

names has been defined more precisely in RFC 1035. This document recommends the following BNF for fully qualified
domain names (the domain names themselves have a much richer syntax).

Listing 1: BNF of the fully qualified host names

domain ::= subdomain | " "

subdomain ::= label | subdomain "." label

label ::= letter [ [ ldh-str ] let-dig ]

ldh-str ::= let-dig-hyp | let-dig-hyp ldh-str

let-dig-hyp ::= let-dig | "-"

let-dig ::= letter | digit

letter ::= any one of the 52 alphabetic characters A through Z in upper case and a.

(continues on next page)

2 See http://www.donelan.com/dnstimeline.html for a time line of DNS related developments.

2.5. Naming and addressing 71



https://datatracker.ietf.org/doc/html/rfc819.html
https://datatracker.ietf.org/doc/html/rfc819.html
https://datatracker.ietf.org/doc/html/rfc1032.html
http://en.wikipedia.org/wiki/.ca
https://datatracker.ietf.org/doc/html/rfc1035.html
http://www.donelan.com/dnstimeline.html

Computer Networking : Principles, Protocols and Practice, Release 2021

(continued from previous page)

—through z in lower case
digit ::= any one of the ten digits 0 through 9

This grammar specifies that a host name is an ordered list of labels separated by the dot (.) character. Each label can
contain letters, numbers and the hyphen character (-)*. Fully qualified domain names are read from left to right. The
first label is a hostname or a domain name followed by the hierarchy of domains and ending with the root implicitly
at the right. The top-level domain name must be one of the registered TLDs*. For example, in the above figure,
www.computer-networking.info corresponds to a host named www inside the computer-networking domain that belongs
to the info top-level domain.

Note: Some visually similar characters have different character codes

The Domain Name System was created at a time when the Internet was mainly used in North America. The initial
design assumed that all domain names would be composed of letters and digits RFC 1035. As Internet usage grew
in other parts of the world, it became important to support non-ASCII characters. For this, extensions have been
proposed to the Domain Name System RFC 3490. In a nutshell, the solution that is used to support Internationalized
Domain Names works as follows. First, it is possible to use most of the Unicode characters to encode domain names
and hostnames, with a few exceptions (for example, the dot character cannot be part of a name since it is used as a
separator). Once a domain name has been encoded as a series of Unicode characters, it is then converted into a string
that contains the xn-- prefix and a sequence of ASCII characters. More details on these algorithms can be found in
RFC 3490 and RFC 3492.

The possibility of using all Unicode characters to create domain names opened a new form of attack called the homo-
graph attack. This attack occurs when two character strings or domain names are visually similar but do not correspond
to the same server. A simple example is https://GOOGLE.COM and https://GOOGLE.COM. These two URLs are vi-
sually close but they correspond to different names (the first one does not point to a valid server’). With other Unicode
characters, it is possible to construct domain names are visually equivalent to existing ones. See [Zhe2017] for addi-
tional details on this attack.

This hierarchical naming scheme is a key component of the Domain Name System (DNS). The DNS is a distributed
database that contains mappings between fully qualified domain names and addresses. The DNS uses the client-server
model. The clients are hosts or applications that need to retrieve the mapping for a given name. Each nameserver
stores part of the distributed database and answers the queries sent by clients. There is at least one nameserver that is
responsible for each domain. In the figure below, domains are represented by circles and there are three hosts inside
domain dom (hl, h2 and h3) and three hosts inside domain a.sdom1.dom. As shown in the figure below, a sub-domain
may contain both host names and sub-domains. A nameserver that is responsible for domain dom can directly answer
the following queries :

* the address of any host residing directly inside domain dom (e.g. h2.dom in the figure above)

* the nameserver(s) that are responsible for any direct sub-domain of domain dom (i.e. sdomli.dom and sdom2.dom
in the figure above, but not z.sdomi.dom)

To retrieve the mapping for host h2.dom, a client sends its query to the name server that is responsible for domain .dom.
The name server directly answers the query. To retrieve a mapping for h3.a.sdom1.dom a DNS client first sends a query
to the name server that is responsible for the .dom domain. This nameserver returns the nameserver that is responsible
for the sdoml.dom domain. This nameserver can now be contacted to obtain the nameserver that is responsible for
the a.sdoml.dom domain. This nameserver can be contacted to retrieve the mapping for the h3.a.sdomli.dom name.
Thanks to this structure, it is possible for a DNS client to obtain the mapping of any host inside the .dom domain or

3 This specification evolved later to support domain names written by using other character sets than us-ASCII RFC 5890. This extension is
important to support languages other than English, but a detailed discussion is outside the scope of this document.

4 The official list of top-level domain names is maintained by JANA at http://data.iana.org/ TLD/tlds-alpha-by-domain.txt Additional information
about these domains may be found at http://en.wikipedia.org/wiki/List_of Internet_top-level _domains

5 It is interesting to note that to prevent any homograph attack, Google Inc. registered the g00gle.com domain name but does not apparently use
it.
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dom

hl h2 h3

Fig. 54: A simple tree of domain names

any of its subdomains. To ensure that any DNS client will be able to resolve any fully qualified domain name, there are
special nameservers that are responsible for the root of the domain name hierarchy. These nameservers are called root
nameserver.

Each root nameserver maintains the list® of all the nameservers that are responsible for each of the top-level domain
names and their addresses’. All root nameservers cooperate and provide the same answers. By querying any of the
root nameservers, a DNS client can obtain the nameserver that is responsible for any top-level-domain name. From
this nameserver, it is possible to resolve any domain name.

To be able to contact the root nameservers, each DNS client must know their addresses. This implies, that DNS clients
must maintain an up-to-date list of the addresses of the root nameservers. Without this list, it is impossible to contact
the root nameservers. Forcing all Internet hosts to maintain the most recent version of this list would be difficult from
an operational point of view. To solve this problem, the designers of the DNS introduced a special type of DNS server
: the DNS resolvers. A resolver is a server that provides the name resolution service for a set of clients. A network
usually contains a few resolvers. Each host in these networks is configured to send all its DNS queries via one of its
local resolvers. These queries are called recursive queries as the resolver must recursively send requests through the
hierarchy of nameservers to obtain the answer.

DNS resolvers have several advantages over letting each Internet host query directly nameservers. Firstly, regular
Internet hosts do not need to maintain the up-to-date list of the addresses of the root servers. Secondly, regular Internet
hosts do not need to send queries to nameservers all over the Internet. Furthermore, as a DNS resolver serves a large
number of hosts, it can cache the received answers. This allows the resolver to quickly return answers for popular DNS
queries and reduces the load on all DNS servers [JSBM2002].

6 A copy of the information maintained by each root nameserver is available at http:/www.internic.net/zones/root.zone

7 Until February 2008, the root DNS servers only had IPv4 addresses. IPv6 addresses were slowly added to the root DNS servers to avoid creating
problems as discussed in http://www.icann.org/en/committees/security/sacO18.pdf As of February 2021, there remain a few DNS root servers that
are still not reachable using IPv6. The full list is available at http://www.root-servers.org/
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2.5.1 Benefits of names

In addition to being more human friendly, using names instead of addresses inside applications has several important
benefits. To understand them, let us consider a popular application that provides information stored on servers. This
application involves clients and servers. The server provides information upon requests from client processes. A first
deployment of this application would be to rely only on addresses. In this case, the server process would be installed on
one host and the clients would connect to this server to retrieve information. Such a deployment has several drawbacks

« if the server process moves to another physical server, all clients must be informed about the new server address

« if there are many concurrent clients, the load of the server will increase without any possibility of adding another
server without changing the server addresses used by the clients

Using names solves these problems and provides additional benefits. If the clients are configured with the name of the
server, they will query the name service before contacting the server. The name service will resolve the name into the
corresponding address. If a server process needs to move from one physical server to another, it suffices to update the
name to address mapping on the name service to allow all clients to connect to the new server. The name service also
enables the servers to better sustain the load. Assume a very popular server which is accessed by millions of users.
This service cannot be provided by a single physical server due to performance limitations. Thanks to the utilization
of names, it is possible to scale this service by mapping a given name to a set of addresses. When a client queries the
name service for the server’s name, the name service returns one of the addresses in the set. Various strategies can be
used to select one particular address inside the set of addresses. A first strategy is to select a random address in the
set. A second strategy is to maintain information about the load on the servers and return the address of the less loaded
server. Note that the list of server addresses does not need to remain fixed. It is possible to add and remove addresses
from the list to cope with load fluctuations. Another strategy is to infer the location of the client from the name request
and return the address of the closest server.

Mapping a single name onto a set of addresses allows popular servers to dynamically scale. There are also benefits
in mapping multiple names, possibly a large number of them, onto a single address. Consider the case of information
servers run by individuals or SMEs. Some of these servers attract only a few clients per day. Using a single physical
server for each of these services would be a waste of resources. A better approach is to use a single server for a set of
services that are all identified by different names. This enables service providers to support a large number of servers
processes, identified by different names, onto a single physical server. If one of these server processes becomes very
popular, it will be possible to map its name onto a set of addresses to be able to sustain the load. There are some
deployments where this mapping is done dynamically in function of the load.

Names provide a lot of flexibility compared to addresses. For the network, they play a similar role as variables in
programming languages. No programmer using a high-level programming language would consider using hardcoded
values instead of variables. For the same reasons, all networked applications should depend on names and avoid dealing
with addresses as much as possible.

2.6 Sharing resources

A network is designed to support a potentially large number of users that exchange information with each other. These
users produce and consume information which is exchanged through the network. To support its users, a network uses
several types of resources. It is important to keep in mind the different resources that are shared inside the network.

The first and more important resource inside a network is the link bandwidth. There are two situations where link
bandwidth needs to be shared between different users. The first situation is when several hosts are attached to the
same physical link. This situation mainly occurs in Local Area Networks (LAN). A LAN is a network that efficiently
interconnects several hosts (usually a few dozens to a few hundreds) in the same room, building or campus. Consider
for example a network with five hosts. Any of these hosts needs to be able to exchange information with any of the
other hosts. A first organization for this LAN is the full-mesh.
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Fig. 55: A full-mesh network

The full-mesh is the most reliable and highest performing network to interconnect these five hosts. However, this
network organization has two important drawbacks. First, if a network contains n hosts, then % links are required.
If the network contains more than a few hosts, it becomes impossible to lay down the required physical links. Second,
if the network contains n hosts, then each host must have n — 1 interfaces to terminate n — 1 links. This is beyond
the capabilities of most hosts. Furthermore, if a new host is added to the network, new links have to be laid down and
one interface has to be added to each participating host. However, full-mesh has the advantage of providing the lowest
delay between the hosts and the best resiliency against link failures. In practice, full-mesh networks are rarely used
except when there are few network nodes and resiliency is key.

The second possible physical organization, which is also used inside computers to connect different extension cards, is
the bus. In a bus network, all hosts are attached to a shared medium, usually a cable through a single interface. When
one host sends an electrical signal on the bus, the signal is received by all hosts attached to the bus. A drawback of
bus-based networks is that if the bus is physically cut, then the network is split into two isolated networks. For this
reason, bus-based networks are sometimes considered to be difficult to operate and maintain, especially when the cable
is long and there are many places where it can break. Such a bus-based topology was used in early Ethernet networks.

Fig. 56: A network organized as a bus

A third organization of a computer network is a star topology. In such networks, hosts have a single physical interface
and there is one physical link between each host and the center of the star. The node at the center of the star can be
either a piece of equipment that amplifies an electrical signal, or an active device, such as a piece of equipment that
understands the format of the messages exchanged through the network. Of course, the failure of the central node
implies the failure of the network. However, if one physical link fails (e.g. because the cable has been cut), then only
one node is disconnected from the network. In practice, star-shaped networks are easier to operate and maintain than
bus-shaped networks. Many network administrators also appreciate the fact that they can control the network from a
central point. Administered from a Web interface, or through a console-like connection, the center of the star is a useful
point of control (enabling or disabling devices) and an excellent observation point (usage statistics).

A fourth physical organization of a network is the ring topology. Like the bus organization, each host has a single
physical interface connecting it to the ring. Any signal sent by a host on the ring will be received by all hosts attached
to the ring. From a redundancy point of view, a single ring is not the best solution, as the signal only travels in one
direction on the ring; thus if one of the links composing the ring is cut, the entire network fails. In practice, such rings
have been used in local area networks, but are now often replaced by star-shaped networks. In metropolitan networks,
rings are often used to interconnect multiple locations. In this case, two parallel links, composed of different cables,
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Fig. 57: A network organized as a star

are often used for redundancy. With such a dual ring, when one ring fails all the traffic can be quickly switched to the

other ring.

Fig. 58: A network organized as a ring

A fifth physical organization of a network is the tree. Such networks are typically used when a large number of customers
must be connected in a very cost-effective manner. Cable TV networks are often organized as trees.

Fig. 59: A network organized as a tree
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2.6.1 Sharing bandwidth

In all these networks, except the full-mesh, the link bandwidth is shared among all connected hosts. Various algorithms
have been proposed and are used to efficiently share the access to this resource. We explain several of them in the
Medium Access Control section below.

Note: Fairness in computer networks

Sharing resources is important to ensure that the network efficiently serves its user. In practice, there are many ways to
share resources. Some resource sharing schemes consider that some users are more important than others and should
obtain more resources. For example, on the roads, police cars and ambulances have priority. In some cities, traffic
lanes are reserved for buses to promote public services, ... In computer networks, the same problem arise. Given
that resources are limited, the network needs to enable users to efficiently share them. Before designing an efficient
resource sharing scheme, one needs to first formalize its objectives. In computer networks, the most popular objective
for resource sharing schemes is that they must be fair. In a simple situation, for example two hosts using a shared 2
Mbps link, the sharing scheme should allocate the same bandwidth to each user, in this case 1 Mbps. However, in a
large networks, simply dividing the available resources by the number of users is not sufficient. Consider the network
shown in the figure below where A7 sends datato A2, BI to B2, ... In this network, how should we divide the bandwidth
among the different flows ? A first approach would be to allocate the same bandwidth to each flow. In this case, each
flow would obtain 5 Mbps and the link between R2 and R3 would not be fully loaded. Another approach would be to
allocate 10 Mbps to A7-A2, 20 Mbps to C1-C2 and nothing to B/-B2. This is clearly unfair.

10 Mbps 20 Mbps

Fig. 60: A small network

In large networks, fairness is always a compromise. The most widely used definition of fairness is the max-min fairness.
A bandwidth allocation in a network is said to be max-min fair if it is such that it is impossible to allocate more
bandwidth to one of the flows without reducing the bandwidth of a flow that already has a smaller allocation than the
flow that we want to increase. If the network is completely known, it is possible to derive a max-min fair allocation as
follows. Initially, all flows have a null bandwidth and they are placed in the candidate set. The bandwidth allocation of
all flows in the candidate set is increased until one link becomes congested. At this point, the flows that use the congested
link have reached their maximum allocation. They are removed from the candidate set and the process continues until
the candidate set becomes empty.

In the above network, the allocation of all flows would grow until A/-A2 and BI-B2 reach 5 Mbps. At this point,
link R7-R2 becomes congested and these two flows have reached their maximum. The allocation for flow C/-C2 can
increase until reaching 15 Mbps. At this point, link R2-R3 is congested. To increase the bandwidth allocated to CI1-C2,
one would need to reduce the allocation to flow B/-B2. Similarly, the only way to increase the allocation to flow BI-B2
would require a decrease of the allocation to A7-A2.
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2.6.2 Network congestion

Sharing bandwidth among the hosts directly attached to a link is not the only sharing problem that occurs in computer
networks. To understand the general problem, let us consider a very simple network which contains only point-to-point
links. This network contains three hosts and two routers. All the links inside the network have the same capacity. For
example, let us assume that all links have a bandwidth of 1000 bits per second and that the hosts send packets containing

exactly one thousand bits.

Fig. 61: A small network

In the network above, consider the case where host A is transmitting packets to destination C. A can send one packet
per second and its packets will be delivered to C. Now, let us explore what happens when host B also starts to transmit
a packet. Node R/ will receive two packets that must be forwarded to R2. Unfortunately, due to the limited bandwidth
on the RI-R2 link, only one of these two packets can be transmitted. The outcome of the second packet will depend
on the available buffers on R/. If R/ has one available buffer, it could store the packet that has not been transmitted
on the RI-R2 link until the link becomes available. If R/ does not have available buffers, then the packet needs to be
discarded.

Besides the link bandwidth, the buffers on the network nodes are the second type of resource that needs to be shared
inside the network. The node buffers play an important role in the operation of the network because that can be used to
absorb transient traffic peaks. Consider again the example above. Assume that on average host A and host B send a group
of three packets every ten seconds. Their combined transmission rate (0.6 packets per second) is, on average, lower than
the network capacity (1 packet per second). However, if they both start to transmit at the same time, node R/ will have to
absorb a burst of packets. This burst of packets is a small network congestion. We will say that a network is congested,
when the sum of the traffic demand from the hosts is larger than the network capacity > demand > capacity. This
network congestion problem is one of the most difficult resource sharing problem in computer networks. Congestion
occurs in almost all networks. Minimizing the amount of congestion is a key objective for many network operators.
In most cases, they will have to accept transient congestion, i.e. congestion lasting a few seconds or perhaps minutes,
but will want to prevent congestion that lasts days or months. For this, they can rely on a wide range of solutions. We
briefly present some of these in the paragraphs below.

If RI has enough buffers, it will be able to absorb the load without having to discard packets. The packets sent by
hosts A and B will reach their final destination C, but will experience a longer delay than when they are transmitting
alone. The amount of buffering on the network node is the first parameter that a network operator can tune to control
congestion inside his network. Given the decreasing cost of memory, one could be tempted to put as many buffers' as
possible on the network nodes. Let us consider this case in the network above and assume that R/ has infinite buffers.
Assume now that hosts A and B try to transmit a file that corresponds to one thousand packets each. Both are using a
reliable protocol that relies on go-back-n to recover from transmission errors. The transmission starts and packets start
to accumulate in R1’s buffers. The presence of these packets in the buffers increases the delay between the transmission
of a packet by A and the return of the corresponding acknowledgment. Given the increasing delay, host A (and B as
well) will consider that some of the packets that it sent have been lost. These packets will be retransmitted and will
enter the buffers of R/. The occupancy of the buffers of R/ will continue to increase and the delays as well. This
will cause new retransmissions, ... In the end, only one file will be delivered (very slowly) to the destination, but the
link RI-R2 will transfer much more bytes than the size of the file due to the multiple copies of the same packets. This

! There are still some vendors that try to put as many buffers as possible on their routers. A recent example is the buffer bloat problem that
plagues some low-end Internet routers [GN2011].
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is known as the congestion collapse problem RFC 896. Congestion collapse is the nightmare for network operators.
When it happens, the network carries packets without delivering useful data to the end users.

Note: Congestion collapse on the Internet

Congestion collapse is unfortunately not only an academic experience. Van Jacobson reports in [Jacobson1988] one
of these events that affected him while he was working at the Lawrence Berkeley Laboratory (LBL). LBL was two
network nodes away from the University of California in Berkeley. At that time, the link between the two sites had a
bandwidth of 32 Kbps, but some hosts were already attached to 10 Mbps LANs. “In October 1986, the data throughput
from LBL to UC Berkeley ... dropped from 32 Kbps to 40 bps. We were fascinated by this sudden factor-of-thousand
drop in bandwidth and embarked on an investigation of why things had gotten so bad.” This work lead to the develop-
ment of various congestion control techniques that have allowed the Internet to continue to grow without experiencing
widespread congestion collapse events.

Besides bandwidth and memory, a third resource that needs to be shared inside a network is the (packet) processing
capacity. To forward a packet, a router needs bandwidth on the outgoing link, but it also needs to analyze the packet
header to perform a lookup inside its forwarding table. Performing these lookup operations require resources such as
CPU cycles or memory accesses. Routers are usually designed to be able to sustain a given packet processing rate,
measured in packets per second’.

Note: Packets per second versus bits per second

The performance of network nodes (either routers or switches) can be characterized by two key metrics :
* the node’s capacity measured in bits per second
¢ the node’s lookup performance measured in packets per second

The node’s capacity in bits per second mainly depends on the physical interfaces that it uses and also on the capacity of
the internal interconnection (bus, crossbar switch, ...) between the different interfaces inside the node. Many vendors,
in particular for low-end devices will use the sum of the bandwidth of the nodes’ interfaces as the node capacity in bits
per second. Measurements do not always match this maximum theoretical capacity. A well designed network node
will usually have a capacity in bits per second larger than the sum of its link capacities. Such nodes will usually reach
this maximum capacity when forwarding large packets.

When a network node forwards small packets, its performance is usually limited by the number of lookup operations
that it can perform every second. This lookup performance is measured in packets per second. The performance may
depend on the length of the forwarded packets. The key performance factor is the number of minimal size packets that
are forwarded by the node every second. This rate can lead to a capacity in bits per second which is much lower than
the sum of the bandwidth of the node’s links.

Let us now try to present a broad overview of the congestion problem in networks. We will assume that the network
is composed of dedicated links having a fixed bandwidth®. A network contains hosts that generate and receive packets
and nodes (routers and switches) that forward packets. Assuming that each host is connected via a single link to the
network, the largest demand is Y AccessLinks. In practice, this largest demand is never reached and the network will
be engineered to sustain a much lower traffic demand. The difference between the worst-case traffic demand and the
sustainable traffic demand can be large, up to several orders of magnitude. Fortunately, the hosts are not completely
dumb and they can adapt their traffic demand to the current state of the network and the available bandwidth. For
this, the hosts need to sense the current level of congestion and adjust their own traffic demand based on the estimated

2 Some examples of the performance of various types of commercial networks nodes (routers and switches) may be found in http:
/Iwww.cisco.com/web/partners/downloads/765/tools/quickreference/routerperformance.pdf and http://www.cisco.com/web/partners/downloads/
765/tools/quickreference/switchperformance.pdf

3 Some networking technologies allow to adjust dynamically the bandwidth of links. For example, some devices can reduce their bandwidth to
preserve energy. We ignore these technologies in this basic course and assume that all links used inside the network have a fixed bandwidth.
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congestion. Network nodes can react in different ways to network congestion and hosts can sense the level of congestion
in different ways.

Let us first explore which mechanisms can be used inside a network to control congestion and how these mechanisms
can influence the behavior of the end hosts.

As explained earlier, one of the first manifestation of congestion on network nodes is the saturation of the network
links that leads to a growth in the occupancy of the buffers of the node. This growth of the buffer occupancy implies
that some packets will spend more time in the buffer and thus in the network. If hosts measure the network delays
(e.g. by measuring the round-trip-time between the transmission of a packet and the return of the corresponding
acknowledgment) they could start to sense congestion. On low bandwidth links, a growth in the buffer occupancy
can lead to an increase of the delays which can be easily measured by the end hosts. On high bandwidth links, a few
packets inside the buffer will cause a small variation in the delay which may not necessarily be larger that the natural
fluctuations of the delay measurements.

If the buffer’s occupancy continues to grow, it will overflow and packets will need to be discarded. Discarding packets
during congestion is the second possible reaction of a network node to congestion. Before looking at how a node can
discard packets, it is interesting to discuss qualitatively the impact of the buffer occupancy on the reliable delivery of
data through a network. This is illustrated by the figure below, adapted from [Jain1990].

End-to-end
Goodput delay

Load Load

Fig. 62: Network congestion

When the network load is low, buffer occupancy and link utilization are low. The buffers on the network nodes are
mainly used to absorb very short bursts of packets, but on average the traffic demand is lower than the network capacity.
If the demand increases, the average buffer occupancy will increase as well. Measurements have shown that the total
throughput increases as well. If the buffer occupancy is zero or very low, transmission opportunities on network links
can be missed. This is not the case when the buffer occupancy is small but non zero. However, if the buffer occupancy
continues to increase, the buffer becomes overloaded and the throughput does not increase anymore. When the buffer
occupancy is close to the maximum, the throughput may decrease. This drop in throughput can be caused by excessive
retransmissions of reliable protocols that incorrectly assume that previously sent packets have been lost while they are
still waiting in the buffer. The network delay on the other hand increases with the buffer occupancy. In practice, a
good operating point for a network buffer is a low occupancy to achieve high link utilization and also low delay for
interactive applications.

Discarding packets is one of the signals that the network nodes can use to inform the hosts of the current level of
congestion. Buffers on network nodes are usually used as FIFO queues to preserve packet ordering. Several packet
discard mechanisms have been proposed for network nodes. These techniques basically answer two different questions

» What triggers a packet to be discarded ? What are the conditions that lead a network node to decide to discard
a packet? The simplest answer to this question is : When the buffer is full. Although this is a good congestion
indication, it is probably not the best one from a performance viewpoint. An alternative is to discard packets
when the buffer occupancy grows too much. In this case, it is likely that the buffer will become full shortly.
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Since packet discarding is an information that allows hosts to adapt their transmission rate, discarding packets
early could allow hosts to react earlier and thus prevent congestion from happening.

» Which packet(s) should be discarded ? Once the network node has decided to discard packets, it needs to actually
discard real packets.

By combining different answers to these questions, network researchers have developed different packet discard mech-
anisms.

* Tail drop is the simplest packet discard technique. When a buffer is full, the arriving packet is discarded. Tail
drop can be easily implemented. This is, by far, the most widely used packet discard mechanism. However, it
suffers from two important drawbacks. First, since fail drop discards packets only when the buffer is full, buffers
tend to be congested and real-time applications may suffer from increased delays. Second, tail drop is blind when
it discards a packet. It may discard a packet from a low bandwidth interactive flow while most of the buffer is
used by large file transfers.

» Drop from front is an alternative packet discard technique. Instead of removing the arriving packet, it removes
the packet that was at the head of the queue. Discarding this packet instead of the arriving one can have two
advantages. First, it already stayed a long time in the buffer. Second, hosts should be able to detect the loss (and
thus the congestion) earlier.

* Probabilistic drop. Various random drop techniques have been proposed. A frequently cited technique is Random
Early Discard (RED) [FJ1993]. RED measures the average buffer occupancy and discards packets with a given
probability when this average occupancy is too high. Compared to tail drop and drop from front, an advantage
of RED is that thanks to the probabilistic drops, packets should be discarded from different flows in proportion
of their bandwidth.

Discarding packets is a frequent reaction to network congestion. Unfortunately, discarding packets is not optimal since
a packet which is discarded on a network node has already consumed resources on the upstream nodes. There are other
ways for the network to inform the end hosts of the current congestion level. A first solution is to mark the packets
when a node is congested. Several networking technologies have relied on this kind of packet marking.

In datagram networks, Forward Explicit Congestion Notification (FECN) can be used. One field of the packet header,
typically one bit, is used to indicate congestion. When a host sends a packet, the congestion bit is unset. If the packet
passes through a congested node, the congestion bit is set. The destination can then determine the current congestion
level by measuring the fraction of the packets that it received with the congestion bit set. It may then return this
information to the sending host to allow it to adapt its retransmission rate. Compared to packet discarding, the main
advantage of FECN is that hosts can detect congestion explicitly without having to rely on packet losses.

In virtual circuit networks, packet marking can be improved if the return packets follow the reverse path of the forward
packets. It this case, a network node can detect congestion on the forward path (e.g. due to the size of its buffer), but
mark the packets on the return path. Marking the return packets (e.g. the acknowledgments used by reliable protocols)
provides a faster feedback to the sending hosts compared to FECN. This technique is usually called Backward Explicit
Congestion Notification (BECN).

If the packet header does not contain any bit in the header to represent the current congestion level, an alternative is to
allow the network nodes to send a control packet to the source to indicate the current congestion level. Some networking
technologies use such control packets to explicitly regulate the transmission rate of sources. However, their usage is
mainly restricted to small networks. In large networks, network nodes usually avoid using such control packets. These
control packets are even considered to be dangerous in some networks. First, using them increases the network load
when the network is congested. Second, while network nodes are optimized to forward packets, they are usually pretty
slow at creating new packets.

Dropping and marking packets is not the only possible reaction of a router that becomes congested. A router could also
selectively delay packets belonging to some flows. There are different algorithms that can be used by a router to delay
packets. If the objective of the router is to fairly distribute to bandwidth of an output link among competing flows, one
possibility is to organize the buffers of the router as a set of queues. For simplicity, let us assume that the router is
capable of supporting a fixed number of concurrent flows, say N. One of the queues of the router is associated to each
flow and when a packet arrives, it is placed at the tail of the corresponding queue. All the queues are controlled by a
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scheduler. A scheduler is an algorithm that is run each time there is an opportunity to transmit a packet on the outgoing
link. Various schedulers have been proposed in the scientific literature and some are used in real routers.
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Fig. 63: A round-robin scheduler, where N = 5

A very simple scheduler is the round-robin scheduler. This scheduler serves all the queues in a round-robin fashion.
If all flows send packets of the same size, then the round-robin scheduler fairly allocates the bandwidth among the
different flows. Otherwise, it favors flows that are using larger packets. Extensions to the round-robin scheduler have
been proposed to provide a fair distribution of the bandwidth with variable-length packets [SV1995] but these are
outside the scope of this chapter.

# N queues
# state variable : next_queue
next_queue = 0
while True:
if isEmpty(buffer):
# Wait for next packet in buffer
wait()
if not(isEmpty(queue[next_queue])):
# Send packet at head of next_queue
p = remove_packet(queue[next_queue])
send(p)
next_queue=(next_queue + 1) % N
# end while

2.6.3 Distributing the load across the network

Delays, packet discards, packet markings and control packets are the main types of information that the network can
exchange with the end hosts. Discarding packets is the main action that a network node can perform if the congestion is
too severe. Besides tackling congestion at each node, it is also possible to divert some traffic flows from heavily loaded
links to reduce congestion. Early routing algorithms [MRR1980] have used delay measurements to detect congestion
between network nodes and update the link weights dynamically. By reflecting the delay perceived by applications
in the link weights used for the shortest paths computation, these routing algorithms managed to dynamically change
the forwarding paths in reaction to congestion. However, deployment experience showed that these dynamic routing
algorithms could cause oscillations and did not necessarily lower congestion. Deployed datagram networks rarely use
dynamic routing algorithms, except in some wireless networks. In datagram networks, the state of the art reaction to
long term congestion, i.e. congestion lasting hours, days or more, is to measure the traffic demand and then select the
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link weights [FRT2002] that allow minimizing the maximum link loads. If the congestion lasts longer, changing the
weights is not sufficient anymore and the network needs to be upgraded with additional or faster links. However, in
Wide Area Networks, adding new links can take months.

In virtual circuit networks, another way to manage or prevent congestion is to limit the number of circuits that use
the network at any time. This technique is usually called connection admission control. When a host requests the
creation of a new circuit in the network, it specifies the destination and in some networking technologies the required
bandwidth. With this information, the network can check whether there are enough resources available to reach this
particular destination. If yes, the circuit is established. If not, the request is denied and the host will have to defer the
creation of its virtual circuit. Connection admission control schemes are widely used in the telephone networks. In
these networks, a busy tone corresponds to an unavailable destination or a congested network.

In datagram networks, this technique cannot be easily used since the basic assumption of such a network is that a host
can send any packet towards any destination at any time. A host does not need to request the authorization of the
network to send packets towards a particular destination.

Based on the feedback received from the network, the hosts can adjust their transmission rate. We discuss in section
Congestion control some techniques that allow hosts to react to congestion.

Another way to share the network resources is to distribute the load across multiple links. Many techniques have been
designed to spread the load over the network. As an illustration, let us briefly consider how the load can be shared when
accessing some content. Consider a large and popular file such as the image of a Linux distribution or the upgrade of a
commercial operating system that will be downloaded by many users. There are many ways to distribute this large file.
A naive solution is to place one copy of the file on a server and allow all users to download this file from the server. If
the file is popular and millions of users want to download it, the server will quickly become overloaded. There are two
classes of solutions that can be used to serve a large number of users. A first approach is to store the file on servers
whose name is known by the clients. Before retrieving the file, each client will query the name service to obtain the
address of the server. If the file is available from many servers, the name service can provide different addresses to
different clients. This will automatically spread the load since different clients will download the file from different
servers. Most large content providers use such a solution to distribute large files or videos.

There is another solution that allows spreading the load among many sources without relying on the name service. The
popular bittorent service is an example of this approach. With this solution, each file is divided in blocks of fixed size.
To retrieve a file, a client needs to retrieve all the blocks that compose the file. However, nothing forces the client to
retrieve all the blocks in sequence and from the same server. Each file is associated with metadata that indicates for
each block a list of addresses of hosts that store this block. To retrieve a complete file, a client first downloads the
metadata. Then, it tries to retrieve each block from one of the hosts that store the block. In practice, implementations
often try to download several blocks in parallel. Once one block has been successfully downloaded, the next block can
be requested. If a host is slow to provide one block or becomes unavailable, the client can contact another host listed
in the metadata. Most deployments of bittorrent allow the clients to participate to the distribution of blocks. Once a
client has downloaded one block, it contacts the server which stores the metadata to indicate that it can also provide this
block. With this scheme, when a file is popular, its blocks are downloaded by many hosts that automatically participate
in the distribution of the blocks. Thus, the number of servers that are capable of providing blocks from a popular file
automatically increases with the file’s popularity.

Now that we have provided a broad overview of the techniques that can be used to spread the load and allocate resources
in the network, let us analyze two techniques in more details : Medium Access Control and Congestion control.
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2.6.4 Medium Access Control algorithms

The common problem among Local Area Networks is how to efficiently share the available bandwidth. If two devices
send a frame at the same time, the two electrical, optical or radio signals that correspond to these frames will appear at
the same time on the transmission medium and a receiver will not be able to decode either frame. Such simultaneous
transmissions are called collisions. A collision may involve frames transmitted by two or more devices attached to the
Local Area Network. Collisions are the main cause of errors in wired Local Area Networks.

All Local Area Network technologies rely on a Medium Access Control algorithm to regulate the transmissions to either
minimize or avoid collisions. There are two broad families of Medium Access Control algorithms :

1. Deterministic or pessimistic MAC algorithms. These algorithms assume that collisions are a very severe problem
and that they must be completely avoided. These algorithms ensure that at any time, at most one device is allowed
to send a frame on the LAN. This is usually achieved by using a distributed protocol which elects one device that
is allowed to transmit at each time. A deterministic MAC algorithm ensures that no collision will happen, but
there is some overhead in regulating the transmission of all the devices attached to the LAN.

2. Stochastic or optimistic MAC algorithms. These algorithms assume that collisions are part of the normal oper-
ation of a Local Area Network. They aim to minimize the number of collisions, but they do not try to avoid all
collisions. Stochastic algorithms are usually easier to implement than deterministic ones.

We first discuss a simple deterministic MAC algorithm and then we describe several important optimistic algorithms,
before coming back to a distributed and deterministic MAC algorithm.

Static allocation methods

A first solution to share the available resources among all the devices attached to one Local Area Network is to define,
a priori, the distribution of the transmission resources among the different devices. If N devices need to share the
transmission capacities of a LAN operating at b Mbps, each device could be allocated a bandwidth of % Mbps.

Limited resources need to be shared in other environments than Local Area Networks. Since the first radio transmis-
sions by Marconi more than one century ago, many applications that exchange information through radio signals have
been developed. Each radio signal is an electromagnetic wave whose power is centered around a given frequency.
The radio spectrum corresponds to frequencies ranging between roughly 3 KHz and 300 GHz. Frequency allocation
plans negotiated among governments reserve most frequency ranges for specific applications such as broadcast radio,
broadcast television, mobile communications, aeronautical radio navigation, amateur radio, satellite, etc. Each fre-
quency range is then subdivided into channels and each channel can be reserved for a given application, e.g. a radio
broadcaster in a given region.

Frequency Division Multiplexing (FDM) is a static allocation scheme in which a frequency is allocated to each device
attached to the shared medium. As each device uses a different transmission frequency, collisions cannot occur. In
optical networks, a variant of FDM called Wavelength Division Multiplexing (WDM) can be used. An optical fiber can
transport light at different wavelengths without interference. With WDM, a different wavelength is allocated to each
of the devices that share the same optical fiber.

Time Division Multiplexing (TDM) is a static bandwidth allocation method that was initially defined for the telephone
network. In the fixed telephone network, a voice conversation is usually transmitted as a 64 Kbps signal. Thus, a
telephone conservation generates 8 KBytes per second or one byte every 125 microseconds. Telephone conversations
often need to be multiplexed together on a single line. For example, in Europe, thirty 64 Kbps voice signals are
multiplexed over a single 2 Mbps (E1) line. This is done by using Time Division Multiplexing (TDM). TDM divides
the transmission opportunities into slots. In the telephone network, a slot corresponds to 125 microseconds. A position
inside each slot is reserved for each voice signal. The figure below illustrates TDM on a link that is used to carry four
voice conversations. The vertical lines represent the slot boundaries and the letters the different voice conversations.
One byte from each voice conversation is sent during each 125 microseconds slot. The byte corresponding to a given
conversation is always sent at the same position in each slot.
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Fig. 64: Time-division multiplexing

TDM as shown above can be completely static, i.e. the same conversations always share the link, or dynamic. In the
latter case, the two endpoints of the link must exchange messages specifying which conversation uses which byte inside
each slot. Thanks to these control messages, it is possible to dynamically add and remove voice conversations from a
given link.

TDM and FDM are widely used in telephone networks to support fixed bandwidth conversations. Using them in Local
Area Networks that support computers would probably be inefficient. Computers usually do not send information at a
fixed rate. Instead, they often have an on-off behavior. During the on period, the computer tries to send at the highest
possible rate, e.g. to transfer a file. During the off period, which is often much longer than the on period, the computer
does not transmit any packet. Using a static allocation scheme for computers attached to a LAN would lead to huge
inefficiencies, as they would only be able to transmit at % of the total bandwidth during their on period, despite the fact
that the other computers are in their off period and thus do not need to transmit any information. The dynamic MAC
algorithms discussed in the remainder of this chapter aim to solve this problem.

ALOHA

In the 1960s, computers were mainly mainframes with a few dozen terminals attached to them. These terminals were
usually in the same building as the mainframe and were directly connected to it. In some cases, the terminals were
installed in remote locations and connected through a modem attached to a dial-up line. The university of Hawaii chose
a different organization. Instead of using telephone lines to connect the distant terminals, they developed the first packet
radio technology [Abramson1970]. Until then, computer networks were built on top of either the telephone network
or physical cables. ALOHANet showed that it is possible to use radio signals to interconnect computers.

The first version of ALOHANet, described in [Abramson1970], operated as follows. First, the terminals and the main-
frame exchanged fixed-length frames composed of 704 bits. Each frame contained 80 8-bit characters, some control
bits and parity information to detect transmission errors. Two channels in the 400 MHz range were reserved for the
operation of ALOHANet. The first channel was used by the mainframe to send frames to all terminals. The second
channel was shared among all terminals to send frames to the mainframe. As all terminals share the same transmission
channel, there is a risk of collision. To deal with this problem as well as transmission errors, the mainframe verified
the parity bits of the received frame and sent an acknowledgment on its channel for each correctly received frame. The
terminals on the other hand had to retransmit the unacknowledged frames. As for TCP, retransmitting these frames
immediately upon expiration of a fixed timeout is not a good approach as several terminals may retransmit their frames
at the same time leading to a network collapse. A better approach, but still far from perfect, is for each terminal to
wait a random amount of time after the expiration of its retransmission timeout. This avoids synchronization among
multiple retransmitting terminals.

The pseudo-code below shows the operation of an ALOHANet terminal. We use this python syntax for all Medium
Access Control algorithms described in this chapter. The algorithm is applied to each new frame that needs to be
transmitted. It attempts to transmit a frame at most max times (while loop). Each transmission attempt is performed
as follows. First, the frame is sent. Each frame is protected by a timeout. Then, the terminal waits for either a valid
acknowledgment frame or the expiration of its timeout. If the terminal receives an acknowledgment, the frame has
been delivered correctly and the algorithm terminates. Otherwise, the terminal waits for a random time and attempts
to retransmit the frame.
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# ALOHA

N=1

while N <= max:
send(frame)

wait(ack_on_return_channel or timeout)
if (ack_on_return_channel):
break # transmission was successful
else:
# timeout
wait(random_time)
N=N+1
else:
# Too many transmission attempts

[Abramson1970] analyzed the performance of ALOHANet under particular assumptions and found that ALOHANet
worked well when the channel was lightly loaded. In this case, the frames are rarely retransmitted and the channel
traffic, i.e. the total number of (correct and retransmitted) frames transmitted per unit of time is close to the channel
utilization, i.e. the number of correctly transmitted frames per unit of time. Unfortunately, the analysis also reveals
that the channel utilization reaches its maximum at i = 0.186 times the channel bandwidth. At higher utilization,
ALOHANet becomes unstable and the network collapses due to collided retransmissions.

Note: Amateur packet radio

Packet radio technologies have evolved in various directions since the first experiments performed at the University of
Hawaii. The Amateur packet radio service developed by amateur radio operators is one of the descendants ALOHANet.
Many amateur radio operators are very interested in new technologies and they often spend countless hours developing
new antennas or transceivers. When the first personal computers appeared, several amateur radio operators designed
radio modems and their own datalink layer protocols [KPD1985] [BNT1997]. This network grew and it was possible
to connect to servers in several European countries by only using packet radio relays. Some amateur radio operators
also developed TCP/IP protocol stacks that were used over the packet radio service. Some parts of the amateur packet
radio network are connected to the global Internet and use the 44.0.0.0/8 IPv4 prefix.

Many improvements to ALOHANet have been proposed since the publication of [Abramson1970], and this technique,
or some of its variants, are still found in wireless networks today. The slotted technique proposed in [Roberts1975] is
important because it shows that a simple modification can significantly improve channel utilization. Instead of allowing
all terminals to transmit at any time, [Roberts1975] proposed to divide time into slots and allow terminals to transmit
only at the beginning of each slot. Each slot corresponds to the time required to transmit one fixed size frame. In
practice, these slots can be imposed by a single clock that is received by all terminals. In ALOHANet, it could have
been located on the central mainframe. The analysis in [Roberts1975] reveals that this simple modification improves
the channel utilization by a factor of two.

Carrier Sense Multiple Access

ALOHA and slotted ALOHA can easily be implemented, but unfortunately, they can only be used in networks that
are very lightly loaded. Designing a network for a very low utilization is possible, but it clearly increases the cost of
the network. To overcome the problems of ALOHA, many Medium Access Control mechanisms have been proposed
which improve channel utilization. Carrier Sense Multiple Access (CSMA) is a significant improvement compared to
ALOHA. CSMA requires all nodes to listen to the transmission channel to verify that it is free before transmitting a
frame [KT1975]. When a node senses the channel to be busy, it defers its transmission until the channel becomes free
again. The pseudo-code below provides a more detailed description of the operation of CSMA.
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# persistent CSMA
N=1
while N <= max:
wait(channel_becomes_free)
send(frame)
wait(ack or timeout)
if ack:
break # transmission was successful
else:
# timeout
N=N+1
else:
# Too many transmission attempts

The above pseudo-code is often called persistent CSMA [KT1975] as the terminal will continuously listen to the channel
and transmit its frame as soon as the channel becomes free. Another important variant of CSMA is the non-persistent
CSMA [KT1975]. The main difference between persistent and non-persistent CSMA described in the pseudo-code
below is that a non-persistent CSMA node does not continuously listen to the channel to determine when it becomes
free. When a non-persistent CSMA terminal senses the transmission channel to be busy, it waits for a random time
before sensing the channel again. This improves channel utilization compared to persistent CSMA. With persistent
CSMA, when two terminals sense the channel to be busy, they will both transmit (and thus cause a collision) as soon
as the channel becomes free. With non-persistent CSMA, this synchronization does not occur, as the terminals wait a
random time after having sensed the transmission channel. However, the higher channel utilization achieved by non-
persistent CSMA comes at the expense of a slightly higher waiting time in the terminals when the network is lightly
loaded.

# Non persistent CSMA

N=1
while N <= max:
listen(channel)
if free(channel):
send (frame)
wait(ack or timeout)
if received(ack):
break # transmission was successful
else:
# timeout
N=N+1
else:
wait (random_time)
else:

# Too many transmission attempts

[KT1975] analyzes in detail the performance of several CSMA variants. Under some assumptions about the transmis-
sion channel and the traffic, the analysis compares ALOHA, slotted ALOHA, persistent and non-persistent CSMA. Un-
der these assumptions, ALOHA achieves a channel utilization of only 18.4% of the channel capacity. Slotted ALOHA
is able to use 36.6% of this capacity. Persistent CSMA improves the utilization by reaching 52.9% of the capacity while
non-persistent CSMA achieves 81.5% of the channel capacity.

2.6. Sharing resources 87




Computer Networking : Principles, Protocols and Practice, Release 2021

Carrier Sense Multiple Access with Collision Detection

CSMA improves channel utilization compared to ALOHA. However, the performance can still be improved, especially
in wired networks. Consider the situation of two terminals that are connected to the same cable. This cable could, for
example, be a coaxial cable as in the early days of Ethernet [Metcalfe1976]. It could also be built with twisted pairs.
Before extending CSMA, it is useful to understand, more intuitively, how frames are transmitted in such a network
and how collisions can occur. The figure below illustrates the physical transmission of a frame on such a cable. To
transmit its frame, host A must send an electrical signal on the shared medium. The first step is thus to begin the
transmission of the electrical signal. This is point (/) in the figure below. This electrical signal will travel along the
cable. Although electrical signals travel fast, we know that information cannot travel faster than the speed of light
(i.e. 300.000 kilometers/second). On a coaxial cable, an electrical signal is slightly slower than the speed of light and
200.000 kilometers per second is a reasonable estimation. This implies that if the cable has a length of one kilometer,
the electrical signal will need 5 microseconds to travel from one end of the cable to the other. The ends of coaxial cables
are equipped with termination points that ensure that the electrical signal is not reflected back to its source. This is
illustrated at point (3) in the figure, where the electrical signal has reached the left endpoint and host B. At this point, B
starts to receive the frame being transmitted by A. Notice that there is a delay between the transmission of a bit on host
A and its reception by host B. If there were other hosts attached to the cable, they would receive the first bit of the frame
at slightly different times. As we will see later, this timing difference is a key problem for MAC algorithms. At point
(4), the electrical signal has reached both ends of the cable and occupies it completely. Host A continues to transmit
the electrical signal until the end of the frame. As shown at point (5), when the sending host stops its transmission,
the electrical signal corresponding to the end of the frame leaves the coaxial cable. The channel becomes empty again
once the entire electrical signal has been removed from the cable.

B

Start of frame

®

Frame is propagated on LAN (5 microsecond per kilometer)

o ==

Frame stops at left side and first bit reaches B

o e —

Frame reaches both ends of the cable

o A~ ]

Frame leaves the LAN

Fig. 65: Frame transmission on a shared bus

Now that we have looked at how a frame is actually transmitted as an electrical signal on a shared bus, it is interesting to
look in more detail at what happens when two hosts transmit a frame at almost the same time. This is illustrated in the
figure below, where hosts A and B start their transmission at the same time (point (/)). At this time, if host C senses the
channel, it will consider it to be free. This will not last a long time and at point (2) the electrical signals from both host
A and host B reach host C. The combined electrical signal (shown graphically as the superposition of the two curves in
the figure) cannot be decoded by host C. Host C detects a collision, as it receives a signal that it cannot decode. Since
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host C cannot decode the frames, it cannot determine which hosts are sending the colliding frames. Note that host A
(and host B) will detect the collision after host C (point (3) in the figure below).

Frame starts at A and B almost at the same time
Collision : C is unable
.~ todecode the signal

I R

Collision : A is unable to
decode the signal

Fig. 66: Frame collision on a shared bus

As shown above, hosts detect collisions when they receive an electrical signal that they cannot decode. In a wired
network, a host is able to detect such a collision both while it is listening (e.g. like host C in the figure above) and also
while it is sending its own frame. When a host transmits a frame, it can compare the electrical signal that it transmits
with the electrical signal that it senses on the wire. At points (/) and (2) in the figure above, host A senses only its own
signal. At point (3), it senses an electrical signal that differs from its own signal and can thus detects the collision. At
this point, its frame is corrupted and it can stop its transmission. The ability to detect collisions while transmitting is
the starting point for the Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Medium Access Control
algorithm, which is used in Ethernet networks [Metcalfe1976] [[EEE802.3] . When an Ethernet host detects a collision
while it is transmitting, it immediately stops its transmission. Compared with pure CSMA, CSMA/CD is an important
improvement since when collisions occur, they only last until colliding hosts have detected it and stopped their trans-
mission. In practice, when a host detects a collision, it sends a special jamming signal on the cable to ensure that all
hosts have detected the collision.

To better understand these collisions, it is useful to analyze what would be the worst collision on a shared bus network.
Let us consider a wire with two hosts attached at both ends, as shown in the figure below. Host A starts to transmit
its frame and its electrical signal is propagated on the cable. Its propagation time depends on the physical length of
the cable and the speed of the electrical signal. Let us use 7 to represent this propagation delay in seconds. Slightly
less than 7 seconds after the beginning of the transmission of A’s frame, B decides to start transmitting its own frame.
After € seconds, B senses A’s frame, detects the collision and stops transmitting. The beginning of B’s frame travels
on the cable until it reaches host A. Host A can thus detect the collision at time 7 — € + 7 ~ 2 X 7. An important point
to note is that a collision can only occur during the first 2 x 7 seconds of its transmission. If a collision did not occur
during this period, it cannot occur afterwards since the transmission channel is busy after 7 seconds and CSMA/CD
hosts sense the transmission channel before transmitting their frame.

Furthermore, on the wired networks where CSMA/CD is used, collisions are almost the only cause of transmission
errors that affect frames. Transmission errors that only affect a few bits inside a frame seldom occur in these wired
networks. For this reason, the designers of CSMA/CD chose to completely remove the acknowledgment frames in the
datalink layer. When a host transmits a frame, it verifies whether its transmission has been affected by a collision. If
not, given the negligible Bit Error Ratio of the underlying network, it assumes that the frame was received correctly by
its destination. Otherwise the frame is retransmitted after some delay.
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Fig. 67: The worst collision on a shared bus

Removing acknowledgments is an interesting optimization as it reduces the number of frames that are exchanged on
the network and the number of frames that need to be processed by the hosts. However, to use this optimization, we
must ensure that all hosts will be able to detect all the collisions that affect their frames. The problem is important for
short frames. Let us consider two hosts, A and B, that are sending a small frame to host C as illustrated in the figure
below. If the frames sent by A and B are very short, the situation illustrated below may occur. Hosts A and B send
their frame and stop transmitting (point (/)). When the two short frames arrive at the location of host C, they collide
and host C cannot decode them (point (2)). The two frames are absorbed by the ends of the wire. Neither host A nor
host B have detected the collision. They both consider their frame to have been received correctly by its destination.

@

® -

A did not notice any collision
B did not notice any collision
They both consider that their frames were received correctly

Fig. 68: The short-frame collision problem
To solve this problem, networks using CSMA/CD require hosts to transmit for at least 2 x 7 seconds. Since the network

transmission speed is fixed for a given network technology, this implies that a technology that uses CSMA/CD enforces
a minimum frame size. In the most popular CSMA/CD technology, Ethernet, 2 x 7 is called the slot time*.

4 This name should not be confused with the duration of a transmission slot in slotted ALOHA. In CSMA/CD networks, the slot time is the time
during which a collision can occur at the beginning of the transmission of a frame. In slotted ALOHA, the duration of a slot is the transmission time
of an entire fixed-size frame.
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The last innovation introduced by CSMA/CD is the computation of the retransmission timeout. As for ALOHA, this
timeout cannot be fixed, otherwise hosts could become synchronized and always retransmit at the same time. Setting
such a timeout is always a compromise between the network access delay and the amount of collisions. A short timeout
would lead to a low network access delay but with a higher risk of collisions. On the other hand, a long timeout would
cause a long network access delay but a lower risk of collisions. The binary exponential back-off algorithm was
introduced in CSMA/CD networks to solve this problem.

To understand binary exponential back-off, let us consider a collision caused by exactly two hosts. Once it has detected
the collision, a host can either retransmit its frame immediately or defer its transmission for some time. If each colliding
host flips a coin to decide whether to retransmit immediately or to defer its retransmission, four cases are possible :

1. Both hosts retransmit immediately and a new collision occurs

2. The first host retransmits immediately and the second defers its retransmission
3. The second host retransmits immediately and the first defers its retransmission
4. Both hosts defer their retransmission and a new collision occurs

In the second and third cases, both hosts have flipped different coins. The delay chosen by the host that defers its re-
transmission should be long enough to ensure that its retransmission will not collide with the immediate retransmission
of the other host. However the delay should not be longer than the time necessary to avoid the collision, because if both
hosts decide to defer their transmission, the network will be idle during this delay. The slot time is the optimal delay
since it is the shortest delay that ensures that the first host will be able to retransmit its frame completely without any
collision.

If two hosts are competing, the algorithm above will avoid a second collision 50% of the time. However, if the network is
heavily loaded, several hosts may be competing at the same time. In this case, the hosts should be able to automatically
adapt their retransmission delay. The binary exponential back-off performs this adaptation based on the number of
collisions that have affected a frame. After the first collision, the host flips a coin and waits O or 1 slof time. After the
second collision, it generates a random number and waits 0, 1, 2 or 3 slot times, etc. The duration of the waiting time
is doubled after each collision. The complete pseudo-code for the CSMA/CD algorithm is shown in the figure below.

# CSMA/CD pseudo-code
N=1
while N <= max:
wait(channel_becomes_free)
send(frame)
wait_until (end_of_frame) or (collision)
if collision detected:
stop_transmitting()
send (jamming)
k = min(10, N)
r = random(0, 2**k - 1)
wait(r * slotTime)
N=N+1
else:
wait(inter-frame_delay)
break # transmission was successful
else:
# Too many transmission attempts

The inter-frame delay used in this pseudo-code is a short delay corresponding to the time required by a network adapter
to switch from transmit to receive mode. It is also used to prevent a host from sending a continuous stream of frames
without leaving any transmission opportunities for other hosts on the network. This contributes to the fairness of
CSMA/CD. Despite this delay, there are still conditions where CSMA/CD is not completely fair [RY 1994]. Consider for
example a network with two hosts : a server sending long frames and a client sending acknowledgments. Measurements
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reported in [RY 1994] have shown that there are situations where the client could suffer from repeated collisions that
lead it to wait for long periods of time due to the exponential back-off algorithm.

Carrier Sense Multiple Access with Collision Avoidance

The Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) Medium Access Control algorithm was
designed for the popular WiFi wireless network technology [IEEE802.11]. CSMA/CA also senses the transmission
channel before transmitting a frame. Furthermore, CSMA/CA tries to avoid collisions by carefully tuning the timers
used by CSMA/CA devices.

CSMA/CA uses acknowledgments like CSMA. Each frame contains a sequence number and a CRC. The CRC is used
to detect transmission errors while the sequence number is used to avoid frame duplication. When a device receives
a correct frame, it returns a special acknowledgment frame to the sender. CSMA/CA introduces a small delay, named
Short Inter Frame Spacing (SIFS), between the reception of a frame and the transmission of the acknowledgment frame.
This delay corresponds to the time that is required to switch the radio of a device between the reception and transmission
modes.

Compared to CSMA, CSMA/CA defines more precisely when a device is allowed to send a frame. First, CSMA/CA
defines two delays : DIFS and EIFS. To send a frame, a device must first wait until the channel has been idle for at
least the Distributed Coordination Function Inter Frame Space (DIFS) if the previous frame was received correctly.
However, if the previously received frame was corrupted, this indicates that there are collisions and the device must
sense the channel idle for at least the Extended Inter Frame Space (EIFS), with STF'S < DIFS < EIF'S. The exact
values for SIFS, DIFS and EIFS depend on the underlying physical layer [[EEES02.11].

The figure below shows the basic operation of CSMA/CA devices. Before transmitting, host A verifies that the channel
is empty for a long enough period. Then, its sends its data frame. After checking the validity of the received frame,
the recipient sends an acknowledgment frame after a short SIFS delay. Host C, which does not participate in the
frame exchange, senses the channel to be busy at the beginning of the data frame. Host C can use this information to
determine how long the channel will be busy for. Note that as SIF'S < DIFS < EIF'S, even a device that would
start to sense the channel immediately after the last bit of the data frame could not decide to transmit its own frame
during the transmission of the acknowledgment frame.

A B C
Delay |
Data frame
Busy
TfsiFs

___ ACK frame __— |

Fig. 69: Operation of a CSMA/CA device

The main difficulty with CSMA/CA is when two or more devices transmit at the same time and cause collisions. This
is illustrated in the figure below, assuming a fixed timeout after the transmission of a data frame. With CSMA/CA, the
timeout after the transmission of a data frame is very small, since it corresponds to the SIFS plus the time required to
transmit the acknowledgment frame.
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Fig. 70: Collisions with CSMA/CA

To deal with this problem, CSMA/CA relies on a backoff timer. This backoff timer is a random delay that is chosen
by each device in a range that depends on the number of retransmissions for the current frame. The range grows
exponentially with the retransmissions as in CSMA/CD. The minimum range for the backoff timer is [0, 7 * slotTime]
where the slotTime is a parameter that depends on the underlying physical layer. Compared to CSMA/CD’s exponential
backoff, there are two important differences to notice. First, the initial range for the backoff timer is seven times larger.
This is because it is impossible in CSMA/CA to detect collisions as they happen. With CSMA/CA, a collision may affect
the entire frame while with CSMA/CD it can only affect the beginning of the frame. Second, a CSMA/CA device must
regularly sense the transmission channel during its back off timer. If the channel becomes busy (i.e. because another
device is transmitting), then the back off timer must be frozen until the channel becomes free again. Once the channel
becomes free, the back off timer is restarted. This is in contrast with CSMA/CD where the back off is recomputed after
each collision. This is illustrated in the figure below. Host A chooses a smaller backoff than host C. When C senses the
channel to be busy, it freezes its backoff timer and only restarts it once the channel is free again.
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DIFS + DIFS
Backoff[0, § o
— Backeff(0, 7]

Dara frame

Channel busy!

SIFsS
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" Ack frame ——

Remaining
Backoff

Fig. 71: Detailed example with CSMA/CA

The pseudo-code below summarizes the operation of a CSMA/CA device. The values of the SIFS, DIFS, EIFS and
slotTime depend on the underlying physical layer technology [IEEE802.11]
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# CSMA/CA simplified pseudo-code
N=1
while N <= max:
wait_until (free(channel))
if correct(last_frame):
wait(channel_free_during_t >= DIFS)
else:
wait(channel_free_during_t >= EIFS)

backoff_time = int(random(0®, min(255, 7 * ( 2 ** (N - 1))))) * slotTime
wait(channel free during backoff_ time)
# backoff timer is frozen while channel is sensed to be busy
send(frame)
wait(ack or timeout)
if received(ack)
# frame received correctly
break
else:
# retransmission required
N=N+1
else:
# Too many transmission attempts

Another problem faced by wireless networks is often called the hidden station problem. In a wireless network, radio
signals are not always propagated same way in all directions. For example, two devices separated by a wall may not
be able to receive each other’s signal while they could both be receiving the signal produced by a third host. This is
illustrated in the figure below, but it can happen in other environments. For example, two devices that are on different
sides of a hill may not be able to receive each other’s signal while they are both able to receive the signal sent by a
station at the top of the hill. Furthermore, the radio propagation conditions may change with time. For example, a truck
may temporarily block the communication between two nearby devices.

. —+Hears A and C

=
B
~N |
;/ A c ‘\\
/ A\
Only hears B, not C Hears B, but not A

Fig. 72: The hidden station problem

To avoid collisions in these situations, CSMA/CA allows devices to reserve the transmission channel for some time.
This is done by using two control frames : Request To Send (RTS) and Clear To Send (CTS). Both are very short
frames to minimize the risk of collisions. To reserve the transmission channel, a device sends a RTS frame to the
intended recipient of the data frame. The RTS frame contains the duration of the requested reservation. The recipient
replies, after a SIFS delay, with a CTS frame which also contains the duration of the reservation. As the duration of
the reservation has been sent in both RTS and CTS, all hosts that could collide with either the sender or the reception
of the data frame are informed of the reservation. They can compute the total duration of the transmission and defer
their access to the transmission channel until then. This is illustrated in the figure below where host A reserves the
transmission channel to send a data frame to host B. Host C notices the reservation and defers its transmission.
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Fig. 73: Reservations with CSMA/CA

The utilization of the reservations with CSMA/CA is an optimization that is useful when collisions are frequent. If
there are few collisions, the time required to transmit the RTS and CTS frames can become significant and in particular
when short frames are exchanged. Some devices only turn on RTS/CTS after transmission errors.

Deterministic Medium Access Control algorithms

During the 1970s and 1980s, there were huge debates in the networking community about the best suited Medium
Access Control algorithms for Local Area Networks. The optimistic algorithms that we have described until now
were relatively easy to implement when they were designed. From a performance perspective, mathematical models
and simulations showed the ability of these optimistic techniques to sustain load. However, none of the optimistic
techniques are able to guarantee that a frame will be delivered within a given delay bound and some applications require
predictable transmission delays. The deterministic MAC algorithms were considered by a fraction of the networking
community as the best solution to fulfill the needs of Local Area Networks.

Both the proponents of the deterministic and the opportunistic techniques lobbied to develop standards for Local Area
networks that would incorporate their solution. Instead of trying to find an impossible compromise between these
diverging views, the IEEE 802 committee that was chartered to develop Local Area Network standards chose to work
in parallel on three different LAN technologies and created three working groups. The IEEE 802.3 working group
became responsible for CSMA/CD. The proponents of deterministic MAC algorithms agreed on the basic principle of
exchanging special frames called tokens between devices to regulate the access to the transmission medium. However,
they did not agree on the most suitable physical layout for the network. IBM argued in favor of Ring-shaped networks
while the manufacturing industry, led by General Motors, argued in favor of a bus-shaped network. This led to the
creation of the IEEE 802.4 working group to standardize Token Bus networks and the IEEE 802.5 working group to
standardize Token Ring networks. Although these techniques are not widely used anymore today, the principles behind
a token-based protocol are still important.

The IEEE 802.5 Token Ring technology is defined in [IEEE802.5]. We use Token Ring as an example to explain
the principles of the token-based MAC algorithms in ring-shaped networks. Other ring-shaped networks include the
defunct FDDI [Ross1989] or Resilient Pack Ring [DYGU2004] . A good survey of the early token ring networks may
be found in [Bux1989] .

A Token Ring network is composed of a set of stations that are attached to a unidirectional ring. The basic principle of
the Token Ring MAC algorithm is that two types of frames travel on the ring : tokens and data frames. When the Token
Ring starts, one of the stations sends the token. The token is a small frame that represents the authorization to transmit
data frames on the ring. To transmit a data frame on the ring, a station must first capture the token by removing it from
the ring. As only one station can capture the token at a time, the station that owns the token can safely transmit a data
frame on the ring without risking collisions. After having transmitted its frame, the station must remove it from the
ring and resend the token so that other stations can transmit their own frames.
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Fig. 74: A Token Ring network

While the basic principles of the Token Ring are simple, there are several subtle implementation details that add com-
plexity to Token Ring networks. To understand these details let us analyze the operation of a Token Ring interface on
a station. A Token Ring interface serves three different purposes. Like other LAN interfaces, it must be able to send
and receive frames. In addition, a Token Ring interface is part of the ring, and as such, it must be able to forward the
electrical signal that passes on the ring even when its station is powered off.

‘When powered-on, Token Ring interfaces operate in two different modes : listen and transmit. When operating in listen
mode, a Token Ring interface receives an electrical signal from its upstream neighbor on the ring, introduces a delay
equal to the transmission time of one bit on the ring and regenerates the signal before sending it to its downstream
neighbor on the ring.

The first problem faced by a Token Ring network is that as the token represents the authorization to transmit, it must
continuously travel on the ring when no data frame is being transmitted. Let us assume that a token has been produced
and sent on the ring by one station. In Token Ring networks, the token is a 24 bits frame whose structure is shown
below.

0 1 2

0123456789012345678901234
i sk it s SR R S S S S S S i e e T SRR
| Start Delim. |Access Control | Ending Delim. |
T T kT R T R S e R e e e S ST R

Fig. 75: 802.5 token format

The token is composed of three fields. First, the Starting Delimiter is the marker that indicates the beginning of a frame.
The first Token Ring networks used Manchester coding and the Starting Delimiter contained both symbols representing
0 and symbols that do not represent bits. The last field is the Ending Delimiter which marks the end of the token. The
Access Control field is present in all frames, and contains several flags. The most important is the Token bit that is set
in token frames and reset in other frames.

Let us consider the five station network depicted in figure A Token Ring network above and assume that station S/ sends
a token. If we neglect the propagation delay on the inter-station links, as each station introduces a one bit delay, the
first bit of the frame would return to S/ while it sends the fifth bit of the token. If station S/ is powered off at that time,
only the first five bits of the token will travel on the ring. To avoid this problem, there is a special station called the
Monitor on each Token Ring. To ensure that the token can travel forever on the ring, this Monitor inserts a delay that
is equal to at least 24 bit transmission times. If station S3 was the Monitor in figure A Token Ring network, S1 would
have been able to transmit the entire token before receiving the first bit of the token from its upstream neighbor.

Now that we have explained how the token can be forwarded on the ring, let us analyze how a station can capture a
token to transmit a data frame. For this, we need some information about the format of the data frames. An 802.5
data frame begins with the Starting Delimiter followed by the Access Control field whose Token bit is reset, a Frame
Control field that enables the definition of several types of frames, destination and source address, a payload, a CRC,

96 Chapter 2. Part 1: Principles



Computer Networking : Principles, Protocols and Practice, Release 2021

the Ending Delimiter and a Frame Status field. The format of the Token Ring data frames is illustrated below.

0 1 2 3
01234567890123456789012345678901
e s s TR R R e e e e P S
| Start Delim. |Access Control | Frame Control |
Hot-tototototot-tototot-tot-totototototototototot-t-t-t-t-t-t-t-+
I I
+ 48 bits Bl T Rk T I R P
| Destination Address |
dod-d-F-F-F-F-FoFod-F-F-F-F-+-+-+ 48 bits +
| Source Address |
e s T R e R R e e s
I I
~ I
I

Payload

I-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 32 bits CRC |
e st e R e e e e e e R e At e s TR R S S
| End Delim. | Frame Status |
e T e sl st tEE T SR R e S

Fig. 76: 802.5 data frame format

To capture a token, a station must operate in Listen mode. In this mode, the station receives bits from its upstream
neighbor. If the bits correspond to a data frame, they must be forwarded to the downstream neighbor. If they correspond
to a token, the station can capture it and transmit its data frame. Both the data frame and the token are encoded as a bit
string beginning with the Starting Delimiter followed by the Access Control field. When the station receives the first
bit of a Starting Delimiter, it cannot know whether this is a data frame or a token and must forward the entire delimiter
to its downstream neighbor. It is only when it receives the fourth bit of the Access Control field (i.e. the Token bit) that
the station knows whether the frame is a data frame or a token. If the Token bit is reset, it indicates a data frame and
the remaining bits of the data frame must be forwarded to the downstream station. Otherwise (Token bit is set), this is
a token and the station can capture it by resetting the bit that is currently in its buffer. Thanks to this modification, the
beginning of the token is now the beginning of a data frame and the station can switch to Transmit mode and send its
data frame starting at the fifth bit of the Access Control field. Thus, the one-bit delay introduced by each Token Ring
station plays a key role in enabling the stations to efficiently capture the token.

After having transmitted its data frame, the station must remain in Transmit mode until it has received the last bit of
its own data frame. This ensures that the bits sent by a station do not remain in the network forever. A data frame sent
by a station in a Token Ring network passes in front of all stations attached to the network. Each station can detect the
data frame and analyze the destination address to possibly capture the frame.

The text above describes the basic operation of a Token Ring network when all stations work correctly. Unfortunately, a
real Token Ring network must be able to handle various types of anomalies and this increases the complexity of Token
Ring stations. We briefly list the problems and outline their solutions below. A detailed description of the operation of
Token Ring stations may be found in [IEEE802.5]. The first problem is when all the stations attached to the network
start. One of them must bootstrap the network by sending the first token. For this, all stations implement a distributed
election mechanism that is used to select the Monitor. Any station can become a Monitor. The Monitor manages the
Token Ring network and ensures that it operates correctly. Its first role is to introduce a delay of 24 bit transmission
times to ensure that the token can travel smoothly on the ring. Second, the Monitor sends the first token on the ring. It
must also verify that the token passes regularly. According to the Token Ring standard [IEEE802.5], a station cannot
retain the token to transmit data frames for a duration longer than the Token Holding Time (THT) (slightly less than 10
milliseconds). On a network containing NV stations, the Monitor must receive the token at least every N x T'HT' seconds.
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If the Monitor does not receive a token during such a period, it cuts the ring for some time and then re-initializes the
ring and sends a token.

Several other anomalies may occur in a Token Ring network. For example, a station could capture a token and be
powered off before having resent the token. Another station could have captured the token, sent its data frame and be
powered off before receiving all of its data frame. In this case, the bit string corresponding to the end of a frame would
remain in the ring without being removed by its sender. Several techniques are defined in [[EEE802.5] to allow the
Monitor to handle all these problems. If unfortunately, the Monitor fails, another station will be elected to become the
new Monitor.

2.6.5 Congestion control

Most networks contain links having different bandwidth. Some hosts can use low bandwidth wireless networks. Some
servers are attached via 10 Gbps interfaces and inter-router links may vary from a few tens of kilobits per second up to
hundred Gbps. Despite these huge differences in performance, any host should be able to efficiently exchange segments
with a high-end server.

To understand this problem better, let us consider the scenario shown in the figure below, where a server (A) attached
to a 10 Mbps link needs to reliably transfer segments to another computer (C) through a path that contains a 2 Mbps

link.
10 Mbps 2 Mbps 10 Mbps

Fig. 77: Reliable transport with heterogeneous links

In this network, the segments sent by the server reach router R/. RI forwards the segments towards router R2. Router
RI can potentially receive segments at /0 Mbps, but it can only forward them at 2 Mbps to router R2 and then to host C.
Router R1 includes buffers that allow it to store the packets that cannot immediately be forwarded to their destination.
To understand the operation of a reliable transport protocol in this environment, let us consider a simplified model of
this network where host A is attached to a /0 Mbps link to a queue that represents the buffers of router R/. This queue
is emptied at a rate of 2 Mbps.

@_ 10 Mbps ﬂ;ﬁ?— 2 Mbps m}

e———— N

————
————

—————————

- ] £

Fig. 78: Self clocking
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Let us consider that host A uses a window of three segments. It thus sends three back-to-back segments at /0 Mbps
and then waits for an acknowledgment. Host A stops sending segments when its window is full. These segments
reach the buffers of router R/. The first segment stored in this buffer is sent by router R/ at a rate of 2 Mbps to the
destination host. Upon reception of this segment, the destination sends an acknowledgment. This acknowledgment
allows host A to transmit a new segment. This segment is stored in the buffers of router R/ while it is transmitting the
second segment that was sent by host A... Thus, after the transmission of the first window of segments, the reliable
transport protocol sends one data segment after the reception of each acknowledgment returned by the destination. In
practice, the acknowledgments sent by the destination serve as a kind of clock that allows the sending host to adapt its
transmission rate to the rate at which segments are received by the destination. This self-clocking is the first mechanism
that allows a window-based reliable transport protocol to adapt to heterogeneous networks [Jacobson1988]. It depends
on the availability of buffers to store the segments that have been sent by the sender but have not yet been transmitted
to the destination.

However, transport protocols are not only used in this environment. In the global Internet, a large number of hosts send
segments to a large number of receivers. For example, let us consider the network depicted below which is similar to
the one discussed in [Jacobson1988] and RFC 896. In this network, we assume that the buffers of the router are infinite
to ensure that no packet is lost.

Many Many

senders receivers

Infinite buffers

Fig. 79: The congestion collapse problem

If many senders are attached to the left part of the network above, they all send a window full of segments. These seg-
ments are stored in the buffers of the router before being transmitted towards their destination. If there are many senders
on the left part of the network, the occupancy of the buffers quickly grows. A consequence of the buffer occupancy is
that the round-trip-time, measured by the transport protocol, between the sender and the receiver increases. Consider
a network where 10,000 bits segments are sent. When the buffer is empty, such a segment requires 1 millisecond to
be transmitted on the /0 Mbps link and 5 milliseconds to be the transmitted on the 2 Mbps link. Thus, the measured
round-trip-time measured is roughly 6 milliseconds if we ignore the propagation delay on the links. If the buffer con-
tains 100 segments, the round-trip-time becomes 1 + 100 x 5 + 5 milliseconds as new segments are only transmitted
on the 2 Mbps link once all previous segments have been transmitted. Unfortunately, if the reliable transport protocol
uses a retransmission timer and performs go-back-n to recover from transmission errors it will retransmit a full window
of segments. This increases the occupancy of the buffer and the delay through the buffer... Furthermore, the buffer
may store and send on the low bandwidth links several retransmissions of the same segment. This problem is called
congestion collapse. It occurred several times during the late 1980s on the Internet [Jacobson1988].

The congestion collapse is a problem that all heterogeneous networks face. Different mechanisms have been proposed
in the scientific literature to avoid or control network congestion. Some of them have been implemented and deployed in
real networks. To understand this problem in more detail, let us first consider a simple network with two hosts attached
to a high bandwidth link that are sending segments to destination C attached to a low bandwidth link as depicted below.

To avoid congestion collapse, the hosts must regulate their transmission rate® by using a congestion control mecha-
nism. Such a mechanism can be implemented in the transport layer or in the network layer. In TCP/IP networks, it is

5 In this section, we focus on congestion control mechanisms that regulate the transmission rate of the hosts. Other types of mechanisms have
been proposed in the literature. For example, credit-based flow-control has been proposed to avoid congestion in ATM networks [KR1995]. With a
credit-based mechanism, hosts can only send packets once they have received credits from the routers and the credits depend on the occupancy of
the router’s buffers.
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10 Mbps 2 Mbps 10 Mbps

Fig. 80: The congestion problem

implemented in the transport layer, but other technologies such as Asynchronous Transfer Mode (ATM) or Frame Relay
include congestion control mechanisms in lower layers.

Let us first consider the simple problem of a set of ¢ hosts that share a single bottleneck link as shown in the example
above. In this network, the congestion control scheme must achieve the following objectives [CJ1989] :

1. The congestion control scheme must avoid congestion. In practice, this means that the bottleneck
link cannot be overloaded. If r;(t) is the transmission rate allocated to host ¢ at time ¢ and R the
bandwidth of the bottleneck link, then the congestion control scheme should ensure that, on average,

2. The congestion control scheme must be efficient. The bottleneck link is usually both a shared and an
expensive resource. Usually, bottleneck links are wide area links that are much more expensive to
upgrade than the local area networks. The congestion control scheme should ensure that such links
are efficiently used. Mathematically, the control scheme should ensure that Vt > r;(t) =~ R.

3. The congestion control scheme should be fair. Most congestion schemes aim at achieving max-min
fairness. An allocation of transmission rates to sources is said to be max-min fair if :

* no link in the network is congested

* the rate allocated to source j cannot be increased without decreasing the rate allocated to a source ¢
whose allocation is smaller than the rate allocated to source j [Leboudec2008] .

Depending on the network, a max-min fair allocation may not always exist. In practice, max-min fairness is an ideal
objective that cannot necessarily be achieved. When there is a single bottleneck link as in the example above, max-min
fairness implies that each source should be allocated the same transmission rate.

To visualize the different rate allocations, it is useful to consider the graph shown below. In this graph, we plot on
the x-axis (resp. y-axis) the rate allocated to host B (resp. A). A point in the graph (75,7 4) corresponds to a possible
allocation of the transmission rates. Since there is a 2 Mbps bottleneck link in this network, the graph can be divided
into two regions. The lower left part of the graph contains all allocations (75,7 4) such that the bottleneck link is not
congested (4 +rp < 2). The right border of this region is the efficiency line, i.e. the set of allocations that completely
utilize the bottleneck link (r4 + rp = 2). Finally, the fairness line is the set of fair allocations.

Host A
Rate .

2 Mbps A .7
.~ Congested
region

’

Fairness
line
\_).'

2Mbps Host B Rate

Efficiency line

Fig. 81: Possible allocated transmission rates
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As shown in the graph above, a rate allocation may be fair but not efficient (e.g. r4 = 0.7, rp = 0.7), fair and efficient
(e.g. 74 = 1,rg = 1) or efficient but not fair (e.g. r4 = 1.5, rp = 0.5). Ideally, the allocation should be both fair and
efficient. Unfortunately, maintaining such an allocation with fluctuations in the number of flows that use the network
is a challenging problem. Furthermore, there might be several thousands flows that pass through the same 1ink®.

To deal with these fluctuations in demand, which result in fluctuations in the available bandwidth, computer networks
use a congestion control scheme. This congestion control scheme should achieve the three objectives listed above.
Some congestion control schemes rely on a close cooperation between the end hosts and the routers, while others are
mainly implemented on the end hosts with limited support from the routers.

A congestion control scheme can be modeled as an algorithm that adapts the transmission rate (r;(¢)) of host ¢ based
on the feedback received from the network. Different types of feedback are possible. The simplest scheme is a bi-
nary feedback [CJ1989] [Jacobson1988] where the hosts simply learn whether the network is congested or not. Some
congestion control schemes allow the network to regularly send an allocated transmission rate in Mbps to each host
[BF1995].

Let us focus on the binary feedback scheme which is the most widely used today. Intuitively, the congestion control
scheme should decrease the transmission rate of a host when congestion has been detected in the network, in order
to avoid congestion collapse. Furthermore, the hosts should increase their transmission rate when the network is not
congested. Otherwise, the hosts would not be able to efficiently utilize the network. The rate allocated to each host
fluctuates with time, depending on the feedback received from the network. The figure below illustrates the evolution
of the transmission rates allocated to two hosts in our simple network. Initially, two hosts have a low allocation, but
this is not efficient. The allocations increase until the network becomes congested. At this point, the hosts decrease
their transmission rate to avoid congestion collapse. If the congestion control scheme works well, after some time the
allocations should become both fair and efficient.

Host A
Rate

2Mbps  Host B Rate

Fig. 82: Evolution of the transmission rates

Various types of rate adaption algorithms are possible. Dah Ming Chiu and Raj Jain have analyzed, in [CJ1989],
different types of algorithms that can be used by a source to adapt its transmission rate to the feedback received from the
network. Intuitively, such a rate adaptation algorithm increases the transmission rate when the network is not congested
(ensure that the network is efficiently used) and decrease the transmission rate when the network is congested (to avoid
congestion collapse).

The simplest form of feedback that the network can send to a source is a binary feedback (the network is congested or
not congested). In this case, a linear rate adaptation algorithm can be expressed as :

» rate(t + 1) = ac + Porate(t) when the network is congested
* rate(t + 1) = an + Byrate(t) when the network is not congested

With a linear adaption algorithm, a¢, an, 5S¢ and Sy are constants. The analysis of [CJ1989] shows that to be fair and
efficient, such a binary rate adaption mechanism must rely on Additive Increase and Multiplicative Decrease. When
the network is not congested, the hosts should slowly increase their transmission rate (85 = 1 and any > 0). When

6 For example, the measurements performed in the Sprint network in 2004 reported more than 10k active TCP connections on a link, see https:
//research.sprintlabs.com/packstat/packetoverview.php. More recent information about backbone links may be obtained from caida ‘s real-time
measurements, see e.g. http://www.caida.org/data/realtime/passive/

2.6. Sharing resources 101


https://home.ie.cuhk.edu.hk/~dmchiu/
https://www.cse.wustl.edu/~jain/
https://research.sprintlabs.com/packstat/packetoverview.php
https://research.sprintlabs.com/packstat/packetoverview.php
https://www.caida.org
http://www.caida.org/data/realtime/passive/

Computer Networking : Principles, Protocols and Practice, Release 2021

the network is congested, the hosts must multiplicatively decrease their transmission rate (8¢ < 1 and ae = 0). Such
an AIMD rate adaptation algorithm can be implemented by the pseudo-code below.

# Additive Increase Multiplicative Decrease
if congestion:

rate = rate * betaC # multiplicative decrease, betaC<l
else

rate = rate + alphaN # additive increase, alphaN > 0

Note: Which binary feedback ?

Two types of binary feedback are possible in computer networks. A first solution is to rely on implicit feedback. This is
the solution chosen for TCP. TCP’s congestion control scheme [Jacobson1988] does not require any cooperation from
the router. It only assumes that they use buffers and that they discard packets when there is congestion. TCP uses the
segment losses as an indication of congestion. When there are no losses, the network is assumed to be not congested.
This implies that congestion is the main cause of packet losses. This is true in wired networks, but unfortunately not
always true in wireless networks. Another solution is to rely on explicit feedback. This is the solution proposed in
the DECBit congestion control scheme [RJ1995] and used in Frame Relay and ATM networks. This explicit feedback
can be implemented in two ways. A first solution would be to define a special message that could be sent by routers
to hosts when they are congested. Unfortunately, generating such messages may increase the amount of congestion in
the network. Such a congestion indication packet is thus discouraged RFC 1812. A better approach is to allow the
intermediate routers to indicate, in the packets that they forward, their current congestion status. Binary feedback can
be encoded by using one bit in the packet header. With such a scheme, congested routers set a special bit in the packets
that they forward while non-congested routers leave this bit unmodified. The destination host returns the congestion
status of the network in the acknowledgments that it sends. Details about such a solution in IP networks may be found
in RFC 3168. Unfortunately, as of this writing, this solution is still not deployed despite its potential benefits.

Congestion control with a window-based transport protocol

AIMD controls congestion by adjusting the transmission rate of the sources in reaction to the current congestion level.
If the network is not congested, the transmission rate increases. If congestion is detected, the transmission rate is
multiplicatively decreased. In practice, directly adjusting the transmission rate can be difficult since it requires the
utilization of fine grained timers. In reliable transport protocols, an alternative is to dynamically adjust the sending
window. This is the solution chosen for protocols like TCP and SCTP that will be described in more details later. To
understand how window-based protocols can adjust their transmission rate, let us consider the very simple scenario of
a reliable transport protocol that uses go-back-n. Consider the very simple scenario shown in the figure below.

500 Kbps
oNn o)

Fig. 83: A simple network with hosts sharing a bottleneck link

The links between the hosts and the routers have a bandwidth of 1 Mbps while the link between the two routers has a
bandwidth of 500 Kbps. There is no significant propagation delay in this network. For simplicity, assume that hosts A
and B send 1000 bits packets. The transmission of such a packet on a host-router (resp. router-router ) link requires 1
msec (resp. 2 msec). If there is no traffic in the network, the round-trip-time measured by host A to reach D is slightly
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larger than 4 msec. Let us observe the flow of packets with different window sizes to understand the relationship
between sending window and transmission rate.

Consider first a window of one segment. This segment takes 4 msec to reach host D. The destination replies with
an acknowledgment and the next segment can be transmitted. With such a sending window, the transmission rate is
roughly 250 segments per second or 250 Kbps. This is illustrated in the figure below where each square of the grid
corresponds to one millisecond.

A-R1 R1-R2 R2-D
st
S1
S
¢ < ¢
s2
s2
,  s2
( A} A}

time

Fig. 84: Go-back-n transfer from A to D, window of one segment

Consider now a window of two segments. Host A can send two segments within 2 msec on its 1 Mbps link. If the first
segment is sent at time %, it reaches host D at ¢y + 4. Host D replies with an acknowledgment that opens the sending
window on host A and enables it to transmit a new segment. In the meantime, the second segment was buffered by
router R/. It reaches host D at ¢ty + 6 and an acknowledgment is returned. With a window of two segments, host A
transmits at roughly 500 Kbps, i.e. the transmission rate of the bottleneck link.

Our last example is a window of four segments. These segments are sent at tg, to + 1, ty + 2 and tg + 3. The first
segment reaches host D at ¢y + 4. Host D replies to this segment by sending an acknowledgment that enables host A
to transmit its fifth segment. This segment reaches router R/ at ty + 5. At that time, router R/ is transmitting the third
segment to router R2 and the fourth segment is still in its buffers. At time ¢y + 6, host D receives the second segment
and returns the corresponding acknowledgment. This acknowledgment enables host A to send its sixth segment. This
segment reaches router R/ at roughly ¢y 4 7. At that time, the router starts to transmit the fourth segment to router R2.
Since link R/-R2 can only sustain 500 Kbps, packets will accumulate in the buffers of R/. On average, there will be two
packets waiting in the buffers of RI. The presence of these two packets will induce an increase of the round-trip-time
as measured by the transport protocol. While the first segment was acknowledged within 4 msec, the fifth segment
(data(4)) that was transmitted at time ¢o + 4 is only acknowledged at time ¢ + 11. On average, the sender transmits at
500 Kbps, but the utilization of a large window induces a longer delay through the network.
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Fig. 85: Go-back-n transfer from A to D, window of two segments
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Fig. 86: Go-back-n transfer from A to D, window of four segments
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From the above example, we can adjust the transmission rate by adjusting the sending window of a reliable transport
protocol. A reliable transport protocol cannot send data faster than % segments per second where window is
the current sending window. To control the transmission rate, we introduce a congestion window. This congestion
window limits the sending window. At any time, the sending window is restricted to min(swin, cwin), where swin
is the sending window and cwin the current congestion window. Of course, the window is further constrained by the
receive window advertised by the remote peer. With the utilization of a congestion window, a simple reliable transport

protocol that uses fixed size segments could implement AIMD as follows.

For the Additive Increase part our simple protocol would simply increase its congestion window by one segment every
round-trip-time. The Multiplicative Decrease part of AIMD could be implemented by halving the congestion window
when congestion is detected. For simplicity, we assume that congestion is detected thanks to a binary feedback and
that no segments are lost. We will discuss in more details how losses affect a real transport protocol like TCP in later
sections.

A congestion control scheme for our simple transport protocol could be implemented as follows.

# Initialisation
cwin = 1 # congestion window measured in segments

# Ack arrival
if ack_received:
if newack: # new ack, no congestion
# increase cwin by one every rtt
cwin = cwin + (1/cwin)
else:
# no increase

if congestion_detected:
cwin = cwin / 2 # only once per rtt

In the above pseudocode, cwin contains the congestion window stored as a real number of segments. This congestion
window is updated upon the arrival of each acknowledgment and when congestion is detected. For simplicity, we
assume that cwin is stored as a floating point number but only full segments can be transmitted.

As an illustration, let us consider the network scenario above and assume that the router implements the DECBit binary
feedback scheme [RJ1995]. This scheme uses a form of Forward Explicit Congestion Notification and a router marks
the congestion bit in arriving packets when its buffer contains one or more packets. In the figure below, we use a * to
indicate a marked packet.

When the connection starts, its congestion window is set to one segment. Segment SO is sent an acknowledgment at
roughly ¢y + 4. The congestion window is increased by one segment and S/ and S2 are transmitted at time ¢y + 4 and
to + 5. The corresponding acknowledgments are received at times ¢y + 8 and ¢y + 10. Upon reception of this last
acknowledgment, the congestion window reaches 3 and segments can be sent (5S4 and S5). When segment S6 reaches
router R1, its buffers already contain S5. The packet containing S6 is thus marked to inform the sender of the congestion.
Note that the sender will only notice the congestion once it receives the corresponding acknowledgment at ¢g + 18. In
the meantime, the congestion window continues to increase. Aty + 16, upon reception of the acknowledgment for S5,
it reaches 4. When congestion is detected, the congestion window is decreased down to 2. This explains the idle time
between the reception of the acknowledgment for $*6 and the transmission of S70.

In practice, a router is connected to multiple input links. The figure below shows an example with two hosts.

In general, the links have a non-zero delay. This is illustrated in the figure below where a delay has been added on the
link between R and C.
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Fig. 87: Go-back-n transfer from A to D, with AIMD congestion control and DecBit binary feedback scheme
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Fig. 88: A simple network with hosts sharing a bottleneck
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2.7 The reference models

Given the growing complexity of computer networks, during the 1970s network researchers proposed various reference
models to facilitate the description of network protocols and services. Of these, the Open Systems Interconnection
(OSI) model [Zimmermann80] was probably the most influential. It served as the basis for the standardization work
performed within the /SO to develop global computer network standards. The reference model that we use in this book
can be considered as a simplified version of the OSI reference model'.

2.7.1 The five layers reference model

Our reference model is divided into five layers, as shown in the figure below.

Application

Transport

Network

Datalink

Physical
I

Physical transmission medium

Fig. 91: The five layers of the reference model

2.7.2 The Physical layer
Starting from the bottom, the first layer is the Physical layer. Two communicating devices are linked through a physical
medium. This physical medium is used to transfer an electrical or optical signal between two directly connected devices.

An important point to note about the Physical layer is the service that it provides. This service is usually an unreliable
service that allows the users of the Physical layer to exchange bits. The unit of information transfer in the Physical layer
is the bit. The Physical layer service is unreliable because :

« the Physical layer may change, e.g. due to electromagnetic interference, the value of a bit being transmitted
* the Physical layer may deliver more bits to the receiver than the bits sent by the sender

« the Physical layer may deliver fewer bits to the receiver than the bits sent by the sender

Physical Bits Physical

01010010100010101001010

Physical transmission medium

Fig. 92: The Physical layer

! An interesting historical discussion of the OSI-TCP/IP debate may be found in [Russel06]
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2.7.3 The Datalink layer

The Datalink layer builds on the service provided by the underlying physical layer. The Datalink layer allows two
hosts that are directly connected through the physical layer to exchange information. The unit of information exchanged
between two entities in the Datalink layer is a frame. A frame is a finite sequence of bits. Some Datalink layers use
variable-length frames while others only use fixed-length frames. Some Datalink layers provide a connection-oriented
service while others provide a connectionless service. Some Datalink layers provide reliable delivery while others do
not guarantee the correct delivery of the information.

An important point to note about the Datalink layer is that although the figure below indicates that two entities of the
Datalink layer exchange frames directly, in reality this is slightly different. When the Daralink layer entity on the left
needs to transmit a frame, it issues as many Data.request primitives to the underlying physical layer as there are bits
in the frame. The physical layer will then convert the sequence of bits in an electromagnetic or optical signal that will
be sent over the physical medium. The physical layer on the right hand side of the figure will decode the received
signal, recover the bits and issue the corresponding Data.indication primitives to its Datalink layer entity. If there are
no transmission errors, this entity will receive the frame sent earlier.

Frames

Datalink

Physical

Datalink

Physical

Fig. 93: The Datalink layer

2.7.4 The Network layer

The Datalink layer allows directly connected hosts to exchange information, but it is often necessary to exchange
information between hosts that are not attached to the same physical medium. This is the task of the network layer. The
network layer is built above the datalink layer. Network layer entities exchange packets. A packet is a finite sequence
of bytes that is transported by the datalink layer inside one or more frames. A packet usually contains information about
its origin and its destination, and usually passes through several intermediate devices called routers on its way from its
origin to its destination.

Packets

Packets

Network Network Network
Datalink Datalink Datalink
Physical layer Physical layer Physical layer

Fig.

94: The network layer
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2.7.5 The Transport layer

The network layer enables hosts to reach each others. However, different communication flows can take place between
the same hosts. These communication flows might have different needs (some require reliable delivery, other not) and
need to be distinguished. Ensuring an identification of a communication flow between two given hosts is the task of the
transport layer. Transport layer entities exchange segments. A segment is a finite sequence of bytes that are transported
inside one or more packets. A transport layer entity issues segments (or sometimes part of segments) as Data.request
to the underlying network layer entity.

There are different types of transport layers. The most widely used transport layers on the Internet are 7CP, that
provides a reliable connection-oriented bytestream transport service, and UDP, that provides an unreliable connection-
less transport service.

Transport Segments Transport

Network Network Network

Datalink Datalink Datalink
Physical layer Physical layer Physical layer

Fig. 95: The transport layer

2.7.6 The Application layer

The upper layer of our architecture is the Application layer. This layer includes all the mechanisms and data structures
that are necessary for the applications. We will use Application Data Unit (ADU) or the generic Service Data Unit
(SDU) term to indicate the data exchanged between two entities of the Application layer.

Application SDUs / ADUs Application
Transport Transport
Network Network Network
Datalink Datalink Datalink
Physical layer Physical layer Physical layer

Fig. 96: The Application layer

In the remaining chapters of this text, we will often refer to the information exchanged between entities located in
different layers. To avoid any confusion, we will stick to the terminology defined earlier, i.e. :

* physical layer entities exchange bits
* datalink layer entities exchange frames

* network layer entities exchange packets

110 Chapter 2. Part 1: Principles



Computer Networking : Principles, Protocols and Practice, Release 2021

* transport layer entities exchange segments

* application layer entities exchange SDUs

2.7.7 Reference models

Two reference models have been successful in the networking community : the OSI reference model and the TCP/IP

reference model. We discuss them briefly in this section.

The TCP/IP reference model

In contrast with OSI, the TCP/IP community did not spend a lot of effort defining a detailed reference model; in fact,
the goals of the Internet architecture were only documented after TCP/IP had been deployed [Clark88]. RFC 1122,

which defines the requirements for Internet hosts, mentions four different layers. Starting from the top, these are :
¢ the Application layer
e the Transport layer

* the Internet layer which is equivalent to the network layer of our reference model

* the Link layer which combines the functions of the physical and datalink layers of our five-layer reference model

Besides this difference in the lower layers, the TCP/IP reference model is very close to the five layers that we use

throughout this document.

The OSI reference model

Compared to the five layers reference model explained above, the OSI reference model defined in [X200] is divided
in seven layers. The four lower layers are similar to the four lower layers described above. The OSI reference model

refined the application layer by dividing it in three layers :

¢ the Session layer. The Session layer contains the protocols and mechanisms that are necessary to organize and
to synchronize the dialogue and to manage the data exchange of presentation layer entities. While one of the
main functions of the transport layer is to cope with the unreliability of the network layer, the session’s layer

objective is to hide the possible failures of transport-level connections to the upper layer higher. For this,

the

Session Layer provides services that allow establishing a session-connection, to support in-order data exchange

(including mechanisms that allow recovering from the abrupt release of an underlying transport connection),

to release the connection in an orderly manner.

and

* the Presentation layer was designed to cope with the different ways of representing information on computers.
There are many differences in the way computer store information. Some computers store integers as 32 bits
field, others use 64 bits field and the same problem arises with floating point number. For textual information,
this is even more complex with the many different character codes that have been used”. The situation is even
more complex when considering the exchange of structured information such as database records. To solve this
problem, the Presentation layer provides a common representation of the data transferred. The ASN./ notation

was designed for the Presentation layer and is still used today by some protocols.

« the Application layer that contains the mechanisms that do not fit in neither the Presentation nor the Session

layer. The OSI Application layer was itself further divided in several generic service elements.

2 There is now a rough consensus for the greater use of the Unicode character format. Unicode can represent more than 100,000 different
characters from the known written languages on Earth. Maybe one day, all computers will only use Unicode to represent all their stored characters

and Unicode could become the standard format to exchange characters, but we are not yet at this stage today.
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Application SDUs / ADUs Application
Presentation Presentation
Session Session
Transport Transport
Network Network Network
Datalink Datalink Datalink
Physical layer Physical layer Physical layer

Fig. 97: The seven layers of the OSI reference model

2.8 Network security

In the early days, data networks were mainly used by researchers and security was not a concern. A few users were
connected and capable of using the network. Almost all the devices attached to the network were openly accessible
and users were trusted. As the utilization of the networks grew, security concerns started to appear. In universities,
researchers and professors did not always trust their students and required some forms of access control. On standalone
computers, the common access control mechanism is the password. A username is assigned to each user and when this
user wants to access the computer, he or she needs to provide his/her username and his/her password. Most passwords
are composed of a sequence of characters. The strength of the password is function of the difficulty of guessing the
characters chosen by each user. Various guidelines have been defined on how to select a good password'. Some systems
require regular modifications of the passwords chosen by their users.

When the first computers were attached to data networks, applications were developed to enable them to access to remote
computers through the network. To authenticate the remote users, these applications have also relied on usernames and
passwords. When a user connects to a distant computer, she sends her username through the network and then provides
her password to confirm her identity. This authentication scheme is presented in the time sequence diagram below.

! The wikipedia page on passwords provides many of these references : https://en.wikipedia.org/wiki/Password_strength
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Host A Host B
DATA.req('m AIice‘

DATA.ind(I'm AIice‘

<DATA.req(Password:)

<DATA.ind(Pas,sword:)

DATA.req(1234xyz$‘

DATA.ind(1 234xyz$‘

<DATA.req(Access)

DATA.ind(Access)

Note: Alice and Bob

Alice and Bob are the first names that are used in examples for security techniques. They first appeared in a seminal
paper by Diffie and Hellman [DH1976]. Since then, Alice and Bob are the most frequently used names to represent the
users who interact with a network. Other characters such as Eve or Mallory have been added over the years. We will
explain their respective roles later.

2.8.1 Threats

When analyzing security issues in computer networks, it is useful to reason about the capabilities of the attacker who
wants to exploit some breach in the security of the network. There are different types of attackers. Some have generic
capabilities, others are specific to a given technology or network protocol. In this section, we discuss some important
threats that a network architect must take into account.

The first type of attacker is called the passive attacker. A passive attacker is someone able to observe and usually store
the information (e.g. the packets) exchanged in a given network or subset of it (e.g. a specific link). This attacker
has access to all the data passing through this specific link. This is the most basic type of attacker and many network
technologies are vulnerable to such attacks. In the above example, a passive attacker could easily capture the password
sent by Alice and reuse it later to be authenticated as Alice on the remote computer. This is illustrated in the figure
below where we do not show anymore the DATA.req and DATA.ind primitives but only the messages exchanged.
Throughout this chapter, we will always use Eve as a user who is able to eavesdrop the data passing in front of her.

2.8. Network security 113



Computer Networking : Principles, Protocols and Practice, Release 2021

Alice Eve -
L (e I'm Alice
__________________________ »4}
PaSSWOr: _____.ooccenseeerrree ] .,
«— g
I e — 1234xyz$
__________________________ »
Acce:c,_s_ ______________________________________ >
«— g

In the above example, Eve can capture all the packets exchanged by Bob and Alice. This implies that Eve can discover
Alice’s username and Alice’s password. With this information, Eve can then authenticate as Alice on Bob’s computer
and do whatever Alice is authorized to do. This is a major problem from a security point of view. To prevent this
attack, Alice should never send her password in clear over a network where someone could eavesdrop the information.
In some networks, such as an open wireless network, an attacker can easily collect all the data sent by a particular user.
In other networks, this is a bit more complex depending on the network technology used, but various software packages
exist to automate this process. As will be described later, the best approach to prevent this type of attack is to rely on
cryptographic techniques to ensure that passwords are never sent in clear.

Note: Pervasive monitoring

In the previous example, we have explained how Eve could capture data from a particular user. This is not the only attack
of this type. In 2013, based on documents collected by Edward Snowden, the press revealed that several governmental
agencies were collecting lots of data on various links that compose the global Internet [Greenwald2014]. Thanks to this
massive amount of data, these governmental agencies have been able to extract lots of information about the behavior
of Internet users. Like Eve, they are in a position to extract passwords, usernames and other privacy sensitive data
from all the packets that they have captured. However, it seems that these agencies were often more interested in
various meta data, e.g. information showing with whom a given user communicates than the actual data exchanged.
These revelations have shocked the Internet community and the Internet Engineering Task Force that manages the
standardization of Internet protocols has declared in RFC 7258 that such pervasive monitoring is an attack that need
to be countered in the development of new protocols. Several new protocols and extensions to existing ones are being
developed to counter these attacks.

Eavesdropping and pervasive monitoring are not the only possible attacks against a network. Another type of attacker
is the active attacker. In the literature, these attacks are often called Man in the middle or MITM attacks. Such attacks
occur when one user, let us call him Mallory, has managed to configure the network so that he can both capture and
modify the packets exchanged by two users. The simplest scenario is when Mallory controls a router that is on the path
used by both Alice and Bob. For example, Alice could be connected to a WiFi access router controlled by Mallory and
Bob would be a regular server on the Internet.

@ Mallory Bob

As Mallory receives all the packets sent by both Bob and Alice, he can modify them at will. For example, he could
modify the commands sent by Alice to the server managed by Bob and change the responses sent by the server. This type
of attack is very powerful and sometimes difficult to counter without relying on advanced cryptographic techniques.
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The last type of attack that we consider in this introduction are the Denial of Service or DoS attacks. During such an
attack, the attacker generates enough packets to saturate a given service and prevent it from operating correctly. The
simplest Denial of Service attack is to send more packets that the bandwidth of the link that attaches the target to the
network. The target could be a single server, a company or even an entire country. If these packets all come from the
same source, then the victim can identify the attacker and contact the law enforcement authorities. In practice, such
denial of service attacks do not originate from a single source. The attacker usually compromises a (possibly very
large) set of sources and forces them to send packets to saturate a given target. Since the attacking traffic comes from a
wide range of sources, it is difficult for the victim to locate the culprit and also to counter the attack. Saturating a link
is the simplest example of Distributed Denial of Service (DDoS) attacks.

In practice, there is a possibility of denial of service attacks as soon as there is a limited resource somewhere in the
network. This resource can be the bandwidth of a link, but it could also be the computational power of a server, its
memory or even the size of tables used by a given protocol implementation. Defending against real DoS attacks can
be difficult, especially if the attacker controls a large number of sources that are used to launch the attacks. In terms of
bandwidth, DoS attacks composed of a few Gbps to a few tens of Gbps of traffic are frequent on the Internet. In 2015,
github.com suffered from a distributed DoS that reached a top bandwidth of 400 Gbps according to some reports.

When designing network protocols and applications that will be deployed on a large scale, it is important to take those
DDoS attacks into account. Attackers use different strategies to launch DDoS attacks. Some have managed to gain
control of a large number of sources by injecting malware on them. Others, and this is where protocol designers have
an important role to play, simply exploit design flaws in some protocols. Consider a simple request-response protocol
where the client sends a request and the server replies with a response. Often the response is larger or much larger
than the request sent by the client. Consider that such a simple protocol is used over a datagram network. When Alice
sends a datagram to Bob containing her request, Bob extracts both the request and Alice’s address from the packet.
He then sends his response in a single packet destined to Alice. Mallory would like to create a DoS attack against
Alice without being identified. Since he has studied the specification of this protocol, he can send a request to Bob
inside a packet having Alice’s address as its source address. Bob will process the request and send his (large) response
to Alice. If the response has the same size as the request, Mallory is producing a reflection attack since his packets
are reflected by Bob. Alice would think that she is attacked by Bob. If there are many servers that operate the same
service as Bob, Mallory could hide behind a large number of such reflectors. Unfortunately, the reflection attack can
also become an amplification attack. This happens when the response sent by Bob is larger than the request that it
has received. If the response is k times larger than the request, then when Mallory consumes 1 Gbps of bandwidth to
send requests, his victim receives k& Gbps of attack traffic. Such amplification attacks are a very important problem and
protocol designers should ensure that they never send a large response before having received the proof that the request
that they have received originated from the source indicated in the request.

2.8.2 Cryptographic primitives

Cryptography techniques have initially been defined and used by spies and armies to exchange secret information in
manner that ensures that adversaries cannot decode the information even if they capture the message or the person
carrying the message. A wide range of techniques have been defined. The first techniques relied on their secrecy to
operate. One of the first encryption schemes is attributed to Julius Caesar. When he sent confidential information to his
generals, he would encode each message by replacing each letter with another letter that is n positions after this letter
in the alphabet. For example, the message SECRET becomes VHFUHW when encoded using Caesar’s cipher. This
technique could have puzzled some soldiers during Caesar’s wars, but today even young kids can recover the original
message from the ciphered one.

The security of the Caesar cipher depends on the confidentiality of the algorithm, but experience has shown that it
is impossible to assume that an algorithm will remain secret, even for military applications. Instead, cryptographic
techniques must be designed by assuming that the algorithm will be public and known to anyone. However, its be-
havior must be controlled by a small parameter, known as the key, that will only be known by the users who need to
communicate secretly. This principle is attributed to Auguste Kerckhoff, a French cryptographer who first documented
it :

A cryptographic algorithm should be secure even if the attacker knows everything about the system, except
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one parameter known as the secret key.

This principle is important because it remains the basic assumption of all cryptographers. Any system that relies on
the secrecy of its algorithm to be considered secure is doomed to fail and be broken one day.

With the Kerckhoff principle, we can now discuss a simple but powerful encryption scheme that relies on the XOR logic
operation. This operation is easily implemented in hardware and is supported by all microprocessors. Given a secret,
K, it is possible to encode a message M by computing Cp; = K & M. The receiver of this messages can recover the
original message as since M = K & (K & M). This XOR operation is the key operation of the perfect cipher that is
also called the Vernam cipher or the one-time pad. This cipher relies on a key that contains purely random bits. The
encrypted message is then produced by XORing all the bits of the message with all the bits of the key. Since the key
is random, it is impossible for an attacker to recover the original text (or plain text) from the encrypted one. From a
security viewpoint, the one-time-pad is the best solution provided that the key is as long as the message.

Unfortunately, it is difficult to use this cipher in practice since the key must be as long as the message that needs to be
transmitted. If the key is smaller than the message and the message is divided into blocks that have the same length as
the key, then the scheme becomes less secure since the same key is used to decrypt different parts of the message. In
practice, XOR is often one of the basic operations used by encryption schemes. To be usable, the deployed encryption
schemes use keys that are composed of a small number of bits, typically 56, 64, 128, 256, ...

A secret key encryption scheme is a perfectly reversible functions, i.e. given an encryption function E, there is an
associated decryption function D such that VK,VM : D(K,E(K,M)) = M.

Various secret key cryptographic functions have been proposed, implemented and deployed. The most popular ones
are

* DES, the Data Encryption Standard that became a standard in 1977 and has been widely used by industry. It uses
56 bits keys that are not considered sufficiently secure nowadays since attackers can launch brute-force attacks by
testing all possible keys. Triple DES combines three 56 bits keys, making the brute force attacks more difficult.

* RC4 is an encryption scheme defined in the late 1980s by Ron Rivest for RSA Security. Given the speed of its
software implementation, it has been included in various protocols and implementations. However, cryptogra-
phers have identified several weaknesses in this algorithm. It is now deprecated and should not be used anymore
RFC 7465.

* AES or the Advanced Encryption Standard is an encryption scheme that was designed by the Belgian cryptog-
raphers Joan Daemen and Vincent Rijmen in 2001 [DR2002]. This algorithm has been standardized by the U.S.
National Institute of Standards and Technology (NIST). It is now used by a wide range of applications and various
hardware and software implementations exist. Many microprocessors include special instructions that ease the
implementation of AES. AES divides the message to be encrypted in blocks of 128 bits and uses keys of length
128, 192 or 256 bits. The block size and the key length are important parameters of an encryption scheme. The
block size indicates the smallest message that can be encrypted and forces the sender to divide each message in
blocks of the supported size. If the message is larger than an integer number of blocks, then the message must
be padded before being encrypted and this padding must be removed after decryption. The key size indicates the
resistance of the encryption scheme against brute force attacks, i.e. attacks where the attacker tries all possible
keys to find the correct one.

AES is widely used as of this writing, but other secret key encryption schemes continue to appear. ChaCha20, proposed
by D. Bernstein is now used by several internet protocols RFC 7539. A detailed discussion of encryption schemes is
outside the scope of this book. We will consider encryption schemes as black boxes whose operation depends on a
single key. A detailed overview of several of these schemes may be found in [MVV2011].

In the 1970s, Diffie and Hellman proposed in their seminal paper [DH1976], a different type of encryption : public key
cryptography. In public key cryptography, each user has two different keys :

* apublic key (¥, that he can distribute to everyone

* a private key (K,,,;,) that he needs to store in a secure manner and never reveal to anyone
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These two keys are generated together and they are linked by a complex mathematical relationship that is such that it
is computationally difficult to compute K., from Kp,p.

A public key cryptographic scheme is a combination of two functions :
* an encryption function, F,, that takes a key and a message as parameters
* adecryption function, D,, that takes a key and a message as parameters

The public key is used to encrypt a message so that it can only be read by the intended recipient. For example, let us
consider two users : Alice and Bob. Alice (resp. Bob) uses the keys A,;.s, and Ay (tesp. Bpriy and Bpyp). To send a
secure message M to Alice, Bob computes CM = E,(Apup, M) and Alice can decrypt it by using D,,(Apriv, CM) =
DP(APTMM Ep(Apubv M)) =M.

Several public key encryption schemes have been proposed. Two of them have reached wide deployment :

* The Rivest Shamir Adleman (RSA) algorithm” proposed in [RSA1978] that relies on modular exponentiation
with large integers.

+ The Elliptic Curve Cryptography techniques® that rely on special properties of elliptic curves.

Another interesting property of public key cryptography is its ability to compute signatures that can be used to authen-
ticate a message. This capability comes from the utilization of two different keys that are linked together. If Alice wants
to sign a message M, she can compute SM = E,(Api», M). Anyone who receives this signed messaged can extract
its content as Dy, (Apup, SM) = Dy (Apup, Ep(Apriv, M)) = M. Everyone can use A,,; to check that the message
was signed by using Alice’s private key (A,,). Since this key is only known by Alice, the ability to decrypt SM is a
proof that the message was signed by Alice herself.

In practice, encrypting a message to sign it can be computationally costly, in particular if the message is a large file. A
faster solution would be to summarize the document and only sign the summary of the document. A naive approach
could be based on a checksum or CRC computed over the message. Alice would then compute C' = Checksum (M)
and SC = E,(Apriv, C). She would then send both M and SC to the recipient of the message who can easily compute
C from SC and verify the authenticity of the message. Unfortunately, this solution does not protect Alice and the
message’s recipient against a man-in-the-middle attack. If Mallory can intercept the message sent by Alice, he can
easily modify Alice’s message and tweak it so that it has the same checksum as the original one. The CRCs, although
more complex to compute, suffer from the same problem.

To efficiently sign messages, Alice needs to be able to compute a summary of her message in a way that makes pro-
hibits an attacker from generating a different message that has the same summary. Cryptographic hash functions were
designed to solve this problem. The ideal hash function is a function that returns a different number for every possible
input. In practice, it is impossible to find such a function. Cryptographic hash functions are an approximation of this
perfect summarization function. They compute a summary of a given message in 128, 160, 256 bits or more. They
also exhibit the avalanche effect. This effect indicates that a small change in the message causes a large change in the
hash value. Finally hash functions are very difficult to invert. Knowing a hash value, it is computationally very difficult
to find the corresponding input message. Several hash functions have been proposed by cryptographers. The most
popular ones are :

e MDS5, originally proposed in RFC 1321. It has been used in a wide range of applications. In 2010, attacks against
MD5 were published and this hash function is now deprecated.

* SHA-1 is a cryptographic hash function that was standardized by the NIST in 1995. It outputs 160 bits results.
It is now used in a variety of network protocols.

¢ SHA-2 is another family of cryptographic hash functions designed by the NIST. Different variants of SHA-2 can
produce has values of 224, 256, 384 or 512 bits.

2 A detailed explanation of the operation of the RSA algorithm is outside the scope of this e-book. Various tutorials such as the RSA page on
wikipedia provide examples and tutorial information.

3 A detailed explanation of the ECC cryptosystems is outside the scope of this e-book. A simple introduction may be found on Andrea Corbellini’s
blog. There have been deployments of ECC recently because ECC schemes usually require shorter keys than RSA and consume less CPU.
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Another important point about cryptographic algorithms is that often these algorithms require random numbers to
operate correctly (e.g. to generate keys). Generating good random numbers is difficult and any implementation of
cryptographic algorithms should also include a secure random number generator. RFC 4086 provides useful recom-
mendations.

2.8.3 Cryptographic protocols

We can now combine the cryptographic operations described in the previous section to build some protocols to securely
exchange information. Let us first go back to the problem of authenticating Alice on Bob’s computer. We have shown
earlier that using a simple password for this purpose is insecure in the presence of attackers.

A naive approach would be to rely on hash functions. Since hash functions are non-invertible, Alice and Bob could
decide to use them to exchange Alice’s password in a secure manner. Then, Alice could be authenticated by using the
following exchange.

Alice N
" .._|'m Alice
______________ X
Prove It ________________________ <
- g
(I H-af_h(passwd)
______________ X
Access granted ___________________ <
- g

Since the hash function cannot be inverted, an eavesdropper cannot extract Alice’s password by simply observing the
data exchanged. However, Alice’s real password is not the objective of an attacker. The main objective for Mallory is
to be authenticated as Alice. If Mallory can capture Hash(passwd), he can simply replay this data, without being able
to invert the hash function. This is called a replay attack.

To counter this replay attack, we need to ensure that Alice never sends the same information twice to Bob. A possible
mode of operation is shown below.
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Alice 5o
P |m Alice
______________ >
Challenge:764192...--=""" )
U P
g Hash(764192||passwd)
______________ >
ACCeSS __..ooenenr T <
U R

To authenticate herself, Alice sends her user identifier to Bob. Bob replies with a random number as a challenge to
verify that Alice knows the shared secret (i.e. her password). Alice replies with the result of the computation of a
hash function (e.g. SHA-1) over a string that is the concatenation between the random number chosen by Bob and
Alice’s password. The random number chosen by Bob is often called a nonce since this is a number that should only
be used once. Bob performs the same computation locally and can check the message returned by Alice. This type
of authentication scheme has been used in various protocols. It prevents replay attacks. If Eve captures the messages
exchanged by Alice and Bob, she cannot recover Alice’s password from the messages exchanged since hash functions
are non-invertible. Furthermore, she cannot replay the hashed value since Bob will always send a different nonce.

Unfortunately, this solution forces Bob to store Alice’s password in clear. Any breach in the security of Bob’s computer
would reveal Alice’s password. Such breaches unfortunately occur and some of them have led to the dissemination of
millions of passwords.

A better approach would be to authenticate Alice without storing her password in clear on Bob’s computer. For
this, Alice computes a hash chain as proposed by Lamport in [Lamport1981]. A hash chain is a sequence of ap-
plications of a hash function (H) on an input string. If Alice’s password is P, then her 10 steps hash chain is :
H(H(H(H(H(H(H(H(H(H(P))))))))))- The result of this hash chain will be stored on Bob’s computer together
with the value /0. This number is the maximum number of remaining authentications for Alice on Bob’s computer. To
authenticate Alice, Bob sends the remaining number of authentications, i.e. /0 in this example. Since Alice knows her
password, P, she can compute H%(P) = H(H(H(H(H(H(H(H(H(P))))))))) and send this information to Bob.
Bob computes the hash of the value received from Alice (H (H?(P))) and verifies that this value is equal to the value
stored in his database. It then decrements the number of authorized authentications and stores H°(P) in his database.
Bob is now ready for the next authentication of Alice. When the number of authorized authentications reaches zero,
the hash chain needs to be reinitialized. If Eve captures (H™(P)), she cannot use it to authenticate herself as Alice on
Bob’s computer because Bob will have decremented its number of authorized authentications. Furthermore, given that
hash functions are not invertible, Eve cannot compute H"~!(P) from H"(P).

The two protocols above prevent eavesdropping attacks, but not man-in-the-middle attacks. If Mallory can intercept
the messages sent by Alice, he could force her to reveal H™(P) and then use this information to authenticate as Alice
on Bob’s computer. In practice, hash chains should only be used when the communicating users know that there cannot
be any man-in-the-middle on their communication.

Public key cryptography provides another possibility to allow Alice to authenticate herself on Bob’s computer. Assume
again that Alice and Bob know each other from previous encounters. Alice knows Bob’s public key (30by;) and Bob
also knows Alice’s key (Alicep,). To authenticate herself, Alice could send her user identifier. Bob would reply with a
random number encrypted with Alice’s public key : E,(Alicepyy, R). Alice can decrypt this message to recover R and
sends E,(Bobpys, R). Bob decrypts the nonce and confirms that Alice knows Alice,,,. If an eavesdropper captures
the messages exchanged, he cannot recover the value R which could be used as a key to encrypt the information with a
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secret key algorithm. This is illustrated in the time sequence diagram below.

Alice oo
P ImAIICe
___________________ >
E_p(Alice. {pub), Ry~ )
U PR—
R E_p(Bob_{pub} R)
_____________ >

A drawback of this approach is that Bob is forced to perform two public key computations : one encryption to send
the random nonce to Alice and one decryption to recover the nonce encrypted by Alice. If these computations are
costly from a CPU viewpoint, this creates a risk of Denial of Service Attacks were attackers could try to access Bob’s
computer and force it to perform such costly computations. Bob is more at risk than Alice in this situation and he
should not perform complex operations before being sure that he is talking with Alice. An alternative is shown in the
time sequence diagram below.

Alice o
> ImAllce
___________________ >
S <
D PR
R E_p(Alice_{priv},R)
____________________ >

Here, Bob simply sends a random nonce to Alice and verifies her signature. Since the random nonce and the signature
could be captured by an eavesdropper, they cannot be used as a secret key to encrypt further data. However Bob could
propose a secret key and send it encrypted with Alice’s public key in response to the signed nonce that he received.

The solution described above works provided that Bob and Alice know their respective public keys before communicat-
ing. Otherwise, the protocol is not secure against man-in-the-middle attackers. Consider Mallory sitting in the middle
between Alice and Bob and assume that neither Alice nor Bob knows the other’s public key.
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Alice Mallory .
—h | |
I'm Alice key=Alice_{pub}
"I Alice key'z-M.a.‘I_I_c_)"Y,{pub}

[ -
PR PR
— o

E_p(Alice_{priv},R)
P E_p(Mallary_{priv},R)

o AGEESS e

— g

In the above example, Alice sends her public key, (Alicep,s), in her first message together with her identity. Mallory
intercepts the message and replaces Alice’s key with his own key, (M allory,.s). Bob replies with a nonce, R. Alice
then signs the random nonce to prove that she knows Alice,,;,. Mallory discards the information and instead computes

E,(Malloryyi,, R). Bob now thinks that he is discussing with Alice while Mallory sits in the middle.

There are situations where symmetric authentication is required. In this case, each user must perform some computation
with his/her private key. A possible exchange is the following. Alice sends her certificate to Bob. Bob replies with
a nonce, R1, and provides his certificate. Alice encrypts R1 with her private key and generates a nonce, k2. Bob
verifies Alice’s computation and encrypts R2 with his private key. Alice verifies the computation and both have been

authenticated.

Alice N
P I'mAlice
__Ghallenge:R1---="""" <
< < ..............
(- E_p(Alice_{priv},R1).R2
E.:P.(?.’Qb_.{priv},ﬂg) ................ <
- g

The protocol described above works, but it takes a long time for Bob to authenticate Alice and for Alice to authenticate

Bob. A faster authentication

could be the following.

2.8. Network security

121



Computer Networking : Principles, Protocols and Practice, Release 2021

Alice T
Bt 'm Alice, R2
______________ >
Ch : MR ’
allenge:R1,E_p(Bob_{priv},R2)
-l
| S E_p(Alice {priv},R1)
_____________ >

Alice sends her random nonce, R2. Bob signs R2 and sends his nonce : R1. Alice signs R1 and both are authenticated.

Now consider that Mallory wants to be authenticated as Alice. The above protocol has a subtle flaw that could be
exploited by Mallory. This flaw can be exploited if Alice and Bob can act as both client and server. Knowing this,
Mallory could operate as follows. Mallory starts an authentication with Bob faking himself as Alice. He sends a first
message to Bob including Alice’s identity.

<

In this exchange, Bob authenticates himself by signing the R A nonce that was sent by Mallory. Now, to authenticate as
Alice, Mallory needs to compute the signature of nonce RB with Alice’s private key. Mallory does not know Alice’s
key, but he could exploit the protocol to force Alice to perform the required computation. For this, Mallory can start
an authentication to Alice as shown below.

Mallory Alice

<

In this example, Mallory has forced Alice to compute E,, (Alicey,i,,, RB) which is the information required to finalize
the first exchange and be authenticated as Alice. This illustrates a common problem with authentication schemes when
the same information can be used for different purposes. The problem comes from the fact that Alice agrees to compute
her signature on a nonce chosen by Bob (and relayed by Mallory). This problem occurs if the nonce is a simple integer
without any structure. If the nonce includes some structure such as some information about Alice and Bob’s identities
or even a single bit indicating whether the nonce was chosen by a user acting as a client (i.e. starting the authentication)
or as a server, then the protocol is not vulnerable anymore.

To cope with some of the above mentioned problems, public-key cryptography is usually combined with certificates. A
certificate is a data structure that includes a signature from a trusted third party. A simple explanation of the utilization
of certificates is to consider that Alice and Bob both know Ted. Ted is trusted by these two users and both have
stored Ted’s public key : T'ed,,;. Since they both know Ted’s key, he can issue certificates. A certificate is mainly a
cryptographic link between the identity of a user and his/her public key. Such a certificate can be computed in different
ways. A simple solution is for Ted to generate a file that contains the following information for each certified user :

* his/her identity
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* his/her public key
* a hash of the entire file signed with Ted’s private key

Then, knowing Ted’s public key, anyone can verify the validity of a certificate. When a user sends his/her public
key, he/she must also attach the certificate to prove the link between his/her identity and the public key. In practice,
certificates are more complex than this. Certificates will often be used to authenticate the server and sometimes to
authenticate the client.

A possible protocol could then be the following. Alice sends Cert(Alicep,s, T'ed). Bob replies with a random nonce.

Alice T
Proee Cert(Ali
ert(Alice_{pub}, Ted)
____________ >
______________ Bl
U PR
g E_p(Alice_{priv},R)
______________ >

Until now, we have only discussed the authentication problem. This is an important but not sufficient step to have a
secure communication between two users through an insecure network. To securely exchange information, Alice and
Bob need to both :

* mutually authenticate each other
e agree on a way to encrypt the messages that they will exchange

Let us first explore how this could be realized by using public-key cryptography. We assume that Alice and Bob have
both a public-private key pair and the corresponding certificates signed by a trusted third party : Ted.

A possible protocol would be the following. Alice sends Cert(Alicepy,, T'ed). This certificate provides Alice’s identity
and her public key. Bob replies with the certificate containing his own public key : Cert(Boby,s, T'ed). At this point,
they both know the other public key and could use it to send encrypted messages. Alice would send E,(Bobpyp, M1)
and Bob would send E,,(Alice,,p, M2). In practice, using public key encryption techniques to encrypt a large number
of messages is inefficient because these cryptosystems require a large number of computations. It is more efficient to
use secret key cryptosystems for most of the data and only use a public key cryptosystem to encrypt the random secret
keys that will be used by the secret key encryption scheme.

2.8.4 Key exchange

When users want to communicate securely through a network, they need to exchange information such as the keys that
will be used by an encryption algorithm even in the presence of an eavesdropper. The most widely used algorithm that
allows two users to safely exchange an integer in the presence of an eavesdropper is the one proposed by Diffie and
Hellman [DH1976]. It operates with (large) integers. Two of them are public, the modulus, p, which is prime and the
base, g, which must be a primitive root of p. The communicating users select a random integer, a for Alice and b for
Bob. The exchange starts as :

¢ Alice selects a random integer, a and sends A = g® mod p to Bob
* Bob selects a random integer, b and sends B = ¢® mod p to Alice

* From her knowledge of a and B, Alice can compute Secret = B* mod p = (¢®° mod p)® mod p = g**®
mod p
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b axb

* From is knowledge of b and A, Bob can compute Secret = A® mod p = (¢* mod p)® mod p = ¢

mod p

The security of this protocol relies on the difficulty of computing discrete logarithms, i.e. from the knowledge of A
(resp. B), it is very difficult to extract log(A) = log(g® mod p) = a (resp. log(B) = log(g® mod p) = b).

An example of the utilization of the Diffie-Hellman key exchange is shown below. Before starting the exchange, Alice
and Bob agree on a modulus (p = 23) and a base (¢ = 5). These two numbers are public. They are typically part of
the standard that defines the protocol that uses the key exchange.

« Alice chooses a secret integer : @ = 8 and sends A = ¢* mod p = 5% mod 23 = 16 to Bob

* Bob chooses a secret integer : b = 13 and sends B = ¢®* mod p = 5'3 mod 23 = 21 to Alice
* Alice computes S4 = B® mod p = 21® mod 23 =3

 Bob computes S = A® mod p = 16" mod 23 = 3

Alice and Bob have agreed on the secret information 3 without having sent it explicitly through the network. If the
integers used are large enough and have good properties, then even Eve who can capture all the messages sent by
Alice and Bob cannot recover the secret key that they have exchanged. There is no formal proof of the security of the
algorithm, but mathematicians have tried to solve similar problems with integers during centuries without finding an
efficient algorithm. As long as the integers that are used are random and large enough, the only possible attack for Eve
is to test all possible integers that could have been chosen by Alice and Bob. This is computationally very expensive.
This algorithm is widely used in security protocols to agree on a secret key.

Unfortunately, the Diffie-Hellman key exchange alone cannot cope with man-in-the middle attacks. Consider Mallory
who sits in the middle between Alice and Bob and can easily capture and modify their messages. The modulus and the
base are public. They are thus known by Mallory as well. He could then operate as follows :

* Alice chooses a secret integer and sends A = g®* mod p to Mallory

* Mallory generates a secret integer, m and sends M = ¢ mod p to Bob

» Bob chooses a secret integer and sends B = ¢g® mod p to Mallory

* Mallory computes Sy = A™ mod p and Sp = B™ mod p

o Alice computes S4 = M* mod p and uses this key to communicate with Mallory (acting as Bob)
+ Bob computes Sp = M® mod p and uses this key to communicate with Mallory (acting as Alice)

When Alice sends a message, she encrypts it with S 4. Mallory decrypts it with S 4 and encrypts the plaintext with Sg.
When Bob receives the message, he can decrypt it by using Sp.

To safely use the Diffie-Hellman key exchange, Alice and Bob must use an authenticated exchange. Some of the
information sent by Alice or Bob must be signed with a public key known by the other user. In practice, it is often
important for Alice to authenticate Bob. If Bob has a certificate signed by Ted, the authenticated key exchange could
be organized as follows.

* Alice chooses a secret integer : a and sends A = g* mod p to Bob

* Bobchooses a secretinteger : b, computes B = gb mod pand sends Cert(Bob, Bobyyy, Ted), E,(Bobyyiy, B)
to Alice

* Alice checks the signature (with Bob,,;) and the certificate and computes S4 = B* mod p
* Bob computes Sg = A® mod p

This prevents the attack mentioned above since Mallory cannot create a fake certificate and cannot sign a value by using
Bob’s private key. Given the risk of man-in-the-middle attacks, the Diffie-Hellman key exchange mechanism should
never be used without authentication.
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THREE

PART 2: PROTOCOLS

3.1 The application layer
Networked applications rely on the transport service. As explained earlier, there are two main types of transport services

* the connectionless service
e the connection-oriented or byte-stream service

The connectionless service allows applications to easily exchange messages or Service Data Units. On the Internet,
this service is provided by the UDP protocol that will be explained in the next chapter. The connectionless transport
service on the Internet is unreliable, but is able to detect transmission errors. This implies that an application will not
receive data that has been corrupted due to transmission errors.

The connectionless transport service allows networked application to exchange messages. Several networked applica-
tions may be running at the same time on a single host. Each of these applications must be able to exchange SDUs with
remote applications. To enable these exchanges of SDUs, each networked application running on a host is identified
by the following information :

¢ the host on which the application is running
* the port number on which the application listens for SDUs

On the Internet, the port number is an integer and the host is identified by its network address. There are two types of
Internet addresses :

e [P version 4 addresses that are 32 bits wide
e [P version 6 addresses that are 128 bits wide

IPv4 addresses are usually represented by using a dotted decimal representation where each decimal number corre-
sponds to one byte of the address, e.g. 203.0.113.56. IPv6 addresses are usually represented as a set of hexadecimal
numbers separated by semicolons, e.g. 2001:db8:3080:2:217:12ff-fed6:65c0. Today, most Internet hosts have one IPv4
address. A small fraction of them also have an IPv6 address. In the future, we can expect that more and more hosts
will have IPv6 addresses and that some of them will not have an IPv4 address anymore. A host that only has an IPv4
address cannot communicate with a host having only an IPv6 address. The figure below illustrates two applications
that are using the datagram service provided by UDP on hosts that are using IPv4 addresses.

Note: Textual representation of IPv6 addresses

It is sometimes necessary to write IPv6 addresses in text format, e.g. when manually configuring addresses or for docu-
mentation purposes. The preferred format for writing IPv6 addresses is x:x:x:x:x:x:x:x, where the x ‘s are hexadecimal
digits representing the eight 16-bit parts of the address. Here are a few examples of IPv6 addresses :
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Application 1 Application 2
Identification: Identification:
IP address: 130.104.32.107 IP address: 139.165.16.12
Protocol: UDP Protocol: UDP
Port: 1234 Port: 53

Datagram service

Fig. 1: The connectionless or datagram service

o abed:ef01:2345:6789:abcd:ef01:2345:6789
o 2001:db8:0:0:8:800:200c:417a
o £80:0:0:0:219:e3ff fed7:1204

IPv6 addresses often contain a long sequence of bits set to 0. In this case, a compact notation has been defined. With
this notation, :: is used to indicate one or more groups of 16 bits blocks containing only bits set to 0. For example,

* 2001:db8:0:0:8:800:200c:417a is represented as 2001:db8::8:800:200c:417a
e ff01:0:0:0:0:0:0:101 is represented as ff0l::101

* 0:0:0:0:0:0:0:1 is represented as :: 1

e 0:0:0:0:0:0:0:0 is represented as ::

The second transport service is the connection-oriented service. On the Internet, this service is often called the byte-
stream service as it creates a reliable byte stream between the two applications that are linked by a transport connection.
Like the datagram service, the networked applications that use the byte-stream service are identified by the host on
which they run and a port number. These hosts can be identified by an address or a name. The figure below illustrates
two applications that are using the byte-stream service provided by the TCP protocol on IPv6 hosts. The byte stream
service provided by TCP is reliable and bidirectional.

Application 1 Application 2
Identification: Identification:
IP address: 2001:db8::200c:417a IP address: 2001:4860:a005::68
Protocol: TCP Protocol: TCP
Port: 1234 Port: 53
Byte-stream service

Fig. 2: The connection-oriented or byte-stream service

3.2 The Domain Name System

We have already explained the main principles that underlie the utilization of names on the Internet and their mapping
to addresses in section Naming and addressing.

The last component of the Domain Name System is the DNS protocol. The original DNS protocol runs above both the
datagram and the bytestream services. In practice, the datagram service is used when short queries and responses are
exchanged, and the bytestream service is used when longer responses are expected. In this section, we first focus on the
utilization of the DNS protocol above the datagram service. We will discuss later other recently proposed protocols to
carry DNS information.
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DNS messages are composed of five parts that are named sections in RFC 1035. The first three sections are mandatory
and the last two sections are optional. The first section of a DNS message is its Header. It contains information about the
message type and the content of the other sections. The second section contains the Question sent to the nameserver or
resolver. The third section contains the Answer to the Question. When a client sends a DNS query, the Answer section
is empty. The fourth section, named Authority, contains information about the servers that can provide an authoritative
answer if required. The last section contains additional information that is supplied by the resolver or nameserver but
was not requested in the question.

The header of DNS messages is composed of 12 bytes. The figure below presents its structure.

1 1 1111
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Fig. 3: The DNS header

The Transaction ID (transaction identifier) is a 16-bits random value chosen by the client. When a client sends a
question to a DNS server, it remembers the question and its identifier. When a server returns an answer, it returns in
the Transaction ID field the identifier chosen by the client. Thanks to this identifier, the client can match the received
answer with the question that it sent.

The DNS header contains a series of flags. The QR flag is used to distinguish between queries and responses. It is set
to 0 in DNS queries and / in DNS answers. The Opcode is used to specify the query type. For instance, a standard
query is used when a client sends a name and the server returns the corresponding data. An update request is used
when the client sends a name and new data and the server then updates its database.

The AA bit is set when the server that sent the response has authority for the domain name found in the question section.
In the original DNS deployments, two types of servers were considered : authoritative servers and non-authoritative
servers. The authoritative servers are managed by the system administrators responsible for a given domain. They
always store the most recent information about a domain. Non-authoritative servers are servers or resolvers that store
DNS information about external domains without being managed by the owners of a domain. They may thus provide
answers that are out of date. From a security point of view, the authoritative bit is not an absolute indication about the
validity of an answer. Securing the Domain Name System is a complex problem that was only addressed satisfactorily
recently by the utilization of cryptographic signatures in the DNSSEC extensions to DNS described in RFC 4033.

The RD (recursion desired) bit is set by a client when it sends a query to a resolver. Such a query is said to be recursive
because the resolver will recursively traverse the DNS hierarchy to retrieve the answer on behalf of the client. In the
past, all resolvers were configured to perform recursive queries on behalf of any Internet host. However, this exposes the
resolvers to several security risks. The simplest one is that the resolver could become overloaded by having too many
recursive queries to process. Most resolvers' only allow recursive queries from clients belonging to their company

! Some DNS resolvers allow any host to send queries. Google operates a public DNS resolver at addresses 2001:4860:4860::8888 and
2001:4860:4860::8844. Other companies provide similar services.
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or network and discard all other recursive queries. The RA bit indicates whether the server supports recursion. The
RCODE is used to distinguish between different types of errors. See RFC 1035 for additional details. The last four
fields indicate the size of the Question, Answer, Authority and Additional sections of the DNS message.

The last four sections of the DNS message contain Resource Records (RR). All RRs have the same top level format
shown in the figure below.
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Fig. 4: DNS Resource Records

In a Resource Record (RR), the Name indicates the name of the node to which this resource record pertains. The two-
)bytes Type field indicates the type of resource record. The Class field was used to support the utilization of the DNS
in other environments than the Internet. The IN Class refers to Internet names.

The TTL field indicates the lifetime of the Resource Record in seconds. This field is set by the server that returns an
answer and indicates for how long a client or a resolver can store the Resource Record inside its cache. A long TTL
indicates a stable RR. Some companies use short 77L values for mobile hosts and also for popular servers. For example,
a web hosting company that wants to spread the load over a pool of hundred servers can configure its nameservers to
return different answers to different clients. If each answer has a small 77L, the clients will be forced to send DNS
queries regularly. The nameserver will reply to these queries by supplying the address of the less loaded server.

The RDLength field is the length of the RData field that contains the information of the type specified in the Type field.

Several types of DNS RR are used in practice. The A type encodes the IPv4 address that corresponds to the specified
name. The AAAA type encodes the IPv6 address that corresponds to the specified name. A NS record contains the
name of the DNS server that is responsible for a given domain. For example, a query for the AAAA record associated
to the www.ietf.org name returned the following answer.

This answer contains several pieces of information. First, the name www.ietf.org is associated to IP address
2001:1890:123a::1:1e. Second, the ietf.org domain is managed by six different nameservers. Five of these name-
servers are reachable via IPv4 and IPv6.

CNAME (or canonical names) are used to define aliases. For example www.example.com could be a CNAME for
pcl2.example.com that is the actual name of the server on which the web server for www.example.com runs.
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; <<>> DiG 9.6-ESV-R4-P3 <<>> -t AAAA www.ietf.org
;7 global options: +cmd
;3 Got answer:

;7 ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 55279
;7 flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 6, ADDITIONAL: 11

;» QUESTION SECTION:

;www.ietf.org. IN AAAA
;7 ANSWER SECTION:
www.ietf.org. 1661 IN AAAA 2001:1890:123a::1:1e
;; AUTHORITY SECTION:
ietf.org. 1661 IN NS nsl.hkgl.afilias-nst.info.
ietf.org. 1661 IN NS nsl.seal.afilias-nst.info.
ietf.org. 1661 IN NS ns@.amsl.com.
ietf.org. 1661 IN NS nsl.yyzl.afilias-nst.info.
ietf.org. 1661 IN NS nsl.amsl.afilias-nst.info.
ietf.org. 1661 IN NS nsl.mial.afilias-nst.info.
;; ADDITIONAL SECTION:
nsl.seal.afilias-nst.info. 70552 IN A 65.22.8.1
nsl.seal.afilias-nst.info. 74301 IN AAAA 2a01:8840:8::1
nsl.yyzl.afilias-nst.info. 70552 IN A 65.22.9.1
nsl.yyzl.afilias-nst.info. 74301 IN AAAA 2a01:8840:9::1
nsl.amsl.afilias-nst.info. 2597 IN A 65.22.6.79
nsO.amsl.com. 148523 1IN A 64.170.98.2
nsO.amsl.com. 148523 IN AAAA 2001:1890:126c¢::1:2
nsl.hkgl.afilias-nst.info. 2073 IN A 65.22.6.1
nsl.hkgl.afilias-nst.info. 2073 IN AAAA 2a01:8840:6::1
nsl.mial.afilias-nst.info. 70552 IN A 65.22.7.1
nsl.mial.afilias-nst.info. 74301 IN AAAA 2a01:8840:7::1
;5 Query time: 16 msec
;; SERVER: 109.88.203.3#53(109.88.203.3)
;5 WHEN: Tue Oct 8 20:59:02 2013
;3 MSG SIZE rcvd: 451

Fig. 5: Query for the AAAA record of www.ietf.org
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Note: Reverse DNS

The DNS is mainly used to find the address that corresponds to a given name. However, it is sometimes useful to obtain
the name that corresponds to an IP address. This done by using the PTR (pointer) RR. The RData part of a PTR RR
contains the name while the Name part of the RR contains the IP address encoded in the in-addr.arpa domain. 1Pv4
addresses are encoded in the in-addr.arpa by reversing the four digits that compose the dotted decimal representation
of the address. For example, consider IPv4 address /92.0.2.11. The hostname associated to this address can be found
by requesting the PTR RR that corresponds to /1.2.0.192.in-addr.arpa. A similar solution is used to support IPv6
addresses RFC 3596, but slightly more complex given the length of the IPv6 addresses. For example, consider IPv6
address 2001:1890:123a::1:1e. To obtain the name that corresponds to this address, we need first to convert it in a
reverse dotted decimal notation : e.1.0.0.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.a.3.2.1.0.9.8.1.1.0.0.2. 1In this notation, each
character between dots corresponds to one nibble, i.e. four bits. The low-order byte (e) appears first and the high
order (2) last. To obtain the name that corresponds to this address, one needs to append the ip6.arpa domain name and
query for e.1.0.0.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.a.3.2.1.0.9.8.1.1.0.0.2.ip6.arpa. In practice, tools and libraries do the
conversion automatically and the user does not need to worry about it.

An important point to note regarding the Domain Name System it that it is extensible. Thanks to the Type and RDLength
fields, the format of the Resource Records can easily be extended. Furthermore, a DNS implementation that receives a
new Resource Record that it does not understand can ignore the record while still being able to process the other parts of
the message. This allows, for example, a DNS server that only supports IPv6 to safely ignore the IPv4 addresses listed
in the DNS reply for www.ietf.org while still being able to correctly parse the Resource Records that it understands.
This allowed the Domain Name System to evolve over the years while still preserving the backward compatibility with
already deployed DNS implementations.

3.3 Electronic mail

Electronic mail, or email, is a very popular application in computer networks such as the Internet. Email appeared
in the early 1970s and allows users to exchange text based messages. Initially, it was mainly used to exchange short
messages, but over the years its usage has grown. It is now not only used to exchange small, but also long messages
that can be composed of several parts as we will see later.

Before looking at the details of Internet email, let us consider a simple scenario illustrated in the figure below, where
Alice sends an email to Bob. Alice prepares her email by using an email clients and sends it to her email server. Alice’s
email server extracts Bob’s address from the email and delivers the message to Bob’s server. Bob retrieves Alice’s
message on his server and reads it by using his favorite email client or through his webmail interface.

Alice’s Bob’s
Alice@a.net [&————>| K R Bob@b.net
email server l email server

Alice sends her email Alice’s server sends email Bob retrieves messages
to local mail forwarder to b.net’s MX from his server

Fig. 6: Simplified architecture of the Internet email

The email system that we consider in this book is composed of four components :
* a message format, that defines how valid email messages are encoded
e protocols, that allow hosts and servers to exchange email messages

* client software, that allows users to easily create and read email messages
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* software, that allows servers to efficiently exchange email messages

We will first discuss the format of email messages followed by the protocols that are used on today’s Internet to exchange
and retrieve emails. Other email systems have been developed in the past [Bush1993] [Genilloud1990] [GC2000], but
today most email solutions have migrated to the Internet email. Information about the software that is used to compose
and deliver emails may be found on wikipedia among others, for both email clients and email servers. More detailed
information about the full Internet Mail Architecture may be found in RFC 5598.

Email messages, like postal mail, are composed of two parts :
* a header that plays the same role as the letterhead in regular mail. It contains metadata about the message.
¢ the body that contains the message itself.

Email messages are entirely composed of lines of ASCII characters. Each line can contain up to 998 characters and
is terminated by the CR and LF control characters RFC 5322. The lines that compose the header appear before the
message body. An empty line, containing only the CR and LF characters, marks the end of the header. This is illustrated
in the figure below.

P From: president@abc.be

Exp: ABC S.A. To: ceo@def.com
Rue de Fer 10 / Subject: Hello Header
5000 Namur
Date: 27 Set 1999 0901

DEF Corp. | L oo oo ________1

Steel street 5

MA78 AX London Dear Sir,

Great Britain

Bla bla bla... Message
body

Fig. 7: The structure of email messages

The email header contains several lines that all begin with a keyword followed by a colon and additional information.
The format of email messages and the different types of header lines are defined in RFC 5322. Two of these header
lines are mandatory and must appear in all email messages :

* The sender address. This header line starts with From:. This contains the (optional) name of the sender followed
by its email address between < and >. Email addresses are always composed of a username followed by the @
sign and a domain name.

* The date. This header line starts with Date:. RFC 5322 precisely defines the format used to encode a date.

Other header lines appear in most email messages. The Subject: header line allows the sender to indicate the topic
discussed in the email. Three types of header lines can be used to specify the recipients of a message :

* the To: header line contains the email addresses of the primary recipients of the message'. Several addresses
can be separated by using commas.

¢ the cc: header line is used by the sender to provide a list of email addresses that must receive a carbon copy of
the message. Several addresses can be listed in this header line, separated by commas. All recipients of the email
message receive the To: and cc: header lines.

¢ the bce: header line is used by the sender to provide a list of comma separated email addresses that must receive
a blind carbon copy of the message. The bcc: header line is not delivered to the recipients of the email message.

! It could be surprising that the To: is not mandatory inside an email message. While most email messages will contain this header line an email
that does not contain a 7o: header line and that relies on the bcc: to specify the recipient is valid as well.
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A simple email message containing the From:, To:, Subject: and Date: header lines and two lines of body is shown
below.

From: Bob Smith <Bob@machine.example>

To: Alice Doe <alice@example.net>, Alice Smith <Alice@machine.example>
Subject: Hello

Date: Mon, 8 Mar 2010 19:55:06 -0600

This is the "Hello world" of email messages.
This is the second line of the body

Note the empty line after the Date: header line; this empty line contains only the CR and LF characters, and marks the
boundary between the header and the body of the message.

Several other optional header lines are defined in RFC 5322 and elsewhere”. Furthermore, many email clients and
servers define their own header lines starting from X-. Several of the optional header lines defined in RFC 5322 are
worth being discussed here :

¢ the Message-1d: header line is used to associate a “unique” identifier to each email. Email identifiers are usually
structured like string @ domain where string is a unique character string or sequence number chosen by the sender
of the email and domain the domain name of the sender. Since domain names are unique, a host can generate
globally unique message identifiers concatenating a locally unique identifier with its domain name.

* the In-reply-to: header line is used when a message was created in reply to a previous message. In this case, the
end of the In-reply-to: line contains the identifier of the original message.

¢ the Received: header line is used when an email message is processed by several servers before reaching its
destination. Each intermediate email server adds a Received: header line. These header lines are useful to debug
problems in delivering email messages.

The figure below shows the header lines of one email message. The message originated at a host named
wira.firstpr.com.au and was received by smtp3.sgsi.ucl.ac.be. The Received: lines have been wrapped for readabil-

ity.

Received: from smtp3.sgsi.ucl.ac.be (Unknown [10.1.5.3])
by mmp.sipr-dc.ucl.ac.be
(Sun Java(tm) System Messaging Server 7u3-15.01 64bit (built Feb 12 2010))
with ESMTP id <®KYYQOL8S5LI5JLE®@mmp.sipr-dc.ucl.ac.be>; Mon,
08 Mar 2010 11:37:17 +0100 (CET)
Received: from mail.ietf.org (mail.ietf.org [64.170.98.32])
by smtp3.sgsi.ucl.ac.be (Postfix) with ESMTP id B92351C60D7; Mon,
08 Mar 2010 11:36:51 +0100 (CET)

Received: from [127.0.0.1] (localhost [127.0.0.1]) by core3.amsl.com (Postfix)
with ESMTP id FO®66A3A68B9; Mon, 08 Mar 2010 02:36:38 -0800 (PST)
Received: from localhost (localhost [127.0.0.1]) by core3.amsl.com (Postfix)

with ESMTP id A1E6C3A681B for <rrg@core3.amsl.com>; Mon,
08 Mar 2010 02:36:37 -0800 (PST)
Received: from mail.ietf.org ([64.170.98.32])
by localhost (core3.amsl.com [127.0.0.1]) (amavisd-new, port 10024)
with ESMTP id erw8ih2v8VQa for <rrg@core3.amsl.com>; Mon,
08 Mar 2010 02:36:36 -0800 (PST)
Received: from gair.firstpr.com.au (gair.firstpr.com.au [150.101.162.123])
by core3.amsl.com (Postfix) with ESMTP id 03E893A67ED for <rrg@irtf.org>; Mon,
08 Mar 2010 02:36:35 -0800 (PST)
Received: from [10.0.0.6] (wira.firstpr.com.au [10.0.0.6])

(continues on next page)

2 The list of all standard email header lines may be found at http:/www.iana.org/assignments/message-headers/message-header-index.html
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(continued from previous page)

by gair.firstpr.com.au (Postfix) with ESMTP id D®A49175B63; Mon,
08 Mar 2010 21:36:37 +1100 (EST)

Date: Mon, 08 Mar 2010 21:36:38 +1100

From: Robin Whittle <rw@firstpr.com.au>

Subject: Re: [rrg] Recommendation and what happens next

In-reply-to: <C7B9C21A.4FAB%tony.li@tony.1li>

To: RRG <rrg@irtf.org>

Message-id: <4B94D336.7030504@firstpr.com.au>

Message content removed

Initially, email was used to exchange small messages of ASCII text between computer scientists. However, with the
growth of the Internet, supporting only ASCII text became a severe limitation for two reasons. First of all, non-English
speakers wanted to write emails in their native language that often required more characters than those of the ASCII
character table. Second, many users wanted to send other content than just ASCII text by email such as binary files,
images or sound.

To solve this problem, the IETF developed the Multipurpose Internet Mail Extensions (MIME). These extensions were
carefully designed to allow Internet email to carry non-ASCII characters and binary files without breaking the email
servers that were deployed at that time. This requirement for backward compatibility forced the MIME designers to
develop extensions to the existing email message format RFC 822 instead of defining a completely new format that
would have been better suited to support the new types of emails.

RFC 2045 defines three new types of header lines to support MIME :

* The MIME-Version: header line indicates the version of the MIME specification that was used to encode the
email message. The current version of MIME is 1.0. Other versions of MIME may be defined in the future.
Thanks to this header line, the software that processes email messages will be able to adapt to the MIME version
used to encode the message. Messages that do not contain this header are supposed to be formatted according to
the original RFC 822 specification.

* The Content-Type: header line indicates the type of data that is carried inside the message (see below).

» The Content-Transfer-Encoding: header line is used to specify how the message has been encoded. When MIME
was designed, some email servers were only able to process messages containing characters encoded using the
7 bits ASCII character set. MIME allows the utilization of other character encodings.

Inside the email header, the Content-Type: header line indicates how the MIME email message is structured. RFC
2046 defines the utilization of this header line. The two most common structures for MIME messages are :

» Content-Type: multipart/mixed. This header line indicates that the MIME message contains several independent
parts. For example, such a message may contain a part in plain text and a binary file.

* Content-Type: multipart/alternative. This header line indicates that the MIME message contains several repre-
sentations of the same information. For example, a multipart/alternative message may contain both a plain text
and an HTML version of the same text.

To support these two types of MIME messages, the recipient of a message must be able to extract the different parts
from the message. In RFC 822, an empty line was used to separate the header lines from the body. Using an empty
line to separate the different parts of an email body would be difficult as the body of email messages often contains
one or more empty lines. Another possible option would be to define a special line, e.g. *-LAST_LINE-* to mark the
boundary between two parts of a MIME message. Unfortunately, this is not possible as some emails may contain this
string in their body (e.g. emails sent to students to explain the format of MIME messages). To solve this problem, the
Content-Type: header line contains a second parameter that specifies the string that has been used by the sender of the
MIME message to delineate the different parts. In practice, this string is often chosen randomly by the mail client.

The email message below, copied from RFC 2046 shows a MIME message containing two parts that are both in plain
text and encoded using the ASCII character set. The string simple boundary is defined in the Content-Type: header
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as the marker for the boundary between two successive parts. Another example of MIME messages may be found in
RFC 2046.

Date: Mon, 20 Sep 1999 16:33:16 +0200

From: Nathaniel Borenstein <nsb@bellcore.com>

To: Ned Freed <ned@innosoft.com>

Subject: Test

MIME-Version: 1.0

Content-Type: multipart/mixed; boundary="simple boundary"

preamble, to be ignored

--simple boundary
Content-Type: text/plain; charset=us-ascii

First part

--simple boundary
Content-Type: text/plain; charset=us-ascii

Second part
--simple boundary

The Content-Type: header can also be used inside a MIME part. In this case, it indicates the type of data placed in this
part. Each data type is specified as a type followed by a subtype. A detailed description may be found in RFC 2046.
Some of the most popular Content-Type: header lines are :

* text. The message part contains information in textual format. There are several subtypes : text/plain for regular
ASCII text, text/html defined in RFC 2854 for documents in H7ML format or the text/enriched format defined in
RFC 1896. The Content-Type: header line may contain a second parameter that specifies the character set used
to encode the text. charset=us-ascii is the standard ASCII character table. Other frequent character sets include
charset=UTF8 or charset=iso-8859-1. The list of standard character sets is maintained by JANA.

* image. The message part contains a binary representation of an image. The subtype indicates the format of the
image such as gif, jpg or png.

* audio. The message part contains an audio clip. The subtype indicates the format of the audio clip like wav or
mp3.

* video. The message part contains a video clip. The subtype indicates the format of the video clip like avi or mp4.

* application. The message part contains binary information that was produced by the particular application listed
as the subtype. Email clients use the subtype to launch the application that is able to decode the received binary
information.

Note: From ASCII to Unicode

The first computers used different techniques to represent characters in memory and on disk. During the 1960s, com-
puters began to exchange information via tape or telephone lines. Unfortunately, each vendor had its own proprietary
character set and exchanging data between computers from different vendors was often difficult. The 7 bits ASCII char-
acter table RFC 20 was adopted by several vendors and by many Internet protocols. However, ASCII became a problem
with the internationalization of the Internet and the desire of more and more users to use character sets that support
their own written language. A first attempt at solving this problem was the definition of the ISO-8859 character sets by
1SO. This family of standards specified various character sets that allowed the representation of many European written
languages by using 8 bits characters. Unfortunately, an 8-bits character set is not sufficient to support some widely used
languages, such as those used in Asian countries. Fortunately, at the end of the 1980s, several computer scientists pro-
posed to develop a standard that supports all written languages used on Earth today. The Unicode standard [Unicode]
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has now been adopted by most computer and software vendors. For example, Java always uses Unicode to manipulate
characters, Python can handle both ASCII and Unicode characters. Internet applications are slowly moving towards
complete support for the Unicode character sets, but moving from ASCII to Unicode is an important change that can
have a huge impact on current deployed implementations. See, for example, the work to completely internationalize
email RFC 4952 and domain names RFC 5890.

The last MIME header line is Content-Transfer-Encoding:. This header line is used after the Content-Type: header
line, within a message part, and specifies how the message part has been encoded. The default encoding is to use 7
bits ASCII. The most frequent encodings are quoted-printable and Base64. Both support encoding a sequence of bytes
into a set of ASCII lines that can be safely transmitted by email servers. quoted-printable is defined in RFC 2045. We
briefly describe base64 which is defined in RFC 2045 and RFC 4648.

Base64 divides the sequence of bytes to be encoded into groups of three bytes (with the last group possibly being
partially filled). Each group of three bytes is then divided into four six-bit fields and each six bit field is encoded as a
character from the table below.

Value Encoding Value Encoding Value Encoding Value Encoding

0 A 17 R 34 i 51 z
1 B 18 S 35 ] 52 0
2 C 19 T 36 k 53 1
3 D 20 U 37 1 54 2
4 E 21 A% 38 m 55 3
5 F 22 W 39 n 56 4
6 G 23 X 40 ) 57 5
7 H 24 Y 41 P 58 6
8 I 25 Z 42 q 59 7
9 J 26 a 43 r 60 8
10 K 27 b 44 S 61 9
11 L 28 c 45 t 62 +
12 M 29 d 46 u 63 /
13 N 30 e 47 v
14 (0] 31 f 48 W
15 P 32 g 49 X
16 Q 33 h 50 y
The example below, from RFC 4648, illustrates the Base64 encoding.

Input data  Ox14fb9c03d97e

8-bit 00010100 11111011 10011100 00000011 11011001 01111110

6-bit 000101 001111 101110011100 000000 111101 100101 111110

Decimal 5154628061 3762
Encoding FPucA91+

The last point to be discussed about base64 is what happens when the length of the sequence of bytes to be encoded
is not a multiple of three. In this case, the last group of bytes may contain one or two bytes instead of three. Base64
reserves the = character as a padding character. This character is used once when the last group contains two bytes and
twice when it contains one byte as illustrated by the two examples below.
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Input data Ox14

8-bit 00010100
6-bit 000101 000000
Decimal 50

Encoding FA==

Input data  0x14b9

8-bit 00010100 11111011
6-bit 000101 001111 101100
Decimal 51544

Encoding FPs=

Now that we have explained the format of the email messages, we can discuss how these messages can be exchanged
through the Internet. The figure below illustrates the protocols that are used when Alice sends an email message to
Bob. Alice prepares her email with an email client or on a webmail interface. To send her email to Bob, Alice’s client
will use the Simple Mail Transfer Protocol (SMTP) to deliver her message to her SMTP server. Alice’s email client is
configured with the name of the default SMTP server for her domain. There is usually at least one SMTP server per
domain. To deliver the message, Alice’s SMTP server must find the SMTP server that contains Bob’s mailbox. This
can be done by using the Mail eXchange (MX) records of the DNS. A set of MX records can be associated to each
domain. Each MX record contains a numerical preference and the fully qualified domain name of a SMTP server that
is able to deliver email messages destined to all valid email addresses of this domain. The DNS can return several MX
records for a given domain. In this case, the server with the lowest numerical preference is used first RFC 2821. If
this server is not reachable, the second most preferred server is used etc. Bob’s SMTP server will store the message
sent by Alice until Bob retrieves it using a webmail interface or protocols such as the Post Office Protocol (POP) or the
Internet Message Access Protocol (/MAP).

Email
SMTP a.net’s SMTP b.net’s retrieval
[ €E—>|
SMTP server SMTP server

Alice@a.net Bob@b.net

Fig. 8: Email delivery protocols

3.3.1 The Simple Mail Transfer Protocol

The Simple Mail Transfer Protocol (SMTP) defined in RFC 5321 is a client-server protocol. The SMTP specification
distinguishes between five types of processes involved in the delivery of email messages. Email messages are composed
on a Mail User Agent (MUA). The MUA is usually either an email client or a webmail. The MUA sends the email
message to a Mail Submission Agent (MSA). The MSA processes the received email and forwards it to the Mail
Transmission Agent (MTA). The MTA is responsible for the transmission of the email, directly or via intermediate
MTASs to the MTA of the destination domain. This destination MTA will then forward the message to the Mail Delivery
Agent (MDA) where it will be accessed by the recipient’s MUA. SMTP is used for the interactions between MUA and
MSA®, MSA-MTA and MTA-MTA.

SMTP is a text-based protocol like many other application-layer protocols on the Internet. It relies on the byte-stream
service. Servers listen on port 25. Clients send commands that are each composed of one line of ASCII text terminated

3 During the last years, many Internet Service Providers, campus and enterprise networks have deployed SMTP extensions RFC 4954 on their
MSAs. These extensions force the MUAS to be authenticated before the MSA accepts an email message from the MUA.
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by CR+LF. Servers reply by sending ASCII lines that contain a three digit numerical error/success code and optional
comments.

The SMTP protocol, like most text-based protocols, is specified as a BNF. The full BNF is defined in RFC 5321. The
main SMTP commands are defined by the BNF rules shown in the figure below.

ehlo = "EHLO" SP Domain CRLF

mail = "MAIL FROM:" Path CRLF

rcpt = "RCPT TO:" ( "<Postmaster@" Domain ">" / "<Postmaster>" / Path ) CRLF
data = "DATA" CRLF

quit = "QUIT" CRLF

Path = "<" Mailbox ">"

Domain = sub-domain *("." sub-domain)
sub-domain = Let-dig [Ldh-str]

Let-dig = ALPHA / DIGIT

Ldh-str = *( ALPHA / DIGIT / "-" ) Let-dig
Mailbox = Local-part "@" Domain

Local-part = Dot-string

Dot-string = Atom *("." Atom)

Atom = 1*atext

Fig. 9: BNF specification of the SMTP commands

In this BNF, afext corresponds to printable ASCII characters. This BNF rule is defined in RFC 5322. The five main
commands are EHLO"*, MAIL FROM:, RCPT TO:, DATA and QUIT. Postmaster is the alias of the system administrator
who is responsible for a given domain or SMTP server. All domains must have a Postmaster alias.

The SMTP responses are defined by the BNF shown in the figure below.

Greeting = "220 " Domain [ SP textstring ] CRLF

textstring = l*atext

Reply-1line = *( Reply-code "-" [ textstring ] CRLF )
Reply-code [ SP textstring ] CRLF

Reply-code = %x32-35 %x30-35 %x30-39

Fig. 10: BNF specification of the SMTP responses

SMTP servers use structured reply codes containing three digits and an optional comment. The first digit of the reply
code indicates whether the command was successful or not. A reply code of 2xy indicates that the command has been
accepted. A reply code of 3xy indicates that the command has been accepted, but additional information from the
client is expected. A reply code of 4xy indicates a transient negative reply. This means that for some reason, which is
indicated by either the other digits or the comment, the command cannot be processed immediately, but there is some
hope that the problem will only be transient. This is basically telling the client to try the same command again later.
In contrast, a reply code of 5xy indicates a permanent failure or error. In this case, it is useless for the client to retry
the same command later. Other application layer protocols such as FTP RFC 959 or HTTP RFC 2616 use a similar
structure for their reply codes. Additional details about the other reply codes may be found in RFC 5321.

Examples of SMTP reply codes include the following :

4 The first versions of SMTP used HELO as the first command sent by a client to a SMTP server. When SMTP was extended to support newer
features such as 8 bits characters, it was necessary to allow a server to recognize whether it was interacting with a client that supported the extensions
or not. EHLO became mandatory with the publication of RFC 2821.
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220 <domain> Service ready

221 <domain> Service closing transmission channel

250 Requested mail action okay, completed

354 Start mail input; end with <CRLF>.<CRLF>

421 <domain> Service not available, closing transmission channel
450 Requested mail action not taken: mailbox unavailable
452 Requested action not taken: insufficient system storage
500 Syntax error, command unrecognized

501 Syntax error in parameters or arguments

502 Command not implemented

503 Bad sequence of commands

550 Requested action not taken: mailbox unavailable

Reply code 220 is used by the server as the first message when it agrees to interact with the client. Reply code 221
is sent by the server before closing the underlying transport connection. Reply code 250 is the standard positive reply
that indicates the success of the previous command. Reply code 354 indicates that the client can start transmitting its
email message. Reply code 421 is returned when there is a problem (e.g. lack of memory/disk resources) that prevents
the server from accepting the transport connection. Reply codes 450 and 452 indicate that the destination mailbox is
temporarily unavailable, for various reasons, while reply code 550 indicates that the mailbox does not exist or cannot
be used for policy reasons. The 500 to 503 reply codes correspond to errors in the commands sent by the client. The
503 reply code would be sent by the server when the client sends commands in an incorrect order (e.g. the client tries
to send an email before providing the destination address of the message).

The transfer of an email message is performed in three phases. During the first phase, the client opens a transport
connection with the server. Once the connection has been established, the client and the server exchange greetings
messages (EHLO command). Most servers insist on receiving valid greeting messages and some of them drop the
underlying transport connection if they do not receive a valid greeting. Once the greetings have been exchanged, the
email transfer phase can start. During this phase, the client transfers one or more email messages by indicating the email
address of the sender (MAIL FROM: command), the email address of the recipient (RCPT TO: command) followed by
the headers and the body of the email message (DATA command). Once the client has finished sending all its queued
email messages to the SMTP server, it terminates the SMTP association (QUIT command).

A successful transfer of an email message is shown below

220 smtp.example.com ESMTP MTA information
EHLO mta.example.org

250 Hello mta.example.org, glad to meet you
MAIL FROM:<alice@example.org>

250 Ok

RCPT TO:<bob@example.com>

250 Ok

DATA

354 End data with <CR><LF>.<CR><LF>
From: "Alice Doe" <alice@example.org>
To: Bob Smith <bob@example.com>

Date: Mon, 9 Mar 2010 18:22:32 +0100
Subject: Hello

Hello Bob

This is a small message containing 4 lines of text.
Best regards,

Alice

nNnnNnnOnnnnnonnNunnmunnumnumnmon

250 Ok: queued as 12345

(continues on next page)
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(continued from previous page)

C: QUIT
S: 221 Bye

In the example above, the MTA running on mta.example.org opens a TCP connection to the SMTP server on host
smitp.example.com. The lines prefixed with S: (resp. C:) are the responses sent by the server (resp. the commands
sent by the client). The server sends its greetings as soon as the TCP connection has been established. The client then
sends the EHLO command with its fully qualified domain name. The server replies with reply-code 250 and sends its
greetings. The SMTP association can now be used to exchange an email.

To send an email, the client must first provide the address of the recipient with RCPT TO:. Then it uses the MAIL
FROM: with the address of the sender. Both the recipient and the sender are accepted by the server. The client can
now issue the DATA command to start the transfer of the email message. After having received the 354 reply code, the
client sends the headers and the body of its email message. The client indicates the end of the message by sending a
line containing only the . (dot) character’. The server confirms that the email message has been queued for delivery
or transmission with a reply code of 250. The client issues the QUIT command to close the session and the server
confirms with reply-code 221, before closing the TCP connection.

Note: Open SMTP relays and spam

Since its creation in 1971, email has been a very useful tool that is used by many users to exchange lots of information. In
the early days, all SMTP servers were open and anyone could use them to forward emails towards their final destination.
Unfortunately, over the years, some unscrupulous users have found ways to use email for marketing purposes or to send
malware. The first documented abuse of email for marketing purposes occurred in 1978 when a marketer who worked
for a computer vendor sent a marketing email to many ARPANET users. At that time, the ARPANET could only be
used for research purposes and this was an abuse of the acceptable use policy. Unfortunately, given the extremely low
cost of sending emails, the problem of unsolicited emails has not stopped. Unsolicited emails are now called spam and
a study carried out by ENISA in 2009 reveals that 95% of email was spam and this number seems to continue to grow.
This places a burden on the email infrastructure of Internet Service Providers and large companies that need to process
many useless messages.

Given the amount of spam messages, SMTP servers are no longer open RFC 5068. Several extensions to SMTP have
been developed in recent years to deal with this problem. For example, the SMTP authentication scheme defined in
RFC 4954 can be used by an SMTP server to authenticate a client. Several techniques have also been proposed to
allow SMTP servers to authenticate the messages sent by their users RFC 4870 RFC 4871 .

3.3.2 The Post Office Protocol

When the first versions of SMTP were designed, the Internet was composed of minicomputers that were used by an
entire university department or research lab. These minicomputers were used by many users at the same time. Email
was mainly used to send messages from a user on a given host to another user on a remote host. At that time, SMTP
was the only protocol involved in the delivery of the emails as all hosts attached to the network were running an SMTP
server. On such hosts, an email destined to local users was delivered by placing the email in a special directory or file
owned by the user. However, the introduction of personal computers in the 1980s changed this environment. Initially,
users of these personal computers used applications such as felnet to open a remote session on the local minicomputer
to read their email. This was not user-friendly. A better solution appeared with the development of user friendly email
client applications on personal computers. Several protocols were designed to allow these client applications to retrieve
the email messages destined to a user from his/her server. Two of these protocols became popular and are still used
today. The Post Office Protocol (POP), defined in RFC 1939, is the simplest one. It allows a client to download all
the messages destined to a given user from his/her email server. We describe POP briefly in this section. The second
protocol is the Internet Message Access Protocol (IMAP), defined in RFC 3501. IMAP is more powerful, but also more

5 This implies that a valid email message cannot contain a line with one dot followed by CR and LF. If a user types such a line in an email, his
email client will automatically add a space character before or after the dot when sending the message over SMTP.
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complex than POP. IMAP was designed to allow client applications to efficiently access, in real-time, to messages stored
in various folders on servers. IMAP assumes that all the messages of a given user are stored on a server and provides
the functions that are necessary to search, download, delete or filter messages.

POP is another example of a simple line-based protocol. POP runs above the bytestream service. A POP server usually
listens to port 110. A POP session is composed of three parts : an authorisation phase during which the server verifies
the client’s credential, a transaction phase during which the client downloads messages and an update phase that
concludes the session. The client sends commands and the server replies are prefixed by +OK to indicate a successful
command or by -ERR to indicate errors.

When a client opens a transport connection with the POP server, the latter sends as banner an ASCII-line starting with
+OK. The POP session is at that time in the authorisation phase. In this phase, the client can send its username (resp.
password) with the USER (resp. PASS) command. The server replies with +OK if the username (resp. password) is
valid and -ERR otherwise.

Once the username and password have been validated, the POP session enters in the transaction phase. In this phase,
the client can issue several commands. The STAT command is used to retrieve the status of the server. Upon reception
of this command, the server replies with a line that contains +OK followed by the number of messages in the mailbox
and the total size of the mailbox in bytes. The RETR command, followed by a space and an integer, is used to retrieve
the nth message of the mailbox. The DELE command is used to mark for deletion the nth message of the mailbox.

Once the client has retrieved and possibly deleted the emails contained in the mailbox, it must issue the QUIT command.
This command terminates the POP session and allows the server to delete all the messages that have been marked for
deletion by using the DELE command.

The figure below provides a simple POP session. All lines prefixed with C: (resp. S:) are sent by the client (resp.
server).

+0K POP3 server ready

USER alice

+0K

PASS 12345pass

+0K alice's maildrop has 2 messages (620 octets)
STAT

+0K 2 620

LIST

+0K 2 messages (620 octets)
1 120

2 500

RETR 1
+0K 120 octets
<the POP3 server sends message 1>

DELE 1

+0K message 1 deleted

QUIT

+0K POP3 server signing off (1 message left)

nNDumOoOumoumumOOunumunmmOunnmumnunmnNom

In this example, a POP client contacts a POP server on behalf of the user named alice. Note that in this example, Alice’s
password is sent in clear by the client. This implies that if someone is able to capture the packets sent by Alice, he
will know Alice’s password®. Then Alice’s client issues the STAT command to know the number of messages that are
stored in her mailbox. It then retrieves and deletes the first message of the mailbox.

6 RFC 1939 defines the APOP authentication scheme that is not vulnerable to such attacks.
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3.4 The HyperText Transfer Protocol

In the early days, the Internet was mainly used for remote terminal access with telnet, email and file transfer. The
default file transfer protocol, FTP, defined in RFC 959 was widely used. FTP clients and servers are still included in
some operating systems.

Many FTP clients offered a user interface similar to a Unix shell and allowed clients to browse the file system on the
server and to send and retrieve files. FTP servers can be configured in two modes :

e authenticated : in this mode, the ftp server only accepts users with a valid user name and password. Once
authenticated, they can access the files and directories according to their permissions

* anonymous : in this mode, clients supply the anonymous user identifier and their email address as password.
These clients are granted access to a special zone of the file system that only contains public files.

FTP was very popular in the 1990s and early 2000s, but today it has mostly been superseded by more recent protocols.
Authenticated access to files is mainly done by using the Secure Shell (ssh) protocol defined in RFC 4251 and supported
by clients such as scp or sftp. Nowadays, anonymous access is mainly provided by web protocols.

In the late 1980s, high energy physicists working at CERN had to efficiently exchange documents about their ongoing
and planned experiments. Tim Berners-Lee evaluated several of the documents sharing techniques that were available
at that time [B1989]. As none of the existing solutions met CERN’s requirements, they chose to develop a completely
new document sharing system. This system was initially called the mesh. It was quickly renamed the world wide web.
The starting point for the world wide web are hypertext documents. An hypertext document is a document that contains
references (hyperlinks) to other documents that the reader can immediately access. Hypertext was not invented for the
world wide web. The idea of hypertext documents was proposed in 1945 [Bush1945] and the first experiments were
done during the 1960s [Nelson1965] [Myers1998] . Compared to the hypertext documents that were used in the late
1980s, the main innovation introduced by the world wide web was to allow hyperlinks to reference documents stored
on different remote machines.

Server www.machin.be

Client
(browser)

Server www.truc.fr

Server www.stuff.com

Fig. 11: World-wide web clients and servers

A document sharing system such as the world wide web is composed of three important parts.
1. A standardized addressing scheme that unambiguously identifies documents
2. A standard document format : the HyperText Markup Language

3. A standardized protocol to efficiently retrieve the documents stored on a server

Note: Open standards and open implementations
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Open standards play a key role in the success of the world wide web as we know it today. Without open standards,
the world wide web would have never reached its current size. In addition to open standards, another important factor
for the success of the web was the availability of open and efficient implementations of these standards. When CERN
started to work on the web, their objective was to build a running system that could be used by physicists. They
developed open-source implementations of the first web servers and web clients. These open-source implementations
were powerful and could be used as is, by institutions willing to share information. They were also extended by other
developers who contributed to new features. For example, the NCSA added support for images in their Mosaic browser
that was eventually used to create Netscape Communications and the first commercial browsers and servers.

The first components of the world wide web are the Uniform Resource Identifiers (URI), defined in RFC 3986. A URI
is a character string that unambiguously identifies a resource on the world wide web. Here is a subset of the BNF for
URIs

URI = scheme ":" "//" authority path [ "?" query ] [ "#" fragment ]
scheme = ALPHA *( ALPHA / DIGIT / "+" / "-" / ".")

authority = [ userinfo "@" ] host [ ":" port ]

query = *(C pchar / "/" / "?" )

fragment = *C pchar / "/" / "?" )

pchar = unreserved / pct-encoded / sub-delims / ":" / "@"

query = *(C pchar / "/" / "?" )

fragment = *(C pchar / "/" / "?" )

pct-encoded = "%" HEXDIG HEXDIG

unreserved = ALPHA / DIGIT ,/ "-" ,/ "." / "_" / "~"

reserved = gen-delims / sub-delims

gen-delims ="y g "1t /et

sub-delims = "ronst gt o " E =

The first component of a URI is its scheme. A scheme can be seen as a selector, indicating the meaning of the fields
after it. In practice, the scheme often identifies the application-layer protocol that must be used by the client to retrieve
the document, but it is not always the case. Some schemes do not imply a protocol at all and some do not indicate a
retrievable document'. The most frequent schemes are http and https. We focus on http in this section. A URI scheme
can be defined for almost any application layer protocol’. The characters : and // follow the scheme of any URI.

The second part of the URI is the authority. With retrievable URIs, this includes the DNS name or the IP address of the
server where the document can be retrieved using the protocol specified via the scheme. This name can be preceded by
some information about the user (e.g. a user name) who is requesting the information. Earlier definitions of the URI
allowed the specification of a user name and a password before the @ character (RFC 1738), but this is now deprecated
as placing a password inside a URI is insecure. The host name can be followed by the semicolon character and a port
number. A default port number is defined for some protocols and the port number should only be included in the URI
if a non-default port number is used (for other protocols, techniques like service DNS records can used).

The third part of the URI is the path to the document. This path is structured as filenames on a Unix host (but it does
not imply that the files are indeed stored this way on the server). If the path is not specified, the server will return a
default document. The last two optional parts of the URI are used to provide a query parameter and indicate a specific
part (e.g. a section in an article) of the requested document. Sample URIs are shown below.

http://tools.ietf.org/html/rfc3986.html
mailto:infobot@example.com?subject=current-issue
http://docs.python.org/library/basehttpserver.html?highlight=http#BaseHTTPServer.

(continues on next page)

I An example of a non-retrievable URI is urn:isbn:0-380-81593-1 which is an unique identifier for a book, through the urn scheme (see REC
3187). Of course, any URI can be made retrievable via a dedicated server or a new protocol but this one has no explicit protocol. Same thing for
the scheme tag (see RFC 4151), often used in Web syndication (see RFC 4287 about the Atom syndication format). Even when the scheme is
retrievable (for instance with hztp), it is often used only as an identifier, not as a way to get a resource. See http://norman.walsh.name/2006/07/25/
namesAndAddresses for a good explanation.

2 The list of standard URI schemes is maintained by TANA at http://www.iana.org/assignments/uri-schemes.html
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—.BaseHTTPRequestHandler
telnet://[2001:db8:3080:3::2]:2323/
ftp://cnn.example.com&story=breaking_news@10.0.0.1/top_story.htm

The first URI corresponds to a document named rfc3986.html that is stored on the server named tools.ietf.org and can
be accessed by using the Attp protocol on its default port. The second URI corresponds to an email message, with
subject current-issue, that will be sent to user infobot in domain example.com. The mailto: URI scheme is defined
in RFC 2368. The third URI references the portion BaseHTTPServer.BaseHTTPRequestHandler of the document
basehttpserver.html that is stored in the library directory on the docs.python.org server. This document can be retrieved
by using the http protocol. The query parameter highlight=http is associated to this URI. The fourth example is a server
that operates the telnet protocol, uses IPv6 address 2001:db8:3080:3::2 and is reachable on port 2323. The last URI
is somewhat special. Most users will assume that it corresponds to a document stored on the cnn.example.com server.
However, to parse this URI, it is important to remember that the @ character is used to separate the user name from
the host name in the authorization part of a URI. This implies that the URI points to a document named top_story.htm
on the host having IPv4 address 70.0.0.1. The document will be retrieved by using the f#p protocol with the user name
set to cnn.example.com&story=breaking_news.

The second component of the word wide web is the HyperText Markup Language (HTML). HTML defines the format
of the documents that are exchanged on the web. The first version of HTML was derived from the Standard Generalized
Markup Language (SGML) that was standardized in 1986 by /SO. SGML was designed to support large documents
maintained by government, law firms or aerospace companies that must be shared efficiently in a machine-readable
manner. These industries require documents to remain readable and editable for tens of years and insisted on a stan-
dardized format supported by multiple vendors. Today, SGML is no longer widely used beyond specific applications,
but its descendants including HTML and XML are now widespread.

A markup language is a structured way of adding annotations about the formatting of the document within the document
itself. Example markup languages include troff, which is used to write the Unix man pages or Latex. HTML uses
markers to annotate text and a document is composed of HTML elements. Each element is usually composed of three
parts: a start tag that potentially includes some specific attributes, some text (often including other elements), and an
end tag. A HTML tag is a keyword enclosed in angle brackets. The generic form of an HTML element is

[<tag>Some text to be displayed</tag>

More complex HTML elements can also include optional attributes in the start tag

[<tag attributel="valuel" attribute2="value2">some text to be displayed</tag>

The HTML document shown below is composed of two parts: a header, delineated by the <head> and </head>
markers, and a body (between the <body> and </body> markers). In the example below, the header only contains
a title, but other types of information can be included in the header. The body contains an image, some text and a
list with three hyperlinks. The image is included in the web page by indicating its URI between brackets inside the
<img src="... "> marker. It is important to note that the image can reside on any server. The client will automatically
download it when rendering the web page. The <hl>... </hl> marker is used to specify the first level of headings. The
<ul> marker indicates an unnumbered list while the </i> marker indicates a list item. The <a href="URI”’ >text</a>
indicates a hyperlink. The text will be underlined in the rendered web page and the client will fetch the specified URI
when the user clicks on the link.

Over the years, various extensions to HTML have been proposed and implemented. These include the specification of
style sheets that adjust the layout of the document and the possibility of adding or referencing javascript code. Additional
details about the various extensions to HTML may be found in the official specifications maintained by W3C.

The third component of the world wide web is the HyperText Transfer Protocol (HTTP). HTTP is a text-based protocol
like SMTP. The client sends a request and the server returns a response. HTTP runs above the bytestream service
and HTTP servers listen by default on port 80. The design of HTTP has largely been inspired by the Internet email
protocols. Each HTTP request contains three parts :
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Header

Body

<HTML>

<HEAD>
<TITLE>HTML test page</TITLE>
</HERD>

Image on remote server
<BODY> _ /

<IMG SRC="http://www.sigcomm.org/logo.ipg™>
<Hl>Some web servers</Hl1> . .
<HR> ——First level title
<UL>
'CLI}{;'E :_:P_EF_II:_.. TR Y WL 110 1 ~1177= 4 .II‘)L:L'L‘CI,-’A}{;'_I}
i =">I1P MNetworking Lab</A> </LI>
MM SRR/ LI

</HTML>
\ External hypertext link

Fig. 12: A simple HTML page

* amethod, that indicates the type of request, a URI, and the version of the HTTP protocol used by the client

* a header, that is used by the client to specify optional parameters for the request. An empty line is used to mark
the end of the header

* an optional MIME document attached to the request

The response sent by the server also contains three parts :

* a status line , that indicates whether the request was successful or not

* a header, that contains additional information about the response. The response header ends with an empty line.

¢ a MIME document

Request

Method (GET, POST,...)
Header
CRLF
MIME Document

Client Server

Status line (success or failure)
Header
CRLF
MIME Document

Response

Fig. 13: HTTP requests and responses

Several types of method can be used in HTTP requests. The three most important ones are :

¢ the GET method is the most popular one. It is used to retrieve a document from a server. The GET
method is encoded as GET followed by the path of the URI of the requested document and the version
of HTTP used by the client. For example, to retrieve the http://www.w3.org/MarkUp/ URI, a client
must open a TCP connection on port 80 with host www.w3.0rg and send a HTTP request containing
the following line:

[GET /MarkUp/ HTTP/1.0 }
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e the HEAD method is a variant of the GET method that allows the retrieval of the header lines for a
given URI without retrieving the entire document. It can be used by a client to verify if a document
exists, for instance.

» the POST method can be used by a client to send a document to a server. The document is attached
to the HTTP request as a MIME document.

HTTP clients and servers can include different HTTP headers in HTTP requests and responses. Each HTTP header
is encoded as a single ASCII-line terminated by CR and LF. Several of these headers are briefly described below. A
detailed discussion of the standard headers may be found in RFC 1945. The MIME headers can appear in both HTTP
requests and HTTP responses.

* the Content-Length: header is the MIME header that indicates the length of the MIME document in bytes.

¢ the Content-Type: header is the MIME header that indicates the type of the attached MIME document. HTML
pages use the fext/html type.

* the Content-Encoding: header indicates how the MIME document has been encoded. For example, this header
would be set to x-gzip for a document compressed using the gzip software.

RFC 1945 and RFC 2616 define headers that are specific to HTTP responses. These server headers include:

* the Server: header indicates the version of the web server that has generated the HTTP response. Some servers
provide information about their software release and optional modules that they use. For security reasons, some
system administrators disable these headers to avoid revealing too much information about their server to potential
attackers.

¢ the Date: header indicates when the HTTP response has been produced by the server.

* the Last-Modified: header indicates the date and time of the last modification of the document attached to the
HTTP response.

Similarly, the following header lines can only appear inside HTTP requests sent by a client:

¢ the User-Agent: header provides information about the client that has generated the HTTP request. Some servers
analyze this header line and return different headers and sometimes different documents for different user agents.

* the If-Modified-Since: header is followed by a date. It enables clients to cache in memory or on disk recent or
most frequently used documents. When a client needs to request a URI from a server, it first checks whether the
document is already in its cache. If it is, the client sends an HTTP request with the If-Modified-Since: header
indicating the date of the cached document. The server will only return the document attached to the HTTP
response if it is newer than the version stored in the client’s cache.

¢ the Referrer: header is followed by a URL. It indicates the URI of the document that the client visited before
sending this HTTP request. Thanks to this header, the server can know the URI of the document containing the
hyperlink followed by the client, if any. This information is very useful to measure the impact of advertisements
containing hyperlinks placed on websites.

* the Host: header contains the fully qualified domain name of the URI being requested.

Note: The importance of the Host: header line

The first version of HTTP did not include the Host: header line. This was a severe limitation for web hosting companies.
For example consider a web hosting company that wants to serve both web.example.com and www.example.net on
the same physical server. Both web sites contain a /index.html document. When a client sends a request for either
http://web.example.com/index.html or http://www.example.net/index.html, the HTTP 1.0 request contains the following
line :

[GET /index.html HTTP/1.0

3.4. The HyperText Transfer Protocol 145


https://datatracker.ietf.org/doc/html/rfc1945.html
https://www.gzip.org
https://datatracker.ietf.org/doc/html/rfc1945.html
https://datatracker.ietf.org/doc/html/rfc2616.html

Computer Networking : Principles, Protocols and Practice, Release 2021

By parsing this line, a server cannot determine which index.html file is requested. Thanks to the Host: header line,
the server knows whether the request is for http://web.example.com/index.html or http://www.dummy.net/index.html.
Without the Host: header, this is impossible. The Host: header line allowed web hosting companies to develop their
business by supporting a large number of independent web servers on the same physical server.

The status line of the HTTP response begins with the version of HTTP used by the server (usually HTTP/1.0 defined
in RFC 1945 or HTTP/1.1 defined in RFC 2616) followed by a three digit status code and additional information in
English. HTTP status codes have a similar structure as the reply codes used by SMTP:

* All status codes starting with digit 2 indicate a valid response. 200 Ok indicates that the HTTP request was
successfully processed by the server and that the response is valid.

 All status codes starting with digit 3 indicate that the requested document is no longer available on the server.
301 Moved Permanently indicates that the requested document is no longer available on this server. A Location:
header containing the new URI of the requested document is inserted in the HTTP response. 304 Not Modified
is used in response to an HTTP request containing the If-Modified-Since: header. This status line is used by the
server if the document stored on the server is not more recent than the date indicated in the If-Modified-Since:
header.

 All status codes starting with digit 4 indicate that the server has detected an error in the HTTP request sent by the
client. 400 Bad Request indicates a syntax error in the HTTP request. 404 Not Found indicates that the requested
document does not exist on the server.

 All status codes starting with digit 5 indicate an error on the server. 500 Internal Server Error indicates that the
server could not process the request due to an error on the server itself.

In both HTTP requests and responses, the MIME document refers to a representation of the document with the MIME
headers indicating the type of document and its size.

As an illustration of HTTP/1.0, the transcript below shows a HTTP request for http://www.ietf.org and the correspond-
ing HTTP response. The HTTP request was sent using the curl command line tool. The User-Agent: header line
contains more information about this client software. There is no MIME document attached to this HTTP request, and
it ends with a blank line.

GET / HTTP/1.0

User-Agent: curl/7.19.4 (universal-apple-darwinl®.0) libcurl/7.19.4 OpenSSL/0.9.81 zlib/
~1.2.3

Host: www.ietf.org

The HTTP response indicates the version of the server software used with the modules included. The Last-Modified:
header indicates that the requested document was modified about one week before the request. A HTML document
(not shown) is attached to the response. Note the blank line between the header of the HTTP response and the attached
MIME document. The Server: header line has been truncated in this output.

HTTP/1.1 200 OK

Date: Mon, 15 Mar 2010 13:40:38 GMT

Server: Apache/2.2.4 (Linux/SUSE) mod_ssl/2.2.4 OpenSSL/0.9.8e (truncated)
Last-Modified: Tue, 09 Mar 2010 21:26:53 GMT

Content-Length: 17019

Content-Type: text/html

<IDOCTYPE HTML PUBLIC .../HTML>

HTTP was initially designed to share text documents. For this reason, and to ease the implementation of clients and
servers, the designers of HTTP chose to open a TCP connection for each HTTP request. This implies that a client must
open one TCP connection for each URI that it wants to retrieve from a server as illustrated on the figure below, showing
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HTTP 1.0 and the underlying TCP connection. For a web page containing only text documents this was a reasonable
design choice as the client usually remains idle while the (human) user is reading the retrieved document.

CONNECT .request >

P> CONNECT.indication >
< CONNECT.response

NNECT.confirm <
DATA.request(Request) >

P> DATA.indication(Request)
DATA.r R n

< DISCONNECT.request

‘DATA.indication(Response) >

< DISCONNECT.indication <
DI NNECT.x

P> DISCONNECT.indication >

However, as the web evolved to support richer documents containing images, opening a TCP connection for each URI
became a performance problem [Mogul1995]. Indeed, besides its HTML part, a web page may include dozens of
images or more. Forcing the client to open a TCP connection for each component of a web page has two important
drawbacks. First, the client and the server must exchange packets to open and close a TCP connection as we will see
later. This increases the network overhead and the total delay of completely retrieving all the components of a web
page. Second, a large number of established TCP connections may be a performance bottleneck on servers.

This problem was solved by extending HTTP to support persistent TCP connections RFC 2616. A persistent connection
is a TCP connection over which a client may send several HTTP requests. This is illustrated in the figure below showing
the persistent connection of HTTP 1.1.
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Client Server

CONNECT.request >

P> CONNECT.indication >
< CONNECT.response

< CONNECT.confirm <

Pl
GET/HTTP11 | el
Connection: Keep-Alive P >
____________ <
________________ HTTP/1.1 200 OK
B R Vi Keep-Alive: timeout=15, max=100
Connection: Keep-Alive
Pl
GET /images/logo.gif HTTP1.1| e
Connection: Keep-Alive P >
____________ <
________________ HTTP/1.1 200 OK
B R Vi Keep-Alive: timeout=15, max=99

Connection: Keep-Alive

DI NNECT.r

DI NNECT.indication <

DISCONNECT.request >

P> DI NNECT.indication

To allow the clients and servers to control the utilization of these persistent TCP connections, HTTP 1.1 RFC 2616
defines several new HTTP headers:

* The Connection: header is used with the Keep-Alive argument by the client to indicate that it expects the under-
lying TCP connection to be persistent. When this header is used with the Close argument, it indicates that the
entity that sent it will close the underlying TCP connection at the end of the HTTP response.

* The Keep-Alive: header is used by the server to inform the client about how it agrees to use the persistent
connection. A typical Keep-Alive: contains two parameters: the maximum number of requests that the server
agrees to serve on the underlying TCP connection and the timeout (in seconds) after which the server will close
an idle connection

The example below shows the operation of HTTP/1.1 over a persistent TCP connection to retrieve three URIs stored
on the same server. Once the connection has been established, the client sends its first request with the Connection:
Keep-Alive header to request a persistent connection.

GET / HTTP/1.1

Host: www.kame.net

User-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_2; en-us)
Connection: Keep-Alive

The server replies with the Connection: Keep-Alive header and indicates that it accepts a maximum of 100 HTTP
requests over this connection and that it will close the connection if it remains idle for 15 seconds.
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HTTP/1.1 200 OK

Date: Fri, 19 Mar 2010 09:23:37 GMT

Server: Apache/2.0.63 (FreeBSD) PHP/5.2.12 with Suhosin-Patch
Keep-Alive: timeout=15, max=100

Connection: Keep-Alive

Content-Length: 3462

Content-Type: text/html

<html>... </html>

The client sends a second request for the style sheet of the retrieved web page.

GET /style.css HTTP/1.1

Host: www.kame.net

Referer: http://www.kame.net/

User-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_2; en-us)
Connection: keep-alive

The server replies with the requested style sheet and maintains the persistent connection. Note that the server only
accepts 99 remaining HTTP requests over this persistent connection.

HTTP/1.1 200 OK

Date: Fri, 19 Mar 2010 09:23:37 GMT

Server: Apache/2.0.63 (FreeBSD) PHP/5.2.12 with Suhosin-Patch
Last-Modified: Mon, 10 Apr 2006 05:06:39 GMT

Content-Length: 2235

Keep-Alive: timeout=15, max=99

Connection: Keep-Alive

Content-Type: text/css

Then the client requested the web server’s icon’. This server does not contain such an icon and thus replies with a 404
HTTP status. However, the underlying TCP connection is not closed immediately.

GET /favicon.ico HTTP/1.1

Host: www.kame.net

Referer: http://www.kame.net/

User-Agent: Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_2; en-us)
Connection: keep-alive

HTTP/1.1 404 Not Found

Date: Fri, 19 Mar 2010 09:23:40 GMT

Server: Apache/2.0.63 (FreeBSD) PHP/5.2.12 with Suhosin-Patch
Content-Length: 318

Keep-Alive: timeout=15, max=98

Connection: Keep-Alive

Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN"> ...

3 Favorite icons are small icons that are used to represent web servers in the toolbar of Internet browsers. Microsoft added this feature in their
browsers without taking into account the W3C standards. See http://www.w3.0rg/2005/10/howto-favicon for a discussion on how to cleanly support
such favorite icons.
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As illustrated above, a client can send several HTTP requests over the same persistent TCP connection. However,
it is important to note that all of these HTTP requests are considered to be independent by the server. Each HTTP
request must be self-contained. This implies that each request must include all the header lines that are required by the
server to understand the request. The independence of these requests is one of the key design choices of HTTP. As a
consequence of this design choice, when a server processes a HTTP request, it does not use any other information than
what is contained in the request itself. This explains why the client adds its User-Agent: header in all of the HTTP
requests that it sends over the persistent TCP connection.

However, in practice, some servers want to provide content tuned for each user. For example, some servers can provide
information in several languages. Other servers want to provide advertisements that are targeted to different types of
users. To do this, servers need to maintain some information about the preferences of each user and use this information
to produce content matching the user’s preferences. HTTP contains several mechanisms to solve this problem. We
discuss three of them below.

A first solution is to force the users to be authenticated. This was the solution used by FTP to control the files that
each user could access. Initially, user names and passwords could be included inside URIs RFC 1738. However,
placing passwords in the clear in a potentially publicly visible URI is completely insecure and this usage has now been
deprecated RFC 3986. HTTP supports several extension headers RFC 2617 that can be used by a server to request the
authentication of the client by providing his/her credentials. However, user names and passwords have not been popular
on web servers as they force human users to remember one user name and one password per server. Remembering a
password is acceptable when a user needs to access protected content, but users will not accept to remember a unique
user name and password for each web sites that they visit.

A second solution to allow servers to tune that content to the needs and capabilities of the user is to rely on the different
types of Accept-* HTTP headers. For example, the Accept-Language: header can be used by the client to indicate its
preferred languages. Unfortunately, in practice this header is usually set based on the default language of the browser
and it is difficult for a user to indicate the language it prefers by selecting options for each visited web server.

The third and widely adopted solution are HTTP cookies. HTTP cookies were initially developed as a private extension
by Netscape. They are now part of the standard RFC 6265. In a nutshell, a cookie is a short string that is chosen by
a server to represent a given client. Two HTTP headers are used : Cookie: and Set-Cookie:. When a server receives
an HTTP request from a new client (i.e. an HTTP request that does not contain the Cookie: header), it generates a
cookie for the client and includes it in the Set-Cookie: header of the returned HTTP response. The Set-Cookie: header
contains several additional parameters including the domain names for which the cookie is valid. The client stores all
received cookies on disk and every time it sends an HTTP request, it verifies whether it already knows a cookie for this
domain. If so, it attaches the Cookie: header to the HTTP request. This is illustrated in the figure below with HTTP
1.1, but cookies also work with HTTP 1.0.
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Client Server
P
GET/HTTP11 | 7 N >
______________ <
----------------- HTTP/1.1 200 OK
< " Set-Cookie: machin
Browser saves cookie Normal response
Pl
GET /doc HTTP1.1 | e
Cookie: machin N |
________________ <
D P HTTP/1.1 200 OK
Response is function
of URL and cookie
Pl
GET fimages/t.gif HTTP1.4 | e
Cookie: machin B >
________________ <
«— e HTTP/1.1 200 OK
Browser sends cookie in
all requests sent to server

Note: Privacy issues with HTTP cookies

The HTTP cookies introduced by Netscape are key for large e-commerce websites. However, they have also raised
many discussions concerning their potential misuses. Consider ad.com, a company that delivers lots of advertisements
on web sites. A web site that wishes to include ad.com’s advertisements next to its content will add links to ad.com
inside its HTML pages. If ad.com is used by many web sites, ad.com could be able to track the interests of all the
users that visit its client websites and use this information to provide targeted advertisements. Privacy advocates have
even sued online advertisement companies to force them to comply with the privacy regulations. More recent related
technologies also raise privacy concerns.

3.5 Making HTTP faster

During the last decade, a growing number of services have been supported by world wide web servers. The web
protocols are not only used to deliver static documents, they are also used to deliver streaming music or video. They
also enable clients to use interactive applications including games or productivity applications. These services and
applications have more stringent performance requirements than the delivery of static documents. Many researchers
and companies have proposed solutions to improve the performance of web services and protocols during the last
decade [KR2001] [WBK2014]. We discuss a subset of them in this section.

A first way to improve the performance of the web protocols is to tune the servers that provide content. In the early
days, documents were stored on a single server. Clients established TCP connections to this server to retrieve each
document. This architecture evolved in several directions. A first way to speedup web services is to avoid unnecessary
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transmissions. Thanks to the HEAD method and the If-Modified-Since: header, web browsers can verify that they have
the most recent version of a document in their cache.

GET /truc.html
Response (truc.html) GET /truc.html
Client
(browser) GET /fonts.fnt Proxy Response (truchuml) | Server www.truc.fr
Response (fonts.fnt)

GET /fonts.fnt Response (fonts.fnt)

Server www.fonts.com

Fig. 14: Proxies relay client requests to servers and return the received responses

Caches can also be used inside the network. To understand their benefits, let us consider an SME with a dozen of
employees that are connected to the Internet through a low-speed link. These employees often access similar web
sites. Consider that Alice and Bob want to browse today’s local newspaper. Their browsers will both retrieve the
newspaper’s website through the low bandwidth link and store the main documents in their cache. Unfortunately, the
same information passes twice over the low-speed link. Some companies have deployed web proxies to cope with this
problem. A web proxy is a server that resides in the enterprise network. All the employee’s browsers are configured to
send their HTTP requests to this proxy. When such a proxy receives a request, it checks whether the content is already
stored inside its own cache. If so, it returns it directly. Otherwise, the request is sent to the remote server and the
information is stored in the proxy cache. By reducing the number of web objects that are exchanged over low-speed
links, such proxies can significantly improve performance. Some companies also use them to control the websites that
are contacted by their employees and sometimes block illegitimate accesses.

Proxies can also be located in front of servers. In this case, they are called reverse-proxies. Consider a dynamic web
server that produces web pages by assembling information stored in different databases. When this server receives a
request, it must send multiple queries to its databases and then create the HTML document. These queries and the
creation of the HTML document take time and this limits the number of requests that our server can sustain. Many
content providers would place a reverse proxy in front of such a server. The DNS servers are configured to point to
the reverse proxy. Upon reception of a request, the reverse proxy first checks whether the response is already stored in
its cache. If so, it can return it to the client without interacting with the official server. Otherwise, the reverse proxy
contacts the server and then returns the response to the client.

These reverse proxies can also be used to spread the load among different servers. In the above example, consider that
a server needs 10 milliseconds to process each request and that it must handle them sequentially. Such a server cannot
support more than 100 requests per second. If the service becomes popular, then the content provider will need to
deploy several servers. These servers could serve the same reverse proxy.

Note: Serving content from multiple servers

When a web user interacts with www.service.net, she expects that all the information comes from the www.service.net
server. If the service is popular, there are probably tens, hundreds, thousands or more physical servers that support
this service. Still, the user has the illusion that she is interacting with a single server. Several techniques have been
deployed by content providers to scale web services. Consider a simple service that serves text documents from N
different servers. There are different ways to architect such a service.

A first approach is to store all files on each physical server and rely on the DNS to distribute the load among them. Each
physical server has its own IP address and when the DNS server receives a query for www.service.net, it returns the IP
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address of one of them. Some DNS servers use Round-Robin to return one of these IP addresses. Others measure the
load of the physical servers and return the address of the less loaded one. Another possibility is to locate the physical
servers in different regions and configure the DNS server to return the IP address of the server that is geographically
closer to the client’s IP address.

A second approach is to rely on k reverse proxies and N-k servers. The servers store the content and the proxies cache
the most frequently used files. The proxies can be geographically close to the clients while the servers can reside in the
datacenters of the content provider. The DNS server can also distribute the load among the different proxies or return
the geographically closest proxy. An important point to note about reverse proxies is that they receive HTTP requests
from clients and send HTTP requests to the original servers that host the content. Several companies, usually called
Content Distribution Networks, have deployed such reverse proxies throughout the world to cache web content next to
the end-users. A good description of such a CDN may be found in [NSS2010].

A second way to improve the web performance is to reduce the time required to retrieve web objects. While the first
web servers returned an HTML documents with possibly a few images, today’s rich web servers return one HTML
document with associated style sheets, javascript code, images, fonts, ... Some of these web objects come from the
original server while others are hosted on different servers. Today, a typical web page contains almost 2 MBytes of
data on average. The size of the web pages continues to grow according to statistics collected by httparchive.org. Web
pages targeted to mobile devices are slightly smaller.
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Fig. 15: Evolution of the size of the web pages (source: https://httparchive.org/reports/page-weight)

A closer look at the average web page shows that it contains, on average, 27 KBytes of HTML, 120 KBytes of fonts,
60 KBytes of CSS information, almost 1 MBytes of images and more than 400 KBytes of javascript. Each of these
web page requires about 70 different HTTP requests. In other words, a browser needs to send on average 70 requests
to retrieve a complete web page.

Two directions have been explored to improve the delivery of these web pages. The first direction is to tune the HTTP

3.5. Making HTTP faster 153


https://httparchive.org/reports/page-weight

Computer Networking : Principles, Protocols and Practice, Release 2021

protocol. The second approach is to change the entire network stack. We will discuss this approach after having covered
the entire stack.

One of the limitations of HTTP from a performance viewpoint is that the requests that are sent by a browser must be
sequential. Typically, a browser requests the HTML page. Once the page has been retrieved, the browser parses it to
identify all the objects that it references and requests them one after each other. The web page can only be displayed
to the user once all the required web objects have been retrieved. This implies that the browser must wait until the
reception of each response before sending the next request. Another possibility is to allow the browser to send multiple
requests without waiting for their corresponding responses. This approach is called pipelining in RFC 7230.

To understand the benefits of pipelining, let us consider a simple but illustrative example. A client needs to retrieve
5 web objects that are each 100 bytes. The underlying transport connection has a 1 Gbps bandwidth but a one-way
delay of 100 msec. A normal HTTP/1.x client would send the first request, wait 200 msec to receive the answer, then
send another request. .. It would need one entire second to retrieve the five web objects. This is illustrated in the figure
below.

Client Server

=

time

With pipelining, the client sends the five requests immediately and receives the five responses after 200 msec. The
figure below illustrates the benefits of pipelining.
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However, as explained in RFC 7230, there is one important limitation to pipelining. It can only be used to serve HTTP
requests that are idempotent, i.e. none of the requests must depend on any of the previous requests in the pipeline.
It turned out that it was difficult for web browsers to correctly support this requirement and very few of them have
implemented pipelining'.

Another limitation of HTTP/1.1 is that all commands and parameters are encoded as ASCII strings. Using ASCII
strings makes it easy to write simple clients or debug problems by observing packets. Unfortunately, the burden is
placed on servers that need to include complex parsers that accept a wide range of partially compliant implementations.
Furthermore, the flexibility of the ASCII encoding has enabled some classes of security attacks on servers [CWE444].

To cope with these two problems, the IETF HTTP working group developed version 2.0 of HTTP. HTTP/2.0 diverges
from HTTP/1.1 in two important ways. First, HTTP/2.0 relies on binary encoding which is both more compact and
easier to parse. Second, HTTP/2.0 supports multiple streams, which makes it possible to simultaneously transfer
different web objects over a single transport connection. Furthermore, HTTP/2.0 also compresses the HTTP headers
to reduce the amount of data transferred. This technique is described in RFC 7541 but is not discussed in this chapter.

Let us first examine how HTTP/2.0 structures the bytestream of the underlying connection.

The information exchanged over an HTTP/2.0 session is composed of frames. A frame starts with a 9 bytes-long header
that carries several types of information. The HTTP/2.0 frames have a variable length. The Length field of the header
contains the length of the frame payload in bytes. As this field is encoded as a 24 bits field, an HTTP/2.0 frame cannot
be longer than 224 — 1 bytes. It should be noted that REC 7540 assumes a maximum size of 214 bytes, i.e. 16,384 bytes
for the HTTP/2.0 frame payload unless a longer maximum frame length has been negotiated at the beginning of the
session using the HTTP/2.0 Settings frame that will be described later. The next field of the frames header indicates the
frame type. The first frame types are Data which contains data from web objects and Headers containing HTTP/2.0
headers. When a client retrieves a web object from a server, it always receives an HTTP/2.0 Headers frame followed
by an HTTP/2.0 Data frame. The Headers frame information contains essentially the same HTTP headers as the ones
supported by HTTP/1.1, but those are encoded by leveraging a data compression technique that minimizes the number
of bytes required to transmit them.

Other frame types are described later. The Flags are used for some frame types and the R bit must be set to zero.

! See https://en.wikipedia.org/wiki/HTTP_pipelining for additional information.
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Fig. 16: The HTTP/2.0 Frame header

The last important field of the HTTP/2.0 Frame header is the Stream Identifier. With HTTP/2.0, the bytestream of
the underlying transport connection is divided in independent streams that are identified by an integer. The odd (resp.
even) stream identifiers are managed by the client (resp. server). This enables the server (or the client) to multiplex
data corresponding to different frames over a single bytestream.

This multiplexing capability is probably the most important feature of HTTP/2.0 from a performance viewpoint. To
understand its benefits, let us consider a client that retrieves two web objects over a 1 Mbps connection. The two
requests are sent together by the client. The first object is 125 bytes long, while the second is 12500 bytes long. In this
case, the server will first return the first object as a single frame and the second will be sent in the subsequent frame.

Consider now that the first object is 12500 bytes long and the second 125 bytes long. With a 1 Mbps connection, this
object will use the underlying connection during 100 milliseconds. The client will thus need to wait 100 milliseconds
to retrieve the second object. This is the Head of Line (HoL) blocking problem that affects the performance of many
web services. If the short web object is a javascript code that requests other web objects, its retrieval may be critical to
display the retrieved web page.

Client Server

//‘ﬁ

Long object

/

Short object

time

With HTTP/2.0 frames, the server could send the first 1250 bytes of the long object during 10 milliseconds, then send
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a second frame that contains the short object during one millisecond and later send a longer frame that contains the
remaining 11250 bytes of the long object. In this case, the client has received the short object after 10 milliseconds.
Given the HTTP/2.0 streams, the transmission of long web objects does not anymore blocks the transmission of shorter
ones.

The length of the HTTP/2.0 frames obviously affects how different web objects can be multiplexed over the underlying
transport connection. If HTTP/2.0 frames are long, the overhead of the frame header is minimal, but long frames can
block short web objects. On the other hand, if the frame length is small, then the overhead due to the HTTP/2.0 frame
header could become significant.

Client Server

%

time

The HTTP/2.0 streams can provide performance benefits, but they also increase the complexity of the implementations
since an HTTP/2.0 receiver must be able to simultaneously process frames that correspond to different web objects.
This complexity mainly resides on the client side. The HTTP/2.0 protocol includes several techniques that enable
clients to manage the utilization of the HTTP/2.0 session.

The first frame that a client sends over an HTTP/2.0 session is the Settings frame. This is a control frame that in-
dicates some parameters that the client proposes for this session. Several of these parameters are defined in RFC
7540. The most important ones are probably the SETTINGS_MAX_FRAME_SIZFE that specifies the maximum length
of the HTTP/2.0 frames that this implementation supports and the SETTINGS_MAX_CONCURRENT_STREAMS
that specifies the maximum number of parallel streams that this implementation can manage. The SET-
TINGS_MAX_FRAME_SIZE must be at least 2'4 bytes but can go up to 224 — 1 bytes. There is no minimum value
for SETTINGS_MAX_CONCURRENT_STREAMS, but RFC 7540 recommends to support at least 100 different stream
identifiers.

By using multiple streams, the server can multiplex different web objects over the same underlying transport connection.
However, these objects are only sent in response to requests from clients. There are some situations where the server
might know in advance that the client will request a given object. It could speedup the transfer by sending it before
having received a client request. This is the push feature of HTTP/2.0. A server can independently push web objects
to a client without having received any request. This feature can only be used by the server if the client has enabled it
by sending SETTINGS_ENABLE_PUSH in its Settings frame. A classical use case for this push feature is to enable a
server to automatically send an object which cannot be cached by the client, such as a dynamic javascript code, when
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another web object that references it is requested. However, measurement studies indicate that very few web servers
seem to have adopted this feature [ZWH2018].

Another feature of HTTP/2.0 is that it is possible to assign different priorities to different streams. A high priority
stream should carry more Data frames than a lower priority ones. The HTTP/2.0 specification defines Priority frames
which can be used for this purpose.

As the server can send multiple objects at the same time, there is a risk of overloading the client buffers. To cope
with this potential problem, HTTP/2.0 includes its own flow control mechanism. When an HTTP/2.0 session starts, a
receiver agrees to receive up to 65,535 bytes over this connection (unless it has indicated a different initial window in its
Settings frame). This limits the amount of data that a sender can transmit over the HTTP/2.0 session. The receiver can
advertise a large receive window by sending a Window_Update frame at any time. This flow control mechanism can
be applied to the entire connection or to a specific stream. In practice, using a small HTTP/2.0 window could severely
limit the throughput over an HTTP/2.0 session.

HTTP/2.0 includes much more than what we have covered in this short introduction. There is for example a Ping
frame that allows measuring the round-trip-time between a client and a server or the GoAway frame that indicates
the termination of an HTTP/2.0 session. This frame contains an error code that indicates why the session has been
terminated. Several error codes are defined in RFC 7540, including ENHANCE_YOUR_CALM that is used to indicate
that the other endpoint exhibits an behavior that could cause excessive load.

Note: Detecting whether a server supports HTTP/2.0

HTTP/2.0 is a new version of the HTTP protocol that still uses port 80. When a client contacts an HTTP server, it must
be able to determine whether it supports HTTP/1.x or HTTP/2.0. If the client sends a binary encoded HTTP/2.0 request
to a server that only supports the ASCII encoded HTTP/1.x, it could cause problems on the server and even crash it.
To minimize the risk of crashing HTTP/1.x servers, an HTTP/2.0 session starts like an HTTP/1.1 session and the first
request contains the Connection, Upgrade and HTTP2-Settings headers. An example of such a request to upgrade the
version of HTTP is shown below.

GET /robots.txt HTTP/1.1

Host: nghttp2.org

User-Agent: curl/7.52.1

Connection: Upgrade, HTTP2-Settings
Upgrade: h2c

HTTP2-Settings: AAMAAABKAARAAAAA

The HTTP2-Settings line contains the HTTP/2.0 settings frame that the client would server over an HTTP/2.0 session
encoded in Base64. The server replies with a response that indicates that it has accepted to upgrade the connection to
HTTP/2.0. A sample response is shown below.

HTTP/1.1 101 Switching Protocols
Connection: Upgrade
Upgrade: h2c

Finally, the client and the server need to confirm the utilization of HTTP/2.0. A client confirms this by sending the
following Magic string PRI * HTTP/2.0rnrnSMrnrn or 0x505249202a20485454502f322e300d0a0d0a534d0d0a0d0a
in hex. This string is followed by a SETTINGS frame. The server must send a possibly empty SETTINGS frame.
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3.6 Remote Procedure Calls

In the previous sections, we have described several protocols that enable humans to exchange messages and access
to remote documents. This is not the only usage of computer networks and in many situations applications use the
network to exchange information with other applications. When an application needs to perform a large computation
on a host, it can sometimes be useful to request computations from other hosts. Many distributed systems have been
built by distributing applications on different hosts and using Remote Procedure Calls as a basic building block.

In traditional programming languages, procedure calls allow programmers to better structure their code. Each proce-
dure is identified by a name, a return type and a set of parameters. When a procedure is called, the current flow of
program execution is diverted to execute the procedure. This procedure uses the provided parameters to perform its
computation and returns one or more values. This programming model was designed with a single host in mind. In a
nutshell, most programming languages support it as follows :

1. The caller places the values of the parameters at a location (register, stack, ...) where the callee can access them
2. The caller transfers the control of execution to the callee’s procedure

3. The callee accesses the parameters and performs the requested computation

4. The callee places the return value(s) at a location (register, stack, ...) where the caller can access them

5. The callee returns the control of execution to the caller’s

This model was developed with a single host in mind. How should it be modified if the caller and the callee are different
hosts connected through a network ? Since the two hosts can be different, the two main problems are the fact they do
not share the same memory and that they do not necessarily use the same representation for numbers, characters, ...
Let us examine how the five steps identified above can be supported through a network.

The first problem to be solved is how to transfer the information from the caller to the callee. This problem is not simple
and includes two sub-problems. The first sub-problem is the encoding of the information. How to encode the values
of the parameters so that they can be transferred correctly through the network ? The second problem is how to reach
the callee through the network ? The callee is identified by a procedure name, but to use the transport service, we need
to convert this name into an address and a port number.

3.6.1 Encoding data

The encoding problem exists in a wide range of applications. In the previous sections, we have described how character-
based encodings are used by email and HTTP. Although standard encoding techniques such as ASN.1 [Dubuisson2000]
have been defined to cover most application needs, many applications have defined their specific encoding. Remote
Procedure Call are no exception to this rule. The three most popular encoding methods are probably XDR RFC 1832
used by ONC-RPC RFC 1831, XML, used by XML-RPC and JSON RFC 4627.

The eXternal Data Representation (XDR) Standard, defined in RFC 1832 is an early specification that describes how
information exchanged during Remote Procedure Calls should be encoded before being transmitted through a network.
Since the transport service enables transferring a block of bytes (with the connectionless service) or a stream of bytes
(by using the connection-oriented service), XDR maps each datatype onto a sequence of bytes. The caller encodes each
data in the appropriate sequence and the callee decodes the received information. Here are a few examples extracted
from RFC 1832 to illustrate how this encoding/decoding can be performed.

For basic data types, RFC 1832 simply maps their representation into a sequence of bytes. For example a 32 bits integer
is transmitted as follows (with the most significant byte first, which corresponds to big-endian encoding).

XDR also supports 64 bits integers and booleans. The booleans are mapped onto integers (0 for false and I for true).
For the floating point numbers, the encoding defined in the IEEE standard is used.

In this representation, the first bit (S) is the sign (0 represents positive). The next 11 bits represent the exponent of the
number (E), in base 2, and the remaining 52 bits are the fractional part of the number (F). The floating point number
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(MSB) (LSB)
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S 32 bits------------ >
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SR T 64 bits---------------iaaa >

that corresponds to this representation is (—1)° x 2E71023 x 1 . XDR also allows encoding complex data types. A
first example is the string of bytes. A string of bytes is composed of two parts : a length (encoded as an integer) and
a sequence of bytes. For performance reasons, the encoding of a string is aligned to 32 bits boundaries. This implies
that some padding bytes may be inserted during the encoding operation is the length of the string is not a multiple of
4. The structure of the string is shown below (source RFC 1832).

0 1 2 3 4 5
o - o +----- - $o---- T TR - ot +
| length n |byteO|bytel|...| n-1 | O0 |...] 0 |
+----- +----- +----- +----- +----- +----- +. - +----- +,. 0+ +
|<------- 4 bytes------- >|<------ n bytes------ >|<---r bytes--->|
|<----n+r (where (n+r) mod 4 = 0)---->|

In some situations, it is necessary to encode fixed or variable length arrays. XDR RFC 1832 supports such arrays. For
example, the encoding below corresponds to a variable length array containing n elements. The encoded representation
starts with an integer that contains the number of elements and follows with all elements in sequence. It is also possible
to encode a fixed-length array. In this case, the first integer (the n field) is missing.

XDR also supports the definition of unions, structures, ... Additional details are provided in RFC 1832.

A second popular method to encode data is the JavaScript Object Notation (JSON). This syntax was initially defined to
allow applications written in JavaScript to exchange data, but it has now wider usages. JSON RFC 4627 is a text-based
representation. The simplest data type is the integer. It is represented as a sequence of digits in ASCII. Strings can also
be encoding by using JSON. A JSON string always starts and ends with a quote character () as in the C language. As
in the C language, some characters (like “ or \) must be escaped if they appear in a string. RFC 4627 describes this in
details. Booleans are also supported by using the strings false and true. Like XDR, JSON supports more complex data
types. A structure or object is defined as a comma separated list of elements enclosed in curly brackets. RFC 4627
provides the following example as an illustration.

{
"Image": {
"Width": 800,
"Height": 600,
"Title": "View from 15th Floor",
"Thumbnail": {
"Url": "http://www.example.com/image/481989943",

(continues on next page)
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O 1 2 3
R T e e ik i I I T R R S
| n | element 0 | element 1 |...|element n-1|
R D R i e S T R e R Ml =
|<-4 bytes->|<-------------- n elements------------- > |
(continued from previous page)
"Height": 125,
"Width": 100
3
"ID": 1234
}
}

This object has one field named Image. It has five attributes. The first one, Width, is an integer set to 800. The third
one is a string. The fourth attribute, Thumbnail is also an object composed of three different attributes, one string and
two integers. JSON can also be used to encode arrays or lists. In this case, square brackets are used as delimiters. The
snippet below shows an array which contains the prime integers that are smaller than ten.

{
"Primes" : [ 2, 3, 5, 7 1]
}

Compared with XDR, the main advantage of JSON is that the transfer syntax is easily readable by a human. However,
this comes at the expense of a less compact encoding. Some data encoded in JSON will usually take more space
than when it is encoded with XDR. More compact encoding schemes have been defined, see e.g. [BH2013] and the
references therein.

3.6.2 Reaching the callee

The second sub-problem is how to reach the callee. A simple solution to this problem is to make sure that the callee
listens on a specific port on the remote machine and then exchange information with this server process. This is the
solution chosen for JSON-RPC [JSON-RPC2]. JSON-RPC can be used over the connectionless or the connection-
oriented transport service. A JSON-RPC request contains the following fields:

* jsonrpc: a string indicating the version of the protocol used. This is important to allow the protocol to evolve in
the future.

* method: a string that contains the name of the procedure which is invoked
* params: a structure that contains the values of the parameters that are passed to the method
* id: an identifier chosen by the caller

The JSON-RPC is encoded as a JSON object. For example, the example below shows an invocation of a method called
sum with I and 3 as parameters.

[{ "jsonrpc": "2.0", "method": "sum", "params": [1, 3], "id": 1 } J

Upon reception of this JSON structure, the callee parses the object, locates the corresponding method and passes the
parameters. This method returns a response which is also encoded as a JSON structure. This response contains the
following fields:

e jsonrpc: astring indicating the version of the protocol used to encode the response
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* id: the same identifier as the identifier chosen by the caller
* result: if the request succeeded, this member contains the result of the request (in our example, value 4).

* error: if the method called does not exist or its execution causes an error, the result element will be replaced by
an error element which contains the following members :

— code: a number that indicates the type of error. Several error codes are defined in [JSON-RPC2]. For
example, -32700 indicates an error in parsing the request, -32602 indicates invalid parameters and -32601
indicates that the method could not be found on the server. Other error codes are listed in [JSON-RPC2].

— message: a string (limited to one sentence) that provides a short description of the error.
— data: an optional field that provides additional information about the error.

Coming back to our example with the call for the sum procedure, it would return the following JSON structure.

[{ "jsonrpc": "2.0", "result": 4, "id": 1 } ]

If the sum method is not implemented on the server, it would reply with the following response.

[{ "jsonrpc": "2.0", "error": {"code": -32601, "message": "Method not found"}, "id": "1" }}

The id field, which is present in the request and the response plays the same role as the identifier field in the DNS
message. It allows the caller to match the response with the request that it sent. This id is very important when
JSON-RPC is used over the connectionless transport service which is unreliable. If a request is sent, it may need to
be retransmitted and it is possible that a callee will receive twice the same request (e.g. if the response for the first
request was lost). In the DNS, when a request is lost, it can be retransmitted without causing any difficulty. However
with remote procedure calls in general, losses can cause some problems. Consider a method which is used to deposit
money on a bank account. If the request is lost, it will be retransmitted and the deposit will be eventually performed.
However, if the response is lost, the caller will also retransmit its request. This request will be received by the callee
that will deposit the money again. To prevent this problem from affecting the application, either the programmer must
ensure that the remote procedures that it calls can be safely called multiple times or the application must verify whether
the request has been transmitted earlier. In most deployments, the programmers use remote methods that can be safely
called multiple times without breaking the application logic.

ONC-RPC uses a more complex method to allow a caller to reach the callee. On a host, server processes can run on
different ports and given the limited number of port values (2'® per host on the Internet), it is impossible to reserve
one port number for each method. The solution used in ONC-RPC RFC 1831 is to use a special method which is
called the portmapper RFC 1833. The portmapper is a kind of directory that runs on a server that hosts methods.
The portmapper runs on a standard port (/77 for ONC-RPC RFC 1833). A server process that implements a method
registers its method on the local portmapper. When a caller needs to call a method on a remote server, it first contacts
the portmapper to obtain the port number of the server process which implements the method. The response from the
portmapper allows it to directly contact the server process which implements the method.

3.7 Remote login

One of the initial motivations for building computer networks was to allow users to access remote computers over the
networks. In the 1960s and 1970s, the mainframes and the emerging minicomputers were composed of a central unit
and a set of terminals connected through serial lines or modems. The simplest protocol that was designed to access
remote computers over a network is probably telnet RFC 854. telnet runs over TCP and a telnet server listens on port
23 by default. The TCP connection used by telnet is bidirectional, both the client and the server can send data over it.
The data exchanged over such a connection is essentially the characters that are typed by the user on the client machine
and the text output of the processes running on the server machine with a few exceptions (e.g. control characters,
characters to control the terminal like VT-100, ...) . The default character set for telnet is the ASCII character set, but
the extensions specified in RFC 5198 support the utilization of Unicode characters.
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From a security viewpoint, the main drawback of relnet is that all the information, including the usernames, passwords
and commands, is sent in cleartext over a TCP connection. This implies that an eavesdropper could easily capture
the passwords used by anyone on an unprotected network. Various software tools exist to automate this collection of
information. For this reason, felnet is rarely used today to access remote computers. It is usually replaced by ssh or
similar protocols.

3.7.1 The secure shell (ssh)

The secure shell protocol was designed in the mid 1990s by T. Ylonen to counter the eavesdropping attacks against
telnet and similar protocols [Ylonen1996]. ssh became quickly popular and system administrators encouraged its
usage. The original version of ssh was freely available. After a few years, his author created a company to distribute it
commercially, but other programmers continued to develop an open-source version of ss/ called OpenSSH. Over the
years, ssh evolved and became a flexible applicable whose usage extends beyond remote login to support features such
as file transfers, protocol tunneling, ... In this section, we only discuss the basic features of ss/ and explain how it
differs from telnet. Entire books have been written to describe ssi in details [BS2005]. An overview of the protocol
appeared in [Stallings2009].

The ssh protocol runs directly above the TCP protocol. Once the TCP bytestream has been established, the client and
the server exchange messages. The first message exchanged is an ASCII line that announces the version of the protocol
and the version of the software implementation used by the client and the server. These two lines are useful when
debugging interoperability problems and other issues.

The next message is the SSH_MSG_KEX_INIT message that is used to negotiate the cryptographic algorithms that will
be used for the ssh session. It is very important for security protocols to include mechanisms that enable a negotia-
tion of the cryptographic algorithms that are used. First, these algorithms provide different levels of security. Some
algorithms might be considered totally secure and are recommended today while they could become deprecated a few
years later after the publication of some attacks. Second, these algorithms provide different levels of performance and
have different CPU and memory impacts.

In practice, an ssh implementation supports four types of cryptographic algorithms :
* key exchange
¢ encryption
* Message Authentication Code (MAC)
* compression

The TANA maintains a list of the cryptographic algorithms that can be used by ssh implementations. For each type of
algorithm, the client provides an ordered list of the algorithms that it supports and agrees to use. The server compares
the received list with its own list. The outcome of the negotiation is a set of four algorithms' that will be combined for
this session.

! For some of the algorithms, it is possible to negotiate the utilization of no algorithm. This happens frequently for the compression algorithm
that is not always used. For this, both the client and the server must announce null in their ordered list of supported algorithms.
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This negotiation of the cryptographic algorithms allows the implementations to evolve when new algorithms are pro-
posed. If a client is upgraded, it can announce a new algorithm as its preferred one even if the server is not yet upgraded.

Once the cryptographic algorithms have been negotiated, the key exchange algorithm is used to negotiate a secret key
that will be shared by the client and the server. These key exchange algorithms include some variations over the basic
algorithms. As an example, let us analyze how the Diffie-Hellman key exchange algorithm is used within the ssh
protocol. In this case, each host has both a private and a public key. (Note that g is a generator for the subgroup of
the Galois field of order p, where p is a prime number, and || is the concatenation operator. For additional background
information, see [Schneier1996].)

* the client generates the random number a and sends A = g* mod p to the server

« the server generates the random number b. It then computes B = ¢® mod p, K = B® mod p and signs with
its private key hash(Vovient||Vserver | KEX _INITclient|KEX_INITserper||Serverpy||Al|B||K) where
Vserver (t€sp. Veiient) is the initial messages sent by the client (resp. server), KEX_INITcient (resp.
KEX_INITserver) is the key exchange message sent by the client (resp. server) and A, B and K are the
messages of the Diffie-Hellman key exchange

« the client can recompute X = A® mod p and verify the signature provided by the server

This is a slightly modified authenticated Diffie-Hellman key exchange with two interesting points. The first point is
that when the server authenticates the key exchange it does not provide a certificate. This is because ssh assumes that
the client will store inside its cache the public key of the servers that it uses on a regular basis. This assumption is valid
for a protocol like ssh because users typically use it to interact with a small number of servers, typically a few or a few
tens. Storing this information does not require a lot of storage. In practice, most ssh clients will accept to connect to
remote servers without knowing their public key before the connection. In this case, the client issues a warning to the
user who can decide to accept or reject the key. This warning can be associated with a fingerprint of the key, either as
a sequence of letters or as an ASCII art which can be posted on the web or elsewhere” by the system administrator of
the server. If a client connects to a server whose public key does not match the stored one, a stronger warning is issued
because this could indicate a man-in-the-middle attack or that the remote server has been compromised. It can also
indicate that the server has been upgraded and that a new key has been generated during this upgrade.

The second point is that the server authenticates not only the result of the Diffie-Hellman exchange but also a hash of all
the information sent and received during the exchange. This is important to prevent downgrade attacks. A downgrade
attack is an attack where an active attacker modifies the messages sent by the communicating hosts (typically the client)
to request the utilization of weaker encryption algorithms. Consider a client that supports two encryption schemes.
The preferred one uses 128 bits secret keys and the second one is an old encryption scheme that uses 48 bits keys.
This second algorithm is kept for backward compatibility with older implementations. If an attacker can remove the
preferred algorithm from the list of encryption algorithms supported by the client, he can force the server to use a
weaker encryption scheme that will be easier to break. Thanks to the hash that covers all the messages exchanged by

2 For example, RFC 4255 describes a DNS record that can be used to associate an ssh fingerprint to a DNS name.
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the server, the downgrade attack cannot occur against ssh. Algorithm agility is a key requirement for security protocols
that need to evolve when encryption algorithms are broken by researchers. This agility cannot be used without care
and signing a hash of all the messages exchanged is a technique that is frequently used to prevent downgrade attacks.

Note: Single use keys

Thanks to the Diffie-Hellman key exchange, the client and the servers share key K. A naive implementation would
probably directly use this key for all the cryptographic algorithms that have been negotiated for this session. Like
most security protocols, ssh does not directly use key K. Instead, it uses the negotiated hash function with different
parameters’ to allow the client and the servers to compute six keys from K :

* akey used by the client (resp. server) to encrypt the data that it sends
* akey used by the client (resp. server) to authenticate the data that it sends
* akey used by the client (resp. server) to initialize the negotiated encryption scheme (if required by this scheme)

It is common practice among designers of security protocols to never use the same key for different purposes. For
example, allowing the client and the server to use the same key to encrypt data could enable an attacker to launch a
replay attack by sending to the client data that it has itself encrypted.

At this point, all the messages sent over the TCP connection will be encrypted with the negotiated keys. The ssh
protocol uses messages that are encoded according to the Binary Packet Protocol defined in RFC 4253. Each of these
messages contains the following information :

* length : this is the length of the message in bytes, excluding the MAC and length fields
* padding length : this is the number of random bytes that have been added at the end of the message.
* payload : the data (after optional compression) passed by the user

* padding : random bytes added in each message (at least four) to ensure that the message length is a multiple of
the block size used by the negotiated encryption algorithm

MAC : this field is present if a Message Authentication Code has been negotiated for the session (in prac-
tice, using ssh without authentication is risky and this field should always be present). Note that to com-
pute the MAC, an ssh implementation must maintain a message counter. This counter is incremented by
one every time a message is sent and the MAC is computed with the negotiated authentication algorithm us-
ing the MAC key over the concatenation of the message counter and the cleartext message. The message
counter is not transmitted, but the recipient can easily recover its value. The MAC is computed as mac =
M AC (key, sequence_number||unencrypted_message) where the key is the negotiated authentication key.

Note: Authenticating messages with HMAC

ssh is one example of a protocol that uses Message Authentication Codes (MAC) to authenticates the messages that
are sent. A naive implementation of such a MAC would be to simply use a hash function like SHA-1. However, such
a construction would not be safe from a security viewpoint. Internet protocols usually rely on the HMAC construction
defined in RFC 2104. It works with any hash function (H) and a key (K). As an example, let us consider HMAC with
the SHA-1 hash function. SHA-1 uses 20 bytes blocks and the block size will play an important role in the operation
of HMAC. We first require the key to be as long as the block size. Since this key is the output of the key generation
algorithm, this is one parameter of this algorithm.

HMAC uses two padding strings : ipad (resp. opad) which is a string containing 20 times byte 0x36 (resp. byte 8x5C).
The HMAC is then computed as H[K @ opad, H(K @ ipad, data)] where & denotes the bitwise XOR operation. This
computation has been shown to be stronger than the naive H (K, data) against some types of cryptographic attacks.

3 The exact algorithms used for the computation of these keys are defined in RFC 4253
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Among the various features of the ssh protocol, it is interesting to mention how users are authenticated by the server.
The ssh protocol supports the classical username/password authentication (but both the username and the password
are transmitted over the secure encrypted channel). In addition, ssh supports two authentication mechanisms that rely
on public keys. To use the first one, each user needs to generate his/her own public/private key pair and store the public
key on the server. To be authenticated, the user needs to sign a message containing his/her public key by using his/her
private key. The server can easily verify the validity of the signature since it already knows the user’s public key. The
second authentication scheme is designed for hosts that trust each other. Each host has a public/private key pair and
stores the public keys of the other hosts that it trusts. This is typically used in environments such as university labs
where each user could access any of the available computers. If Alice has logged on computerl and wants to execute
a command on computer2, she can create an ssh session on this computer and type (again) her password. With
the host-based authentication scheme, computerl signs a message with its private key to confirm that it has already
authenticated Alice. computer?2 would then accept Alice’s session without asking for her credentials.

The ssh protocol includes other features that are beyond the scope of this book. Additional details may be found in
[BS2005].

3.8 Transport Layer Security

The Transport Layer Security family of protocols were initially proposed under the name Secure Socket Layer (SSL).
The first deployments used this name and many researchers still refer to this security protocol as SSL [FKC1996]. In
this chapter, we use the official name that was standardized by the IETF: TLS for Transport Layer Security.

The TLS protocol was designed to be usable by a wide range of applications that use the transport layer to reliably
exchange information. TLS is mainly used over the TCP protocol. There are variants of TLS that operate over SCTP
RFC 3436 or UDP RFC 6347, but these are outside the scope of this chapter.

A TLS session operates over a TCP connection. TLS is responsible for the encryption and the authentication of the
SDUs exchanged by the application layer protocol while TCP provides the reliable delivery of this encrypted and
authenticated bytestream. TLS is used by many different application layer protocols. The most frequent ones are HTTP
(HTTP over TLS is called HTTPS), SMTP RFC 3207 or POP and IMAP RFC 2595, but proprietary application-layer
protocols also use TLS [AM2019].

A TLS session can be initiated in two different ways. First, the application can use a dedicated TCP port number for
application layer protocol x-over-TLS. This is the solution used by many HTTP servers that reserve port 443 for HTTP
over TLS. This solution works, but it requires to reserve two ports for each application : one where the application-layer
protocol is used directly over TCP and another one where the application-layer protocol is used over TLS. Given the
limited number of TCP ports that are available, this is not a scalable solution. The table below provides some of the
reserved port numbers for application layer protocols on top of TLS.

Application TCP port TLS port

POP3 110 995
IMAP 143 993
NNTP 119 563
HTTP 80 443
FTP 21 990

A second approach to initiate a TLS session is to use the standard TCP port number for the application layer protocol
and define a special message in this protocol to trigger the start of the TLS session. This is the solution used for SMTP
with the STARTTLS message. This extension to SMTP RFC 3207 defines the new STARTTLS command. The client
can issue this command to indicate to the server that it wants to start a TLS session as shown in the example below
captured during a session on port 25.
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220 server.example.org ESMTP
EHLO client.example.net
250-server.example.org
250-PIPELINING

250-SIZE 250000000

250-ETRN

250-STARTTLS
250-ENHANCEDSTATUSCODES
250-8BITMIME

250 DSN

STARTTLS

220 2.0.0 Ready to start TLS

In the remaining parts of this chapter, we assume that the TLS session starts immediately after the establishment of the
TCP connection. This corresponds to the deployments on web servers. We focus our presentation of TLS on this very
popular use case. TLS is a complex protocol that supports other features than the one used by web servers. A more
detailed presentation of TLS may be found in [KPS2002] and [Ristic2015].

A TLS session is divided in two phases: the handshake and the data transfer. During the handshake, the client and the
server negotiate the security parameters and the keys that will be used to secure the data transfer. During the second
phase, all the messages exchanged are encrypted and authenticated with the negotiated algorithms and keys.

3.8.1 The TLS handshake

When used to interact with a regular web server, the TLS handshake has three important objectives:
1. Securely negotiate the cryptographic algorithms that will be used by the client and the server over the TLS session
2. Verify that the client interacts with a valid server

3. Securely agree on the keys that will be used to encrypt and authenticate the messages exchanged over the TLS
session

The TLS handshake is a four-way handshake illustrated in the figure below.

Client Server

E(K,MasterSecret), Finished=MAC(MasterSecret||Handshake)

emeeeeeneo Encrypted Record. ) >
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In a nutshell, the client starts the TLS handshake by proposing a random nonce. The server replies with its random
nonce and a certificate that binds its name to a public key. The client generates a MasterSecret that will be used later
to derive the session keys and encrypts it with the public key of the server. It also generates a Finished message that
contains a MAC of all the messages exchanged to allow the server to detect any modification of the messages sent by the
client. The server also sends its own Finished message. At that point, the client and the server sent encrypted records
thanks to the keys derived from the MasterSecret.

Let us first discuss the negotiation of the cryptographic algorithms and parameters. Like all security protocols, TLS
includes some agility in its design since new cryptographic algorithms appear over the years and some older algorithms
become deprecated once cryptanalysts find flaws. The TLS handshakes starts with the ClientHello message that is
sent by the client. This message carries the following information :

* Protocol version number: this is the version of the TLS protocol supported by the client. The server should use
the same version of the TLS protocol as the client, but may opt for an older version. Both versions 1.2 and 1.3
of TLS are deployed today. Older versions are being deprecated.

* Random number: security protocols rely on random numbers. The client sends a 32 bytes long random number
where usually four of these bytes correspond to the client’s clock. This random number is used, together with
the server’s random number, as a seed to generate the security keys.

* Cipher suites : this ordered list contains the set of cryptographic algorithms that are supported by the client,
with the most preferred one listed first. In contrast with ssh that allows negotiating independent algorithms for
encryption, key exchange and authentication, TLS relies on suites that combine these algorithms together. Many
cryptographic suites have been defined for TLS. Various recommendations have been published on the security
of some of these suites RFC 7525.

» Compression algorithm : the client may propose the utilization of a specific compression algorithm (e.g. zlib). In
theory, compressing the data before encrypting it is an intelligent way to reduce the amount of data exchanged.
Unfortunately, its implementation in TLS has caused several security problems [PHG2013]. For this reason,
compression is usually disabled in TLS RFC 7525.

» Extensions : TLS supports various extensions in the ClientHello message. These extensions RFC 6066 are
important to allow the protocol to evolve, but many of them go beyond the scope of this chapter.

Note: The Server Name Indication (SNI)

The Server Name Indication (SNI) extension defined in RFC 6066 is an important TLS extension for web
servers. It is used by the client to indicate the name of the server that it wishes to contact. The IP address associated
to this name has been queried from the DNS and used to establish the TCP connection. Why should the client indicate
the server name in the TLS ClientHello ? The motivation is the same as for the Host header line in HTTP/1.0. With
the SNI extension, a single TLS server can support several web sites that use different domain names. Thanks to the
SNI extension, the server knows the concerned domain name at the start of the TLS session. Without this extension,
hosting providers would have been forced use one IP address per TLS-enabled server.

The server replies to the ClientHello with several messages:

¢ the ServerHello message that contains the protocol version chosen by the server (assumed to be the same as
the client version in this chapter), the 32 random bytes chosen by the server, the Cipher Suite selected by the
server from the list advertised by the client and a Session Id. This Session Id is an identifier which is chosen
by the server. It identifies the TLS session and the security parameters (algorithms and keys) negotiated for this
session. It is used to support session resumption.

* the Certificate message provides the certificate (or usually a chain of certificates) that binds a domain name to
the public key used by the server. TLS uses the server certificates to authenticate the server. It relies on a Public
Key Infrastructure that is composed of a set of root certification authorities that issue certificates to certification
authorities that in the end issue certificates to servers. TLS clients are usually configured with the public keys
of several root certification authorities and use this information to validate the certificates that they receive from
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servers. For historical reasons, the TLS certificates are encoded in ASN.1 format. The details of the ASN.1
syntax [Dubuisson2000] are outside the scope of this book.

* the ServerKeyExchange message is used by the server to transmit the information that is required to perform
the key exchange. The content of this message is function of the selected key exchange algorithm.

* the ServerHelloDone indicates that the server has sent all the messages for the first phase of the handshake.

At this point, it is time to describe the TLS key exchange. TLS supports different key exchange mechanisms that can
be negotiated as part of the selection of the cipher suite. We focus on two of them to highlight their differences:

* RSA. This key exchange algorithm uses the encryption capabilities of the RSA public-key algorithm. The client
has validated the server’s public key thanks to the Certificate message. It then generates a (48 bytes)
random number, encrypts it with the server public key and sends the encrypted number to the server in the
ClientKeyExchange message. The server uses its private key to decrypt the random number. At this point, the
client and the server share the same (48 bytes long) secret and use it to derive the secret keys required to encrypt
and authenticate data in the second phase. With this key exchange algorithm, the server does not need to send a
ServerKeyExchange message.

* DHE_RSA. This key exchange algorithm is the Ephemeral Diffie Hellman key exchange with RSA signatures to
authenticate the key exchange. It operates as a classical authenticated Diffie Hellman key exchange. If this key
exchange has been selected by the server, it sends its Diffie Hellman parameters in the ServerKeyExchange
message and signs them with its private key. The client then continues the key exchange and sends the results
of its own computation in the ClientKeyExchange message. DHE_RSA is thus an authenticated Diffie Hellman
key exchange where the initial message is sent by the server (instead of the client as in our first example but since
the protocol is symmetric, this does not matter).

An important difference between DHE_RSA and RSA is their reaction against attacks. DHE_RSA is considered by many
to be stronger than RSA because it supports Perfect Forward Secrecy. This property is important against attackers that
are able to eavesdrop all the (encrypted) data sent and received by a server. Consider that Terrence is such an attacker
that has stored all the packets exchanged by Bob’s server during the last six months. If he manages, by any means,
to obtain Bob’s private key, he will be able to decrypt all the keys used to secure the TLS sessions with Bob’s server
during this period. With DHE_RSA, a similar attack is less devastating. If Terrence knows Bob’s private key, he will be
able to launch a man-in-the-middle attack against future TLS sessions with Bob’s server. However, he will not be able
to recover the keys used for all the past sessions that he captured.

Note: Perfect Forward Secrecy

Perfect Forward Secrecy (PFS) is an important property for key exchange protocols. A protocol provides PFS if its
design guarantees that the keys used for former sessions will not be compromised even if the private key of the server is
compromised. This is a very important property. DHE_RSA provides Perfect Forward Secrecy, but the RSA key exchange
does not provide this property. In practice, DHE_RSA is costly from a computational viewpoint. Recent implementations
of TLS thus prefer ECDHE_RSA or ECDHE_ECDSA when Perfect Forward Secrecy is required.

All the information required for the key exchange has now been transmitted. There are two important messages that
will be sent by the client and the server to conclude the handshake and start the data transfer phase.

The client sends the ChangeCipherSpec message followed by the Finished message. The ChangeCipherSpec
message indicates that the client has received all the information required to generate the security keys for this TLS
session. This messages can also appear later in the session to indicate a change in the encryption algorithms that are
used, but this usage is outside the scope of this book. The Finished message is more important. It confirms to the
server that the TLS handshake has been performed correctly and that no attacker has been able to modify the data sent
by the client or the server. This is the first message that is encrypted with the selected security keys. It contains a hash
of all the messages that were exchanged during the handshake.

The server also sends a ChangeCipherSpec message followed by a Finished message.
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Note: TLS Cipher suites

A TLS cipher suite is usually represented as an ASCII string that starts with TLS and contains the acronym of the
key exchange algorithm, the encryption scheme with the key size and its mode of operation and the authentication
algorithm. For example, TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 is a TLS cipher suite that uses the DHE_RSA
key exchange algorithm with 128 bits AES in GCM mode for encryption and SHA-256 for authentication. The official
list of TLS cipher suites is maintained by IANA'. The NULL acronym indicates that no algorithm has been specified.
For example, TLS_ECDH_RSA_WITH_NULL_SHA is a cipher suite that does not use any encryption but still uses the
ECDH_RSA key exchange and SHA for authentication.

3.8.2 The TLS record protocol

The handshake is now finished. The client and the server will exchange authenticated and encrypted records. TLS
defines different formats for the records depending on the cryptographic algorithms that have been negotiated for the
session. A detailed discussion of these different types of records is outside the scope of this introduction. For illustra-
tion, we briefly describe one record format.

As other security protocols, TLS uses different keys to encrypt and authenticate records. These keys are derived from
the MasterSecret that is either randomly generated by the client after the RSA key exchange or derived from the Diffie
Hellman parameters after the DH_RSA key exchange. The exact algorithm used to derive the keys is defined in RFC
5246.

A TLS record is always composed of four different fields :

* a Type that indicates the type of record. The most frequent type is application data which corresponds to a record
containing encrypted data. The other types are handshake, change_cipher_spec and alert.

* a Protocol Version field that indicates the version of the TLS protocol used. This version is composed of two sub
fields : a major and a minor version number.

* a Length field. A TLS record cannot be longer than 16,384 bytes.
* a TLSPlainText that contains the encrypted data

TLS supports several methods to encrypted records. The selected method depends on the cryptographic algorithms
that have been negotiated for the TLS session. A detailed presentation of the different methods that can be used to
produce the TLSPlainText from the user data is outside the scope of this book. As an example, we study one method:
Stream Encryption. This method is used with cryptographic algorithms which can operate on a stream of bytes. The
method starts with a sequence of bytes provided by the user application: the plain text. The first step is to compute the
authentication code to verify the integrity of the data. For this, TLS computes M AC(SeqNum, Header, PlainT ext)
using HMAC where SegNum is a sequence number which is incremented by one for each new TLS record transmitted.
The Header is the header of the TLS record described above and PlainText is the information that needs to be encrypted.
Note that the sequence number is maintained at the two endpoints of the TLS session, but it is not transmitted inside
the TLS record. This sequence number is used to prevent replay attacks.

Note: MAC-then-encrypt or Encrypt-then-MAC

When secure protocols use Message Authentication and Encryption, they need to specify how these two algorithms are
combined. A first solution, which is used by the current version of TLS, is to compute the authentication code and then
encrypt both the data and the authentication code. A drawback of this approach is that the receiver of an encrypted
TLS record must first attempt to decrypt data that has potentially been modified by an attacker before being able to
verify the authenticity of the record. A better approach is for the sender to first encrypt the data and then compute the

I See http://www.iana.org/assignments/tls-parameters/tls- parameters xhtml#tls- parameters-4
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authentication code over the encrypted data. This is the encrypt-then-MAC approach proposed in RFC 7366. With
encrypt-then-MAC, the receiver first checks the authentication code before attempting to decrypt the record.

3.8.3 Improving TLS

During the last two decades, the deployment of TLS has continued to grow. The early TLS servers were only used for
critical services such as e-commerce websites or online banks. As CPU performance improved, it became much more
cost-effective to use TLS to secure non-critical parts of web servers, including the delivery of HTML pages and even
video services. There is now a growing number of applications that rely on TLS [AM2019].

In 2013, the statistics collected by the Firefox Telemetry project’ revealed that 30% of the web pages loaded by Firefox
users were done over HTTPS. In October 2019, 80% of the web pages are loaded over HTTPS. In six years, HTTPS
became the dominant protocol to access web services. Another look at the deployment of HTTPS on web sites may be
found in [Helme2019].

Measurement studies that analyzed the evolution of TLS over the years have identified several important changes in the
TLS ecosystem [KRA2018]. First, the preferred cryptographic algorithms have changed. While RC4 was used by 60%
of the connections in 2012, its usage has dropped since 2015. AES started to be deployed in 2013 and is now used for
more than 90% of the connections. The deployed versions of TLS have also changed. TLS 1.0 and TLS 1.1 are now
rarely used. The deployment of TLS 1.2 started in 2013 and reached 70% of the connections in 2015. Version 1.3 of
TLS, that is described below, is also widely deployed.

Another interesting fact is the key exchange schemes. In 2012, RSA was the dominant solution, used by more than
80% of the observed connections [KRA2018]. In 2013, Edward Snowden revealed the surveillance activities of several
governments. These revelations had a huge impact on the Internet community. The IETF, which standardizes Internet
protocols, considered in RFC 7258 that such pervasive monitoring was an attack. Since then, several IETF work-
ing groups have developed solutions to counter pervasive monitoring. One of these solutions is to encourage Perfect
Forward Security. Within TLS, this implies replacing RSA by an authenticated Diffie Hellman key exchange such as
ECDHE. Measurements indicate that since summer 2014, ECDHE is more popular than RSA. In 2018, more than 90%
of the observed TLS connections used ECDHE.

The last point is the difficulty of deploying TLS servers [KMS2017]. When TLS servers are installed, the system
administrator needs to obtain certificates and configure a range of servers. Initially, getting certificates was complex
and costly, but initiatives such as https://letsencrypt.org have simplified this workflow.

In 2014, the IETF TLS working started to work on the development of version 1.3 of the TLS protocol. Their main
objectives [Rescorla2015] for this new version were:

* simplify the design by removing unused or unsafe protocol features

¢ improve the security of TLS by leveraging the lessons learned from TLS 1.2 and some documented attacks
 improve the privacy of the protocol

¢ reduce the latency of TLS

Since 2014, latency has become an important concern for web services. As access networks bandwidth continue to
grow, latency is becoming a key factor that affects the performance of interactive web services. With TLS 1.2, the
download of a web page requires a minimum of four round-trip-times, one to create the underlying TCP connection,
one to exchange the ClientHello/ServerHello, one to exchange the keys and then one to send the HTTP GET and retrieve
the response. This can be very long when the server is not near the client. TLS 1.3 aimed at reducing this handshake to
one round-trip-time and even zero by placing some of the cryptographic handshake in the TCP handshake. This part
will be discussed in the TCP chapter. We focus here on the reducing the TLS handshake to a single round-trip-time.

3 See https://letsencrypt.org/stats/ for a graph and https://docs.telemetry.mozilla.org/datasets/other/ssl/reference.html for additional information
on the dataset
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To simplify both the design and the implementations, TLS 1.3 uses only a small number of cipher suites. Five of them
are specified in RFC 8446 and TLS_AES_128_GCM_SHA256 must be supported by all implementations. To ensure
privacy, all cipher suites that did not provide Perfect Forward Secrecy have been removed. Compression has also been
removed from TLS since several attacks on TLS 1.2 exploited its compression capability RFC 7457.

Note: Enterprises, privacy and TLS

By supporting only cipher suites that provide Perfect Forward Secrecy in TLS 1.3, the IETF aims at protecting the
privacy of users against a wide range of attacks. However, this choice has resulted in intense debates in some enterprises.
Some enterprises, notably in financial organizations, have deployed TLS, but wish to be able to decrypt TLS traffic for
various security-related activities. These enterprises tried to lobby within the IETF to maintain RSA-based cipher suites
that do not provide Perfect Forward Secrecy. Their arguments did not convince the IETF. Eventually, these enterprises
moved to ETSI, another standardization body, and convinced them to adopt entreprise TLS, a variant of TLS 1.3 that
does not provide Perfect Forward Secrecy [eTLS2018].

The TLS 1.3 handshake differs from the TLS 1.2 handshake in several ways. First, the TLS 1.3 handshake requires a
single round-trip-time when the client connects for the first time to a server. To achieve this, the TLS designers look at
the TLS 1.2 handshake in details and found that the first round-trip-time is mainly used to select the set of cryptographic
algorithms and the cryptographic exchange scheme that will be used over the TLS session. TLS 1.3 drastically simplifies
this negotiation by requiring to use the Diffie Hellman exchange with a small set of possible parameters. This means
that the client can guess the parameters used by the server (i.e. the modulus, p and the base g) and immediately start
the Diffie Hellman exchange. A simplified version of the TLS 1.3 handshake is shown in the figure below.

Client Server

Certificate, Sign(K,Handshake), Finished, Encrypted, Record

<
..................... Finished
----------- >
Encrypted Record™"
DU
.............. Encrypte.d. B.e.cord
............ ’

There are several important differences with the TLS 1.2 handshake. First, the Diffie Hellman key exchange is required
in TLS 1.3 and this exchange is initiated by the client (before having validated the server identity). To initiate the Diffie
Hellman key exchange, the client needs to guess the modulus and the base that can be accepted by the server. Either
the client uses standard parameters that most server supports or the client remembers the last modulus/base that it used
with this particular server. If the client guessed incorrectly, the server replies with the parameters that it expects and one
round-trip-time is lost. When the server sends its ServerHello, it already knows the session key. This implies that the
server can encrypt all subsequent messages. After one round-trip-time, all data exchanged over the TLS 1.3 session is
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encrypted and authenticated. In TLS 1.3, the server certificate is encrypted with the session key, as well as the Finished
message. The server signs the handshake to confirm that it owns the public key of its certificate. If the server wants to
send application data, it can already encrypt it and send it to the client. Upon reception of the server Certificate, the
client verifies it and checks the signature of the handshake and the Finished message. The client confirms the end of
the handshake by sending its own Finished message. At that time, the client can send encrypted data. This means that
the client only had to wait one round-trip-time before sending encrypted data. This is much faster than with TLS 1.2.

For some applications, waiting one round-trip-time before being able to send data is too long. TLS 1.3 allows the client
to send encrypted data immediately after the ClientHello, without having to wait for the ServerHello message. At this
point in the handshake, the client cannot know the key that will be derived by the Diffie Hellman key exchange. The
trick is that the server and the client need to have previously agreed on a pre-shared-key. This key could be negotiated
out of band, but usually it was exchanged over a previous TLS session between the client and the server. Both the client
and the server can store this key in their cache. When the client creates a new TLS session to a server, it checks whether
it already knows a pre-shared key for this server. If so, the client announces the identifier of this key in its ClientHello
message. Thanks to this identifier, the server can recover the key and use it to decrypt the O-rtt Encrypted record. A
simplified version of the O-rtt TLS 1.3 handshake” is shown in the figure below.

Client Server
CIientHéI]B[Random,.g’fg,_server_conf=abcd]
____________________ Pl

"0-rtt Encrypted record
____________________ P
ServerHello]Random, gs]
<«
Certificate, Sign(K,Hands_h_a_Ig_e_),,Finished, Encrypted, Record
PR
------------- Finished
---------------------- >
Encrxp_tgd,Record""
<
""Encryptec_i_ﬁ_e_cord
___________ »

On the web, TLS clients use certificates to authenticate servers but the clients are not authenticated. However, there are
environments such as enterprise networks where servers may need to authenticate clients as well. A popular deploy-
ment is to authenticate remote clients who wish to access the enterprise network through a Virtual Private Network
service. Some of these services run above TLS (or more precisely a variant of TLS named DTLS that runs above UDP
[MoR2004] but is outside the scope of this chapter). In such services, each client is authenticated thanks to a public
key and a certificate that is trusted by the servers. To establish a TLS session, such a client needs to prove that it owns
the public key associated with the certificate. This is done by the server thanks to the CertificateRequest message. The
TLS handshake becomes the following one:

2 A detailed explanation of the TLS 1.3 handshake may be found at https://tls13.ulfheim.net/
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Client Server

CertificateRequest, Certificate, Sign(K,Handshake), Finished, Encrypted Record

.
Certificate; Sign(Kc,.Handshake), Finished
_____________________ P
Encr}{p_t_e_d,Record""
<«
""Encryptec_i_ﬁ_e_cord
____________ >

The server sends a CertificatRequest message. The client returns its certificate and signs the Handshake with is private
key. This confirms to the server that the client owns the public key indicated in its certificate.

There are many more differences between TLS 1.2 and TLS 1.3. Additional details may be found in their respective
specifications, RFC 5246 and RFC 8446.

3.9 Securing the Domain Name System

The Domain Name System provides a critical service in the Internet infrastructure since it maps the domain names that
are used by end users onto IP addresses. Since end users rely on names to identify the servers that they connect to, any
incorrect information distributed by the DNS would direct end users’ connections to invalid destinations. Unfortunately,
several attacks of this kind occurred in the past. A detailed analysis of the security threats against the DNS appeared
in RFC 3833. We consider three of these threats in this section and leave the others to RFC 3833.

The first type of attack is eavesdropping. An attacker who can capture packets sent to a DNS resolver or a DNS server
can gain valuable information about the DNS names that are used by a given end user. If the attacker can capture all
the packets sent to a DNS resolver, he/she can collect a lot of meta data about the domain names used by the end user.
Preventing this type of attack has not been an objective of the initial design of the DNS. There are currently discussions
with the IETF to carry DNS messages over TLS sessions to protect against such attacks. However, these solutions are
not yet widely deployed.

The second type of attack is the man-in-the-middle attack. Consider that Alice is sending DNS requests to her DNS
resolver. Unfortunately, Mallory sits in front of this resolver and can capture and modify all the packets sent by Alice to
her resolver. In this case, Mallory can easily modify the DNS responses sent by the resolver to redirect Alice’s packets
to a different IP address controlled by Mallory. This enables Mallory to observe (and possibly modify) all the packets
sent and received by Alice. In practice, executing this attack is not simple since DNS resolvers are usually installed
in protected datacenters. However, if Mallory controls the WiFi access point that Alice uses to access the Internet, he
could easily modify the packets on this access point and some software packages automate this type of attacks.

If Mallory cannot control a router on the path between Alice and her resolver, she could still launch a different attack.
To understand this attack, it is important to correctly understand how the DNS protocol operates and the roles of the
different fields of the DNS header which is reproduced in the figure below.
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Fig. 17: DNS header

The first field of the header is the Identification field. When Alice sends a DNS request, she places a 16-bits integer in
this field and remembers it. When she receives a response, she uses this Identification field to locate the initial DNS
request that she sent. The response is only used if its Identification matches a pending DNS request (containing the
same question).

Mallory has studied the DNS protocol and understands how it works. If he can predict a popular domain for which
Alice will regularly send DNS requests, then he can prepare a set of DNS responses that map the name requested by
Alice to an IP address controlled by Mallory instead of the legitimate DNS response. Each DNS response has a different
Identification. Since there are only 65,536 values for the Identification field, it is possible for Mallory to send them to
Alice hoping that one of them will be received while Alice is waiting for a DNS response with the same identifier. In
the past, it was difficult to send 65,536 DNS responses quickly enough. However, with the high speed links that are
available today, this is not an issue anymore. A second concern for Mallory is that he must be able to send the DNS
responses as if they were coming directly from the DNS resolver. This implies that Mallory must be able to send IP
packets that appear to originate from a different address. Although networks should be configured to prevent this type
of attack, this is not always the case and there are networks where it is possible for a host to send packets with a different
source IP address'. If the attack targets a single end user, e.g. Alice, this is annoying for this user. However, if the
attacker can target a DNS resolver that serves an entire company or an entire ISP, the impact of the attack can be much
larger in particular if the injected DNS response carries a long TTL and thus resides in the resolver’s cache for a long
period of time.

Fortunately, designers of DNS servers and resolvers have found solutions to mitigate this type of attack. The easiest
approach would have been to update the format of the DNS requests and responses to include a larger Identifier field.
Unfortunately, this elegant solution was not possible with the DNS because the DNS messages do not include any
version number that would have enabled such a change. Since the DNS messages are exchanged inside UDP segments,
the DNS developers found an alternate solution to counter this attack. There are two ways for the DNS library used by
Alice to send her DNS requests. A first solution is to bind one UDP source port and always send the DNS requests from
this source port (the destination port is always port 53). The advantage of this solution is that Alice’s DNS library can
easily receive the DNS responses by listening to her chosen port. Unfortunately, once the attacker has found the source
port used by Alice, he only needs to send 65,536 DNS responses to inject an invalid response. Fortunately, Alice can
send her DNS requests in a different way. Instead of using the same source port for all DNS requests, she can use a
different source port for each request. In practice, each DNS request will be sent from a different source port. From
an implementation viewpoint, this implies that Alice’s DNS library will need to listen to one different port number for

! See http://spoofer.caida.org/summary.php for an ongoing measurement study that analyses the networks where an attacker could send packets
with any source IP address.
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each pending DNS request. This increases the complexity of her implementation. From a security viewpoint there is
a clear benefit since the attacker needs to guess both the 16 bits Identifier and the 16 bits UDP source port to inject a
fake DNS response. To generate all possible DNS responses, the attacker would need to generate almost 232 different
messages, which is excessive in today’s networks. Most DNS implementations use this second approach to prevent
these cache poisoning attacks.

These attacks affect the DNS messages that are exchanged between a client and its resolver or between a resolver and
name servers. Another type of attack exploits the possibility of providing several resource records inside one DNS
response. A frequent optimization used by DNS servers and resolvers is to include several related resource records in
each response. For example, if a client sends a DNS query for an NS record, it usually receives in the response both
the queried record, i.e. the name of the DNS server that serves the queried domain, and the IP addresses of this server.
Some DNS servers return several NS records and the associated IP addresses. The cache poisoning attack exploits this
DNS optimization.

Let us illustrate it on an example. Assume that Alice frequently uses the example.net domain and in particular the
web server whose name is www.example.net. Mallory would like to redirect the TCP connections established by Alice
towards www.example.net to one IP address that he controls. Assume that Mallory controls the mallory.net domain.
Mallory can tune the DNS server of his domain and add special DNS records to the responses that it sends. An attack
could go roughly as follows. Mallory forces Alice to visit the www.mallory.net web site. He can achieve this by
sending a spam message to Alice or buying advertisements on a web site visited by Alice and redirect one of these
advertisements to www.mallory.net. When visiting the advertisement, Alice’s DNS resolver will send a DNS request
for www.mallory.net. Since Mallory control the DNS server, he can easily add in the response a AAAA record that
associates www.example.net to the IP address controlled by Mallory. If Alice’s DNS library does not check the returned
response, the cache entry for www.example.net will be replaced by the AAAA record sent by Mallory.

To cope with these security threats and improve the security of the DNS, the IETF has defined several extensions that
are known as DNSSEC. DNSSEC exploits public-key cryptography to authenticate the content of the DNS records that
are sent by DNS servers and resolvers. DNSEC is defined in three main documents RFC 4033, RFC 4034, RFC 4035.
With DNSSEC, each DNS zone uses one public-private key pair. This key pair is only used to sign and authenticate
DNS records. The DNS records are not encrypted and DNSSEC does not provide any confidentiality. Other DNS
extensions are being developed to ensure the confidentiality of the information exchanged between a client and its
resolvers RFC 7626. Some of these extensions exchange DNS records over a TLS session which provides the required
confidentiality, but they are not yet deployed and outside the scope of this chapter.

DNSSEC defines four new types of DNS records that are used together to authenticate the information distributed by
the DNS.

» the DNSKEY record allows storing the public key associated with a zone. This record is encoded as a TLV and
includes a Base64 representation of the key and the identification of the public key algorithm. This allows the
DNSKEY record to support different public key algorithms.

¢ the RRSIG record is used to encode the signature of a DNS record. This record contains several sub-fields. The
most important ones are the algorithm used to generate the signature, the identifier of the public key used to sign
the record, the original TTL of the signed record and the validity period for the signature.

* the DS record contains a hash of a public key. It is used by a parent zone to certify the public key used by one of
its child zones.

¢ the NSEC record is used when non-existent domain names are queried. Its usage will be explained later

The simplest way to understand the operation of DNSSEC is to rely on a simple example. Let us consider the exam-
ple.org domain and assume that Alice wants to retrieve the AAAA record for www.example.org using DNSSEC.

The security of DNSSEC relies on anchored keys. An anchored key is a public key that is considered as trusted by a
resolver. In our example, we assume that Alice’s resolver has obtained the public key of the servers that manage the
root zone in a secure way. This key has been distributed outside of the DNS, e.g. it has been published in a newspaper
or has been received in a sealed letter.

To obtain an authenticated record for www.example.org, Alice’s resolver first needs to retrieve the NS which is respon-
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sible for the .org Top-Level Domain (TLD). This record is served by the DNS root server and Alice’s resolver can
retrieve the signature (RRSIG record) for this NS record. Since Alice knows the DNSKEY of the root, she can verify
the validity of this signature.

The next step is to contact ns.org, the NS responsible for the .org TLD to retrieve the NS record for the example.org
domain. This record is accompanied by a RRSIG record that authenticates it. This RRSIG record is signed with the
key of the .org domain. Alice’s resolver can retrieve this public key as the DNSKEY record for the .org, but how can
it trust this key since it is distributed by using the DNS and could have been modified by attackers ? DNSSEC solves
this problem by using the DS record that is stored in the parent zone (in this case, the root zone). This record contains
a hash of a public key that is signed with a RRSIG signature. Since Alice’s resolver’s trusts the root key, it can validate
the signature of the DS record for the .org domain. It can then retrieve the DNSKEY record for this domain from the
DNS and compare the hash of this key with the DS record. If they match, the public key of the .org domain can be
trusted. The same technique is used to obtain and validate the key of the example.org domain. Once this key is trusted,
Alice’s resolver can request the AAAA record for www.example.org and validate its signature.

Thanks to the DS record, a resolver can validate the public keys of client zones as long as their is a chain of DS ->
DNSKEY records from an anchored key. If the resolver trusts the public key of the root zone, it can validate all DN'S
replies for which this chain exists.

There are several details of the operation of DNSSEC that are worth being discussed. First, a server that supports
DNSSEC must have a public-private key pair. The public key is distributed with the DNSKEY record. The private
key is never distributed and it does not even need to be stored on the server that uses the public key. DNSSEC does
not require the DNSSEC servers to perform any operation that requires a private key in real time. All the RRSIG
records can be computed offline, possibly on a different server than the server that returns the DNSSEC replies. The
initial motivation for this design choice was the CPU complexity of computing the RRSIG signatures for zones that
contain millions of records. In the early days of DNSSEC, this was an operational constraint. Today, this is less an
issue, but avoiding costly signature operations in real time has two important benefits. First, this reduces the risk of
denial of service attacks since an attacker cannot force a DNSSEC server to perform computationally intensive signing
operations. Second, the private key can be stored offline, which means that even if an attacker gains access to the
DNSSEC server, it cannot retrieve its private key. Using offline signatures for the RRSIG records has some practical
implications that are reflected in the content of this record. First, each RRSIG record contains the original TTL of
the signed record. When DNS resolvers cache records, they change the value of the TTL of these cached records and
then return the modified records to their clients. When a resolver receives a signed DNS record, it must replace the
received TTL of the record with the original TTL (and check that the received TTL is smaller than the original one)
before checking the signature. Second, the RRSIG records contain a validity period, i.e. a starting time and an ending
time for the validity of the signature. This period is specified as two timestamps. This period is only the validity of the
signature. It does not affect the TTL of the signed record and is independent from the TTL. In practice, the validity
period is important to allow DNS server operators to update their public/private keys. When such a key is changed, e.g.
because the private could have been compromised, there is some period of time during which records signed with the
two keys coexist in the network. The validity period allows ensuring that old signatures do not remain in DNS caches
for ever.

The last record introduced by DNSSEC is the NSEC record. It is used to authenticate a negative response returned
by a DNS server. If a resolver requests a domain name that is not defined in the zone, the server replies with an error
message. The designers of the original version of the DNS thought that these errors would not be very frequent and
resolvers were not required to cache those negative responses. However, operational experience showed that queries
for invalid domain names are more frequent than initially expected and a large fraction of the load on some servers
is caused by repeated queries for invalid names. Typical examples include queries for invalid TLDs to the root DNS
servers or queries caused by configuration errors [WF2003]. Current DNS deployments allow resolvers to cache those
negative answers to reduce the load on the entire DNS RFC 2308.

The simplest way to allow a DNSSEC server to return signed negative responses would be for the server to return a
signed response that contains the received query and some information indicating the error. The client could then easily
check the validity of the negative response. Unfortunately, this would force the DNSSEC server to generate signatures
in real time. This implies that the private key must be stored in the server memory, which leads to risks if an attacker can
take control of the server. Furthermore, those signatures are computationally complex and a simple denial of service
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attack would be to send invalid queries to a DNSSEC server.

Given the above security risks, DNSSEC opted for a different approach that allows the negative replies to be authenti-
cated by using offline signatures. The NSEC record exploits the lexicographical ordering of all the domain names. To
understand its usage, consider a simple domain that contains three names (the associated AAAA and other records that
are not shown) :

alpha.example.org
beta.example.org
gamma.example.org

In this domain, the DNSSEC server adds three NSEC records. A RRSIG signature is also computed for each of these
records.

alpha.example.org
alpha.example.org NSEC beta.example.org

beta.example.org
beta.example.org NSEC gamma.example.org

gamma.example.org
gamma.example.org NSEC alpha.example.org

If a resolver queries delta.example.org, the server will parse its zone. If this name were present, it would have been
placed, in lexicographical order, between the beta.example.org and the gamma.example.org names. To confirm that
the delta.example.org name does not exist, the server returns the NSEC record for beta.example.org that indicates that
the next valid name after beta.example.org is gamma.example.org. If the server receives a query for pi.example.org,
this is the NSEC record for gamma.example.org that will be returned. Since this record contains a name that is before
pi.example.org in lexicographical order, this indicates that pi.example.org does not exist.

3.10 Internet transport protocols

Transport protocols rely on the service provided by the network layer. On the Internet, the network layer provides a
connectionless service. The network layer identifies each (interface of a) host by using an IP address. It enables hosts
to transmit packets that contain up to 64 KBytes of payload to any destination reachable through the network. The
network layer does not guarantee the delivery of information, cannot detect transmission errors and does not preserve
sequence integrity.

Several transport protocols have been designed to provide a richer service to the applications. The two most widely
deployed transport protocols on the Internet are the User Datagram Protocol (UDP) and the Transmission Control
Protocol (TCP). A third important transport protocol, the Stream Control Transmission Protocol (SCTP) RFC 4960
appeared in the early 2000s. It is currently used by some particular applications such as signaling in Voice over IP
networks. SCTP was described in the second edition of the e-book.

The Real Time Transport Protocol (RTP), defined in RFC 3550 is another important protocol that is used by many
multimedia applications. It includes functions that belong to the transport layer, but also functions that are related to
the encoding of the information. Due to space limitations, we do not discuss it in this section.
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3.11 The User Datagram Protocol

The User Datagram Protocol (UDP) is defined in RFC 768. It provides an unreliable connectionless transport service
on top of the unreliable network layer connectionless service. The main characteristics of the UDP service are :

+ the UDP service cannot deliver SDUs that are larger than 65467 bytes'
* the UDP service does not guarantee the delivery of SDUs (losses can occur and SDUs can arrive out-of-sequence)
* the UDP service will not deliver a corrupted SDU to the destination

Compared to the connectionless network layer service, the main advantage of the UDP service is that it allows several
applications running on a host to exchange SDUs with several other applications running on remote hosts. Let us
consider two hosts, e.g. a client and a server. The network layer service allows the client to send information to the
server, but if an application running on the client wants to contact a particular application running on the server, then
an additional addressing mechanism is required other than the IP address that identifies a host, in order to differentiate
the application running on a host. This additional addressing is provided by port numbers. When a server using UDP
is enabled on a host, this server registers a port number. This port number will be used by the clients to contact the
server process via UDP.

The figure below shows a typical usage of the UDP port numbers. The client process uses port number /234 while
the server process uses port number 5678. When the client sends a request, it is identified as originating from port
number /234 on the client host and destined to port number 5678 on the server host. When the server process replies
to this request, the server’s UDP implementation will send the reply as originating from port 5678 on the server host
and destined to port /234 on the client host.

Request

Source port: 1234
Destination port: 5678

Client Server

Source port: 5678
Destination port: 1234

Response

Fig. 18: Usage of the UDP port numbers

UDP uses a single segment format shown in the figure below.
The UDP header contains four fields :

* a 16 bits source port

* a 16 bits destination port

* a 16 bits length field

* a 16 bits checksum

As the port numbers are encoded as a 16 bits field, there can be up to only 65535 different server processes that are
bound to a different UDP port at the same time on a given server. In practice, this limit is never reached. However, it is
worth noticing that most implementations divide the range of allowed UDP port numbers into three different ranges :

! This limitation is due to the fact that the network layer cannot transport packets that are larger than 64 KBytes. As UDP does not include any
segmentation/reassembly mechanism, it cannot split a SDU before sending it. The UDP header consumes 8 bytes and the IPv6 header 60. With
IPv4, the IPv4 header only consumes 20 bytes and thus the maximum UDP payload size is 65507 bytes.
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0 1 2 3
©01234567890123456789012345678901

+-t-t-t-F-t-t-t-t-t-t-F-F-t-F-F-b-t-F-F-t-t-t-F-F-t-F-F-F-+-+-+-+

| Source Port | Destination Port |
e s s T e e e e sk b sk SEE P EE S S
| Length | Checksum |

+-t-t-t-F-t-t-Ft-t-t-t-t-t-t-t-t-t-t-F-F-t-t-t-F-t-t-F-F-F-t-+-+-+

Fig. 19: UDP Header Format

e the privileged port numbers (1 < port < 1024 )
« the ephemeral port numbers ( officially? 49152 <= port <= 65535 )
* the registered port numbers (officially 1024 <= port < 49152)

In most Unix variants, only processes having system administrator privileges can be bound to port numbers smaller
than 7024. Well-known servers such as DNS, NTP or RPC use privileged port numbers. When a client needs to use
UDP, it usually does not require a specific port number. In this case, the UDP implementation will allocate the first
available port number in the ephemeral range. The range of registered port numbers should be used by servers. In
theory, developers of network servers should register their port number officially through IANA?, but few developers
do this.

Note: Computation of the UDP checksum
The checksum of the UDP segment is computed over :

* apseudo header RFC 2460 containing the source address, the destination address, the packet length encoded as
a 32 bits number and a 32 bits bit field containing the three most significant bytes set to 0 and the low order byte
setto 17

¢ the entire UDP segment, including its header

Several types of applications rely on UDP. As a rule of thumb, UDP is used for applications where delay must be
minimized or losses can be recovered by the application itself. A first class of the UDP-based applications are ap-
plications where the client sends a short request and expects a quick and short answer. The DNS is an example of a
UDP application that is often used in the wide area. However, in local area networks, many distributed systems rely on
Remote Procedure Call (RPC) that is often used on top of UDP. In Unix environments, the Network File System (NFS)
is built on top of RPC and runs frequently on top of UDP. A second class of UDP-based applications are the interactive
computer games that need to frequently exchange small messages, such as the player’s location or their recent actions.
Many of these games use UDP to minimize the delay and can recover from losses. A third class of applications are
multimedia applications such as interactive Voice over IP or interactive Video over IP. These interactive applications
expect a delay shorter than about 200 milliseconds between the sender and the receiver and can recover from losses
directly inside the application.

2 A discussion of the ephemeral port ranges used by different TCP/UDP implementations may be found in http://www.ncftp.com/ncftpd/doc/
misc/ephemeral_ports.html
3 The complete list of allocated port numbers is maintained by IANA . It may be downloaded from http://www.iana.org/assignments/port-numbers
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3.12 The Transmission Control Protocol

The Transmission Control Protocol (TCP) was initially defined in RFC 793. Several parts of the protocol have been
improved since the publication of the original protocol specification'. However, the basics of the protocol remain and
an implementation that only supports RFC 793 should inter-operate with today’s implementation.

TCP provides a reliable bytestream, connection-oriented transport service on top of the unreliable connectionless net-
work service provided by /P. TCP is used by a large number of applications, including :

e Email (SMTP, POP, IMAP)

e World wide web ( HTTP, ...)

* Most file transfer protocols ( fip, peer-to-peer file sharing applications , ...)
e remote computer access : telnet, ssh, X11, VNC, ...

* non-interactive multimedia applications (flash, ...)

On the global Internet, most of the applications used in the wide area rely on TCP. Many studies” have reported that
TCP was responsible for more than 90% of the data exchanged in the global Internet.

To provide this service, TCP relies on a simple segment format that is shown in the figure below. Each TCP segment
contains a header described below and, optionally, a payload. The default length of the TCP header is twenty bytes,
but some TCP headers contain options.

0 1 2 3
©12345678901234567890123456789¢01
+-t-t-t-t-t-F-t-t-F-F-t-F-F-F-F-t-F-F-F-t-F-F-F-F-F-+-F-+-+-+-+-+
| Source Port | Destination Port |
e e s sk sl R e e e e e S e e e e At Bk S
| Sequence Number |
+-t-t-t-F-t-F-t-t-F+-F-t-F-F-F-F-t-F-F-F-t-F-F-F-F-F-F-F-+-+-+-+-+
| Acknowledgment Number |
T e s s T R e e e e e ek sk sl sl st SEP EE S e S
| Data | |[CIE|JU|A|P|R|S|F]| |
| Offset| Res. |W|C|R|C|S|S|Y|I]| Window |
| I IRIE[GIK[H|T|N[N] I
ek e s s et B e S e e =
| Checksum | Urgent Pointer |
e e T e ke ik St T S S S e S i e b bt bk S

Fig. 20: TCP header format

A TCP header contains the following fields :

* the source and destination ports. The source and destination ports play an important role in TCP, as they allow
the identification of the connection to which a TCP segment belongs. When a client opens a TCP connection, it
typically selects an ephemeral TCP port number as its source port and contacts the server by using the server’s
port number. All the segments that are sent by the client on this connection have the same source and destination

! A detailed presentation of all standardization documents concerning TCP may be found in RFC 4614

2 Several researchers have analyzed the utilization of TCP and UDP in the global Internet. Most of these studies have been performed by collecting
all the packets transmitted over a given link during a period of a few hours or days and then analyzing their headers to infer the transport protocol
used, the type of application, ... Recent studies include http://www.caida.org/research/traffic-analysis/tcpudpratio/, https://research.sprintlabs.com/
packstat/packetoverview.php or http://www.nanog.org/meetings/nanog43/presentations/Labovitz_internetstats_N43.pdf
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ports. The server sends segments that contain as source (resp. destination) port, the destination (resp. source)
port of the segments sent by the client (see figure Utilization of the TCP source and destination ports). A TCP
connection is always identified by four pieces of information :

the address of the client

the address of the server

the port chosen by the client

the port chosen by the server

¢ the sequence number (32 bits), acknowledgment number (32 bits) and window (16 bits) fields are used to provide
a reliable data transfer, using a window-based protocol. In a TCP bytestream, each byte of the stream consumes
one sequence number. Their usage is described in more detail in section TCP reliable data transfer

* the Urgent pointer is used to indicate that some data should be considered as urgent in a TCP bytestream. How-
ever, it is rarely used in practice and will not be described here. Additional details about the utilization of this
pointer may be found in RFC 793, RFC 1122 or [Stevens1994]

* the flags field contains a set of bit flags that indicate how a segment should be interpreted by the TCP entity
receiving it :

the SYN flag is used during connection establishment

the FIN flag is used during connection release
— the RST is used in case of problems or when an invalid segment has been received

— when the ACK flag is set, it indicates that the acknowledgment field contains a valid number. Otherwise,
the content of the acknowledgment field must be ignored by the receiver

— the URG flag is used together with the Urgent pointer

— the PSH flag is used as a notification from the sender to indicate to the receiver that it should pass all the
data it has received to the receiving process. However, in practice TCP implementations do not allow TCP
users to indicate when the PSH flag should be set.

¢ the checksum field contains the value of the Internet checksum computed over the entire TCP segment and a
pseudo-header as with UDP

¢ the Reserved field was initially reserved for future utilization. It is now used by RFC 3168.

 the TCP Header Length (THL) or Data Offset field is a four-bit field that indicates the size of the TCP header in
32 bit words. The maximum size of the TCP header is thus 64 bytes.

* the Optional header extension is used to add optional information to the TCP header. Thanks to this header
extension, it is possible to add new fields to the TCP header that were not planned in the original specification.
This allowed TCP to evolve since the early eighties. The details of the TCP header extension are explained in
sections TCP connection establishment and TCP reliable data transfer.

The rest of this section is organized as follows. We first explain the establishment and the release of a TCP connection,
then we discuss the mechanisms that are used by TCP to provide a reliable bytestream service. We end the section with
a discussion of network congestion and explain the mechanisms that TCP uses to avoid congestion collapse.
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Source port: 1234
Destination port: 5678

Client: C Server: S

Source port: 5678
Destination port: 1234

Established TCP connections on Client Established TCP connections on Server
Local IP [ Remote IP [ Local Port [ Remote Port Local IP [ Remote IP [ Local Port [ Remote Port
c | s | 1234 | 5678 S | C ] 5618 | 1234

Fig. 21: Utilization of the TCP source and destination ports

3.12.1 TCP connection establishment

A TCP connection is established by using a three-way handshake. The connection establishment phase uses the se-
quence number, the acknowledgment number and the SYN flag. When a TCP connection is established, the two com-
municating hosts negotiate the initial sequence number to be used in both directions of the connection. For this, each
TCP entity maintains a 32-bit counter, which is supposed to be incremented by one at least every 4 microseconds and
after each connection establishment®. When a client host wants to open a TCP connection with a server host, it creates
a TCP segment with :

e the SYN flag set
* the sequence number set to the current value of the 32-bit counter of the client host’s TCP entity

Upon reception of this segment (which is often called a SYN segment), the server host replies with a segment containing

the SYN flag set
* the sequence number set to the current value of the 32-bit counter of the server host’s TCP entity

the ACK flag set

e the acknowledgment number set to the sequence number of the received SYN segment incremented by 1
(mod 232). When a TCP entity sends a segment having x+/ as acknowledgment number, this indicates that
it has received all data up to and including sequence number x and that it is expecting data having sequence
number x+/. As the SYN flag was set in a segment having sequence number x, this implies that setting the SYN
flag in a segment consumes one sequence number.

This segment is often called a SYN+ACK segment. The acknowledgment confirms to the client that the server has
correctly received the SYN segment. The sequence number of the SYN+ACK segment is used by the server host to
verify that the client has received the segment. Upon reception of the SYN+ACK segment, the client host replies with
a segment containing :

* the ACK flag set

* the acknowledgment number set to the sequence number of the received SYN+ACK segment incremented by 1
(mod 23?)

At this point, the TCP connection is open and both the client and the server are allowed to send TCP segments containing
data. This is illustrated in the figure below.

3 This 32 bits counter was specified in RFC 793. A 32 bits counter that is incremented every 4 microseconds wraps in about 4.5 hours. This
period is much larger than the Maximum Segment Lifetime that is fixed at 2 minutes in the Internet (RFC 791, RFC 1122).
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CONNECT.req
Initial sequence number (x) RSYN(SBQ=X)
read from TCP’s clock _ CONNECTInd
— CONNECT.resp
CONNECT.conf SYN+ACK(ack=x+1,seq=y) -
— Initial sequence number (y)
. . read from TCP's clock
Connection established
The sequence numbers of all Y.
segments A->B will start at x+1 ACK(seq=x+1, ack=y+1)

Connection established

The sequence numbers of all
segments B->A will start at y+1

Fig. 22: Establishment of a TCP connection

In the figure above, the connection is considered to be established by the client once it has received the SYN+ACK
segment, while the server considers the connection to be established upon reception of the ACK segment. The first data
segment sent by the client (server) has its sequence number set to x+1 (resp. y+1).

Note: Computing TCP’s initial sequence number

In the original TCP specification RFC 793, each TCP entity maintained a clock to compute the initial sequence number
(ISN) placed in the SYN and SYN+ACK segments. This made the ISN predictable and caused a security issue. The
typical security problem was the following. Consider a server that trusts a host based on its IP address and allows the
system administrator to log in from this host without giving a password*. Consider now an attacker who knows this
particular configuration and is able to send IP packets having the client’s address as source. He can send fake TCP
segments to the server, but does not receive the server’s answers. If he can predict the ISN that is chosen by the server,
he can send a fake SYN segment and shortly after the fake ACK segment confirming the reception of the SYN+ACK
segment sent by the server. Once the TCP connection is open, he can use it to send any command to the server. To
counter this attack, current TCP implementations add randomness to the ISN. One of the solutions, proposed in RFC
1948 is to compute the ISN as

[ISN = M + H(localhost, localport, remotehost, remoteport, secret). J

where M is the current value of the TCP clock and H is a cryptographic hash function. localhost and remotehost
(resp. localport and remoteport ) are the IP addresses (port numbers) of the local and remote host and secret is a
random number only known by the server. This method allows the server to use different ISNs for different clients at
the same time. Measurements performed with the first implementations of this technique showed that it was difficult
to implement it correctly, but today’s TCP implementations now generate good ISNs.

A server could, of course, refuse to open a TCP connection upon reception of a SYN segment. This refusal may be
due to various reasons. There may be no server process that is listening on the destination port of the SYN segment.
The server could always refuse connection establishments from this particular client (e.g. due to security reasons) or
the server may not have enough resources to accept a new TCP connection at that time. In this case, the server would
reply with a TCP segment having its RST flag set and containing the sequence number of the received SYN segment
incremented by one as its acknowledgment number. This is illustrated in the figure below. We discuss the other usages
of the TCP RST flag later (see TCP connection release).

TCP connection establishment can be described as the four state Finite State Machine shown below. In this FSM, /X
(resp. ?Y) indicates the transmission of segment X (resp. reception of segment Y) during the corresponding transition.

4 On many departmental networks containing Unix workstations, it was common to allow users on one of the hosts to use rlogin RFC 1258
to run commands on any of the workstations of the network without giving any password. In this case, the remote workstation “authenticated” the
client host based on its IP address. This was a bad practice from a security viewpoint.
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Fig. 23: TCP connection establishment rejected by peer

Init is the initial state.

7SYN/ ISYN+ACK

SYN Sent

Fig. 24: TCP FSM for connection establishment

A client host starts in the Init state. It then sends a SYN segment and enters the SYN Sent state where it waits for
a SYN+ACK segment. Then, it replies with an ACK segment and enters the Established state where data can be
exchanged. On the other hand, a server host starts in the Init state. When a server process starts to listen to a destination
port, the underlying TCP entity creates a TCP control block and a queue to process incoming SYN segments. Upon
reception of a SYN segment, the server’s TCP entity replies with a SYN+ACK and enters the SYN RCVD state. It
remains in this state until it receives an ACK segment that acknowledges its SYN+ACK segment, with this it then enters
the Established state.

Apart from these two paths in the TCP connection establishment FSM, there is a third path that corresponds to the case
when both the client and the server send a SYN segment to open a TCP connection’. In this case, the client and the
server send a SYN segment and enter the SYN Sent state. Upon reception of the SYN segment sent by the other host,
they reply by sending a SYN+ACK segment and enter the SYN RCVD state. The SYN+ACK that arrives from the other
host allows it to transition to the Established state. The figure below illustrates such a simultaneous establishment of a
TCP connection.

5 Of course, such a simultaneous TCP establishment can only occur if the source port chosen by the client is equal to the destination port chosen
by the server. This may happen when a host can serve both as a client as a server or in peer-to-peer applications when the communicating hosts do
not use ephemeral port numbers.
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Connection established Connection astablished

Fig. 25: Simultaneous establishment of a TCP connection

Denial of Service attacks

When a TCP entity opens a TCP connection, it creates a Transmission Control Block (7CB). The TCB contains
the entire state that is maintained by the TCP entity for each TCP connection. During connection establishment,
the TCB contains the local IP address, the remote IP address, the local port number, the remote port number, the
current local sequence number and the last sequence number received from the remote entity. Until the mid-1990s,
TCP implementations had a limit on the number of TCP connections that could be in the SYN RCVD state at a given
time. Many implementations set this limit to about 100 TCBs. This limit was considered sufficient even for heavily
loaded HTTP servers given the small delay between the reception of a SYN segment and the reception of the ACK
segment that terminates the establishment of the TCP connection. When the limit of 100 TCBs in the SYN Rcvd
state is reached, the TCP entity discards all received TCP SYN segments that do not correspond to an existing TCB.

This limit of 100 TCBs in the SYN Rcvd state was chosen to protect the TCP entity from the risk of overloading
its memory with too many TCBs in the SYN Rcvd state. However, it was also the reason for a new type of Denial
of Service (DoS) attack RFC 4987. A DoS attack is defined as an attack where an attacker can render a resource
unavailable in the network. For example, an attacker may cause a DoS attack on a 2 Mbps link used by a company
by sending more than 2 Mbps of packets through this link. In this case, the DoS attack was more subtle. As a TCP
entity discards all received SYN segments as soon as it has 100 TCBs in the SYN Rcvd state, an attacker simply had
to send a few 100 SYN segments every second to a server and never reply to the received SYN+ACK segments. To
avoid being caught, attackers were of course sending these SYN segments with a different address than their own
IP address®. On most TCP implementations, once a TCB entered the SYN Rcvd state, it remained in this state for
several seconds, waiting for a retransmission of the initial SYN segment. This attack was later called a SYN flood
attack and the servers of the ISP named Panix were among the first to be affected by this attack.

To avoid the SYN flood attacks, recent TCP implementations no longer enter the SYN Rcvd state upon reception of a
SYN segment. Instead, they reply directly with a SYN+ACK segment and wait until the reception of a valid ACK. This
implementation trick is only possible if the TCP implementation is able to verify that the received ACK segment
acknowledges the SYN+ACK segment sent earlier without storing the initial sequence number of this SYN+ACK
segment in a TCB. The solution to solve this problem, which is known as SYN cookies is to compute the 32 bits of
the ISN as follows :

* the high order bits contain the low order bits of a counter that is incremented slowly

* the low order bits contain a hash value computed over the local and remote IP addresses and ports and a
random secret only known to the server
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The advantage of the SYN cookies is that by using them, the server does not need to create a 7CB upon reception
of the SYN segment and can still check the returned ACK segment by recomputing the SYN cookie. The main
disadvantage is that they are not fully compatible with the TCP options. This is why they are not enabled by default
on a typical system.

Retransmitting the first SYN segment

As IP provides an unreliable connectionless service, the SYN and SYN+ACK segments sent to open a TCP connection
could be lost. Current TCP implementations start a retransmission timer when they send the first SYN segment. This
timer is often set to three seconds for the first retransmission and then doubles after each retransmission RFC 2988.
TCP implementations also enforce a maximum number of retransmissions for the initial SYN segment.

As explained earlier, TCP segments may contain an optional header extension. In the SYN and SYN+ACK segments,
these options are used to negotiate some parameters and the utilization of extensions to the basic TCP specification.

The first parameter which is negotiated during the establishment of a TCP connection is the Maximum Segment Size
(MSS). The MSS is the size of the largest segment that a TCP entity is able to process. According to RFC 879,
all TCP implementations must be able to receive TCP segments containing 536 bytes of payload. However, most
TCP implementations are able to process larger segments. Such TCP implementations use the TCP MSS Option
in the SYN/SYN+ACK segment to indicate the largest segment they are able to process. The MSS value indicates the
maximum size of the payload of the TCP segments. The client (resp. server) stores in its 7CB the MSS value announced
by the server (resp. the client).

Another utilization of TCP options during connection establishment is to enable TCP extensions. For example, consider
RFC 1323 (which is discussed in TCP reliable data transfer). RFC 1323 defines TCP extensions to support timestamps
and larger windows. If the client supports RFC 1323, it adds a RFC 1323 option to its SYN segment. If the server
understands this RFC 1323 option and wishes to use it, it replies with a RFC 1323 option in the SYN+ACK segment
and the extension defined in RFC 1323 is used throughout the TCP connection. Otherwise, if the server’s SYN+ACK
does not contain the RFC 1323 option, the client is not allowed to use this extension and the corresponding TCP header
options throughout the TCP connection. TCP’s option mechanism is flexible and it allows the extension of TCP while
maintaining compatibility with older implementations.

The TCP options are encoded by using a Type Length Value format where :
* the first byte indicates the rype of the option.
* the second byte indicates the total length of the option (including the first two bytes) in bytes
* the remaining bytes are specific for each type of option

RFC 793 defines the Maximum Segment Size (MSS) TCP option that must be understood by all TCP implementations.
This option (type 2) has a length of 4 bytes and contains a 16-bit word that indicates the MSS supported by the sender
of the SYN segment. The MSS option can only be used in TCP segments having the SYN flag set.

RFC 793 also defines two special options that must be supported by all TCP implementations. The first option is End
of option. It is encoded as a single byte having value 0x00 and can be used to ensure that the TCP header extension
ends on a 32-bit boundary. The No-Operation option, encoded as a single byte having value Ox0!, can be used when
the TCP header extension contains several TCP options that should be aligned on 32-bit boundaries. All other options’
are encoded using the TLV format.

Note: The robustness principle

6 Sending a packet with a different source IP address than the address allocated to the host is called sending a spoofed packet.
7 The full list of all TCP options may be found at https://www.iana.org/assignments/tcp-parameters/
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The handling of the TCP options by TCP implementations is one of the many applications of the robustness principle
which is usually attributed to Jon Postel and is often quoted as “Be liberal in what you accept, and conservative in what
you send” RFC 1122.

Concerning the TCP options, the robustness principle implies that a TCP implementation should be able to accept
TCP options that it does not understand, in particular in received SYN segments, and that it should be able to parse any
received segment without crashing, even if the segment contains an unknown TCP option. Furthermore, a server should
not send in the SYN+ACK segment or later, options that have not been proposed by the client in the SYN segment.

3.12.2 TCP reliable data transfer

The original TCP data transfer mechanisms were defined in RFC 793. Based on the experience of using TCP on
the growing global Internet, this part of the TCP specification has been updated and improved several times, always
while preserving the backward compatibility with older TCP implementations. In this section, we review the main data
transfer mechanisms used by TCP.

TCP is a window-based transport protocol that provides a bi-directional byte stream service. This has several impli-
cations on the fields of the TCP header and the mechanisms used by TCP. The three fields of the TCP header are

 sequence number. TCP uses a 32 bits sequence number. The sequence number placed in the header of a TCP
segment containing data is the sequence number of the first byte of the payload of the TCP segment.

* acknowledgment number. TCP uses cumulative positive acknowledgments. Each TCP segment contains the
sequence number of the next byte that the sender of the acknowledgment expects to receive from the remote
host. In theory, the acknowledgment number is only valid if the ACK flag of the TCP header is set. In practice,
almost all® TCP segments have their ACK flag set.

» window. a TCP receiver uses this 16 bits field to indicate the current size of its receive window expressed in
bytes.

Note: The Transmission Control Block

For each established TCP connection, a TCP implementation must maintain a Transmission Control Block (7CB). A
TCB contains all the information required to send and receive segments on this connection RFC 793. This includes’ :

* the local IP address

¢ the remote IP address

* the local TCP port number

¢ the remote TCP port number

* the current state of the TCP FSM
¢ the maximum segment size (MSS)

» snd.nxt : the sequence number of the next byte in the byte stream (the first byte of a new data segment that you
send uses this sequence number)

» snd.una : the earliest sequence number that has been sent but has not yet been acknowledged
» snd.wnd : the current size of the sending window (in bytes)

* rev.nxt @ the sequence number of the next byte that is expected to be received from the remote host

8 In practice, only the SYN segment do not have their ACK flag set.
9 A complete TCP implementation contains additional information in its TCB, notably to support the urgent pointer. However, this part of TCP
is not discussed in this book. Refer to RFC 793 and RFC 2140 for more details about the TCB.
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* rcv.wnd : the current size of the receive window advertised by the remote host
* sending buffer : a buffer used to store all unacknowledged data

* receiving buffer : a buffer to store all data received from the remote host that has not yet been delivered to the
user. Data may be stored in the receiving buffer because either it was not received in sequence or because the
user is too slow to process it

The original TCP specification can be summarized as a transport protocol that provides a byte stream service and uses
go-back-n with a selective-repeat reception strategy.

To send new data on an established connection, a TCP entity performs the following operations on the corresponding
TCB. It first checks that the sending buffer does not contain more data than the receive window advertised by the
remote host (rcv.wnd). If the window is not full, up to MSS bytes of data are placed in the payload of a TCP segment.
The sequence number of this segment is the sequence number of the first byte of the payload. It is set to the first
available sequence number, snd.nxt, and snd.nxt is incremented by the length of the payload of the TCP segment. The
acknowledgment number of this segment is set to the current value of rcv.nxt and the window field of the TCP segment
is computed based on the current occupancy of the receiving buffer. The data is kept in the sending buffer in case it
needs to be retransmitted later.

When a TCP segment with the ACK flag set is received, the following operations are performed. rcv.wnd is set to the
value of the window field of the received segment. The acknowledgment number is compared to snd.una. The newly
acknowledged data is removed from the sending buffer and snd.una is updated. If the TCP segment contained data, the
sequence number is compared to rcv.nxt. If they are equal, the segment was received in sequence and the data can be
delivered to the user and rcv.nxt is updated. The contents of the receiving buffer is checked to see whether other data
already present in this buffer can be delivered in sequence to the user. If so, rcv.nxt is updated again. Otherwise, the
segment’s payload is placed in the receiving buffer.

Segment transmission strategies

In a transport protocol such as TCP that offers a bytestream, a practical issue that was left as an implementation choice
in RFC 793 is to decide when a new TCP segment containing data must be sent. There are two simple and extreme
implementation choices. The first implementation choice is to send a TCP segment as soon as the user has requested
the transmission of some data. This allows TCP to provide a low delay service. However, if the user is sending data
one byte at a time, TCP would place each user byte in a segment containing 20 bytes of TCP header'’. This is a huge
overhead that is not acceptable in wide area networks. A second simple solution would be to only transmit a new
TCP segment once the user has produced MSS bytes of data. This solution reduces the overhead, but at the cost of a
potentially very high delay.

An elegant solution to this problem was proposed by John Nagle in RFC 896. John Nagle observed that the overhead
caused by the TCP header was a problem in wide area connections, but less in local area connections where the available
bandwidth is usually higher. He proposed the following rules to decide to send a new data segment when a new data
has been produced by the user or a new ack segment has been received.

if rcv.wnd >= MSS and len(data) >= MSS:
send one MSS-sized segment
else:
if there are unacknowledged data:
place data in buffer until acknowledgment has been received
else:
send one TCP segment containing all buffered data (up to rcv.wnd)

10 This TCP segment is then placed in an IP header. We describe IPv6 in the next chapter. The minimum size of the IPv6 (resp. TPv4) header is
40 bytes (resp. 20 bytes).
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The first rule ensures that a TCP connection used for bulk data transfer always sends full TCP segments. The second
rule sends one partially filled TCP segment every round-trip-time.

This algorithm, called the Nagle algorithm, takes a few lines of code in all TCP implementations. These lines of code
have a huge impact on the packets that are exchanged in TCP/IP networks. Researchers have analyzed the distribution
of the packet sizes by capturing and analyzing all the packets passing through a given link. These studies have shown
several important results :

* in TCP/IP networks, a large fraction of the packets are TCP segments that contain only an acknowledgment.
These packets usually account for 40-50% of the packets passing through the studied link

 in TCP/IP networks, most of the bytes are exchanged in long packets, usually packets containing about 1440
bytes of payload which is the default MSS for hosts attached to an Ethernet network, the most popular type of
LAN

Recent measurements indicate that these packet size distributions are still valid in today’s Internet, although the packet
distribution tends to become bi-modal with small packets corresponding to TCP pure acknowledgments and large
1440-bytes packets carrying most of the user data [SMASU2012].

3.12.3 TCP windows

From a performance point of view, one of the main limitations of the original TCP specification is the 16 bits window
field in the TCP header. As this field indicates the current size of the receive window in bytes, it limits the TCP receive
window at 65535 bytes. This limitation was not a severe problem when TCP was designed since at that time high-
speed wide area networks offered a maximum bandwidth of 56 kbps. However, in today’s network, this limitation is
not acceptable anymore. The table below provides the rough'' maximum throughput that can be achieved by a TCP
connection with a 64 KBytes window in function of the connection’s round-trip-time

RTT Maximum Throughput

1 msec 524 Mbps
10 msec ~ 52.4 Mbps
100 msec  5.24 Mbps
500 msec  1.05 Mbps

To solve this problem, a backward compatible extension that allows TCP to use larger receive windows was proposed
in RFC 1323. Today, most TCP implementations support this option. The basic idea is that instead of storing snd.wnd
and rcv.wnd as 16 bits integers in the 7CB, they should be stored as 32 bits integers. As the TCP segment header only
contains 16 bits to place the window field, it is impossible to copy the value of snd.wnd in each sent TCP segment.
Instead the header contains snd.wnd >> S where S is the scaling factor (0 < S < 14) negotiated during connection
establishment. The client adds its proposed scaling factor as a TCP option in the SYN segment. If the server supports
RFC 1323, it places in the SYN+ACK segment the scaling factor that it uses when advertising its own receive window.
The local and remote scaling factors are included in the 7CB. If the server does not support RFC 1323, it ignores the
received option and no scaling is applied.

By using the window scaling extensions defined in RFC 1323, TCP implementations can use a receive buffer of up
to 1 GByte. With such a receive buffer, the maximum throughput that can be achieved by a single TCP connection
becomes :

1T A precise estimation of the maximum bandwidth that can be achieved by a TCP connection should take into account the overhead of the TCP
and IP headers as well.
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RTT Maximum Throughput

1 msec 8590 Gbps
10 msec 859 Gbps
100 msec 86 Gbps
500 msec 17 Gbps

These throughputs are acceptable in today’s networks. However, there are already servers having 10 Gbps interfaces. ..
Early TCP implementations had fixed receiving and sending buffers'?. Today’s high performance implementations
are able to automatically adjust the size of the sending and receiving buffer to better support high bandwidth flows
[SMM1998].

3.12.4 TCP’s retransmission timeout

In a go-back-n transport protocol such as TCP, the retransmission timeout must be correctly set in order to achieve good
performance. On one hand, if the retransmission timeout expires too early, then bandwidth is wasted by retransmitting
segments that have already been correctly received. On the other hand, if the retransmission timeout expires too late,
then bandwidth is wasted because the sender is idle waiting for the expiration of its retransmission timeout.

A good setting of the retransmission timeout clearly depends on an accurate estimation of the round-trip-time of each
TCP connection. The round-trip-time differs between TCP connections, but may also change during the lifetime of a
single connection. For example, the figure below shows the evolution of the round-trip-time between two hosts during
a period of 45 seconds.
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Fig. 26: Evolution of the round-trip-time between two hosts

The easiest solution to measure the round-trip-time on a TCP connection is to measure the delay between the transmis-
sion of a data segment and the reception of a corresponding acknowledgment'?. As illustrated in the figure below, this
measurement works well when there are no segment losses.

However, when a data segment is lost, as illustrated in the bottom part of the figure, the measurement is ambiguous as
the sender cannot determine whether the received acknowledgment was triggered by the first transmission of segment
123 or its retransmission. Using incorrect round-trip-time estimations could lead to incorrect values of the retrans-
mission timeout. For this reason, Phil Karn and Craig Partridge proposed, in [KP91], to ignore the round-trip-time
measurements performed during retransmissions.

To avoid this ambiguity in the estimation of the round-trip-time when segments are retransmitted, recent TCP imple-
mentations rely on the timestamp option defined in RFC 1323. This option allows a TCP sender to place two 32 bit

12 See https://fasterdata.es.net/host-tuning/ for more information on how to tune a TCP implementation

13 In theory, a TCP implementation could store the timestamp of each data segment transmitted and compute a new estimate for the round-trip-time
upon reception of the corresponding acknowledgment. However, using such frequent measurements introduces a lot of noise in practice and many
implementations still measure the round-trip-time once per round-trip-time by recording the transmission time of one segment at a time RFC 2988
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timestamps in each TCP segment that it sends. The first timestamp, TS Value (T'Sval) is chosen by the sender of the
segment. It could for example be the current value of its real-time clock'*. The second value, TS Echo Reply (7Secr),
is the last T'Sval that was received from the remote host and stored in the 7CB. The figure below shows how the uti-
lization of this timestamp option allows for the disambiguation of the round-trip-time measurement when there are
retransmissions.
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Fig. 28: Disambiguating round-trip-time measurements with the RFC 1323 timestamp option

Once the round-trip-time measurements have been collected for a given TCP connection, the TCP entity must compute
the retransmission timeout. As the round-trip-time measurements may change during the lifetime of a connection, the
retransmission timeout may also change. At the beginning of a connection'”, the TCP entity that sends a SYN segment
does not know the round-trip-time to reach the remote host and the initial retransmission timeout is usually set to 3
seconds RFC 2988.

The original TCP specification proposed in RFC 793 to include two additional variables in the TCB :

* srit : the smoothed round-trip-time computed as srtt = (« X srtt) + ((1 — «) x rtt) where rtt is the round-
trip-time measured according to the above procedure and « a smoothing factor (e.g. 0.8 or 0.9)

* rto : the retransmission timeout is computed as rto = min(60, max(1, 3 x srtt)) where 3 is used to take into
account the delay variance (value : 1.3 to 2.0). The 60 and I constants are used to ensure that the 7o is not larger
than one minute nor smaller than 1 second.

However, in practice, this computation for the retransmission timeout did not work well. The main problem was that
the computed 7o did not correctly take into account the variations in the measured round-trip-time. Van Jacobson

14 Some security experts have raised concerns that using the real-time clock to set the TSval in the timestamp option can leak information such as
the system’s up-time. Solutions proposed to solve this problem may be found in [CNPI09]

15 As a TCP client often establishes several parallel or successive connections with the same server, REC 2140 has proposed to reuse for a new
connection some information that was collected in the TCB of a previous connection, such as the measured rtt. However, this solution has not been
widely implemented.
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proposed in his seminal paper [Jacobson1988] an improved algorithm to compute the rfo and implemented it in the
BSD Unix distribution. This algorithm is now part of the TCP standard RFC 2988.

Jacobson’s algorithm uses two state variables, sr#t the smoothed r#f and r#tvar the estimation of the variance of the rtt
and two parameters : o and 8. When a TCP connection starts, the first rfo is set to 3 seconds. When a first estimation
of the rtt is available, the srtt, rttvar and rto are computed as follows :

srtt = rtt
rttvar = rtt/2
rto = srtt + 4*rttvar

Then, when other rtt measurements are collected, sr#t and rttvar are updated as follows :
rttvar = (1 — ) X rttvar + 8 X |srit — rtt|
srtt = (1 —a) X srtt + a x rit
rto = srtt + 4 x rttvar

The proposed values for the parameters are o = % and 8 = i. This allows a TCP implementation, implemented in
the kernel, to perform the r#t computation by using shift operations instead of the more costly floating point operations
[Jacobson1988]. The figure below illustrates the computation of the rfo upon rtt changes.
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Fig. 29: Example computation of the rto

3.12.5 Advanced retransmission strategies

The default go-back-n retransmission strategy was defined in RFC 793. When the retransmission timer expires, TCP
retransmits the first unacknowledged segment (i.e. the one having sequence number snd.una). After each expiration of
the retransmission timeout, RFC 2988 recommends to double the value of the retransmission timeout. This is called
an exponential backoff. This doubling of the retransmission timeout after a retransmission was included in TCP to deal
with issues such as network/receiver overload and incorrect initial estimations of the retransmission timeout. If the
same segment is retransmitted several times, the retransmission timeout is doubled after every retransmission until it
reaches a configured maximum. RFC 2988 suggests a maximum retransmission timeout of at least 60 seconds. Once
the retransmission timeout reaches this configured maximum, the remote host is considered to be unreachable and the
TCP connection is closed.

This retransmission strategy has been refined based on the experience of using TCP on the Internet. The first refinement
was a clarification of the strategy used to send acknowledgments. As TCP uses piggybacking, the easiest and less
costly method to send acknowledgments is to place them in the data segments sent in the other direction. However,
few application layer protocols exchange data in both directions at the same time and thus this method rarely works.
For an application that is sending data segments in one direction only, the remote TCP entity returns empty TCP
segments whose only useful information is their acknowledgment number. This may cause a large overhead in wide
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area network if a pure ACK segment is sent in response to each received data segment. Most TCP implementations
use a delayed acknowledgment strategy. This strategy ensures that piggybacking is used whenever possible, otherwise
pure ACK segments are sent for every second received data segments when there are no losses. When there are losses
or reordering, ACK segments are more important for the sender and they are sent immediately RFC 813 RFC 1122.
This strategy relies on a new timer with a short delay (e.g. 50 milliseconds) and one additional flag in the TCB. It can
be implemented as follows.

reception of a data segment:
if pkt.seq == rcv.nxt: # segment received in sequence
if delayed_ack:
send pure ack segment
delayed_ack = False
ack_timer.cancel()
else:
delayed_ack = True
ack_timer.start()
else: # out of sequence segment
send pure ack segment
if delayed_ack:
delayed_ack = False
ack_timer.cancel ()

transmission of a data segment: # piggyback ack
if delayed_ack:
delayed_ack = False
ack_timer.cancel ()

acktimer expiration:
send pure ack segment
delayed_ack = False

Due to this delayed acknowledgment strategy, during a bulk transfer, a TCP implementation usually acknowledges
every second TCP segment received.

The default go-back-n retransmission strategy used by TCP has the advantage of being simple to implement, in particular
on the receiver side, but when there are losses, a go-back-n strategy provides a lower performance than a selective repeat
strategy. The TCP developers have designed several extensions to TCP to allow it to use a selective repeat strategy while
maintaining backward compatibility with older TCP implementations. These TCP extensions assume that the receiver
is able to buffer the segments that it receives out-of-sequence.

The first extension that was proposed is the fast retransmit heuristic. This extension can be implemented on TCP
senders and thus does not require any change to the protocol. It only assumes that the TCP receiver is able to buffer
out-of-sequence segments.

From a performance point of view, one issue with TCP’s retransmission timeout is that when there are isolated segment
losses, the TCP sender often remains idle waiting for the expiration of its retransmission timeouts. Such isolated losses
are frequent in the global Internet [Paxson99]. A heuristic to deal with isolated losses without waiting for the expiration
of the retransmission timeout has been included in many TCP implementations since the early 1990s. To understand
this heuristic, let us consider the figure below that shows the segments exchanged over a TCP connection when an
isolated segment is lost.

As shown above, when an isolated segment is lost the sender receives several duplicate acknowledgments since the
TCP receiver immediately sends a pure acknowledgment when it receives an out-of-sequence segment. A duplicate
acknowledgment is an acknowledgment that contains the same acknowledgment number as a previous segment. A
single duplicate acknowledgment does not necessarily imply that a segment was lost, as a simple reordering of the seg-
ments may cause duplicate acknowledgments as well. Measurements [Paxson99] have shown that segment reordering
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(seq=120,"xyz")
(ack=123)
(seq=123,"abed")
(seq=127,"ef")
(ack=123) Out of sequence

(seq=129,"gh")
(ack=123) Out of sequence

Second duplicate ack |,

(seq=131,"i[")
(ack=123)

First duplicate ack

Out of sequence

Third duplicate ack

Fig. 30: Detecting isolated segment losses

is frequent in the Internet. Based on these observations, the fast retransmit heuristic has been included in most TCP
implementations. It can be implemented as follows.

ack arrival:

if tcp.ack == snd.una: # duplicate acknowledgment
dupacks += 1
if dupacks ==
retransmit segment(snd.una)
else:
dupacks = 0

# process acknowledgment

This heuristic requires an additional variable in the TCB (dupacks). Most implementations set the default number of
duplicate acknowledgments that trigger a retransmission to 3. It is now part of the standard TCP specification RFC
2581. The fast retransmit heuristic improves the TCP performance provided that isolated segments are lost and the
current window is large enough to allow the sender to send three duplicate acknowledgments.

The figure below illustrates the operation of the fast retransmit heuristic.
(ack=123)
n— (seq=123,"abcd")
(seq=127,"ef")
(ack=123)

PR—

(seq=129,"gh")
(ack=123)

(seq=131,"ij")
(ack=123)

e

(seq=123,"abecd")
(ack=133)

Qut of sequence, in buffer

Qut of sequence, in buffer

Qut of sequence, in buffer

"abedefghij"

Fig. 31: TCP fast retransmit heuristics

When losses are not isolated or when the windows are small, the performance of the fast retransmit heuristic decreases.
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In such environments, it is necessary to allow a TCP sender to use a selective repeat strategy instead of the default go-
back-n strategy. Implementing selective-repeat requires a change to the TCP protocol as the receiver needs to be able
to inform the sender of the out-of-order segments that it has already received. This can be done by using the Selective
Acknowledgments (SACK) option defined in RFC 2018. This TCP option is negotiated during the establishment of a
TCP connection. If both TCP hosts support the option, SACK blocks can be attached by the receiver to the segments
that it sends. SACK blocks allow a TCP receiver to indicate the blocks of data that it has received correctly but out of
sequence. The figure below illustrates the utilization of the SACK blocks.

(ack=123)

(seq=123,"abcd")
............ --- -+ Lost segment

(seq=127,"ef")
(ack=123,sack:127-128)

— (seq=129,"gh")
(ack=123, sack:127-130)

(seq=131,"ij")
(ack=123, sack:127-132)

-

seq=123,"abed")
(ack=133)

— "abcdefghij"

Fig. 32: TCP selective acknowledgments

A SACK option contains one or more blocks. A block corresponds to all the sequence numbers between the left edge
and the right edge of the block. The two edges of the block are encoded as 32 bit numbers (the same size as the TCP
sequence number) in an SACK option. As the SACK option contains one byte to encode its type and one byte for its
length, a SACK option containing b blocks is encoded as a sequence of 2 + 8 x b bytes. In practice, the size of the
SACK option can be problematic as the optional TCP header extension cannot be longer than 40 bytes. As the SACK
option is usually combined with the RFC 1323 timestamp extension, this implies that a TCP segment cannot usually
contain more than three SACK blocks. This limitation implies that a TCP receiver cannot always place in the SACK
option that it sends, information about all the received blocks.

To deal with the limited size of the SACK option, a TCP receiver currently having more than 3 blocks inside its receiving
buffer must select the blocks to place in the SACK option. A good heuristic is to put in the SACK option the blocks
that have most recently changed, as the sender is likely to be already aware of the older blocks.

When a sender receives a SACK option indicating a new block and thus a new possible segment loss, it usually does
not retransmit the missing segments immediately. To deal with reordering, a TCP sender can use a heuristic similar to
fast retransmit by retransmitting a gap only once it has received three SACK options indicating this gap. It should be
noted that the SACK option does not supersede the acknowledgment number of the TCP header. A TCP sender can
only remove data from its sending buffer once they have been acknowledged by TCP’s cumulative acknowledgments.
This design was chosen for two reasons. First, it allows the receiver to discard parts of its receiving buffer when it is
running out of memory without loosing data. Second, as the SACK option is not transmitted reliably, the camulative
acknowledgments are still required to deal with losses of ACK segments carrying only SACK information. Thus, the
SACK option only serves as a hint to allow the sender to optimize its retransmissions.

As explained earlier, the TCP Timestamp option RFC 1323 prevents ambiguities while collecting round-trip-time
measurements. It plays another very important role in today’s high-bandwidth networks. Since TCP uses 32 bits long
sequence numbers, the sequence numbers wrap after the transmission of 4 GBytes of data. With 10 Gbps and soon 100
Gbps interfaces, TCP only needs to transmit during a few seconds before reusing the same sequence number. Given that
the Maximum Segment Lifetime is still 2 minutes, several packets, belonging to the same TCP connection could use the
same sequence number. If one of these packets is severely delayed through the network, it could reappear at the same
time as a packet with the same TCP sequence number. To prevent this problem, most modern TCP implementations
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associate a TCP timestamp option to each segment on transmission. When a TCP stack receives a TCP segment, it
checks that its TCP timestamp is valid and if not the segment is discarded RFC 7323.

3.12.6 TCP connection release

TCP, like most connection-oriented transport protocols, supports two types of connection releases :

« graceful connection release, where each TCP user can release its own direction of data transfer after having
transmitted all data

* abrupt connection release, where either one user closes both directions of data transfer or one TCP entity is forced
to close the connection (e.g., because the remote host does not reply anymore or due to lack of resources)

The abrupt connection release mechanism is very simple and relies on a single segment having the RST bit set. A TCP
segment containing the RST bit can be sent for the following reasons :

* anon-SYN segment was received for a non-existing TCP connection RFC 793

* by extension, some implementations respond with an RST segment to a segment that is received on an existing
connection but with an invalid header RFC 3360. This causes the corresponding connection to be closed and
has caused security attacks RFC 4953

* by extension, some implementations send an RST segment when they need to close an existing TCP connection
(e.g., because there are not enough resources to support this connection or because the remote host is considered
to be unreachable). Measurements have shown that this usage of TCP RST is widespread [AW05]

When an RST segment is sent by a TCP entity, it should contain the current value of the sequence number for the
connection (or 0 if it does not belong to any existing connection) and the acknowledgment number should be set to the
next expected in-sequence sequence number on this connection.

Note: TCP RST wars

The designers of TCP implementations should ensure that two TCP entities never enter a TCP RST war where host A
is sending a RST segment in response to a previous RST segment that was sent by host B in response to a TCP RST
segment sent by host A ... To avoid such an infinite exchange of RST segments that do not carry data, a TCP entity is
never allowed to send a RST segment in response to another RST segment.

The normal way of terminating a TCP connection is by using the graceful TCP connection release. This mechanism
uses the FIN flag of the TCP header and allows each host to release its own direction of data transfer. As for the
SYN flag, the utilization of the FIN flag in the TCP header consumes one sequence number. The figure FSM for TCP
connection release shows the part of the TCP FSM used when a TCP connection is released.

Starting from the Established state, there are two main paths through this FSM.

The first path is when the host receives a segment with sequence number x and the FIN flag set. The utilization of
the FIN flag indicates that the byte before sequence number x was the last byte of the byte stream sent by the remote
host. Once all of the data has been delivered to the user, the TCP entity sends an ACK segment whose ack field is
setto (x + 1) (mod 23?) to acknowledge the FIN segment. The FIN segment is subject to the same retransmission
mechanisms as a normal TCP segment. In particular, its transmission is protected by the retransmission timer. At
this point, the TCP connection enters the CLOSE_WAIT state. In this state, the host can still send data to the remote
host. Once all its data have been sent, it sends a FIN segment and enter the LAST_ACK state. In this state, the TCP
entity waits for the acknowledgment of its FIN segment. It may still retransmit unacknowledged data segments, e.g., if
the retransmission timer expires. Upon reception of the acknowledgment for the FIN segment, the TCP connection is
completely closed and its 7CB can be discarded.
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Fig. 33: FSM for TCP connection release

The second path is when the host has transmitted all data. Assume that the last transmitted sequence number is z. Then,
the host sends a FIN segment with sequence number (2 + 1) (mod 23?) and enters the FIN_WAIT] state. In this state,
it can retransmit unacknowledged segments but cannot send new data segments. It waits for an acknowledgment of its
FIN segment (i.e. sequence number (2 + 1) (mod 232)), but may receive a FIN segment sent by the remote host. In
the first case, the TCP connection enters the FIN_WAIT?2 state. In this state, new data segments from the remote host
are still accepted until the reception of the FIN segment. The acknowledgment for this FIN segment is sent once all
data received before the FIN segment have been delivered to the user and the connection enters the TIME_WAIT state.
In the second case, a FIN segment is received and the connection enters the Closing state once all data received from
the remote host have been delivered to the user. In this state, no new data segments can be sent and the host waits for
an acknowledgment of its FIN segment before entering the TIME_WAIT state.

The TIME_WAIT state is different from the other states of the TCP FSM. A TCP entity enters this state after having
sent the last ACK segment on a TCP connection. This segment indicates to the remote host that all the data that it
has sent have been correctly received and that it can safely release the TCP connection and discard the corresponding
TCB. After having sent the last ACK segment, a TCP connection enters the TIME_WAIT and remains in this state for
2 %« M SL seconds. During this period, the TCB of the connection is maintained. This ensures that the TCP entity
that sent the last ACK maintains enough state to be able to retransmit this segment if this ACK segment is lost and the
remote host retransmits its last FIN segment or another one. The delay of 2 x M SL seconds ensures that any duplicate
segments on the connection would be handled correctly without causing the transmission of an RST' segment. Without
the TIME_WAIT state and the 2 x M S L seconds delay, the connection release would not be graceful when the last ACK
segment is lost.

Note: TIME_WAIT on busy TCP servers

The 2+ M SL seconds delay in the TIME_WAIT state is an important operational problem on servers having thousands
of simultaneously opened TCP connections [FTY99]. Consider for example a busy web server that processes 10.000
TCP connections every second. If each of these connections remains in the TIME_WAIT state for 4 minutes, this
implies that the server would have to maintain more than 2 million TCBs at any time. For this reason, some TCP
implementations prefer to perform an abrupt connection release by sending a RST segment to close the connection
[AWO05] and immediately discard the corresponding 7CB. However, if the RST segment is lost, the remote host continues
to maintain a 7CB for a connection that no longer exists. This optimization reduces the number of TCBs maintained
by the host sending the RST segment but at the potential cost of increased processing on the remote host when the RST
segment is lost.
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3.13 Congestion control

In an internetwork, i.e. a network composed of different types of networks (such as the Internet), congestion control
could be implemented either in the network layer or the transport layer. The congestion problem was clearly identified
in the late 1980s and the Internet researchers who developed techniques to solve the problem opted for a solution in the
transport layer. Adding congestion control to the transport layer makes sense since this layer provides a reliable data
transfer and avoiding congestion is a factor in this reliable delivery. The transport layer already deals with heterogeneous
networks thanks to its self-clocking property that we have already described. In this section, we explain different
congestion control techniques that have been added to TCP and other transport protocols such as SCTP or QUIC.

The TCP congestion control scheme was initially proposed by Van Jacobson in [Jacobson1988]. The current specifica-
tion may be found in RFC 5681. TCP relies on Additive Increase and Multiplicative Decrease (AIMD). To implement
AIMD, a TCP host must be able to control its transmission rate. A first approach would be to use timers and adjust their
expiration times in function of the rate imposed by AIMD. Unfortunately, maintaining such timers for a large number
of TCP connections can be difficult. Instead, Van Jacobson noted that the sending rate of a TCP connection can be ar-
tificially controlled by constraining its sending window. A TCP connection cannot send data faster than “i24°% \here

rtt
window is the minimum between the host’s sending window and the receive window advertised by the receiver.

TCP’s congestion control scheme is based on a congestion window. The current value of the congestion window
(cwnd) is stored in the TCB of each TCP connection and the window that can be used by the sender is constrained by
min(cwnd, rwin, swin) where swin is the current sending window and rwin the last received receive window. The
Additive Increase part of the TCP congestion control increments the congestion window by M SS bytes every round-trip-
time. In the TCP literature, this phase is often called the congestion avoidance phase. The Multiplicative Decrease part
of the TCP congestion control halves the current value of the congestion window once congestion has been detected.

When a TCP connection begins, the sending host does not know whether the part of the network that it uses to reach the
destination is congested or not. To avoid causing too much congestion, it must start with a small congestion window.
In 1998, [Jacobson1988] recommended an initial window of MSS bytes. As the additive increase part of the TCP con-
gestion control scheme increments the congestion window by MSS bytes every round-trip-time, the TCP connection
may have to wait many round-trip-times before being able to efficiently use the available bandwidth. This is especially
important in environments where the bandwidth x rtt product is high. To avoid waiting too many round-trip-times
before reaching a congestion window that is large enough to efficiently utilize the network, the TCP congestion control
scheme includes the slow-start algorithm. The objective of the TCP slow-start phase is to quickly reach an accept-
able value for the cwnd. During slow-start, the congestion window is doubled every round-trip-time. The slow-start
algorithm uses an additional variable in the TCB : ssthresh (slow-start threshold). The ssthresh is an estimation of the
last value of the cwnd that did not cause congestion. It is initialized at the sending window and is updated after each
congestion event.

A key question that must be answered by any congestion control scheme is how congestion is detected. The first
implementations of the TCP congestion control scheme opted for a simple and pragmatic approach : packet losses
indicate congestion. If the network is congested, router buffers are full and packets are discarded. In wired networks,
packet losses are mainly caused by congestion. In wireless networks, packets can be lost due to transmission errors and
for other reasons that are independent of congestion. TCP already detects segment losses to ensure a reliable delivery.
The TCP congestion control scheme distinguishes between two types of congestion :

 mild congestion. TCP considers that the network is lightly congested if it receives three duplicate acknowledg-
ments and performs a fast retransmit. If the fast retransmit is successful, this implies that only one segment has
been lost. In this case, TCP performs multiplicative decrease and the congestion window is divided by 2. The
slow-start threshold is set to the new value of the congestion window.

* severe congestion. TCP considers that the network is severely congested when its retransmission timer expires.
In this case, TCP retransmits the first segment, sets the slow-start threshold to 50% of the congestion window.
The congestion window is reset to its initial value and TCP performs a slow-start.

The figure below illustrates the evolution of the congestion window when there is severe congestion. At the beginning of
the connection, the sender performs slow-start until the first segments are lost and the retransmission timer expires. At
this time, the ssthresh is set to half of the current congestion window and the congestion window is reset at one segment.
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The lost segments are retransmitted as the sender again performs slow-start until the congestion window reaches the
sshtresh. It then switches to congestion avoidance and the congestion window increases linearly until segments are lost
and the retransmission timer expires. The figure below illustrates the evolution of the congestion window when the

cund

Fig. 34: Evaluation of the TCP congestion window with severe congestion

network is lightly congested and all lost segments can be retransmitted using fast retransmit. The sender begins with a
slow-start. A segment is lost but successfully retransmitted by a fast retransmit. The congestion window is divided by
2 and the sender immediately enters congestion avoidance as this was a mild congestion. Most TCP implementations

| |
cund ! !
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fast retransmit fast retransmit
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threshold ____ _=———_____.
threshold
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Fig. 35: Evaluation of the TCP congestion window when the network is lightly congested

update the congestion window when they receive an acknowledgment. If we assume that the receiver acknowledges
each received segment and the sender only sends MSS sized segments, the TCP congestion control scheme can be
implemented using the simplified pseudo-code' below. This pseudocode includes the optimization proposed in RFC
3042 that allows a sender to send new unsent data upon reception of the first or second duplicate acknowledgment. The
reception of each of these acknowledgments indicates that one segment has left the network and thus additional data
can be sent without causing more congestion. Note that the congestion window is not increased upon reception of these
first duplicate acknowledgments.

# NewReno congestion control in TCP

# Initialization
cwnd = MSS # congestion window in bytes
ssthresh= swin # in bytes

# Ack arrival

(continues on next page)

! In this pseudo-code, we assume that TCP uses unlimited sequence and acknowledgment numbers. Furthermore, we do not detail how the cwnd
is adjusted after the retransmission of the lost segment by fast retransmit. Additional details may be found in RFC 5681.
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(continued from previous page)

if tcp.ack > snd.una: # new ack, no congestion
if dupacks == 0: # not currently recovering from loss
if cwnd < ssthresh:
# slow-start : quickly increase cwnd
# double cwnd every rtt
cwnd = cwnd + MSS
else:
# congestion avoidance : slowly increase cwnd
# increase cwnd by one mss every rtt
cwnd = cwnd + MSS * (MSS / cwnd)
else: # recovering from loss
cwnd = ssthresh # deflate cwnd RFC5681

dupacks = 0
else: # duplicate or old ack
if tcp.ack == snd.una: # duplicate acknowledgment
dupacks += 1

if dupacks == 1 or dupacks == 2:
send_next_unacked_segment # RFC3042

if dupacks == 3:
retransmitsegment (snd.una)
ssthresh = max(cwnd/2, 2*MSS)
cwnd = ssthresh

if dupacks > 3: # RF(C5681
cwnd = cwnd + MSS # inflate cwnd

else:
# ack for old segment, ignored
pass

Expiration of the retransmission timer:
send(snd.una) # retransmit first lost segment
sshtresh = max(cwnd/2, 2*MSS)
cwnd = MSS

Furthermore when a TCP connection has been idle for more than its current retransmission timer, it should reset its
congestion window to the congestion window size that it uses when the connection begins, as it no longer knows the
current congestion state of the network. This congestion control scheme is known as the NewReno congestion control
scheme.

Note: Initial congestion window

The original TCP congestion control mechanism [Jacobson1988] recommended that each TCP connection should be-
gin by setting cwnd = M S'S. However, in today’s higher bandwidth networks, using such a small initial congestion
window severely affects the performance for short TCP connections, such as those used by web servers. In 2002, RFC
3390 allowed an initial congestion window of about 4 KBytes, which corresponds to 3 segments in many environments.
In 2010, researchers from Google proposed to further increase the initial window up to 15 KBytes [DRC+2010]. The
measurements that they collected show that this increase would not significantly increase congestion but would sig-
nificantly reduce the latency of short HTTP responses. Unsurprisingly, the chosen initial window corresponds to the
average size of an HTTP response from a search engine. This proposed modification has been adopted in RFC 6928
and TCP implementations support it.
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3.13.1 Controlling congestion without losing data

In today’s Internet, congestion is controlled by regularly sending packets at a higher rate than the network capacity.
These packets fill the buffers of the routers and are eventually discarded. But shortly after, TCP senders retransmit
packets containing exactly the same data. This is potentially a waste of resources since these successive retransmis-
sions consume resources upstream of the router that discards the packets. Packet losses are not the only signal to detect
congestion inside the network. An alternative is to allow routers to explicitly indicate their current level of congestion
when forwarding packets. This approach was proposed in the late 1980s [RJ1995] and used in some networks. Unfor-
tunately, it took almost a decade before the Internet community agreed to consider this approach. In the mean time, a
large number of TCP implementations and routers were deployed on the Internet.

Explicit Congestion Notification RFC 3168 improves the detection of congestion by allowing routers to explicitly mark
packets when they are lightly congested. In theory, a single bit in the packet header [RJ1995] is sufficient to support
this congestion control scheme. When a host receives a marked packet, it returns the congestion information to the
source that adapts its transmission rate accordingly. Although the idea is relatively simple, deploying it on the entire
Internet has proven to be challenging [KNT2013]. It is interesting to analyze the different factors that have hindered
the deployment of this technique.

The first difficulty in adding Explicit Congestion Notification (ECN) in TCP/IP network was to modify the format of
the network packet and transport segment headers to carry the required information. In the network layer, one bit was
required to allow the routers to mark the packets they forward during congestion periods. In the IP network layer,
this bit is called the Congestion Experienced (CE) bit and is part of the packet header. However, using a single bit to
mark packets is not sufficient. Consider a simple scenario with two sources, one congested router and one destination.
Assume that the first sender and the destination support ECN, but not the second sender. If the router is congested it
will mark packets from both senders. The first sender will react to the packet markings by reducing its transmission
rate. However since the second sender does not support ECN, it will not react to the markings. Furthermore, this
sender could continue to increase its transmission rate, which would lead to more packets being marked and the first
source would decrease again its transmission rate, ... In the end, the sources that implement ECN would be penalized
compared to the sources that do not implement it. This unfairness is a major hurdle to widely deploy ECN on the
public Internet’. The solution proposed in RFC 3168 to deal with this problem is to use a second bit in the network
packet header. This bit, called the ECN-capable transport (ECT) bit, indicates whether the packet contains a segment
produced by a transport protocol that supports ECN or not. Transport protocols that support ECN set the ECT bit in
all packets. When a router is congested, it first verifies whether the ECT bit is set. In this case, the CE bit of the packet
is set to indicate congestion. Otherwise, the packet is discarded. This eases the deployment of ECN?.

The second difficulty is how to allow the receiver to inform the sender of the reception of network packets marked
with the CE bit. In reliable transport protocols like TCP and SCTP, the acknowledgments can be used to provide
this feedback. For TCP, two options were possible : change some bits in the TCP segment header or define a new
TCP option to carry this information. The designers of ECN opted for reusing spare bits in the TCP header. More
precisely, two TCP flags have been added in the TCP header to support ECN. The ECN-Echo (ECE) is set in the TCP
acknowledgments when the CE was set in packets received on the forward path.

The third difficulty is to allow an ECN-capable sender to detect whether the remote host also supports ECN. This is a
classical negotiation of extensions to a transport protocol. In TCP, this could have been solved by defining a new TCP
option used during the three-way handshake. To avoid wasting space in the TCP options, the designers of ECN opted
in RFC 3168 for using the ECN-Echo and CWR bits in the TCP header to perform this negotiation. In the end, the
result is the same with fewer bits exchanged and without wasting TCP option space.

Thanks to the ECT, CE and ECE, routers can mark packets during congestion and receivers can return the congestion
information back to the TCP senders. However, these three bits are not sufficient to allow a server to reliably send
the ECE bit to a TCP sender. TCP acknowledgments are not sent reliably. A TCP acknowledgment always contains

2 In enterprise networks or datacenters, the situation is different since a single company typically controls all the sources and all the routers. In
such networks it is possible to ensure that all hosts and routers have been upgraded before turning on ECN on the routers.

3 With the ECT bit, the deployment issue with ECN is solved provided that all sources cooperate. If some sources do not support ECN but still
set the ECT bit in the packets that they sent, they will have an unfair advantage over the sources that correctly react to packet markings. Several
solutions have been proposed to deal with this problem RFC 3540, but they are outside the scope of this book.
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Fig. 36: The TCP flags

the next expected sequence number. Since TCP acknowledgments are cumulative, the loss of one acknowledgment is
recovered by the correct reception of a subsequent acknowledgment.

If TCP acknowledgments are overloaded to carry the ECE bit, the situation is different. Consider the example shown
in the figure below. A client sends packets to a server through a router. In the example below, the first packet is
marked. The server returns an acknowledgment with the ECE bit set. Unfortunately, this acknowledgment is lost and
never reaches the client. Shortly after, the server sends a data segment that also carries a cumulative acknowledgment.
This acknowledgment confirms the reception of the data to the client, but it did not receive the congestion information
through the ECE bit.

client router server

| data[seq=1,ECT=1,CE=0]
| —data[seq=1,ECT=1,CE=1]
</ack=2‘ECE=1/
XM}ECEﬂ/

data[seq=x,ack=2,ECE=0,ECT=1,CE=0]
data[seq=x,ack=2,ECE=0,ECT=1,CE=0]

To solve this problem, RFC 3168 uses an additional bit in the TCP header : the Congestion Window Reduced (CWR)
bit.
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client router server

| data[seq=1,ECT=1,CE=0]
| —data[seq=1,ECT=1,CE=1]
— E-t— |
ack=2,ECE=1— |
data[seq=x,ack=2,ECE=1,ECT=1,CE=0]
ata[segq=x,ack=2,ECE=1,ECT=1,CE=0]
data[seq=1,ECT=1,CE=0,CWR=1]

o

| “data[seqg=1 ,ECW

The CWR bit of the TCP header provides some form of acknowledgment for the ECE bit. When a TCP receiver detects
a packet marked with the CE bit, it sets the ECE bit in all segments that it returns to the sender. Upon reception of an
acknowledgment with the ECE bit set, the sender reduces its congestion window to reflect a mild congestion and sets
the CWR bit. This bit remains set as long as the segments received contained the ECE bit set. A sender should only
react once per round-trip-time to marked packets.

The last point that needs to be discussed about Explicit Congestion Notification is the algorithm that is used by routers
to detect congestion. On a router, congestion manifests itself by the number of packets that are stored inside the router
buffers. As explained earlier, we need to distinguish between two types of routers :

* routers that have a single FIFO queue
* routers that have several queues served by a round-robin scheduler

Routers that use a single queue measure their buffer occupancy as the number of bytes or packets stored in the queue®.
A first method to detect congestion is to measure the instantaneous buffer occupancy and consider the router to be
congested as soon as this occupancy is above a threshold. Typical values of the threshold could be 40% of the total
buffer. Measuring the instantaneous buffer occupancy is simple since it only requires one counter. However, this value
is fragile from a control viewpoint since it changes frequently. A better solution is to measure the average buffer
occupancy and consider the router to be congested when this average occupancy is too high. Random Early Detection
(RED) [FJ1993] is an algorithm that was designed to support Explicit Congestion Notification. In addition to measuring
the average buffer occupancy, it also uses probabilistic marking. When the router is congested, the arriving packets are
marked with a probability that increases with the average buffer occupancy. The main advantage of using probabilistic
marking instead of marking all arriving packets is that flows will be marked in proportion to the number of packets that
they transmit. If the router marks 10% of the arriving packets when congested, then a large flow that sends hundred
packets per second will be marked 10 times while a flow that only sends one packet per second will not be marked.
This probabilistic marking allows marking packets in proportion of their usage of the network resources.

If the router uses several queues served by a scheduler, the situation is different. If a large and a small flow are competing
for bandwidth, the scheduler will already favor the small flow that is not using its fair share of the bandwidth. The queue
for the small flow will be almost empty while the queue for the large flow will build up. On routers using such schedulers,
a good way of marking the packets is to set a threshold on the occupancy of each queue and mark the packets that arrive
in a particular queue as soon as its occupancy is above the configured threshold.

4 The buffers of a router can be implemented as variable or fixed-length slots. If the router uses variable length slots to store the queued packets,
then the occupancy is usually measured in bytes. Some routers have use fixed-length slots with each slot large enough to store a maximum-length
packet. In this case, the buffer occupancy is measured in packets.
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3.13.2 Modeling TCP congestion control

Thanks to the NewReno congestion control scheme, TCP can adapt its transmission rate to the losses that occur in
the network. Intuitively, the TCP transmission rate decreases when the percentage of losses increases. Researchers
have proposed detailed models that allow the prediction of the throughput of a TCP connection when losses occur
[MSMO1997] . To have some intuition about the factors that affect the performance of TCP, let us consider a very
simple model. Its assumptions are not completely realistic, but it gives a good intuition without requiring complex
mathematics.

This model considers a hypothetical TCP connection that suffers from equally spaced segment losses. If p is the segment
loss ratio, then the TCP connection successfully transfers 1 — 1 segments and the next segment is lost. If we ignore
the slow-start at the beginning of the connection, TCP in this environment is always in congestion avoidance as there
are only isolated losses that can be recovered using fast retransmit. The evolution of the congestion window is thus as
shown in the figure below. Note that the x-axis of this figure represents time measured in units of one round-trip-time,
which is supposed to be constant in the model, and the y-axis represents the size of the congestion window measured
in MSS-sized segments.

Cwnd(segments)
W

wi2

0 Wi2 W 3wr2 2w time(rtt)
Fig. 37: Evolution of the congestion window with regular losses

As the losses are equally spaced, the congestion window always starts at some value (%), and is incremented by one
MSS every round-trip-time until it reaches twice this value (W). At this point, a segment is retransmitted and the cycle
starts again. If the congestion window is measured in MSS-sized segments, a cycle lasts % round-trip-times. The
bandwidth of the TCP connection is the number of bytes that have been transmitted during a given period of time.
During a cycle, the number of segments that are sent on the TCP connection is equal to the area of the yellow trapeze
in the figure. Its area is thus :

2
area = (W)2+ 1 x (¥)? = 2=

However, given the regular losses that we consider, the number of segments that are sent between two losses (i.e.

during a cycle) is by definition equal to 5. Thus, W = /57 = %. The throughput (in bytes per second) of the TCP
connection is equal to the number of segments transmitted divided by the duration of the cycle :

3xw?
Throughput = “m;ifnﬂf 85 — i = or, after having eliminated W, T'hroughput = \/g X T%XS \%
More detailed models and the analysis of simulations have shown that a first order model of the TCP throughput when
losses occur was T'hroughput ~ ’; txt]g 55 . This is an important result which shows that :

e TCP connections with a small round-trip-time can achieve a higher throughput than TCP connections having a
longer round-trip-time when losses occur. This implies that the TCP congestion control scheme is not completely
fair since it favors the connections that have the shorter round-trip-times.

* TCP connections that use a large MSS can achieve a higher throughput that the TCP connections that use a
shorter MSS. This creates another source of unfairness between TCP connections. However, it should be noted
that today most hosts are using almost the same MSS, roughly 1460 bytes.

In general, the maximum throughput that can be achieved by a TCP connection depends on its maximum window size
and the round-trip-time if there are no losses. If there are losses, it depends on the MSS, the round-trip-time and the
loss ratio.
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window kXMSS )

Throughput < min (#4752, Tiix b

3.13.3 The CUBIC congestion control scheme

The NewReno congestion control scheme has historically been the dominant and the standard TCP congestion control
scheme. It works well in networks having a small round-trip-time or a low bandwidth*delay product. In networks
with a high bandwidth*delay product, a single packet loss can force a TCP sender to spend a lot of time in congestion
avoidance. Since NewReno advances its congestion window by one MSS every round-trip-time, it can spend a long time
in congestion avoidance before reaching a congestion window that is large enough to fully use the network. Furthermore,
NewReno favors connections with a small round-trip-time compared to connections with a longer round-trip-time as
shown in the previous section.

Internet researchers have proposed a wide range of congestion control schemes. During the last decade, the CUBIC
congestion control scheme has emerged has the standard congestion control scheme. It has been adopted by key TCP
implementations and is defined in RFC 9438.

Note: The TCP congestion control zoo

The first TCP congestion control scheme was proposed by Van Jacobson in [Jacobson1988]. In addition to writing the
scientific paper, Van Jacobson also implemented the slow-start and congestion avoidance schemes in release 4.3 Tahoe
of the BSD Unix distributed by the University of Berkeley. Later, he improved the congestion control by adding the
fast retransmit and the fast recovery mechanisms in the Reno release of 4.3 BSD Unix. Since then, many researchers
have proposed, simulated and implemented modifications to the TCP congestion control scheme. Some of these mod-
ifications are still used today, e.g. :

e NewReno (RFC 3782), which was proposed as an improvement of the fast recovery mechanism in the Reno
implementation.

e TCP Vegas, which uses changes in the round-trip-time to estimate congestion in order to avoid it [BOP1994].
This is one of the examples of the delay-based congestion control algorithms. A Vegas sender continuously
measures the evolution of the round-trip-time and slows down when the round-trip-time increases significantly.
This enables Vegas to prevent congestion when used alone. Unfortunately, if Vegas senders compete with more
aggressive TCP congestion control schemes that only react to losses, Vegas senders may have difficulties to use
their fair share of the available bandwidth.

* CUBIC, which was designed for high bandwidth links and is the default congestion control scheme in Linux since
the Linux 2.6.19 kernel [HRX2008]. It is now used by several operating systems and is becoming the default
congestion control scheme RFC 8312. A key difference between CUBIC and the TCP congestion control scheme
described in this chapter is that CUBIC is much more aggressive when probing the network. Instead of relying on
additive increase after a fast recovery, a CUBIC sender adjusts its congestion by using a cubic function. Thanks
to this function, the congestion windows grows faster. This is particularly important in high-bandwidth delay
networks.

* BBR, which is being developed by Google researchers and is included in recent Linux kernels [CCG+2016].
BBR periodically estimates the available bandwidth and the round-trip-times. To adapt to changes in network
conditions, BBR regularly tries to send at 1.25 times the current bandwidth. This enables BBR senders to probe
the network, but can also cause large amount of losses. Recent scientific articles indicate that BBR is unfair to
other congestion control schemes in specific conditions [WMSS2019].

A wide range of congestion control schemes have been proposed in the scientific literature and several of them have been
widely deployed. A detailed comparison of these congestion control schemes is outside the scope of this chapter. A
recent survey paper describing many of the implemented TCP congestion control schemes may be found in [TKU2019].

The CUBIC congestion control scheme was designed with three® main principles in mind:

5 RFC 9438 lists four design principles. In addition to the three that we cover in this chapter, RFC 9438 also requires fairness with connections
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1. CUBIC increases its congestion window by using both the concave and convex parts of a cubic function
2. CUBIC achieves linear bandwidth sharing among flows with different round-trip-times
3. CUBIC sets is multiplicative window decrease factor in order to balance scalability and efficiency

CUBIC adjusts the congestion window based on the congestion observed on the path. For this, CUBIC uses a cubic
function as illustrated below. Compared with the slow-start and congestion avoidance phases of NewReno, the cubic
function has several benefits. After having experienced congestion, it remembers the congestion window size that
caused congestion and reduces its congestion window to allow the router buffers to drain. After that, it needs to quickly
increase its congestion window to be able to fully utilize the network. This is the role of the concave part of the cubic
function. It quickly increases the congestion window until reaching the previous value of the congestion window. This is
the plateau of the cubic function. The sender hence quicly transmits at a rate that previously caused congestion. Thanks
to the plateau of the cubic function, it does not change its transmission rate quickly. After having transmitted at this rate
for several round-trip-times without congestion, the sender starts to increase its congestion window using the convex
part of the cubic function. This increase is much faster than NewReno’s congestion avoidance and allows CUBIC
to quickly utilize the available bandwidth. This results in a much higher network utilization than using NewReno.
The parameters of the cubic function can be adjusted to have a faster ramp-up or a longer plateau. This results in

concave

Fig. 38: The concave and convex parts of a cubic function

a compromise between stability and faster utilization of available network resources, but at the risk of causing more
congestion.

The cubic function allows to adjust the congestion window. It is used when an acknowledgment is received and depends
on the delay since the previous congestion event. With CUBIC, two flows that share a single bottleneck link will have
similar congestion windows. Since their throughput will be C%’;d, the flow with a lower rtt will achieve a higher
throughput.

NewReno halves its congestion window at each congestion event. CUBIC also uses a multiplicative decrease when
it detects congestion, but using a factor of 0.7 instead of 0.5. This provides a better balance between scalability and
convergence speed than NewReno.

A CUBIC implementation uses the following function to increase its congestion window upon reception of an acknowl-
edgment: Weypic(t) = C x (t — K)3 + Wipnae. In this function, ¢ is the delay between now and the time of the previous
congestion event that marks the start of the current congestion avoidance period. K is the time period required for the
cubic function to increase the congestion window to reach W, 4,. Wi, is the congestion window that caused the
last congestion event. It corresponds to the plateau of the cubic function. CUBIC uses W.p;.(t) to compute a target
value of the congestion window after one RTT where RTT is the smoothed value of the measured round-trip-time.

When a CUBIC sender receives an acknowledgment, it computes target = Weypic(t + RTT) and increments cwnd
b target—cwnd.
cwnd

using the old NewReno congestion scheme. Since CUBIC is now widely deployed, we ignore this fourth principle.
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If a CUBIC sender detects congestion, it remembers the current value of cwnd as W, 4z, sets ssthresh = cwnd x 0.7
and sets cwnd = maz(ssthresh,2). This is the multiplicative decrease part of CUBIC®.

The CUBIC specification recommends values for the C' and K parameters of the cubic function. C should be set to

0.4 based on various studies and simulation results. K is computed as K = 1/ W where cundepocn is
the value of the congestion window at the beginning of the current congestion avoidance stage.

We can now observe the evolution of the congestion window with CUBIC. Let us start with an initial congestion
window of 10 segments and assume that one of these segments was lost. CUBIC sets its cwnd to 0.7 x 10 = 7

3/10—7
0.4
Winaz», recomputes K and starts a new cubic curve. The curve allows it to quickly reach the plateau, but it stays there

for several round-trip-times. As there is no congestion during this plateau, it moves to the convex part of the curve
and quickly increases the congestion window to efficiently utilize the available network resources. At this point, it is

segments. Since W4, = 10, it computes K = = 1.96. When the second congestion event occurs, it updates

cund
|
|
|
!

~

fast retransmit

Fig. 39: Observing the evolution of cwnd on a CUBIC connection

interesting to explore the evolution of the congestion window computed by a CUBIC sender and compare it with the
congestion window that a NewReno sender would compute. For simplicity, we ignore the beginning of the connection
and assume that both NewReno and CUBIC have reached a cwnd of 10 MSS sized segments. At this time a congestion
occurs. NewReno sets its cwnd to 5 segments and starts congestion avoidance. CUBIC sets its cuwnd to 7 segments.

Since Wi = 10, it computes K = {/ % = 1.96. The congestion window of the CUBIC connection is slightly

above the congestion window of the NewReno connection, but then it grows much faster when it enters the convex
region. This enables CUBIC to utilize network resources much faster than NewReno. Mathematical models of the
CUBIC congestion control scheme have also been developed. RFC 9438 uses a similar deterministic loss model as
the one we used earlier. With a multiplicative decrease factor set to 0.7, this model computes an average congestion

. Yrtt3
window of {/ &3T x Vi
. /p3

3.14 The network layer

The main objective of the network layer is to allow hosts, connected to different networks, to exchange information
through intermediate systems called router. The unit of information in the network layer is called a packet.

Before explaining the network layer in detail, it is useful to begin by analyzing the service provided by the datalink
layer. There are many variants of the datalink layer. Some provide a connection-oriented service while others provide
a connectionless service. In this section, we focus on connectionless datalink layer services as they are the most widely

6 This is a simplified version of this multiplicative decrease. Additional details are provided in RFC 9438.
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Fig. 40: Comparing the evolution of the congestion window using CUBIC and NewReno
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Fig. 41: The network layer in the reference model
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used. Using a connection-oriented datalink layer causes some problems that are beyond the scope of this chapter. See
RFC 3819 for a discussion on this topic.

Network Network
. Frames .

Datalink Datalink

Physical Physical

Fig. 42: The point-to-point datalink layer

There are three main types of datalink layers. The simplest datalink layer is when there are only two communicating
systems that are directly connected through the physical layer. Such a datalink layer is used when there is a point-to-
point link between the two communicating systems. The two systems can be hosts or routers. PPP (Point-to-Point
Protocol), defined in RFC 1661, is an example of such a point-to-point datalink layer. Datalink layers exchange frames
and a datalink frame sent by a datalink layer entity on the left is transmitted through the physical layer, so that it can reach
the datalink layer entity on the right. Point-to-point datalink layers can either provide an unreliable service (frames can
be corrupted or lost) or a reliable service (in this case, the datalink layer includes retransmission mechanisms similar to
the ones used in the transport layer). The unreliable service is frequently used above physical layers (e.g. optical fiber,
twisted pairs) having a low bit error ratio while reliability mechanisms are often used in wireless networks to recover
locally from transmission errors.

The second type of datalink layer is the one used in Local Area Networks (LAN). Conceptually, a LAN is a set of
communicating devices such that any two devices can directly exchange frames through the datalink layer. Both hosts
and routers can be connected to a LAN. Some LANSs only connect a few devices, but there are LANs that can connect
hundreds or even thousands of devices.

Fig. 43: A local area network

In the next chapter, we describe the organization and the operation of Local Area Networks. An important difference
between the point-to-point datalink layers and the datalink layers used in LANSs is that in a LAN, each communicating
device is identified by a unique datalink layer address. This address is usually embedded in the hardware of the device
and different types of LANs use different types of datalink layer addresses. Most LANs use 48-bits long addresses
that are usually called MAC addresses. A communicating device attached to a LAN can send a datalink frame to any
other communicating device that is attached to the same LAN. Most LANs also support special broadcast and multicast
datalink layer addresses. A frame sent to the broadcast address of the LAN is delivered to all communicating devices
that are attached to the LAN. The multicast addresses are used to identify groups of communicating devices. When a
frame is sent towards a multicast datalink layer address, it is delivered by the LAN to all communicating devices that
belong to the corresponding group.
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The third type of datalink layers are used in Non-Broadcast Multi-Access (NBMA) networks. These networks are
used to interconnect devices like a LAN. All devices attached to an NBMA network are identified by a unique datalink
layer address. However, and this is the main difference between an NBMA network and a traditional LAN, the NBMA
service only supports unicast. The datalink layer service provided by an NBMA network supports neither broadcast
nor multicast.

Unfortunately no datalink layer is able to send frames of unlimited size. Each datalink layer is characterized by a
maximum frame size. There are more than a dozen different datalink layers and unfortunately most of them use a
different maximum frame size. The network layer must cope with the heterogeneity of the datalink layer.

3.14.1 IP version 6

In the late 1980s and early 1990s the growth of the Internet was causing several operational problems on routers. Many
of these routers had a single CPU and up to 1 MByte of RAM to store their operating system, packet buffers and
routing tables. Given the rate of allocation of IPv4 prefixes to companies and universities willing to join the Internet,
the routing tables where growing very quickly and some feared that all IPv4 prefixes would quickly be allocated. In
1987, a study cited in RFC 1752, estimated that there would be 100,000 networks in the near future. In August 1990,
estimates indicated that the class B space would be exhausted by March 1994. Two types of solution were developed
to solve this problem. The first short term solution was the introduction of Classless Inter Domain Routing (CIDR).
A second short term solution was the Network Address Translation (VA7) mechanism, defined in RFC 1631. NAT
allowed multiple hosts to share a single public IPv4 address.

However, in parallel with these short-term solutions, which have allowed the IPv4 Internet to continue to be usable
until now, the Internet Engineering Task Force started working on developing a replacement for IPv4. This work
started with an open call for proposals, outlined in RFC 1550. Several groups responded to this call with proposals for
a next generation Internet Protocol (IPng) :

* TUBA proposed in RFC 1347 and RFC 1561
 PIP proposed in RFC 1621
 SIPP proposed in RFC 1710

The IETF decided to pursue the development of IPng based on the SIPP proposal. As IP version 5 was already used
by the experimental ST-2 protocol defined in RFC 1819, the successor of IP version 4 is IP version 6. The initial IP
version 6 defined in RFC 1752 was designed based on the following assumptions :

* [Pv6 addresses are encoded as a 128 bits field
* The IPv6 header has a simple format that can easily be parsed by hardware devices
* A host should be able to configure its IPv6 address automatically

* Security must be part of IPv6

Note: The IPng address size

When the work on IPng started, it was clear that 32 bits was too small to encode an IPng address and all proposals
used longer addresses. However, there were many discussions about the most suitable address length. A first approach,
proposed by SIPP in RFC 1710, was to use 64 bit addresses. A 64 bits address space was 4 billion times larger than
the IPv4 address space and, furthermore, from an implementation perspective, 64 bit CPUs were being considered and
64 bit addresses would naturally fit inside their registers. Another approach was to use an existing address format. This
was the TUBA proposal (RFC 1347) that reuses the ISO CLNP 20 bytes addresses. The 20 bytes addresses provided
room for growth, but using ISO CLNP was not favored by the IETF partially due to political reasons, despite the fact
that mature CLNP implementations were already available. 128 bits appeared to be a reasonable compromise at that
time.
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IPv6 addressing architecture

The experience of IPv4 revealed that the scalability of a network layer protocol heavily depends on its addressing archi-
tecture. The designers of IPv6 spent a lot of effort defining its addressing architecture RFC 3513. All IPv6 addresses are
128 bits wide. This implies that there are 340, 282, 366, 920, 938, 463, 463, 374,607,431, 768, 211,456(3.4 x 1038)
different IPv6 addresses. As the surface of the Earth is about 510,072,000 km2, this implies that there are about
6.67 x 1023 IPv6 addresses per square meter on Earth. Compared to IPv4, which offers only 8 addresses per square
kilometer, this is a significant improvement on paper.

Note: Textual representation of IPv6 addresses

It is sometimes necessary to write [Pv6 addresses in text format, e.g. when manually configur-
ing addresses or for documentation purposes. The preferred format for writing IPv6 addresses
is X:X:X:X:X:X:X:X, where the x ‘s are hexadecimal digits representing the eight 16-bit parts
of the address. Here are a few examples of IPv6 addresses :

e abcd:ef01:2345:6789:abcd:ef01:2345:6789
e 2001:db8:0:0:8:800:200c:417a
o £fe80:0:0:0:219:e3ff:fed7:1204

IPv6 addresses often contain a long sequence of bits set to 8. In this case, a compact notation has been defined. With
this notation, :: is used to indicate one or more groups of 16 bits blocks containing only bits set to 0. For example,

* 2001:db8:0:0:8:800:200c:417a is represented as 2001:db8: :8:800:200c:417a
e £f01:0:0:0:0:0:0:101 is represented as ££01::101

* 0:0:0:0:0:0:0:1 isrepresented as ::1

* 0:0:0:0:0:0:0:0 is represented as : :

An IPv6 prefix can be represented as address/length, where length is the length of the prefix in bits. For example, the
three notations below correspond to the same IPv6 prefix :

¢ 2001:0db8:0000:cd30:0000:0000:0000: 0000 / 60
e 2001:0db8::cd30:0:0:0:0/60
e 2001:0db8:0:cd30:: /60

IPv6 supports unicast, multicast and anycast addresses. An IPv6 unicast address is used to identify one datalink-layer
interface on a host. If a host has several datalink layer interfaces (e.g. an Ethernet interface and a WiFi interface), then
it needs several IPv6 addresses. In general, an IPv6 unicast address is structured as shown in the figure below.

128 bits
N bits M bits 128 - N - M bits
Global routing prefix Subnet ID Interface ID
Can be used to identify the Usually 64 bits
ISP responsible for this address Based on MAC address

A subnet in this ISP or
a customer of this ISP

Fig. 44: Structure of IPv6 unicast addresses
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An IPv6 unicast address is composed of three parts :
1. A global routing prefix that is assigned to the Internet Service Provider that owns this block of addresses
2. A subnet identifier that identifies a customer of the ISP
3. An interface identifier that identifies a particular interface on a host

The subnet identifier plays a key role in the scalability of network layer addressing architecture. An important point
to be defined in a network layer protocol is the allocation of the network layer addresses. A naive allocation scheme
would be to provide an address to each host when the host is attached to the Internet on a first come first served basis.
With this solution, a host in Belgium could have address 2001 :db8: : 1 while another host located in Africa would use
address 2001:db8: : 2. Unfortunately, this would force all routers on the Internet to maintain one route towards each
host. In the network layer, scalability is often a function of the number of routes stored on the router. A network will
usually work better if its routers store fewer routes and network administrators usually try to minimize the number of
routes that are known by their routers. For this, they often divide their network prefix in smaller blocks. For example,
consider a company with three campuses, a large one and two smaller ones. The network administrator would probably
divide his block of addresses as follows :

¢ the bottom half is used for the large campus
* the top half is divided in two smaller blocks, one for each small campus

Inside each campus, the same division can be done, for example on a per building basis, starting from the buildings
that host the largest number of nodes, e.g. the company datacenter. In each building, the same division can be done
on a per floor basis, ... The advantage of such a hierarchical allocation of the addresses is that the routers in the large
campus only need one route to reach a router in the smaller campus. The routers in the large campus would know more
routes about the buildings in their campus, but they do not need to know the details of the organization of each smaller
campus.

To preserve the scalability of the routing system, it is important to minimize the number of routes that are stored on
each router. A router cannot store and maintain one route for each of the almost 1 billion hosts that are connected to
today’s Internet. Routers should only maintain routes towards blocks of addresses and not towards individual hosts.
For this, hosts are grouped in subnets based on their location in the network. A typical subnet groups all the hosts that
are part of the same enterprise. An enterprise network is usually composed of several LANs interconnected by routers.
A small block of addresses from the Enterprise’s block is usually assigned to each LAN.

In today’s deployments, interface identifiers are always 64 bits wide. This implies that while there are 2'28 different
IPv6 addresses, they must be grouped in 254 subnets. This could appear as a waste of resources, however using 64
bits for the host identifier allows IPv6 addresses to be auto-configured and also provides some benefits from a security
point of view, as explained in section /CMPv6.

In practice, there are several types of IPv6 unicast address. Most of the IPv6 unicast addresses are allocated in blocks
under the responsibility of IANA. The current IPv6 allocations are part of the 2000::/3 address block. Regional Internet
Registries (RIR) such as RIPE in Europe, ARIN in North-America or AfriNIC in Africa have each received a block of
IPv6 addresses that they sub-allocate to Internet Service Providers in their region. The ISPs then sub-allocate addresses
to their customers.

When considering the allocation of IPv6 addresses, two types of address allocations are often distinguished. The RIRs
allocate provider-independent (PI) addresses. PI addresses are usually allocated to Internet Service Providers and large
companies that are connected to at least two different ISPs [CSP2009]. Once a PI address block has been allocated
to a company, this company can use its address block with the provider of its choice and change its provider at will.
Internet Service Providers allocate provider-aggregatable (PA) address blocks from their own PI address block to their
customers. A company that is connected to only one ISP should only use PA addresses. The drawback of PA addresses
is that when a company using a PA address block changes its provider, it needs to change all the addresses that it uses.
This can be a nightmare from an operational perspective and many companies are lobbying to obtain P/ address blocks
even if they are small and connected to a single provider. The typical size of the I[Pv6 address blocks are :
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¢ /32 for an Internet Service Provider

» /48 for a single company

¢ /56 for small user sites

* /64 for a single user (e.g. a home user connected via ADSL)

e /128 in the rare case when it is known that no more than one host will be attached

There is one difficulty with the utilization of these IPv6 prefixes. Consider Belnet, the Belgian research ISP that
has been allocated the 2001:6a8::/32 prefix. Universities are connected to Belnet. UCLouvain uses prefix
2001:6a8:3080: : /48 while the University of Liege uses 2001:6a8:2d80::/48. A commercial ISP uses prefix
2a02:2788::/32. Both Belnet and the commercial ISP are connected to the global Internet.

Belnet

2001:6a8::/32 ISP1
2a02:2788::/32

The Belnet network advertises prefix 2001:6a8: : /32 that includes the prefixes from both UCLouvain and ULg. These
two subnetworks can be easily reached from any internet connected host. After a few years, UCLouvain decides
to increase the redundancy of its Internet connectivity and buys transit service from ISP1. A direct link between
UCLouvain and the commercial ISP appears on the network and UCLouvain expects to receive packets from both
Belnet and the commercial ISP.

ULg
2001:6a8:2d80::/48

UcCL
2001:6a8:3080::/48

Now, consider how a router inside alpha.com would reach a host in the UCLouvain network. This router has two
routes towards 2001:6a8:3080: : 1. The first one, for prefix 2001:6a8:3080: : /48 is via the direct link between the
commercial ISP and UCLouvain. The second one, for prefix 2001:6a8: : /32 is via the Internet and Belnet. Since
RFC 1519 when a router knows several routes towards the same destination address, it must forward packets along the
route having the longest prefix length. In the case of 2001:6a8:3080: : 1, this is the route 2001:6a8:3080::/48
that is used to forward the packet. This forwarding rule is called the longest prefix match or the more specific match.
All IP routers implement this forwarding rule.

To understand the longest prefix match forwarding, consider the IPv6 routing below.

Destination Gateway

::/0 fe80: :dead:beef
il -
2a02:2788:2c4:16f::/64 eth®
2001:6a8:3080::/48 fe80: :bad:cafe
2001:6a8:2d80::/48 fe80: :bad:bad
2001:6a8::/32 fe80: :aaaa:bbbb

With the longest match rule, the route : : /0 plays a particular role. As this route has a prefix length of 0 bits, it matches
all destination addresses. This route is often called the default route.

¢ apacket with destination 2a02:2788:2c4:161: : 1 received by router R is destined to a host on interface eth® .

* a packet with destination 2001:6a8:3080::1234 matches three routes : ::/0, 2001:6a8::/32 and
2001:6a8:3080: : /48. The packet is forwarded via gateway fe80: :bad:cafe

* a packet with destination 2001:1890:123a::1:1e matches one route : ::/0. The packet is forwarded via
fe80: :dead:beef
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* apacket with destination 2001:6a8:3880:40: : 2 matches two routes : 2001:6a8::/32 and : : /0. The packet
is forwarded via fe80: :aaaa:bbbb

The longest prefix match can be implemented by using different data structures. One possibility is to use a trie. Details
on how to implement efficient packet forwarding algorithms may be found in [Varghese2005].

For the companies that want to use IPv6 without being connected to the IPv6 Internet, RFC 4193 defines the Unique
Local Unicast (ULA) addresses (£c00: : /7). These ULA addresses play a similar role as the private IPv4 addresses
defined in RFC 1918. However, the size of the £c00: : /7 address block allows ULA to be much more flexible than
private IPv4 addresses.

Furthermore, the IETF has reserved some IPv6 addresses for a special usage. The two most important ones are :

* 0:0:0:0:0:0:0:1(::1incompact form) is the IPv6 loopback address. This is the address of a logical interface
that is always up and running on IPv6 enabled hosts.

* 0:0:0:0:0:0:0:0 (:: in compact form) is the unspecified IPv6 address. This is the IPv6 address that a host
can use as source address when trying to acquire an official address.

The last type of unicast IPv6 addresses are the Link Local Unicast addresses. These addresses are part of the fe80.:/10
address block and are defined in RFC 4291. Each host can compute its own link local address by concatenating the
fe80::/64 prefix with the 64 bits identifier of its interface. Link local addresses can be used when hosts that are attached
to the same link (or local area network) need to exchange packets. They are used notably for address discovery and
auto-configurati