Detection of Ionizing radiation Introduction

Th. Cocolios, N. Severijns (KU Leuven) E.Cortina (UCLouvain)

Outline

- 1. Introduction
- 2. Prerequisites
- 3. Ionizing radiation and its sources

Section 1

Introduction

1. Introduction

Objectives

☐ Study of ionizing radiations and their detection

G0Z55A/LPHYS2102 Introduction 2023-2024 5 / 81

Scope of the course

- ☐ Interaction of ionizing radiation with matter:
 - mechanisms, characteristics, applications
 - \square heavy & light charged particles, neutrons, γ -rays
 - basic dosimetry
- Detection of ionizing radiation:
 - main principles, some examples, applications)
 - Gaseous detectors
 - Semiconducting detectors
 - Scintillators
- ☐ Electronics in nuclear physics experiments
- Accelerators
- Production of radioisotopes

Bibliography

- Main references:
 - G.F. Knoll, Radiation Detection and Measurement
 - ☐ H. Kolanoski, N. Wermes, Particle Detectors (fundamentals and applications)
- Recommended references:
 - W.R. Leo Techniques for Nuclear and Particle Physics Experiments
 - C. Grupen, B. Schwartz Particle Detectors (2nd edition)
- ☐ To go in depth:
 - D. McGregor, J. Kenneth Shultis, Radiation Detection: Concepts, Methods and Devices.

Course activities

- ☐ Course activities spans over the two semesters.
- Theory
 - ☐ Lectures: Ionizing radiation and its detection
 - Accelerators and Artificial radioactivity
 - Exercices Bulletin available after each chapter
 - Project on an advanced topic
- Laboratory:
 - ☐ 1st semester: Discovery of basic techniques and concepts
 - 2nd semester: Project.
 - Physics measurement: Several topics available
 - Two oral presentations: March and June

Planning: Theory Lectures

- ☐ All lectures at 08h30-10h30 except the first one (14h00-16h00)
 - ☐ E. Cortina lectures will take place at LLN.

Bat. Marc de Hemptinne room E.161

- N. Severijns lectures will be at Heverlee Ahrenberg III campus room 200E 01.212
- ☐ Th. Cocolios lectures will be at 13/12 at 200E 01.212 (Heverlee) 20/12 ar E.161 (LLN)
- ☐ Online room always available:

https://eu.bbcollab.com/guest/8fdb41d7b1124cbd83cc34ae780faaee

- Lectures will be broadcasted but not recorded.
- ☐ Advanced topics: Topics available on Toledo/Moodle Choice by the end of October Oral presentation in February 2024

Planning: Theory Lectures

Date	Lecturer	Contents	
Mon. 02/10/23	E. Cortina	Introduction + Radiation sources	
Wed. 04/10/23	E. Cortina	Interaction of Radiation with matter (I)	
Wed. 11/10/23	E. Cortina	Interaction of Radiation with matter (II)	
Wed. 18/10/23	N. Severijns	General Properties of Detectors	
Wed. 25/10/23	E. Cortina	Gas Detectors	
Wed. 08/11/23	N. Severijns	Scintillation Detectors	
Wed. 15/11/23	E. Cortina	Semiconductor Detectors	
Wed. 22/11/23	N. Severijns	Light Detectors	
Wed. 29/11/23	N. Severijns	Electronics	
Wed. 06/12/23	N. Severijns	Electronics	
Wed. 13/12/23	Th. Cocolios	Accelerators	
Wed. 20/12/23	Th. Cocolios	Production of radioisotopes	

Planning: Laboratory

- ☐ Laboratories are "freely" accessible. You only come when you wish/can.
 - ☐ Heverlee: rooms 00.89-90 and 01.84b
 - ☐ LLN: Bat. Marc de Hemptinne room E.064
- Assistants will be available:
 - ☐ Sem.1: Mondays 13h00-16h00 (from Oct 24, 2023)
 - ☐ Sem.2: Thursdays 13h00-16h00
- ☐ Introductory session: Heverlee: 24/10 18h00-19h00 at 200D-05.34

LLN: 24/10 18h30-19h30 at E.161

- Safety rules reminder
- Radiation protection formalities: dosimeter
- ☐ Logbook usage introduction
- Presentations of projects and lab activities
- Laboratory visit

Practical Informations

- When?
 - ☐ Theory: Wednesdays 8h30-10h30 (except 1st lecture)
 - Exercices: 15h-16h on selected Mondays (classroom+broadcasted)
 - Labs: Sem.1: Mondays 13h00-16h00 (from Oct 30, 2023)

Sem.2: Thursdays 13h00-16h00

- Where?
 - ☐ Bat. Marc de Hemptinne room E.161
 - ☐ Ahrenberg III campus room 200E 01.212
 - Broadcasted on

https://eu.bbcollab.com/guest/8fdb41d7b1124cbd83cc34ae780faaee

- Labs: Nuclear instrumentation labs at KU Leuven and UCLouvain
- ☐ Slides, announcements, infos, ...

Toledo: toledo.kuleuven.be

Moodle: moodle.uclouvain.be/course/view.php?id=3817

Evaluation

Written exam (in June): (45%)	
5-6 questions over the topics treated during the theory and	the
exercices lectures.	

- One question about nuclear electronics
- One question about Artificial Radioactivity and Accelerators
- ☐ Individual project over an advanced topic. (10%) List of topics quite soon on Moodle/Toledo
 - □ Oral presentation in February/March 2024.
- ☐ Laboratory project: (45%)
 - Two presentations in 2nd semester
 - ☐ Presentation about exp. measurements in Sem 1.
 - Final presentation of the project
- ☐ At least 7/20 in each of the above activities. Overall mark >10/20 ☐ Written exam: overall mark AND Accel. and Art. Radiac. guestion

Section 2

Prerequisites

2. Prerequisites

Relativistic kinematics Atoms and Nuclei Nuclear stability Units and Dimensions

Prerequisites

- 1. Basics on Atomic Physics and Solid State
 - Bohr Model
 - Quantum numbers
 - Energy bands
 - Ionization potential
 - ☐ Chapter 2: Turner. Atoms, Radiation and Radiation Protection
- 2. Basics on Nuclear Structure
 - Binding Energies
 - Nuclear level diagrams
 - Nuclear reactions
 - Nuclear stability
 - Chapter 3: Turner. Atoms, Radiation and Radiation Protection
- 3. Basics on relativistic kinematics → Exercices
- 4. Counting Statistics → Self-learning module in Toledo/Moodle

G0Z55A/LPHYS2102 Introduction 2023-2024 16 / 81

Relativistic kinematics

- Radiation study needs relativistic treatment.
- \square Relativity \rightarrow c=light speed is a constant in any reference frame
- \Box The momentum \vec{p} of a particle of (rest) mass m_0 is

$$\vec{p} = m_0 \vec{v} = m_0 \vec{\beta} c \qquad \qquad \vec{\beta} = \frac{\vec{v}}{c}$$

 \square A quantity related to β is the so called Lorentz factor γ :

$$\gamma = \frac{1}{\sqrt{1 - \beta^2}}$$

- \square Relativistic Energy: $E^2 = m_0^2 c^4 + p^2 c^2$

 - \square $m_0 = \text{rest mass}$

Relativistic kinematics

 \square Lorentz transformation: Relation between E and \vec{p} in frames moving with velocity $\vec{\beta}$ wrt each other

$$\left(\begin{array}{c} E^* \\ \rho_{\parallel}^* \end{array} \right) = \left(\begin{array}{cc} \gamma & -\gamma\beta \\ -\gamma\beta & \gamma \end{array} \right) \left(\begin{array}{c} E \\ \rho_{\parallel} \end{array} \right)$$

Useful relations:

$$\vec{\beta} = \frac{\vec{p}}{E}$$

$$\gamma \beta = \frac{p}{m_0}$$

$$E = \gamma m_0$$

Relativistic kinematics

☐ Relativistic Kinetic Energy

$$E_k = E - m_0 = m_0(\gamma - 1)$$

Useful relations:

$$p = \sqrt{E_k(E_k + 2m_0)}$$

$$\gamma = \varepsilon + 1$$

$$\varepsilon = \frac{E_k}{m_0} \rightarrow \beta = \frac{\sqrt{\varepsilon(\varepsilon + 2)}}{\varepsilon + 1}$$

$$\gamma \beta = \sqrt{\varepsilon(\varepsilon + 2)}$$

Atomic and Nuclear Structure

electron	Point-like		
proton-neutron	1 fm	$10^{-15} \; {\rm m}$	
nucleus	10 fm	10^{-14} m	
atom	1 Å	10^{-10} m	

□ Nucleus of an atom is identified by two numbers:

Z : number of protons

A : number of nucleons=protons+neutrons

- ☐ Each species of an atom is called nuclide
- \square Nuclide representation : ${}_{7}^{A}X$ X=Chemical Symbol
 - \square Same Z and different $A \rightarrow \mathsf{ISOTOPES}$
 - \square Same N and different $Z \rightarrow \mathsf{ISOTONES}$

Forces in the nucleus

- There are two forces acting in the nucleus:
 - ☐ Strong force (range ~1 fm). Attractive
 - ☐ EM force. Repulsive. Only protons
 - ☐ Nucleus is a potential well
 - Energy levels (QM)
- \square Protons approaching to nucleus ${}_Z^AX$:
 - □ R> 1 fm
 - ☐ Repulsive EM potential (Z protons)
 - \square R \leq 1 fm (Energetic protons)
 - Potential drops abruptly
 - Protons "feels" strong force and "falls" in the potential well
 - \square Proton is part nucleus \rightarrow nuclear transf.
- Neutrons
 - No repulsive potential
 - Neutrons of any energy can approach to nucleus and make a nuclear reaction

Example

Estimate the minimum energy that a proton would have to have in order to react with the nucleus of a stationary Cl atom.

Solution:

proton
$$A = 1$$

 $Z = 1$ $r_p = 1.3 \times 1^{1/3} = 1.3 \text{ fm}$
CI $A = 35$
 $Z = 17$ $r_{CI} = 1.3 \times 35^{1/3} = 4.4 \text{ fm}$

Proton should have enough energy to overcome the coulomb barrier.

$$V(r) = k_0 \frac{q_1 q_2}{r} \qquad q_{Cl} = 17e \qquad V(r) = 7.0 \times 10^{-13} J$$

$$= e^{-1.609 \times 10^{-19}} C \qquad = 4.4 MeV$$

$$k_0 = \frac{1}{4\pi\epsilon_0} = 8.98755 \times 10^9 Nm^2 c^{-2}$$

Nuclear levels

- Nucleus is a quantum mechanical system
 - Quantized levels
 - \square ΔE between levels \sim MeV
- ☐ Strong force is more complicated than other forces (i.e. electromagnetic)
 - Nuclear levels cannot be computed precisely
 - Measured experimentally
- ☐ Finite number of energy levels:
 - ☐ Ground state (lower energy)
 - \square Excited states: represented as $_{Z}^{Am}X$
- \square Some nucleus have no excited state: ${}_{1}^{2}H$ =deuteron, ${}_{2}^{4}He$ =alpha
- ☐ Energy levels diagrams=Useful graphical representation of nuclear level structure

Nuclear levels

http://nucleardata.nuclear.lu.se/toi/sumframe.htm http://www.lnhb.fr/nuclear-data/module-lara/ https://www-nds.iaea.org/relnsd/NdsEnsdf/masschain.html

G0Z55A/LPHYS2102 Introduction 2023-2024 24 / 81

Nuclear Binding Energies

- □ Nuclear binding energy (B) is the minimum energy required to separate a nucleus into its components. (Z protons, N neutrons)
- □ Its mass equivalent relates the nuclear mass (m_N) to the mass of protons (m_p) and neutrons (m_n)

$$m_N = Nm_n + Zm_p - \frac{B}{c^2}$$

- \square By definition B is positive for a bound system
- B decreases nucleus mass
- □ Nuclear stability increases as *B* increase
- Nuclear binding energy is approximately linear wrt A
 - \square Each nucleon is bound to nucleus with the same energy: $B/A \sim 7-8$ MeV
 - \Box in the plot B/A vs A shows interesting features explained by semi-empirical mass formula (liquid drop model)

Nuclear Binding Energies

G0Z55A/LPHYS2102

Nuclear Binding Energies

 \square In general what is tabulated are atomic masses (m).

$$m = Nm_n + Z(m_p + m_e) - \frac{B}{c^2} - \frac{b}{c^2}$$

- □ $b(eV) \simeq 20.8 \times Z^{7/3}$ is the binding energy of the electrons
- ☐ the effect of electronic binding energies is quite limited
 - \square 3 orders of magnitude less than B
 - Cancels out when using mass differences (usual case)
- ☐ Atomics mass usually given in atomic mass units
- \square Sometimes atomic mass are given as mass excess Δ (in MeV)

$$\Delta = (m - Au)c^2$$

Nuclear stability

http://www.nndc.bnl.gov https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html

G0Z55A/LPHYS2102 Introduction 2023-2024 28 / 81

Units: Distance, Area, Time

- Units used are those commonly used in nuclear and particle physics
- ☐ Most of times derived from SI, but some are specific of these fields.
- Distance:

Nuclear dimensions are of the order of 10^{-15} m = 1 fm = 1 fermi

☐ Area:

Mostly encountered when discussing cross-sections. 1 barn = 100 fm^2

☐ Time:

Used SI units: seconds (s) Time scale for nuclear processes is quite short $(10^{-19} \text{-} 10^{-11} \text{ s})$

Lifetimes can cover a large range $(10^{-25}-10^{39} \text{ s})$

Long periods may be expressed in hours, days, weeks, years, ...

G0Z55A/LPHYS2102

Units: Energy

- ☐ Traditional unit for measurement of radiation energy is the electron-volt (eV).
 - 1 eV = Kinetic energy gained by an electron through a potential difference of 1 V.

$$1eV = 1.6 \times 10^{-19} J$$

Usually used multiples of this quantity

$$C_{water} = 4.18 J/kgK$$

$$Q = mC\Delta T = 1 \text{ eV}$$

$$\Delta T = \frac{Q}{mC} = 3.82 \times 10^{-20} \text{ K}$$

$$m_{bee} = 1 gr$$
 $v_{bee} = 1 m/s$
 $m_{bee} c^2 = 9 \times 10^3 J$
 $= 5.8 \times 10^{32} \text{ eV}/c^2$
 $KE_{bee} = \frac{1}{2} m_{bee} v_{bee}^2$
 $\sim = 10^{-3} J$
 $= 6.25 \times 10^{16} \text{ eV}$

$$T_{LHC} = 14 \times 10^{12} \text{ eV}$$
 10^{14} protons
 $E_T = 10^{14} \cdot 14 \times 10^{12} \text{ eV}$
 $= 10^8 J$
 $10^8 J \rightarrow m = 100 \text{ tons}$
 $v = 100 \text{ km/h}$

Units: Mass

- ☐ Atomic and Nuclear masses are given in atomic mass units (u)
- ☐ It is defined as one twelfth of the rest mass of an unbound atom of carbon-12 in its nuclear and electronic ground state.

$$1u = 1.660 539 066 60(50) \times 10^{-27} kg$$

- \square When dealing with particles we use the rest mass (m_0) expressed in MeV/c² or GeV/c²
- ☐ These mass units come from Einstein relation $E = mc^2$

$$1u = 931.49410242(28) \text{ MeV/c}^2$$

$$m_p = 938.272 \ 088 \ 16(29) \ \text{MeV/c}^2$$

 $m_n = 939.565 \ 420 \ 52(54) \ \text{MeV/c}^2$
 $m_e = 0.510 \ 998 \ 950 \ 00(15) \ \text{MeV/c}^2 \ (\sim 511 \ \text{keV/c}^2)$

G0Z55A/LPHYS2102

Nuclear masses data sources

☐ The reference of all data is:

The AME2020 atomic mass evaluation (II). Tables, graphs, and references.

M.Wang et al. Chinese Phys. C 45 030003 (2021). https://iopscience.iop.org/article/10.1088/1674-1137/abddaf

- Nuclear data charts:
 - □ https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html
 - ☐ https://www.nndc.bnl.gov/
- ☐ On paper. Quite outdated. (available on Toledo/Moodle)
 - Turner. Appendix D.
 - ☐ Martin. Appendix B

Section 3

lonizing radiation and its sources

3. Ionizing radiation and its sources

Nuclear reactions Radioactive decays Light Charged particles sources Heavy charged particles sources Light neutral particles sources Heavy neutral particles sources

lonizing and non-ionizing radiation

- Non-lonizing radiation refers to any type of radiation that does not carry enough energy per quantum to ionize atoms or molecules
 - \square Electromagnetic radiation with $\lambda > 300$ nm
 - Very low energy neutrons
 - Some charged particles interactions
- Usually non-ionizing radiation is harmless, but it can produce effects
 - It can excite the atoms
 - Intense infrared laser can be dangerous to retina
 - Microwaves can heat food
 - J ...
- Ionizing radiation is then any kind of radiation that can ionize atoms and molecules.

Ionization Energies of Atoms

- Average excitation potential
 - ☐ Gas ~30 eV
 - ☐ Semiconductor ~3 eV
 - ☐ Scintillator ~100 eV

Example: Ionizing vs. non-ionizing EM radiation

Sources of ionizing radiation

Automatal and one and

Radiation	has	two	main	kind	of	sources:	Natural	sources	and	Artificial
sources										

☐ Matural courses

Artificial sources	Li Matural Sources.
☐ Radioactive decays and nu	uclear 🗖 Cosmic radiation
reactions	Terrestrial radiation
☐ Accelerators → Lectures in	n Dec 🗖 Radioisotopes from
☐ Nuclear reactors	biosphere

Discover by yourself the natural sources

X-ray machines

Key questions

- ☐ What's the cosmic radiation? what's its origin? composition?
- ☐ Do you know ¹⁴C? How it's produced?
- ☐ Where are the places in which you can find natural radiation?
- Do you know if a banane or the human body is radioactive?

G0Z55A/LPHYS2102

Ionizing radiation

 During this lectures we are going to divide ionizing radiations in four categories

	Charged Particles	Neutral Particles
Light Particles	e ⁺	X-rays γ -rays
	e ⁻	γ -rays
	p,d,α μ,π,K heavy nuclei	neutrons
Heavy Particles	μ,π,K	
	heavy nuclei	

- ☐ The main reason of this classification is their interaction with matter
 - Charged and neutral particles do not interact with matter in the same way
 - ☐ For charged particles: $m_{\mu} \sim 200 m_e$, $m_p \sim 2000 m_e$: Radiative phenomena should be taken into consideration for electrons

Nuclear reactions

- ☐ Interaction between a nucleus A and an incident particle a
- \square Nuclear reaction produces another particle b and a resulting nucleus B

$$a + A \rightarrow b + B \equiv A(a, b)B$$

- Nuclear reactions can be divided into two categories:
 - \square Scattering: a = b
 - \square Reactions: $a \neq b$
- ☐ An special type of nuclear reactions are nuclear decays

$$A \rightarrow B + b$$

Nuclear reactions

Scat	tering processes can be
	Elastic: Conserve Kinetic Energy. (i.e. Coulomb scattering)
	Inelastic: Kinetic energy is not conserved (i.e. nucleus is left in an excited state)
Read	ctions can be classified into three categories
	Direct reactions: incident particle interacts with a limited number of nucleons (high energy)
	Compound nuclear reactions: incident particle becomes bound to the nucleus before the reaction continues. The final state depends on the compound nucleus
	Resonance reactions: Intermediate state between previous cases. The incident particle becomes quasi-bound to the nucleus before the reaction continues.

G0Z55A/LPHYS2102 Introduction 2023-2024 41 / 81

Nuclear reactions

- ☐ Several conservation laws must be considered in nuclear reactions
 - lacktriangledown Mass/energy, momentum and charge must be ALWAYS be conserved
 - Kinetic energy cannot be conserved
- ☐ At low energies the number and identity of particles do not change.
 - Number of neutrons and protons will not change
 - \square Exception: Processes with weak interactions (i.e β decays)
- ☐ Low energy processes generally involves
 - \square p, n
 - \square Bound systems with A low (i.e d, α)
- \square At high energies ($E_a > 280 MeV$) new particles can be created

Nuclear reactions: Energetics

- ☐ Energetics of nuclear reactions can be established with atomic masses
 - It's important to look for the number of electrons before and after
- □ In a reaction $a + A \rightarrow B + b$ the Q-value is defined as:

$$Q = m_N(A) + m_N(a) - m_N(B) - m_N(b)$$

- \square Reactions with Q > 0 are called exothermic reactions
 - ☐ Reaction products have a mass smaller than the initial nuclides
 - ☐ All decay processes are exothermic
- \square Reactions with Q < 0 are called endothermic reactions
 - ☐ Initial nuclides have a mass smaller than the reaction products
 - ☐ This reactions can always occur if additional kinetic energy is supplied to incident particle.
 - ☐ Energetic balance should be done always in the center-of-mass frame

$$E_{cm} = \frac{E_{lab}}{1 + \frac{m_a}{m_A}} > Q$$

Radioactive decay

☐ Radioactive Decay: is the process by which a nucleus of an unstable atom decreases its total energy by spontaneously emitting radiation/

Radioactive decay

- ☐ Radiactivity is a spontaneous transformation
 - ☐ Important source of information in Nuclear and Atomic Physics
 - \square Spontaneus processes \rightarrow Q of the reaction is positive
- Origin: rearrangement of the nucleus constituents because they are not arranged in the lowest energy state
- Radioactive transformation involves emission of particles:
 - \square Emission of α particles $\rightarrow \alpha$ -decay.
 - \square Emission of $e^{\pm} \rightarrow \beta^{\pm}$ -decay, Internal Conversion, Auger electrons
 - \square Emission of photons $\rightarrow \gamma$ -decay, X rays
 - ☐ Emission of neutrons (evaporation), protons, fission fragments
- ☐ The rate of decay or transformations is described by its activity:
 - Number of atoms that decay per unit time
 - □ Unit: Becquerel = 1 disintegration per second \rightarrow 1 Bq = 1 s^{-1}
 - \square Curie (Ci): Activity of 1 gr of 226 Ra \rightarrow 1 Ci = 3.7×10^{10} Bq.
 - ☐ Activity decays exponentially with time

Exponential Decay

- \square N(t): Number of atoms of a radionuclide at time t
- \square λ : Probability that the radionuclide decays in a dt (constant)
- \Box dN(t): Number of disintegration can be expressed as:

$$dN(t) = -\lambda N(t)dt$$

$$A = -\frac{dN(t)}{dt} = \lambda N(t)$$

$$A = -\frac{dN(t)}{dt} = \lambda N(t)$$

$$A = -\frac{dN(t)}{dt} = \lambda N(t)$$

$$A = -\lambda t + C \rightarrow C = \ln N_0$$

$$\ln \frac{N}{N_0} = -\lambda t$$

$$N(t) = N_0 e^{-\lambda t}$$

 \Box The activity A(t) is proportional to N(t)

$$A(t) = \lambda N(t) = \lambda N_0 e^{-\lambda t} = A_0 e^{-\lambda t}$$

where $A_0 = \lambda N_0$ is the initial activity

G0Z55A/LPHYS2102 Introduction 2023-2024 46 / 81

Exponential Decay

G0Z55A/LPHYS2102 Introduction 2023-2024 47 / 81

Lifetime

 \square What's the probability that a nucleus will not decay in a time t?

$$\frac{\text{Atoms not decaying in } t}{\text{Atoms at t=0}} = \frac{N_0 e^{-\lambda t}}{N_0} = e^{-\lambda t}$$

 \square What's the probability to decay in t + dt?

$$p(t)dt$$
 = Proba. to survive \times Proba. to decay in dt \times dt = $e^{-\lambda t}$ \times λ \times dt

 \square Average lifetime τ :

$$\tau = \frac{\int_0^\infty t \, \rho(t) dt}{\int_0^\infty \rho(t) dt} = \frac{\int_0^\infty t \lambda e^{-\lambda t} dt}{\int_0^\infty \lambda e^{-\lambda t} dt} = \frac{1}{\lambda}$$

□ Half-life (T or $T_{1/2}$): Time it takes to reduce the activity or a nucleus a factor $\frac{1}{2}$

$$\frac{N(T)}{N_0} = \frac{1}{2} = e^{-\lambda t} \to T = \frac{\ln 2}{\lambda} = \frac{0.693}{\lambda}$$

Effective lifetime

- Besides nuclear decay other processes can reduce the activity of a source
- One example is a sample of radioactive material located in a physiological system
 - \square The atoms can follow a nuclear disintegration (λ_r)
 - \square The radioisotopes can also be removed by biological processes (λ_b)
- ☐ We need to take into account all removal processes

$$\lambda_{eff} = \lambda_r + \lambda_b + \text{ other removal processes}$$

☐ Analogously we can define an effective half-life time as

$$\frac{\ln 2}{T_{eff}} = \frac{\ln 2}{T_r} + \frac{\ln 2}{T_b} + \cdots$$

$$\frac{1}{T_{eff}} = \frac{1}{T_r} + \frac{1}{T_b} + \cdots$$

Activity-mass relationship

The activity of a radiosotope is related to the number of atoms

$$A = \lambda N$$

 \Box The number of atoms (N) is also related to the mass m

$$1 \text{ mol} = N_A \text{ atoms}$$

$$m(t) \propto N(t)$$

☐ Then the mass of the radioisotope will follow an exponential decay

$$m(t) = m_0 e^{-\lambda t}$$

Specific activity

- ☐ The specific activity (SA) of a sample is defined as its activity per units mass
- \square Units or SA are: Bq g⁻¹ or Ci g⁻¹
- \square In case of a pure radionuclide, SA is determined by λ and its atomic weight M.
 - \Box Number of atoms per gram of nuclide $N = \frac{N_A}{M} = \frac{6.02 \times 10^{23}}{M}$

$$SA = \lambda N = \frac{6.02 \times 10^{23} \,\lambda}{M} = \frac{4.17 \times 10^{23}}{MT}$$

 \Box If T is in seconds then SA is in Bq g⁻¹

Radioactive Decay Modes

Туре	Nuc	lear equation	Representation	Change in mass/atomic numbers
Alpha decay	ĝχ	${}^{4}_{2}\text{He} + {}^{A-4}_{Z-2}\text{Y}$		A: decrease by 4 Z: decrease by 2
Beta decay	ΔX	$_{-1}^{0}e + {}_{Z+1}^{A}Y$	▼ → ▼	A: unchanged Z: increase by 1
Gamma decay	Δ×	⁰ γ + ^Δ γ	Σcited nuclear state	A: unchanged Z: unchanged
Positron emission	Αχ	$^{0}_{+1}e + ^{A}_{Y-1}Y$	v v	A: unchanged Z: decrease by 1
Electron capture	ĝх	$_{-1}^{0}e + _{Y-1}^{A}Y$	X-ray w	A: unchanged Z: decrease by 1

Light Charged particles sources

- \square Light Charged particles = electrons and positrons.
- Main sources of electrons and positrons are:
 - \Box β decay
 - Internal Conversion electrons
 - Auger Electrons
 - Accelerators and the technology associated
 - Photon pair-conversion
 - Cosmic Radiation

Discussion

- ☐ Do you have electron/positron sources at home?
- ☐ If yes, what's the energy of the electrons/positrons?

G0Z55A/LPHYS2102 Introduction 2023-2024 53 / 81

Beta Decay

- \square β decay represent two types of conversions in nucleus: β^- and β^+
- \square β^- = electron, β^+ = positron
- \square β^- decay: conversion of a neutron to a proton:

$${}_{\rm Z}^{\rm A}{
m M} \rightarrow {}_{{
m Z}+1}^{\rm A}{
m D} + e^- + \overline{\nu}_e$$

 \square β^+ decay: conversion of a proton to a neutron:

$${}_{Z}^{A}M \rightarrow {}_{Z-1}^{A}D + e^{+} + \nu_{e}$$

$${}_{\rm Z}^{\rm A}{\rm M} + e^- \rightarrow {}_{{\rm Z}-1}^{\rm A}{\rm D} + \nu_e$$

Beta Decay

 \supset Few isotopes decay only through β decays

Nuclide	Half-Life	Endpoint (MeV)
³ H	12.26 y	0.0186
¹⁴ C	5730 y	0.156
32 _P	14.28 d	1.710
33 _P	24.4 d	0.248
³⁵ S	87.9 d	0.167
³⁶ Cl	3.08×10 ⁵ y	0.714
⁴⁵ Ca	165 d	0.252
63 _{Ni}	92 y	0.067
$90_{Sr}90_{Y}$	27.7y/64h	0.546/2.27
⁹⁹ Тс	2.2×10 ⁵ y	0.292
147 _{Pm}	2.62 y	0.224
204TI	3.81 y	0.766

- \square Most of β decays populate an excited state.
- De-excitation can be done by
 - \square γ emission
 - Internal conversion electron

Energetics of Beta Decay

- \square v and \overline{v} interacts too weakly with matter
 - □ Needed to explain the fundamental interaction ...
 - ... but not detected
- \blacksquare It's a 3-body decay $\to \beta^{\pm}$ has continuous spectra
- Q of the reaction gives the end-point of the spectra
- \square β^+ spectrum skewed to higher energies:
 - Coulomb repulsion kicks energy

G0Z55A/LPHYS2102

Energetics of Beta Decay

 \square "Fundamental" interactions do not allow β^+ decays:

$$n \to p + \beta^- + \overline{\nu} \to m_n > m_p + m_{e^-} + m_{\overline{\nu}} \to Q > 0$$

 $p \to n + \beta^+ + \nu \to m_p < m_n + m_{e^+} + m_{\nu} \to Q < 0$

- We have to look at the whole picture
 - ☐ Neutrons and protons are embedded in nucleus
 - \square What matters is nuclide mass (m_N) , not m_p or m_n
 - Nuclear binding energies play a role
- Neutron decay.

$$T_{1/2}(n) \simeq 15 \,\mathrm{min}$$

Proton decay. Still not detected

$$T_{1/2} > 1.01 \times 10^{34} \, \text{years} \quad \text{(SuperK exp)}$$

G0Z55A/LPHYS2102

Energetics of Beta Decay

 \square β^- : "fundamental" decay allowed

- \square b_Z is not considered. What matters is the difference $b_Z b_{Z+1}$ that is negligibly small
- \square β^+ : "fundamental" decay forbidden

$$Q_{\beta^{+}} = m_{N}({}_{Z}^{A}M) - m_{N}({}_{Z-1}^{A}D) - m_{e}$$

= $m({}_{Z}^{A}M) - m({}_{Z-1}^{A}D) - 2m_{e}$

 \square β^+ decay occurs only if $m({}_7^{\rm A}{\rm M}) - m({}_{7-1}^{\rm A}{\rm D}) > 2m_e$

Internal Conversion (IC) electrons

- \square Most of the times the de-excitation of an excited nuclear state is done through a γ -decay.
- \square Sometimes γ -decay is inhibited (i.e angular momentum, etc...)
- ☐ An alternative process is to transfer the energy directly to an orbital electron

$$E_{e^-} = E_{ex} - E_b$$

- ☐ The electron can be in any of the atomic shells
 - One peak for every shell
 - \square Sometimes convoluted with other spectra (i.e. β decay)
- ☐ Practical source for monoenergetic electrons in the lab (100's keV MeV)

G0Z55A/LPHYS2102

Auger electrons

- ☐ Analogue of internal conversion electrons but for atomic excitations
- A vacancy in the electronic levels may appear
 - As result of an electron capture process
 - Because of ionization process
- ☐ Most often vacancy is filled by another electron from outer shells
 - ☐ Emission of a characteristic X-ray photon
- ☐ Alternatively the energy can be transferred to an orbital electron

$$E_{e^-} = E_{vac} - E_{shell} - E_b$$

- \Box E_{e^-} lower than those of β or IC electrons
 - Process favored for low-Z atoms.
 - ☐ High self absorption.

Heavy charged particles sources

- \square Heavy charged particles = Any charged particle except e^- and e^+
 - Includes any charged particle in the particle zoo as well as nuclei
 - \Box Only 4 out ~250 "survives" to be effectively detected: $\mu^{\pm}, \pi^{\pm}, K^{\pm}, \rho^{\pm}$,
- The main sources of heave charged particles are:
 - \square α decay: natural (cosmogenic) and artificial
 - ☐ Fission products (induced or spontaneous)
 - Accelerators and interactions therein
 - Cosmic Radiation

Alpha decay

 \square Disintegration of a parent nucleus through the emission of an α -particle = 4_2 He

$${}^{A}_{Z}$$
M $\rightarrow {}^{A-4}_{Z-2}$ D $+{}^{4}_{2}$ He + Q_{α}

- ☐ It is governed by the combination of the strong nuclear force and the electromagnetic force in an analogous way to spontaneous fission.
 - \Box Energetically interesting because of the high binding energy for α
- □ It typically occurs in heavy nuclei (A > 150), with the lightest observed systems to α decay being $^{108-110}$ Te.

G0Z55A/LPHYS2102 Introduction 2023-2024 62 / 81

Energetics of Alpha decay

- \square α -decays occurs between nuclear states: Monoenergetic spectra
- ☐ In case daughter nucleus has several excited states it can appear one energy line per excited state.

$$Q = m_N(M) - M_N(D) - m_N(\alpha)$$

$$= T_D + T_\alpha$$

$$= \frac{p^2}{2m_N(D)} + \frac{p^2}{2m_N(\alpha)}$$

$$= \frac{p^2}{2m_N(\alpha)} \left(1 + \frac{m_N(\alpha)}{m_N(D)}\right)$$

$$\frac{m_N(\alpha)}{m_N(D)} \approx \frac{4}{A - 4}$$

$$Q = E_\alpha \left(1 + \frac{4}{A - 4}\right) \rightarrow E_\alpha = \frac{A - 4}{A}Q$$

 \square α -decay Q values are roughly 4-7 MeV with very little variation

Alpha decay: Geiger-Nuttall relationship

- \square There is a strong correlation between $T_{1/2}(\alpha)$ and E_{α} .
 - □ The higher the energy, the lower the lifetime → Geiger-Nuttall Relationship

Martin: Fig 3.16

Naturally Radioactive Series

- \square Naturally ²³⁷Np no longer exists: $T_{1/2}$ is only 2.6 \times 10⁶ y.
- ☐ Precursors of ²³⁷Np are ²⁴¹Am or ²⁴¹Pu, produced in reactors
- ☐ An important series is that of ²³⁸U and its subseries:

$$\begin{array}{c} 238 \text{U} \xrightarrow{\alpha} \xrightarrow{\alpha} 234 \text{Th} \xrightarrow{\beta^{-}} 241 \xrightarrow{234} \text{Pa} \xrightarrow{\beta^{-}} 234 \text{Pa} \xrightarrow{\beta^{-}} 234 \text{U} \xrightarrow{\alpha} 230 \text{Th} \xrightarrow{\alpha} \frac{\alpha}{7.5 \times 10^{4} \text{ y}} \\ 226 \text{Ra} \xrightarrow{\alpha} \xrightarrow{1600 \text{ y}} \frac{222}{86} \text{Rn} \xrightarrow{\alpha} \frac{218}{84} \text{Po} \xrightarrow{\alpha} \frac{\alpha}{3.1 \text{ m}} \frac{214}{82} \text{Pb} \xrightarrow{\beta^{-}} \frac{214}{26.8 \text{ m}} \frac{\beta^{-}}{83} \text{Bi} \xrightarrow{\beta^{-}} \frac{214}{84} \text{Po} \\ \xrightarrow{\alpha} \frac{\alpha}{164.3 \, \mu \text{s}} \xrightarrow{210} \text{Pb} \xrightarrow{\beta^{-}} \frac{214}{83} \text{Bi} \xrightarrow{\beta^{-}} \frac{210}{5.01 \text{ d}} \text{Po} \xrightarrow{\alpha} \frac{\alpha}{138.4 \text{ d}} \xrightarrow{206} \text{Pb} \end{array}$$

G0Z55A/LPHYS2102 Introduction 2023-2024 65 / 81

Fission products

- ☐ Fission: split of nucleus in two or more smaller fragments
- ☐ Most of the time fission is inhibited by the large nuclear potential barrier
- ☐ The origin of fission is a distortion of the spherical nuclear shape
 - \square Induced fission. (i.e. $n+^{235}U$ in nuclear reactors).
 - ☐ Spontaneous fission. Only for (Z>83).
- ☐ In each fission, two fragments are generated back to back.
 - \square Heavy (A~143) \rightarrow small KE
 - □ Light $(A\sim108)$ → higher KE
- ☐ Spontaneous fission is the only spontaneous source of energetic heavy particles
 - ☐ Relevant case: ²⁵²Cf

$$T_{1/2}^{\rm sp. \ fission} = 85 \, {\rm years}$$
 $T_{1/2} = 2.65 \, {\rm years}$ $\rightarrow 1 \mu g^{252} {\rm Cf} = \begin{cases} 1.92 \times 10^7 \, \alpha/s \\ 6.16 \times 10^6 \, {\rm SF}/s \\ 2.30 \times 10^6 \, {\rm n/s} \end{cases}$

Fission products

Figure 1-4 (a) The mass distribution of ²⁵²Cf spontaneous fission fragments. Also shown is the corresponding distribution from fission of ²⁵⁵U induced by thermal neutrons. (From Nervik.⁴)

Figure 1-4 (b) The distribution in kinetic energy of the ²⁵²Cf spontaneous fission fragments. The peak on the left corresponds to the heavy fragments, and that on the right to the light tragments. (From Whetstone.)

Knoll: Fig 1-4

Light neutral particles sources

- ☐ Light Neutral particle = photon
- ☐ Main sources of photons:
 - \Box Gamma decays after α or β decay
 - ☐ Gamma decays Nuclear reactions
 - Annihilation radiation $(e^+ + e^- \rightarrow \gamma \gamma)$
 - Bremsstrahlung: Continuous X-rays Synchrotron radiation

 - Characteristic X-rays: Electron capture
 - Internal conversion, Auger electrons
 - Atomic excitations

Gamma decay

- \square γ radiation emitted by excited nuclei in their transition to lower energy levels.
- Similar to atomic transitions.
- \square As it's a transition between nuclear levels γ rays are monoenergetic
- TExcited nuclei can be obtained:
 - \square As a result of a α or β decay
 - As a result of a nuclear reaction
- \square γ de-excitation is a fast process (\sim ps)
- \Box $E_{max} = 2.754 \text{ MeV } (^{24}\text{Na})$

G0Z55A/LPHYS2102

Energetics of γ Decay

 \Box The energetics of γ -decay can be described in terms of the initial and final state masses:

$$E_{\gamma} = (M_i - M_f)c^2 - E_R$$

where E_{γ} is the emitted γ -ray energy and E_R the nucleus recoil energy

Momentum conservation requires

$$p_R = \frac{E_{\gamma}}{c} \rightarrow E_R = \frac{E_{\gamma}^2}{2M_f c^2}$$

This derivation is non-relativistic, but it's justified because $E_{\gamma}=1$ MeV, A=100 then $E_{R}=5$ eV.

 \Box Thus in general we can ignore E_R then

$$E_{\gamma} = (M_i - M_f)c^2$$

Electron capture (EC)

- \Box Competitive process of β^+
- Proton in the nucleus interacts with an inner orbital electron

$${}_{Z}^{A}M + e^{-} \rightarrow {}_{Z-1}^{A}D + \nu_{e}$$
 $Q_{EC} = m_{N}({}_{Z}^{A}M) + m_{e} - m_{N}({}_{Z-1}^{A}D)$

$$= m({}_{Z}^{A}M) - m({}_{Z-1}^{A}D) - b_{e}$$

- ☐ Energetically EC is only possible in proton-rich nucleus
- \square 90% K-shell e^- , <10% L-shell e^- , <1% M-shell e^-
- ☐ Binding energy of the electron captured should be considered:
 - \Box e⁻ captured inner sell \rightarrow b_e= many tens of keV
- \square Sometimes EC is favored wrt β^+ because of the $2m_e^-$ threshold
- \square EC involves the disappearance of an e^- that is immediately filled
 - ☐ Emission of characteristic X-Rays or Auger electrons
 - ☐ This emission is the only energy emission produced

G0Z55A/LPHYS2102

X-rays

- \square X-rays: Electromagnetic radiation with $E_{\gamma}=1$ keV few 100's keV
- Discovered by Roetgen in 1895
- Used extensively in medicine, industry and security.
- Two origins: Characteristic X-rays and bremsstrahlung
- Characteristic X-rays
 - Atomic transitions.
 - Discrete spectrum
- Bremsstrahlung
 - ☐ Braking radiation by electromagnetic interactions with nucleus
 - Mainly by electrons.
 - ☐ Same underlying physics as synchrotron radiation

Characteristic X-rays

- Orbital electrons can be disrupted from their configuration:
 - Originated by some excitation process (decay, reaction)
 - ☐ Electrons rearrange themselves emitting electromagnetic radiation
- Energy of the photons is determined by atomic levels
 - X-rays are characteristic of each atom
 - Series of monoenergetic peaks
 - \square K_{α} , K_{β} , K_{γ} : vacancy created in K-shell
 - \square L_{α}, L_{β}: vacancy created in L-shell
- Photon energy increases with Z

http://www.nist.gov/pml/data/xraytrans/index.cfm

Characteristic X-rays

- ☐ Auger electron emission is a competitive process to X-ray emission
- ☐ Several X-ray emission can be present in the rearrangement

☐ Emission of X-rays is called X-ray fluorescence

$$Y = Fluorescence Yield = \frac{\# \text{ of X-ray}}{\# \text{ vacancies}} \rightarrow Y = \begin{cases} 0 & Z \text{ low} \\ 1 & Z \text{ high} \end{cases}$$

G0Z55A/LPHYS2102 Inte

Sources of characteristic X-Ray

X-ray emission after Radioactive Decay

- ☐ Electron capture
 - \square Process competitive with β^+ :
 - One orbital electron is captured creating a vacant usually in the K-shell ${}^{A}X + e^{-} \rightarrow {}^{A}Y + v + X$ -ray

$$ZX + e \rightarrow Z_{-1}Y + V$$

- Internal conversion
 - Nuclear de-excitation does not emit electromagnetic radiation.
 - \square Ejection of an orbital electron \rightarrow X-ray emission
- ☐ X-rays suffers a lot of self-absorption
 - □ Increase radioisotope deposit → reach limiting value
 - Only surface atoms contribute

G0Z55A/LPHYS2102

Sources of characteristic X-Ray

Excitation by external bombardment

- ☐ Also called PIXE: Particle induced X-ray Emission
- External radiation impinging in a target can ionize the atom
- ☐ In case of electrons characteristic X-rays will superimpose bremsstrahlung spectra
- ☐ Needed an accelerator or a radioactive source

Bremsstrahlung

☐ If fast electrons hits a material, it can loose energy through electromagnetic interaction

$$\frac{d\sigma}{dk} \propto Z^2 \frac{1}{m^2} \frac{1}{k}$$

- Typical values $E_e \simeq \text{few MeV}$ $E_\gamma < \text{few MeV}$
- Continuous spectrum
- ☐ Peaked at low k
- \square More important for materials with high Z
- Only important for low mass particles (electrons and HE muons)

G0Z55A/LPHYS2102

Bremsstrahlung

- Continuous spectrum.
- ☐ It always appears when electrons interacts with matter.
- Using filters spectrum can be modified
 - ☐ Elimination of low energy part
 - ☐ Far to be monoenergetic

Knoll: Fig 1-6

X-ray machines

- ☐ All system in high vacuum
- ☐ Heat filament (usually in W)
 - It "boils" electrons
 - Electrons are focused into a point in the target
 - ☐ Electrons accelerated by a HV 30-70 kV.
- ☐ Target made of W or Mo (high Z)
 - Electrons stopped abruptly in target
 - X-ray production by
 - Bremsstrahlung (mainly)
 - ☐ Target characteristic X-rays
- □ Only 1% of electron energy converted into X-rays
- ☐ 99% electron energy used to "heat" the target
- Cooling systems needed
 - Water or oil cooling
 - Rotating targets

■ Maximum RX energy: all electron energy transferred to one RX.

$$E_{e} = eU = hv_{max}$$

$$= h\frac{c}{\lambda_{min}}$$

$$\lambda_{min} = \frac{hc}{eU} = \frac{1240}{U} nm$$

80 / 81

Heavy neutral particle

- \square Heavy neutral particle: mainly neutrons (also K^0 's in HE interactions)
- The main sources of neutrons
 - \square Spontaneous fission: $^{252}Cf \rightarrow 2$ fission fragments + neutrons
 - Nuclear reactions:
 - □ Interaction of α with matter ${}^4_2\alpha + {}^9_4\text{Be} \rightarrow {}^{12}_8\text{C} + {}^1_0\text{n} + 5.71$ MeV
 - Nuclear reactors:
 - □ Photo-neutrons: ${}^{9}_{4}\text{Be} + hv \rightarrow {}^{8}_{4}\text{Be} + {}^{1}_{0}\text{n} 1.67 \text{ MeV}$ ${}^{2}_{1}\text{H} + hv \rightarrow {}^{1}_{1}\text{H} + {}^{1}_{0}\text{n} - 2.23 \text{ MeV}$
 - ☐ Nuclear reactions (mono-energetic and continuous spectra)
 - □ Mono-energetic: $D+D \rightarrow n+^3 He$ Q=3.27 MeV E_n =2.45 MeV $D+T \rightarrow n+\alpha$ Q=17.56 MeV E_n =14.05 MeV
 - ☐ Continuous: $D + Be \rightarrow n + X$ Cyclotron LLN: $E_D = 50 \, MeV \rightarrow E_n \in [0, 50] \, MeV \, \overline{E}_n = 20 \, MeV$
- ☐ In general, if there are neutrons there are also photons