

Algorithmique

Cours préparatoires au master en sciences informatiques

Vincent Branders 2022–2023

Notions de meilleurs et pires cas

Algorithm: firstNegative

Input: A, un tableau de n entiers comprenant au moins un entier négatif

Output: Renvoie le premier entier negatif de A

for $i \leftarrow 0$ to n-1 do | if A[i] < 0 then

if A[i] < 0 ther return A[i]

Algorithm: firstNegativeRev

Input: A, un tableau de n entiers comprenant au moins un entier négatif

Output: Renvoie le premier entier negatif de *A* **for** $i \leftarrow n - 1$ **down to** 0 **do**

if A[i] < 0 then

return negative

- Déterminez le temps de calcul¹ pour les instances suivantes :
 - ► [-1]; [-7]; [-5, 1, 2]; [2, 4, -3, 6]; [3, -2, 4, 6, -3, -7]
- Supposons une instance de taille n=15, de quoi dépend le temps de calcul ?
 - Proposez une instance "particulièrement simple" à résoudre et une autre "particulièrement difficile"

Et avec firstNegativeRev?

¹Considérons ici simplement le nombre de branchements "if"

- Pour caractériser l'efficacité des algorithmes, on ne peut se passer des instances à résoudre
- ...mais :
 - ▶ Il y a souvent un nombre infini d'instances possibles
 - Selon l'instance particulière considérée, un algorithme peut prendre plus ou moins de temps
 - Les instances possibles peuvent alors être classées en meilleur(s) cas, pire(s) cas ou cas moyen(s)
 - Attention, on parle bien d'instances de même taille
 ex. : si l'on s'intéresse au tri, y a t'il des instances qui prennent plus de temps à résoudre que d'autres si la taille du tableau est inchangée
 ?
 - Nous nous intéressons souvent au temps pris dans le pire cas car
 - nous voulons une garantie sur le temps maximum d'exécution
 - le meilleur cas donne lieu à une estimation optimiste
 - un cas représentatif "moyen" est souvent difficile à définir

```
Algorithm: selectionDecSort
Input: Un tableau A de n éléments
Output: Le tableau A est trié en ordre décroissant
for i \leftarrow 0 to n-1 do
   pos \leftarrow i
 for i \leftarrow i + 1 to n - 1 do
   if A[j] > A[pos] then
 pos \leftarrow j
  if A[i] < A[pos] then
  swap(A[i], A[pos])
return A
```

Identifiez le(s) pire(s) cas en terme de nombre d'échanges (swap)

②
$$A = \begin{bmatrix} 2, -7, & 0, & 4, & 9, & 11 \end{bmatrix} \rightarrow 5 \rightarrow \checkmark$$

③ $A = \begin{bmatrix} 0, & 0, & 0, & 0, & 0 \end{bmatrix} \rightarrow 0$

$$A = [17, 17, 17, 15, 15, 15] \rightarrow 0$$

5
$$A = \begin{bmatrix} 2 & 3 & 4 & 5 & 6 & 7 \end{bmatrix} \rightarrow 3$$

```
Т
```

```
Algorithm: surprise Input: Un entier strictement positif n
Output: Un tableau A de taille n+1 vérifiant une propriété à découvrir for i \leftarrow 0 to n do temp \leftarrow i
for j \leftarrow 1 to 3 do temp \leftarrow temp \times i
A[i] \leftarrow temp
return A
```

 Identifiez le(s) pire(s) cas en terme de nombre d'opérations effectuées

$$\begin{array}{cccc} \textbf{1} & n=3 & \Rightarrow \times \\ \textbf{2} & n=1 & \Rightarrow \times \\ \textbf{3} & n=1000 & \Rightarrow \times \\ \textbf{4} & n=7 & \Rightarrow \times \\ \textbf{5} & n=\infty & \Rightarrow \times \\ \textbf{6} & n=9 & \Rightarrow \times \\ \end{array}$$

Il faut bien comparer pour des tailles identiques

- Il faut considérer des problèmes d'une taille fixe pour distinguer les pires cas, meilleurs cas et cas moyens
- Ce sont les valeurs spécifiques qui définissent une instance particulière qui doivent être considérées
- Chercher les "limites" de (la portée de) l'algorithme
 - penser à des exemples de petites tailles d'abord
 - penser à des cas d'égalité dans la décision ou l'ordre des opérations (ex. trouver "le" premier entier négatif)
 - penser à des cas limites (ex. très grands, très petits, collection vide, collection déjà triée, collection triée en sens inverse, uniquement des valeurs négatives, ...)

Objectif

- Analyser le temps (ou l'espace) requis, en se concentrant sur l'algorithme et l'influence de la taille du problème, généralement dans le pire cas
- Complexité temporelle : analyse asymptotique du nombre d'opérations effectuées
- Complexité spatiale : analyse asymptotique de l'espace utilisé

Propriété

L'analyse asymptotique s'intéresse à l'évolution de la complexité lorsque la taille du problème augmente $(\lim_{n\to\infty})$

Par exemple, si la taille n du problème est multipliée par 10 comment évolue le temps T = f(n) ?

- La vitesse du processeur est un des facteurs qui conditionnent la valeur de la constante c
- La vitesse du processeur ne change rien au rapport $\frac{f(10n)}{f(n)}$

En résumé

- Une constante est tout ce qui ne dépend pas de la taille du problème, même si elle peut varier! (processeur, langage, compilateur, ...)
- Si l'on s'intéresse à l'influence de la taille du problème sur le temps calcul, on peut donc négliger les constantes ⚠⚠

Définition

Une opération primitive

- est une instruction en langage de haut niveau (par exemple Python ou une description en pseudo-code)
- représente un nombre constant d'opérations élémentaires effectivement exécutées sur le processeur, une fois le programme compilé ou interprété

- une affectation d'une valeur à une variable : x = 10
- une comparaison de deux nombres : x < y
- un branchement : if ... then ... else ...
- une opération arithmétique élémentaire : i + 2
- un accès à un élément d'un tableau : A[i]
- une instruction return dans une méthode
- une instruction d'appel à une méthode : p.maMethode()
 (\neq l'éxécution de l'ensemble de maMethode() !)

En résumé

Comme on néglige les constantes, il suffit de "compter" les opérations primitives plutôt que les opérations élémentaires

Pourquoi se soucier du temps d'exécution ?

Hypothèse

On peut traiter une opération primitive en 1 nanoseconde $(1.10^{-9}s)$

- f(n) désigne le nombre d'opérations primitives effectuées en fonction de la taille *n* du problème
- Combien de temps prend le programme pour terminer son exécution si n = 1000 selon f(n) ?

f(n)	Temps	
n	0.000 001 s	
400 <i>n</i>	0.000 4 s	
$2n^{2}$	0.002 s	
n ⁵	~ 11.5 jours	
2 ⁿ	3.4×10^{284} années	

On considère que l'Univers existe depuis 13.8×10^9 années

Quelle est la taille maximale que l'on peut traiter?

- On cherche n tel que le nombre d'opérations primitives effectuées pour un problème de taille n est égal au nombre d'opérations primitives qu'on sait effectuer en un temps t.
- ullet En 1 seconde, on sait effectuer 10^9 opérations primitives

$$\implies f(n) = \frac{t}{10^{-9}s}$$

- Si f(n) = n et t = 1s, $n = \frac{1}{10^{-9}}$, on peut résoudre un problème de taille $n = 10^9$ en 1 seconde
- Si $f(n) = 2n^2$ et t = 60s: $2n^2 = \frac{60}{10^{-9}} \implies n^2 = \frac{60 \times 10^9}{2} \implies n = \sqrt{3 \times 10^{10}} \approx 173,205$

f(n)	en 1 seconde	en 1 minute	en 1 heure
n	1×10^{9}	6×10^{10}	3.6×10^{12}
400 <i>n</i>	$2.5 imes 10^6$	$1.5 imes 10^8$	9×10^9
$2n^{2}$	22, 360	173, 205	$1.3 imes 10^6$
n ⁵	63	143	324
2 ⁿ	29	35	41

(suite)

Si m est la taille maximale que l'on pouvait traiter en un temps donné, que devient m si l'on acquièrt un processeur **256** fois plus rapide ?

- Pour f(n) = 400n, on avait $400n = \frac{t}{10^{-9}} \implies n = \frac{t}{400 \times 10^{-9}}$ donc $m = \frac{t}{400 \times 10^{-9}}$ maintenant, $400n = \frac{t}{\frac{10^{-9}}{266}} = \frac{256.t}{10^{-9}} \implies n = \frac{256.t}{400 \times 10^{-9}}$ et donc n = 256m
- Pour $f(n) = n^5$, on avait $n^5 = \frac{t}{10^{-9}} \implies n = \sqrt[5]{\frac{t}{10^{-9}}}$ donc $m = \sqrt[5]{\frac{t}{10^{-9}}}$ maintenant, $n^5 = \frac{256.t}{10^{-9}} \implies n = \sqrt[5]{\frac{256.t}{10^{-9}}}$ et donc $n = \sqrt[5]{256} \times m = 3.03m$

f(n)	Nouvelle taille maximale
n	256 <i>m</i>
400 <i>n</i>	256 <i>m</i>
$2n^{2}$	16 <i>m</i>
n^5	3.03 <i>m</i>
2 ⁿ	m + 8

```
Ш
```

```
i++\equiv i\leftarrow i+1: 2 opérations primitives ; i\leq n-1: 2 opérations primitives
```

Dans le pire cas (p.ex. A en ordre croissant), 9n-3 opérations primitives Dans le meilleur cas (p.ex. A en ordre décroissant), 7n-1 opérations primitives

On peut négliger les constantes -3 et -1

Ce calcul introduit de nouvelles constantes (p.ex. 9 ou 7) que l'on peut négliger pour les mêmes raisons que précédemment

Ce calcul introduit de nouvelles constantes (p.ex. 9 ou 7) que l'on peut négliger pour les mêmes raisons que précédemment

Que se passe-t-il si la taille du problème n est multipliée par 10?

$$f(n) = 9n \Rightarrow f(10n) = 9.(10n) = 10.(9n) = 10.f(n)$$

Le temps calcul est multiplié par 10 \Rightarrow la constante multiplicative 9 n'influence pas le rapport $\frac{f(10n)}{f(n)}$

Si l'on s'intéresse à l'influence de la taille du problème sur le temps calcul, on peut négliger cette constante multiplicative