Problem 1 [Poston Prob. 1.9]

A certain X-ray machine provides an output of 60 R/min at 1m. Estimate the exposure at 75 cm from the target and the approximate does in rads and grays.

Problem 2 [Turner. 12.1]

- a) What is the average absorbed dose in a 40 cm³ region of a body organ (density=0.93 gcm⁻¹) that absorbs 3. 10⁵ MeV of energy from a radiation field?
- b) If the energy is deposited by ionizing particles with an LET of 10 keV/ μ in water, what is the dose equivalent?
- c) Express the answers to (a) and (b) in both rads and rems as well as Gy and Sv.

Problem 3 [Turner. 12.2]

A portion of the body receives 0.15 mGy from radiation with a quality factor Q=6 and 0.72 mGy from radiation with Q=10.

- a) What is the total dose?
- b) What is the total dose equivalent?

Problem 4 [Turner. 12.29]

What is the average whole-body dose rate in 22 g mouse that contains 1.85×10^5 Bq of ¹⁴C distributed in this body?

Problem 5 [Turner. 12.3]

A beam of X rays produces 4 esu of charge per second in 0.08 g of air. What is the exposure rate in (a) mR/s and (b) SI units?

Problem 6 [Turner. 12.30]

A patient receives an injection of 1.11×10^8 Bq of ¹³¹I, 30% of which goes to the thyroid having a mass of 20 g. What is the average dose rate in the organ?

Problem 7 [Turner. 12.31]

Tritium often gets into body water following an exposure and quickly becomes distributed uniformly throughout the body. What uniform concentration of 3 H, in Bq/g, would give a dose-equivalent rate of 1 mSv/wk?

Problem 8 [Turner. 12.32]

A 36 g mouse is to be injected with ${}^{32}P$ (half-time=14.3d; average beta energy=0.7MeV, no gamma). Assume that the ${}^{32}P$ distributes itself almost instantaneously throughout the body following injection and that none is lost from the body for the first few hours thereafter. What activity of ${}^{32}P$ needs to be administred in order to give the mouse a dose of 10 mGy in the first hour?

Problem 9 [Turner. 12.33]

A 75 μ A parallel beam of 4 MeV electrons passes normally through the flat surface of a sample of soft tissue in the shape of a disc. The diameter of the disc is 2 cm and its thikness is 0.5 cm. Calculate the average absorbed dose rate in the disc.

Problem 10 [Turner. 12.34]

A soft tissue disc with radius of 0.5 cm and thickness of 1 mm is irradiated normally on its flat surface by 6 μ A beam of 100 MeV protons. Calculate the average dose rate in the sample.

Problem 11 [Turner. 12.35]

An experiment is planned in which bean roots are to be placed in a tank of water at a depth of 2.2 cm and irradiated by a parallel beam of 10 MeV electrons incident on the surface of the water. What fluence rate would be needed to expose the roots at a dose rate of 10 Gy/min?

Problem 12 [Turner. 12.36]

A worker inadvertently puts his hand at right angles into a uniform, parallel beam of 50 MeV protons with a fluence rate of 4.6×10^{10} protons cm⁻²s⁻¹. His hand was momentarily exposed for an estimated 0.5s.

- a) Estimate the dose that the worker received to skin of his hand.
- b) If the beam covered an area of 2.7 cm^2 , what was the beam current?

Problem 13 [Turner. 12.38]

When ³⁸S decays, a single 1.88 MeV gamma photon is emitted in 95% of the transformations. Estimate the exposure rate at a distance of 3 m from a point source of ³⁸S having an activity of 2.7×10^{12} Bq.

Problem 14 [Turner. 12.4]

If all of the ion pairs collected in the last example, what is the current?

Problem 15 [Turner. 12.40]

What is the activity of an unshielded point source of $^{60}\mathrm{Co}$ if the exposure rate at 20 m is 6 R/min?

Problem 16 [Turner. 12.41]

A worker accidently strayed into a room in which a small, bare vial containing 23 Ci of 131 I was being used to expose a sample. He remained in the room aproximately 10 min, standing at a lab bench 5 m away from the source. Estimate the dose that the worker received.

Problem 17 [Turner. 12.42]

A point source consists of a mixture of 4.2 Ci of 42 K and 1.8 Ci of 24 Na. Estimate the exposure rate at a distance of 40 cm.

Problem 18 [Turner. 12.43]

A parallel beam of monoenergetic photons emerged from a source when the shielding was removed for a short time. The photon energy $h\nu$ and the total fluence φ of photons are known.

- a) Write a formula from which one can calculate the absorbed dose in air in rad from $h\nu$, expressed in MeV, and φ , expressed in cm⁻².
- b) Write a formula for calculating the exposure in R.

Problem 19 Absorbed dose in lungs [January 2015]

Exposure to ambients in which ^{222}Rn concentration is high produces an uniform deposition of 218 Po on the lining if the bronchi (bronchial epithelium) of the human lung. If in a person

staying in one of these ambients, the activity of 218 Po is 100 pCi/cm²:

- a) what is the flux of α -particles (in $\alpha/\text{cm}^2 \cdot \text{min}$) coming from the ²¹⁸Po penetrating into the bronchial epithelium? Assume the density of bronchial epithelium of 1 gr/cm³
- b) what is the range of these α particles in the bronchial epithelium?
- c) what is the absorbed dose (in Gy/h) produced by these α particles in the bronchial epithelium?

