Semiconductor Detectors

E.Cortina

UCLouvain

June 2021

LPHYS2102

Semiconductor Detectors

▲ ■ ● ■ つへで June 2021 1 / 95

< □ > < □ > < □ > < □ > < □ >

1. Introduction

- 2. Semiconductor Materials
- 3. Semiconductor Detectors characteristics
- 4. Silicon Detectors
- 5. Germanium Detectors
- 6. Semiconductor Photodetectors

< ∃ ►

Section 1

Introduction

LPHYS2102

< □ > < □ > < □ > < □ > < □ >

Semiconductor Detectors

- Detectors based on on the detection of electron-hole pairs created in semiconductor materials:
 - Silicium
 - Germanium
 - CdTe, AsGa, CdZn, diamant (CVD)
- Main characteristics are
 - $w \sim 3 \text{ eV} \rightarrow \text{Lots of electron-hole pairs created}$
 - $\rho \sim 3 \text{ gr/cm}^3 \rightarrow \text{Dense material } (\frac{dE}{dx} \propto \rho)$
- If we compare with gasses (w \sim 30 eV and $ho \sim$ 3 mgr/cm³)
 - ho ~ 10⁴ more charge carriers
 - expected a better $\frac{\sigma_E}{E}$
- On the other hand, semiconductors provide no or little internal amplification
- Small signals are then expected and low noise readout circuits are required

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Section 2

Semiconductor Materials

LPHYS2102

▲ ■ ● ○ ○ ○
 June 2021 5 / 95

< □ > < 同 > < 回 > < Ξ > < Ξ

Crystalline structure

• Semiconductors are materials that have a crystalline structure

- Atoms are arranged with a periodic structure
- Physical properties of the material depends strongly on this arrangement
- Main parameter is the lattice distance
- There are four types of crystalline structure
 - Ionic crystals: coulombian attraction
 - Covalent crystals: electron sharing
 - Metals: each atom share an electron with the whole material
 - Molecular crystals: Van der Waals attraction
- Main effect of the aggregation of atoms is the splitting of atomic energy levels
 - \blacktriangleright 2 atoms \rightarrow 2 times more levels than a single atom
 - 3 atoms \rightarrow 3 times more levels
 - N atoms \rightarrow N times more levels

4 3 4 3 4 3 4

Crystalline structure

Si, Ge, C

< □ > < □ > < □ > < □ > < □ >

Band structure

- Main effect of the aggregation of atoms is the splitting of atomic energy levels
 - 2 atoms \rightarrow 2 times more levels than a single atom
 - 3 atoms \rightarrow 3 times more levels
 - N atoms \rightarrow N times more levels

- In case of a crystal $N\sim 10^{23}$
 - Energy degeneracy
 - Band formation

Conductors, Insulators, Semiconductors

- Conductors: Energy gap is non-existent
 - Conduction band and valence band overlaps
 - Electrons can move freely through all crystal
- Insulators: Energy lap is large (\sim 6 eV)
 - Electrons are always tightly bounded in valence band
 - No electrons in conduction band
- Semiconductors: Small energy gap (${\sim}1~{
 m eV}$)
 - Electrons bounded in valence band
 - Non negligible probability to reach conduction band
 - Reduced conductivity

Band Structure

- Bands are created because of crystalline structure
- They are composed by degenerate levels very close in energy
- Different energy level are distinguished by the wave number k

 $p^* = k\hbar \quad
ightarrow$ quasi momentum

- Electrons (holes) tend to loose its energy in non-radiative way to occupy the lowest (highest) level inside the band
- We can distinguish three bands:
 - core band: inner electrons, no importance in this discussion
 - valence band: band where bonding electrons lies
 - conduction band: band where electrons can move freely for holes valence band act as conduction band

<日

<</p>

Band Structure

Close to the minimum (maximum) of the conduction(valence) band:

 $E(\vec{k}) = E_c(\vec{k}_{0c}) + \frac{1}{2} \frac{\partial^2 E}{\partial \vec{k^2}} (\vec{k} - \vec{k_{0c}})$ electrons: $E(\vec{k}) = E_{\nu}(\vec{k}_{0\nu}) - \frac{1}{2} \frac{\partial^2 E}{\partial \vec{k}^2} (\vec{k} - \vec{k_{0\nu}})$ holes:

- In a classical approach
 - Electrons in the conduction band:

$$E = E_c + rac{(p^* - p_0^*)^2}{2m_0^*}$$

Holes in the valence band

$$E = E_v - rac{(p^* - p_0^*)^2}{2m_h^*}$$

Effective Masses

- Electrons in the conduction band can be considered as a quasi-free electrons
 - There is still some influence of the crystalline structure
 - In classical terms:

 $m_0 \frac{d\vec{v}}{dt} = \vec{F}_{ext} + \vec{F}_{int}$ \vec{F}_{int} : Internal force due to crystalline structure \vec{F}_{ext} : External force applied

▶ We can redefine this equation as the one of a free particle with mass and charge in vaccum reacting to an external field:

$$m^* rac{ec{v}}{dt} = ec{F}_{ext}$$

▶ m^{*} is called effective mass and it takes into account the extra inertia given to the electron by the periodic potential

$$\frac{1}{m^*} = \frac{1}{\hbar^2} \frac{\partial^2 E}{\partial k^2} \quad \rightarrow \quad \frac{1}{m^*_{ij}} = \frac{1}{\hbar^2} \frac{\partial^2 E}{\partial k_i \partial k_j}$$

イロト 不得 トイラト イラト 一日

Band structure for Si

- Silicon (Z=14)
 - Atomic config.: $1s^2 2s^2p^6 3s^2 3p^2$
- In case of N atoms
 - 4N bonding states
 - 4N anti-bondig states
- If $N \sim 10^{23}$
 - Band formation (degeneracy)
 - *E_g* depends on lattice spacing.
- Electrons (4N) will populate the lower 4N states (valence band)
 - Electrons contribute to covalent bonds
- If electrons acquires enough energy they can reach conduction band
 - Quasi-free electron(hole)
 - In presence of electric field, electron(hole) will contribute to current

Image: A matrix of the second seco

Band Structure

- Valence band centered at k = 0
- Symmetry considerations alone cannot determine the location of the bottom of the conduction band
 - Direct Gap: (GaAs) Bottom of conduction band centered at k = 0
 - Indirect Gap: (Si,Ge) Bottom of conduction band off-centered at different k-values
- Consequences when carrier transfer between minimum gap
 - Momentum conservation
 - Different electron constant energy surfaces

Important Semiconductor Properties

		Si	Ge	GaAs	SiC
atomic number		14	32	31 / 33	14 /12
atomic weight		28.09	72.59	144.63	40
density	g/cm³	2.33	5.33	5.32	3.21
band gap (RT)	eV	1.12	0.66	1.42	3.0
av. energy for e-h pair	eV	3.65	2.85	4.2	~ 8.5
electron mobility $\mu_{\! m e}$	cm²/Vs	1500	3900	8500	~1000
hole mobility $\mu_{ m h}$	cm²/Vs	450	1900	400	~ 100
minority carrier lifetime τ	S	2.5 · 10 ⁻³	10 ⁻³	~ 10 ⁻⁸	~ 10 ⁻⁶
$\mu\tau - product (e)$	cm²/V	2-5	5	~ 10-4	~ 10 ⁻³
$\mu\tau - product (h)$	cm²/V	1 – 2	2	~ 10 ⁻⁵	~ 10 ⁻⁴
intrinsic resistivity	Ω cm	2.3 · 10 ⁵	47	10 ⁸	> 10 ¹²
intrinsic carrier conc.	cm ⁻³	1.45 · 10 ¹⁰	2.5 · 10 ¹³	1.8 · 10 ⁶	10-6

Properties of Important Semiconductors

Appendix F Properties of Important Semiconductors

Semiconductor		Crystal Lattice Const.		Bandgap (eV) Ba		Band	Mobility at 300 K (cm ² /V-s)		Effective Mass		ϵ_s/ϵ_0	
			Struct.	at 300 K (A)	300 K	0 K		μ_n	μ_p	m_{n}^{*}/m_{0}	m_{p}^{*}/m_{0}	
	С	Carbon (diamond)	D	3.56683	5.47	5.48	I	1,800	1,200	0.2	0.25	5.7
	Ge	Germanium	D	5.64613	0.66	0.74	I	3,900	1,900	1.641,0.0821	$0.04^{lh}, 0.28^{hh}$	16.0
	Si	Silicon	D	5.43102	1.12	1.17	I	1,450	500	0.981,0.191	$0.16^{lh}, 0.49^{hh}$	11.9
IV-IV	SiC	Silicon carbide	W	a=3.086,c=15.117	2.996	3.03	I	400	50	0.60	1.00	9.66
III-V	AlAs	Aluminum arsenide	Z	5.6605	2.36	2.23	I	180		0.11	0.22	10.1
	AlP	Aluminum phosphide	Z	5.4635	2.42	2.51	I	60	450	0.212	0.145	9.8
	AlSb	Aluminum antimonide	Z	6.1355	1.58	1.68	I	200	420	0.12	0.98	14.4
	BN	Boron nitride	Z	3.6157	6.4		I	200	500	0.26	0.36	7.1
	"	"	W	a=2.55,c=4.17	5.8		D			0.24	0.88	6.85
	BP	Boron phosphide	Z	4.5383	2.0		I	40	500	0.67	0.042	11
	GaAs	Gallium arsenide	Z	5.6533	1.42	1.52	D	8,000	400	0.063	0.076 ^{lh} ,0.5 ^{hh}	12.9
	GaN	Gallium nitride	W	a=3.189,c=5.182	3.44	3.50	D	400	10	0.27	0.8	10.4
	GaP	Gallium phosphide	Z	5.4512	2.26	2.34	I	110	75	0.82	0.60	11.1
	GaSb	Gallium antimonide	Z	6.0959	0.72	0.81	D	5,000	850	0.042	0.40	15.7
	InAs	Indium arsenide	Z	6.0584	0.36	0.42	D	33,000	460	0.023	0.40	15.1
	InP	Indium phosphide	Z	5.8686	1.35	1.42	D	4,600	150	0.077	0.64	12.6
	InSb	Indium antimonide	Z	6.4794	0.17	0.23	D	80,000	1,250	0.0145	0.40	16.8
II-VI	CdS	Cadmium sulfide	Z	5.825	2.5		D			0.14	0.51	5.4
	"	**	W	a=4.136,c=6.714	2.49		D	350	40	0.20	0.7	9.1
	CdSe	Cadmium selenide	Z	6.050	1.70	1.85	D	800		0.13	0.45	10.0
	CdTe	Cadmium telluride	Z	6.482	1.56		D	1,050	100			10.2
	ZnO	Zinc oxide	R	4.580	3.35	3.42	D	200	180	0.27		9.0
	ZnS	Zinc sulfide	Z	5.410	3.66	3.84	D	600		0.39	0.23	8.4
	"	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	W	a=3.822,c=6.26	3.78		D	280	800	0.287	0.49	9.6
IV-VI	PbS	Lead sulfide	R	5.9362	0.41	0.286	I	600	700	0.25	0.25	17.0
	PbTe	Lead telluride	R	6.4620	0.31	0.19	Ι	6,000	4,000	0.17	0.20	30.0

D = Diamond, W = Wurtzite, Z = Zincblende, R = Rock salt. 1, D = Indirect, direct bandgap. 1,t,lh,hh = Longitudinal,transverse,light-hole,heavy-hole effective mass.) \heartsuit \circlearrowright

Charge carriers: thermal generation

• At 0K

- All electrons are in valence band
- All electrons remain static and contribute to covalent bond
- At normal temperature
 - Thermal energy can excite a valence atom into the conduction band
 - The electron can move "freely" along the semiconductor
 - In presence of an electric field they contribute to electrical current
 - The excited electron leaves a hole in the valence band
 - It's easy for a neighboring electron to jump from it's bond to fill the original hole
 - This mechanism repeated looks like a positive charge moving into a see of negative valence electrons
 - In presence of an electric field they move opposite to electrons and they also contribute to electrical current
- This process is called thermal generation
 - It depends strongly with temperature
 - It results in creation of free electrons and holes in equal number/concentration

Thermal Energy

• The average thermal energy:

$$\overline{E} = \frac{3}{2}kT$$

where $k = 8.61710 \times 10^{-5} \text{ eV/K}$ • If T = 300K then $\overline{E} = \frac{3}{2}0.025 \text{ eV}$

• The probability to pass from valence band to conduction band is:

Metals
$$P_{e-h} = \frac{3}{2} \frac{kT}{E_F}$$

Semiconductors $P_{e-h} = \left(\frac{kT}{E_F}\right)^{3/2} e^{-E_g/2kT}$

Charge carriers: Recombination

- Free electrons and holes move randomly through the semiconductor
- Eventually some free electron may fill a hole. This process is called recombination
- Recombination rate is proportional to the number of free electrons and holes
- In thermal equilibrium recombination rate is equal to thermal generation
- Recombination reduces then current in the semiconductors
- Other processes that can modify current are related with the presence of impurities in the semiconductors
 - Impurities creates energy levels in the band gap
 - These impurities can trap electron/holes and also emit them

A B A A B A

Charge carrier concentration

- In presence of an external field there are two contributions to the current:
 - Those of electrons in conduction band
 - Those of holes in valence band
- The most important properties that characterize the electrical behavior of a semiconductor are the charge carrier concentrations:
 - Number of electrons per unit volume in the conduction band (n_c)
 - Number of holes per unit volume in the valence band (p_v)

$$\frac{dn(E)}{dE} = N(E)f(E) \quad \rightarrow \quad \stackrel{n_c(T) = \int_{E_c}^{\infty} N_c(E)f_n(E)dE}{p_v(T) = \int_{-\infty}^{E_v} N_v(E)f_v(E)dE}$$

- N(E)= density of states.
 Similar of density of states of free particles in cubic potential well
- ► f(E)=probability to occupy an state of energy E

Fermi-Dirac Statistics

- Electrons are fermions, so they follow the Fermi-Dirac statistics
- The probability to find an electron in an energy level *E* at temperature *T* is:

$$f(E) = \frac{1}{1 + e^{\frac{E - E_F}{kT}}}$$

•
$$E_F$$
 = Fermi Energy. $f(E_F) = \frac{1}{2} \forall T$

At
$$T = 0$$
 f(E)=1 $E < E_F$
f(E)=0 $E > E_F$

• If $E - E_F > 2kT \rightarrow f(E) \sim e^{-(E - E_F)/kT}$

• The probability function for a hole is

$$f_h(E) = 1 - f(E) = \frac{1}{1 + e^{-\frac{E - E_F}{kT}}} \simeq e^{(E - E_F)/kT}$$

Charge carrier concentration: Electrons

$$N_c(E)dE = 4\pi \left(rac{2m_e^*}{h^2}
ight)^{3/2} (E - E_c)^{1/2} dE$$
 $f(E) = rac{1}{1 + e^{(E - E_F)/kT}} \simeq e^{-(E - E_F)/kT}$

$$n_{c}(T) = \int_{E_{c}}^{\infty} N_{c}(E) e^{-(E-E_{F})/kT} dE$$

$$\int \times \frac{e^{E_{c}/kT}}{e^{E_{c}/kT}}$$

$$n_{c}(T) = N_{c}(T) e^{-(E_{c}-E_{F})/kT}$$

LPHYS2102

• • • • • • • • • • • •

Charge carrier concentration: Electrons

 $N_c(T) =$ Effective density of states in the conduction band

- Weighted sum of all states in conduction band
- It represents the number of available states

$$N_{c}(T) = \int_{E_{c}}^{\infty} N_{c}(E) e^{-(E-E_{c})/kT}$$
$$= \frac{1}{4} \left(\frac{2m_{e}^{*}kT}{\pi\hbar^{2}}\right)^{\frac{3}{2}}$$
$$= 2.5 \times 10^{9} \left(\frac{m_{e}^{*}}{m_{0}}\right)^{\frac{3}{2}} \left(\frac{T}{300 K}\right)^{\frac{3}{2}} [cm^{-3}]$$

Charge carrier concentration: Holes

$$N_{\nu}(E)dE = 4\pi \left(\frac{2m_h^*}{h^2}\right)^{3/2} (E_{\nu} - E)^{1/2}dE$$

 $f(E) = 1 - \frac{1}{1 + e^{(E - E_F)/kT}} \simeq e^{(E - E_F)/kT}$

$$p_{v}(T) = \int_{-\infty}^{E_{v}} N_{v}(E) e^{(E-E_{F})/kT} dE$$
$$\downarrow \times \frac{e^{E_{v}/kT}}{e^{E_{v}/kT}}$$
$$p_{v}(T) = N_{v}(T) e^{(E_{v}-E_{F})/kT}$$

LPHYS2102

æ June 2021 23 / 95

< □ > < 同 > < 回 > < 回 > < 回 >

Charge carrier concentration: Holes

 $N_v(T) =$ Effective density of states in the valence band

- Weighted sum of all states in valence band
- It represents the number of available states

$$\begin{split} \mathsf{V}_{v}(T) &= \int_{-\infty}^{E_{v}} \mathsf{N}_{v}(E) e^{(E-E_{v})/kT} \\ &= \frac{1}{4} \left(\frac{2m_{h}^{*}kT}{\pi\hbar^{2}} \right)^{\frac{3}{2}} \\ &= 2.5 \times 10^{9} \left(\frac{m_{h}^{*}}{m_{0}} \right)^{\frac{3}{2}} \left(\frac{T}{300 \, K} \right)^{\frac{3}{2}} \, [cm^{-3}] \end{split}$$

Charge carrier concentrations

$$n_c(T) = N_c(T)e^{-(E_c - E_F)/kT}$$
$$p_v(T) = N_v(T)e^{(E_v - E_F)/kT}$$

- Charge carrier concentration $(n_c(T), p_v(T))$ depends doubly on temperature
 - ► T^{3/2} with effective density of states
 - explicitly in the exponential
- We can multiply both charge carrier concentrations

$$np = N_c N_v e^{E_g/kT}$$

- This expression is known as Action mass law
- The product of charge carrier concentration depends on
 - temperature
 - energy gap

Intrinsic semiconductors

- Intrinsic semiconductors are materials that contains no impurities
- In practice there are always some impurities.
- In an intrinsic semiconductor the number of impurities is small compared with the number of thermally generated electron and holes

$$n_c(T) = p_v(T) = n_i(T)$$
 \rightarrow Intrinsic carrier density

Fermi level

$$n_c(T) = p_v(T)$$

 $N_c(T)e^{-(E_c - E_F)/kT} = N_v(T)e^{(E_v - E_F)/kT}$

$$E_i = E_F = \frac{E_v + E_c}{2} + \frac{kT}{2} \ln\left(\frac{N_v}{N_c}\right)$$
$$= \frac{E_v + E_c}{2} + \frac{3kT}{4} \ln\left(\frac{m_v}{m_c}\right)$$

Intrinsic semiconductors

Carrier Density		T(K)	$n_i(cm^{-3})$
Carrier Density	Si	300	$1.45 imes10^{10}$
		273	$1.30 imes10^9$
$n_{i}^{2}(T) = n_{c}(T)p_{v}(T)$		77	$2.30 imes10^{-20}$
	Ge	300	$2.40 imes 10^{13}$
$= N_c(T)N_v(T)e^{-E_g/KT}$		273	$4.68 imes10^{12}$
$\langle \cdot - \rangle^3$		77	$3.17 imes10^{-7}$
$\begin{pmatrix} kI \end{pmatrix}^{3} (m m)^{3/2} - E_g/kT$	GaAs	300	$1.79 imes10^{6}$
$= 4 \left(\frac{1}{2\pi\hbar^2} \right) \left(\frac{m_c m_v}{m_v} \right)^2 e^{-\frac{s^2}{2}}$		273	$8.83 imes10^4$
		77	$7.74 imes 10^{-32}$

$$n_{i}(T) = \sqrt{N_{c}N_{v}}e^{-E_{g}/2kT}$$
$$= 2.5 \times 10^{9} \left(\frac{m_{c}}{m_{0}}\right)^{\frac{3}{4}} \left(\frac{m_{h}}{m_{0}}\right)^{\frac{3}{4}} \left(\frac{T}{300 K}\right)^{\frac{3}{2}} [cm^{-3}]$$

э.

(日)

Extrinsic semiconductors

- Electrical characteristics of semiconductors can be modified doping it
 - Adding impurities means the creation of localized energy levels in the band gap
 - Few meV wrt valence or conduction band
- Donor impurities
 - Pentavalent atoms (As,P,Bi,Sb)
 - Energy levels close to the conduction band
 - Four to form covalent bond
 - ► 5th electron can be promoted to conduction band
- Acceptor impurities
 - Trivalent atoms (AI,B,Ga)
 - Energy levels close to the valence band
 - One bond is missing and one hole is created
 - This hole can be filled by an electron from valence band

Extrinsic semiconductors

	Donor	E_d (meV)	Acceptor	E_a (meV)
GaAs	Si	5.8	Si	35
	C	5.9	Ge	40
Si	As	54	В	45
	Р	45	Ga	72
Ge	As	13	В	10
	Р	12	Ga	11

• At room temperature all donors and acceptors are ionized

- Donors positively: All extra electrons are in conduction band
- Acceptors negatively: All extra holes have been filled and transferred to valence band

• = • •

Extrinsic Semiconductors

- In an extrinsic semiconductor we will have:
 - intrinsic densities (n and p)
 - donor/acceptor densities (N_d , N_a). Typically $\sim 10^{12} 10^{13}$
- Electrical neutrality equation should be accomplished

$$egin{array}{rcl} n+N_a=p+N_d&&n^2+(N_a-N_d)n-n_i^2=0\ np=n_i^2&&p^2+(N_d-N_a)p-n_i^2=0 \end{array}$$

• Let's consider three cases:

- $N_d > N_a$
- $N_a > N_d$

Extrinsic semiconductors

- $N_a = N_d$ compensated semiconductor: $n_i = n = p$
- $N_d > N_a$ <u>n-type semiconductor</u>

$$n = rac{1}{2} \left[N_d - N_a + \sqrt{(N_d - N_a)^2 + 4n_i^2}
ight] \simeq N_d - N_a$$
 $p \simeq rac{n_i^2}{N_d - N_a}$

• $N_a > N_d$ p-type semiconductor

$$p = \frac{1}{2} \left[N_a - N_d + \sqrt{(N_a - N_d)^2 + 4n_i^2} \right] \simeq N_a - N_d$$
$$p \simeq \frac{n_i^2}{N_a - N_d}$$

- Electrons: majority charge carriers
- Holes: minority charge carriers

- ▶ *p* >> *n*
- Holes: majority charge carriers
- Electrons: minority charge carriers

Extrinsic Semiconductors: n-type

• Charge carriers wrt intrinsic semiconductors

$$n_{c}(T) = N_{c}(T)e^{-(E_{c}-E_{F})/kT}$$

$$= \underbrace{\bigvee_{e^{E_{i}/kT}}}_{n_{c}(T)e^{-(E_{c}-E_{i})/kT}}e^{(E_{F}-E_{i})/kT}$$

$$n_{c}(T) = n_{i}(T)e^{(E_{F}-E_{i})/kT}$$

Fermi level

$$n = N_d - N_a$$

$$E_F^{(n)} = E_c - kT \ln \frac{N_c}{N_d - N_a}$$

$$E_F^{(n)} = E_i + kT \ln \frac{N_d - N_a}{n_i}$$

・ロ・・ 日本・ ・ ヨ・・

Extrinsic Semiconductors: p-type

• Charge carriers wrt intrinsic semiconductors

$$p_{v}(T) = N_{v}(T)e^{(E_{v}-E_{F})/kT}$$

$$= \underbrace{\bigvee_{v} \frac{e^{E_{i}/kT}}{e^{E_{i}/kT}}}_{n_{i}(T)} e^{(E_{v}-E_{i})/kT} e^{(E_{i}-E_{F})/kT}$$

$$p_{v}(T) = n_{i}(T)e^{(E_{i}-E_{F})/kT}$$

Fermi level

$$n = N_a - N_d$$

$$E_F^{(p)} = E_v + kT \ln \frac{N_v}{N_a - N_d}$$

$$E_F^{(p)} = E_i - kT \ln \frac{N_a - N_d}{n_i}$$

・ロ・・ 日本・ ・ ヨ・・

n-type semiconductor

Semiconductor Detectors

20
P-type semiconductor

LPHYS2102

June 2021 34 / 95

C

Currents in semiconductors

- Currents in semiconductors can be generated both by majority and and minority charge carriers.
 - Most of the times current is dominated by majority carriers
 - Under some conditions minority charge carrier current is relevant
- Currents can be generated by:
 - Presence of an external electric field: drift, displacement current
 - Existence of a gradient concentration: diffusion current
- In absence of these causes, free charge carriers moves because thermal excitation
 - Free charge carriers collide with atoms in the material
 - Between two collisions they follow a rectilinear path
 - Kinetic energy is equal to thermal energy

$$\frac{1}{2}m^* v_{th}^2 = \frac{3}{2}kT \qquad v_{th} \sim 10^7 \, cm/s$$
$$v_{th} = \sqrt{\frac{3kT}{m^*}} \qquad \tau_c \sim 10^{-12} - 10^{-13}$$
$$I \sim 0.1 - 1\,\mu m$$

- In presence of an electric field charges carriers:
 - are accelerated: $\vec{F} = q\vec{E}$
 - acquire an instantaneous velocity

$$qE=m^*rac{dv_i(t)}{dt} \quad \longrightarrow \quad v_i(t)=rac{qE}{m^*}t \quad$$
 Grows linearly with time

- When charge carriers collides with atoms they stop
- We can imagine $v_i(t)$ as being periodical with period τ_c =collision time

- Mobility measures the ability of charge carriers to move into a material in presence of an electric field
 - By definition always positive
 - Constant

<i>V</i> n	=	$-\mu_n$	Ē
------------	---	----------	---

$$\vec{v}_p = +\mu_p \vec{E}$$

Mobility (cm ² V ⁻¹ s ⁻¹)	Si	Ge	GaAs	Diamond
Electrons μ_n	1450	3900	8300	1800
Holes μ_p	505	1800	320	1600

• If
$$E \sim 10^4 \ {
m V/cm}
ightarrow v_n \sim 10^6 \ {
m cm/s}$$

(4) (3) (4) (4) (4)

< □ > < 凸

A D N A B N A B N A B N

• Electron and holes currents can be written as:

$$\vec{j_n} = -ne\vec{v} = ne\mu_n\vec{E}$$

$$\vec{j_p} = +pe\vec{v} = pe\mu_p\vec{E}$$

$$\vec{j_c} = \vec{j_n} + \vec{j_p} = \sigma\vec{E}$$

$$\vec{j_c} = (ne\mu_n + pe\mu_p)\vec{E}$$

$$\sigma = e(n\mu_n + p\mu_p)$$

$$\rho = \frac{1}{e(n\mu_n + p\mu_p)}$$

$$\vec{p} = \frac{1}{e(n\mu_n + p\mu_p)}$$

$$\vec{j_c} = (n\mu_n + p\mu_p)$$

$$\vec{p} = \frac{1}{e(n\mu_n + p\mu_p)}$$

$$\vec{j_c} = (n\mu_n + p\mu_p)$$

$$\vec{p} = \frac{1}{e(n\mu_n + p\mu_p)}$$

$$\vec{p} = \frac{1}{e(n\mu_n + p\mu_p)}$$

$$\vec{j_c} = (n\mu_n + p\mu_p)$$

$$\vec{p} = \frac{1}{e(n\mu_n + p\mu_p)}$$

- For detectors we will need high resistivity (\sim few k Ω cm)
- Low doping in the bulk

Diffusion current

- If charge carriers are not uniformly distributed
 - Charge carriers move to uniform the charge carrier distributions
 - Current that appears is called diffusion current
 - According to Fick's law this current is proportional to gradient concentration

$$\begin{aligned} \Phi_n &= -D_n \vec{\nabla} n \\ \Phi_p &= -D_p \vec{\nabla} p \end{aligned} \qquad \qquad \begin{aligned} \vec{j}_{d,n} &= -e \Phi_n = +e D_n \vec{\nabla} n \\ \vec{j}_{d,p} &= +e \Phi_p = -e D_p \vec{\nabla} p \\ \vec{j}_d &= \vec{j}_{d,n} + \vec{j}_{d,p} = e D_n \vec{\nabla} n - e D_p \vec{\nabla} p \end{aligned}$$

- Negative sign because carriers move in direction of weaker concentration
- ▶ D_p, D_n are called diffusion constants and are different for electrons and holes
- Mobility and diffusion constants are not independent:

$$\frac{D_n}{\mu_n} = \frac{D_p}{\mu_p} + \frac{kT}{e}$$

Einstein relation

・ 同 ト ・ ヨ ト ・ ヨ ト

LPHYS2102

June 2021 40 / 95

p-n Junction

- One of the most important electronic structures
- Obtained by joining same intrinsic semiconductor with opposite doping
- It shows diode characteristics: conducts current only in one direction
- Excess electrons on n-side diffuse to p-side
 - Creation of positive ions in n-side
 - Recombine with a hole
 - Creation of negative ion in p-side
- Excess holes on p-side diffuse to n-side
 - Creation of negative ion in p-side
 - Recombine with an electron
 - Creation of positive ions in n-side
- This process continue till all electron-holes around junction recombine

p-n Junction

★ Ξ > ∃ →

p-n Junction

	n-side	p-side
Majority carriers	$n_n = N_d$	$p_p = N_a$
Minority carriers	$p_n = n_i^2/N_d$	$n_p = n_i^2/N_a$

- Polarization in the junction
 - Positive charge in n-side
 - Negative charge i p-side
- Creation of a built-in voltage
 - Opposes to drift of majority carriers
 - Enhances drift of minority carriers
- Charge density:

$$\rho(x) = \begin{cases} -eN_A & \text{p-side} \\ eN_D & \text{n-side} \end{cases}$$

$$V_b = \frac{E_c^p - E_c^r}{e}$$

p-n Junction

Electric field and Potenti	al:
$\frac{d^2 V(x)}{dx^2} = \frac{\rho(x)}{\varepsilon}$	$E(x) = -\frac{dV(x)}{dx}$
p-side $x_p < x < 0$ $x = x_p$ $E = 0$	n-side $0 < x < x_n$ $x = x_n$ $E = 0$
$V = V_p$	$V = V_n$
$d^2 V(x) = a N$	$d^2 V(x)$ N
$\frac{d^2 V(x)}{dx^2} = \frac{eN_a}{\varepsilon}$	$\frac{d^2 V(x)}{dx^2} = -\frac{eN_d}{\varepsilon}$
$\frac{dV(x)}{dx} = \frac{eN_a}{\varepsilon}(x - x_p)$	$\frac{dV(x)}{dx} = -\frac{eN_d}{\varepsilon}(x - x_n)$
$V(x) = \frac{eN_a}{2\varepsilon}(x - x_p)^2 + V_p$	$V(x) = -\frac{eN_d}{2\varepsilon}(x - x_n)^2 + V_n$
$E(x) = -\frac{eN_a}{\varepsilon}(x - x_p)$	$E(x) = \frac{eN_d}{\varepsilon}(x - x_n)$

< ロ > < 団 > < 巨 > < 巨 >

E

DQC

p-n Junction: Built-in potential

- E_F is the same in the whole structure - Electron densities in both sides

$$n_n = N_c e^{-(E_{cn} - E_F)/kT} = N_d$$
$$n_p = N_c e^{-(E_{cp} - E_F)/kT} = n_i^2/N_a$$

$$E_{cp} - E_{cn} = kT \ln \frac{N_d N_a}{n_i^2}$$
$$E_{cp} = -eV$$

$$E_{cn} = -eV_n$$

$$V_d = V_n - V_p = \frac{E_{cp} - E_{cn}}{e} = \frac{kT}{e} \ln \frac{N_d N_a}{n_i^2}$$

A D N A B N A B N A B N

p-n Junction: Depletion depth

At $x = 0 \rightarrow$ continuity of displacement vector and potential

$$\varepsilon E_{0^-} = \varepsilon E_{0^+} \qquad \qquad \frac{eN_a}{2\varepsilon} W_p^2 + V_p = -\frac{eN_d}{2\varepsilon} W_n^2 + V_n$$

$$V_d = V_n - V_p = \frac{e}{2\varepsilon} \left(N_d W_n^2 + N_a W_p^2 \right)$$

wn

 $-\omega_{\rho}$

• • • • • • • • • • • •

$$W_{n} = \sqrt{\frac{2\varepsilon}{e}} \frac{N_{a}}{N_{d}(N_{a} + N_{d})} V_{d}} = 2\sqrt{\frac{\varepsilon kT}{2e^{2}N_{d}}} \left(\frac{1}{1 + N_{d}/N_{a}} \ln \frac{N_{d}N_{a}}{n_{i}^{2}}\right)^{\frac{1}{2}}$$

$$W_{p} = \sqrt{\frac{2\varepsilon}{e}} \frac{N_{d}}{N_{a}(N_{a} + N_{d})} V_{d}} = 2\sqrt{\frac{\varepsilon kT}{2e^{2}N_{a}}} \left(\frac{1}{1 + N_{a}/N_{d}} \ln \frac{N_{d}N_{a}}{n_{i}^{2}}\right)^{\frac{1}{2}}$$

$$W = W_{n} + W_{p} = \sqrt{\frac{2\varepsilon}{e}} \frac{N_{a} + N_{d}}{N_{a}(N_{a} + N_{d})} V_{d}}$$

p-n Junction: Depletion depth

• If a voltage (V) is applied to the junction the total voltage drop is:

$$V_0 = V_d - V$$

- V is positive for FORWARD bias: $V_{p-side} > V_{n-side}$
- V is negative for REVERSE bias: $V_{n-side} > V_{p-side}$
 - Depletion region increases

$$W = \sqrt{\frac{2\epsilon}{q} \frac{N_a + N_d}{N_a N_d}} (V_d - V)$$

$$N_a >> N_d = N \to x_n >> x_p \to W = x_n$$

$$N_d >> N_a = N \to x_p >> x_n \to W = x_p$$

$$W = \sqrt{\frac{2\epsilon V}{qN}}$$

 $\bullet~$ Maximum depletion depth is limited by breakdown voltage $\sim 1-3 \times 10^5~V/cm$

$$W_{max} = \frac{\varepsilon E_{break}}{eN_{min}} \qquad \begin{array}{l} N_{min}(Si) = 10^{12} \rightarrow W_{max}(Si) \sim 1 \ cm \\ N_{min}(Ge) = 10^{11} \rightarrow W_{max}(Ge) \sim 10 \ cm \end{array}$$

500

p-n Junction: Depletion depth

- Depletion region is important for detectors
 - There no free charges in this region
 - Only free charges created from radiation
 - ► There is an electric field present that will make drift the charge carriers
 - It defines the active volume sensor
- If W >thickness of the semiconductor \rightarrow overdepletion
 - Usual operation of the semiconductor detectors
 - Maximal active volume achievable

p-n junction: Capacitance

 The junction depletion layer capacitance per unit area can be defined as

$$C=\frac{\varepsilon A}{d}$$

If d=depletion depth (W)

$$\frac{C}{A} = \frac{\varepsilon}{W} = \sqrt{\frac{\varepsilon eN}{2V}}$$
$$\frac{1}{C^2} \propto V$$

• In case of overdepletion:

- we will get the minimal possible value of capacitance
- Limited by the thickness (t) of the material

$$\frac{C}{A} = \frac{\varepsilon}{t}$$

LPHYS2102

p-n junction

p-n Junction: Current-Voltage characteristics

$$I = I_s \left[\exp\left(\frac{qV}{kT}\right) - 1 \right]$$

$$I_{s} = \frac{qD_{p}p_{no}}{L_{p}} + \frac{qD_{n}p_{po}}{L_{n}}$$
$$I_{s} = T^{(3+\gamma/2)} \exp\left(-\frac{E_{g}}{kT}\right)$$

 I_s = Saturation current (due to minority carriers) $L_{p,n}$ = Diffusion length of minority carriers $\gamma =$ Temperature dependence of $L_{p,n}$

Section 3

Semiconductor Detectors characteristics

LPHYS2102

June 2021 51 / 95

→ ∃ →

Semiconductor Detectors characteristics

- The basis of any semiconductor detector is a pn-junction polarized in reverse mode.
- In the depletion layer:
 - No free charge carriers
 - There is an electric field
- If radiation pass:
 - Generate charge carriers in the depletion layer
 - Charge carriers drift thanks to electric field

Average energy per e-h pair

 Average energy to create an e-h pair (w) is ~10 times less than in gasses

- Same ΔE will provide a larger number of charge carriers
- Better energy resolution
- w is independent of the nature of the particle

- Energy gap is ${\sim}1$ eV.
- \bullet Rest of energy is lost in non-ionizing energy loss \rightarrow lattice vibration

Linearity

$$V = \frac{Q}{C} = e \frac{\Delta E}{wC}$$

- If particle stops: $\Delta E = E$ $V \propto E$
- If particle does not stops: $V \propto \Delta E$ Suffers from Landau fluctuations

< ∃ > <

Fano Factor. Energy resolution

• Fano Factor ${\sim}0.12$

$$R = 2.35\sqrt{\frac{F}{N}} = 2.35\sqrt{\frac{Fw}{E}}$$

• In case of an α , all energy deposited in the sensor

$$egin{array}{c} E_lpha=5\,{
m MeV}\ R=0.07\% \end{array}
ight\} \quad o \quad \sigma_E\sim 3\,{
m keV}!!!!$$

• Measured $\sigma_E \sim 20$ keV. Mostly due to electronic noise

< □ > < 同 > < 回 > < 回 > < 回 >

Leakage current

• A leakage current is intrinsic to reverse bias diodes

$$I = I_s \left(e^{-\frac{eV}{kT}} - 1 \right)$$

- Appears as noise in the detectors
- Origin of leakage current is multiple:
 - Minority carriers (nA/cm²)
 - Thermal generation. Recombination centers acts as cathalyzers
 - Surface effects (µA/cm²)
 - ★ surface chemistry
 - ★ contaminants (oxide, dust, ...)
 - mounting techniques
 - * Can be reduced working in clean environments and passivating surfaces

Sensitivity and Intrinsic Efficiency

- For charged particles $\varepsilon \sim 100\%$ Very few particles fail to create ionization
- Limiting factors:
 - Noise (leakage current, electronics)
 - Depletion depth. Thick enough to separate signal from noise
- Figure of merit S/N > 8

- For γ's.
 - Indirect ionization
 - Preferred materials with high Z: Germanium

- B - - B

- Electrical pulses in electrodes arises from induction caused by charge carriers movement
- Most of semiconductors detectors behave as ionization chambers (no multiplication)
 - Main difference $\mu_e \simeq \mu_h$
- Let's consider the case of a parallel plate geometry with uniform field. The sensor has a thicknes d and a voltage V is applied

$$E = \frac{V}{d} \qquad \qquad E_w = \frac{1}{d}$$
$$v = \mu \frac{V}{d}$$

• According with Ramo theorem

$$i = qvE_w = q\mu \frac{V}{d} \frac{1}{d} = q\mu \frac{V}{d^2}$$

LPHYS2102

• The maximum collection time for charge carrier (generated in the opposite electrode) is

$$t_c = \frac{d}{v} = \frac{d}{\mu \frac{V}{d}} = \frac{d^2}{\mu V}$$

• The induced charge is

$$Q = it_c = q \, \mu \frac{V}{d^2} \, \frac{d^2}{\mu V} = q$$

- Now let's assume the electron-hole pair is formed at coordinate x from positive electrode
 - The drift time and charge collected for electrons are

$$t_{ce} = rac{x}{v_e} = rac{xd}{\mu_e V}$$
 $Q_e = e\mu_e rac{V}{d^2} rac{xd}{\mu_e V} = erac{x}{d}$

And for the holes

$$t_{ch} = \frac{d-x}{v_h} = \frac{(d-x)d}{\mu_h V} \qquad \qquad Q_h = e\mu_h \frac{V}{d^2} \frac{(d-x)d}{\mu_h V} = e\left(1 - \frac{x}{d}\right)_{AB}$$

Integrating for all possible charge carriers generated we obtain

イロト イヨト イヨト イヨト

Section 4

Silicon Detectors

LPHYS2102

▲ E ト E つへへ June 2021 62 / 95

イロト イヨト イヨト イヨト

Silicon Detectors

• By far the most commonly used material in radiation detectors

$$E_g = 1.17 - 4.73 \times 10^{-4} \frac{T^2}{T + 636}$$
$$n_i = 4.66 \times 10^{15} T^{3/2} e^{-E_g/2kT}$$

- T^2 dependence make it sensitive to non-linearities
- Often operated at -3C -10C
- High resistivity easily achieved

Property	Symbol	Value
Electron mobility	μ_{e}	\leq 1400 cm $^{2}V^{-1}s^{-1}$
Hole mobility	μ_h	\leq 450 cm 2 V $^{-1}$ s $^{-1}$
Electron Thermal velocity	Ve	$2.3 imes 10^7$ cm/s
Hole Thermal velocity	Vh	1.7×10^7 cm/s
Electron Diffusion Coefficient	D_e	\leq 36 cm ² s ⁻¹
Hole Diffusion Coefficient	D_h	\leq 12 cm 2 s $^{-1}$

Silicon Detectors

Element	Туре	$\Delta E(eV)$
As	Donor	0.054
Р	Donor	0.045
Sb	Donor	0.043
AI	Acceptor	0.072
В	Acceptor	0.045
Ga	Acceptor	0.074
In	Acceptor	0.157

Silicon Detectors

Diffused Junction Detectors

- One of the earliest fabrication methods
- \bullet Diffuse n-type impurites (typically P) in p-type bulk at high temperature (\sim 1000 C)

- A junction is formed at a certain distance (${\sim}0.1\text{-}2\mu\text{m})$ from the surface
- As n-side is heavily doped, depletion region extends mainly on p-side
 - Much of the surface remains out of the depletion region
 - This region is known as dead layer
 - Main drawback if used in spectroscopy
- On the other hand they are quite robust against contamination
- Not often used (mainly because the dead layer)

LPHYS2102

Semiconductor Detectors

Surface Barrier Detectors

• p-n junction is substituted by a metal-semiconductor junction (Schottky barrier)

- In a n-type bulk, the role of p-type can be assumed by high density electron traps at the surface
- In a p-type bulk, the role of n-type can be assumed by high density electron donor at the surface

Surface Barrier Detectors

contacts are very thin evaporated metal layers, 40 $\mu {\rm g/cm^2} \doteq$ 20 nm

- "Easy" fabrication at room temperature.
- Deposited metal layer by metal evaporation
 - "Black magic" recipes
 - Industrial processes, most of the times kept secret
- Thin metal layers ${\sim}40~\mu{
 m gr/cm^2}$
- Few mm thick, and easily fully depleted
- Main drawbacks are
 - High sensibility to light. Metal layer is not light tight
 - Metal surface can be contaminated. It should be handle with care.
- Mostly used for charged particle spectroscopy

< E ▶ < E ▶</p>

June 2021 67 / 95

500

Ion-implanted Diodes

- Doping impurities introduced in the bulk with a beam of ions produced by an accelerator, typically ${\sim}10$'s of kV
- \bullet Adjusting the energy \rightarrow change ion range \rightarrow depth profile can be controlled
- During fabrication $T\sim 500^{o}{
 m C}$
 - Annealing of radiation damage produced by the beam
 - Temperature much lower than for thermal diffusion
- ullet Thin entrance windows (dead layers) are obtained, ${\sim}30$ nm
 - More stable than SSB
 - Expensive fabrication
- Main technique for ion doping in position sensitive sensors.

・ 何 ト ・ ヨ ト ・ ヨ ト
Lithium-Drifted Detectors

- The depletion depth achieved with silicon with the highest available purity is limited to few mm.
- If thicker detectors are needed (spectroscopy), the usual approach is the creation of a large zone free of charge carriers with the Lithium-drifted process
 - Creation of a compensated "intrinsic" area
 - ► 5-10 mm depletion depth easily achieved
- Such detectors are known as Si(Li), lithium-drifted silicon detectors
- Lithium-drifted process can be applied to both Si and Ge bulks
 - ▶ For Ge (Z=32), gamma interactions are important \rightarrow used mainly for γ -spectroscopy
 - ► For Si (Z=14), the gamma-ray full-energy peak efficiency is very low.
- Mainly two applications for Si(Li) detectors
 - LEPS: Low Energy Photon Spectrometer
 Efficiency is high in case of X-ray, low energy photons
 Secondary X-rays with lower energy. Less backscattering than Ge
 - Measurement in mixed fields with gamma-rays and X-rays Si(Li) will be blind to high energy photons

Lithium-Drifted Detectors

- Lithium Drift process consists in:
 - Diffuse lithium (donor) on p-type semiconductor
 - The p-n junction formed is heavily reversed bias
 - Lithium is "forced" to diffuse in the p-type material (for weeks)
 - Diffusion assure an almost exact compensation
- The structure obtained is known as p-i-n junction
 - Essential structure for photodetectors!!!!
 - ► As depletion depth increases → detector capacitance decreases

Semiconductor Detectors

Passivated Planar Detectors

- Application of microelectronic fabrication techniques:
 - Chemical etching
 - Ion implantations
- $\bullet\,$ These techniques allow the fabrication of micropatterns $\to\,$ position sensitive devices
 - Microstrip detectors
 - Pixel detectors: Hybrid and monolithic
 - Charge Coupling Devices (CCD)
 - Silicon Drift Chambers (SDC)

Passivated Planar Detectors

n-type Si Wafer

Oxide pussivation

Opening of Windows

Dopi-S by ion i-plaubation B: 15 KeV - 5.10" cm² As:30 KeV - 5.10" cm²

Annali-5 @ 600°C , 30min

Al. metallisation

Al pottening cet the front Al near contact

typically 300 μ m thick

2E >

< B>

100

June 2021 72 / 95

-

DQC

Microstrip detectors

• An straight-forward way to obtain position sensitive device is to divide electrodes into a number of (micro)strips

- Main parameter is strip-pitch (d). Typically $d\sim 50\,\mu m$
- Spatial resolution depends on the readout:
 - Digital readout: $\Delta x = \frac{d}{\sqrt{12}}$
 - Analog readout: $\Delta x = \frac{d}{\sqrt{S/B}}$
- Readout electronics out of sensor

Pixel Detectors

- Two dimensional partitioning of one of the electrons in pads (as checkerboard)
- Typical dimensions $d \sim 20 300 \, \mu m$
- Main problem is the integration with readout electronics
 - Hybrid pixel sensors (HPS)
 - Monolithic pixel sensors (MPS)

Semiconductor Drift Detectors

- Use the drift time of charge carriers to deduce the position
- Single electrodes on both sides
 - Electrons drift to readout electrodes in a potential well in the middle of the bulk
- Advantages: less readout electronics, and smaller capacitances

Section 5

Germanium Detectors

LPHYS2102

June 2021 76 / 95

< □ > < 同 > < 回 > < 回 > < 回 >

- \bullet Used basically in $\gamma\text{-ray}$ spectroscopy because of its excellent energy resolution
- Forbidden gap:

$$E_g = 0.742 - 4.8 \times 10^{-4} \frac{T^2}{T + 235}$$
$$n_i = 1.38 \times 10^{15} T^{3/2} e^{-E_g/2kT}$$

- It should be operated at cryogenic temperatures
- Germanium can be obtained in extremely pure form

Property	Symbol	Value
Electron mobility	μ_e	\leq 3900 cm $^{2}V^{-1}s^{-1}$
Hole mobility	μ_h	\leq 1900 cm 2 V $^{-1}$ s $^{-1}$
Electron Thermal velocity	Ve	$3.1{ imes}10^7~{ m cm/s}$
Hole Thermal velocity	v _h	$1.9{ imes}10^7$ cm/s
Electron Diffusion Coefficient	D_e	\leq 100 cm 2 s $^{-1}$
Hole Diffusion Coefficient	D_h	\leq 50 cm 2 s $^{-1}$

< ロト < 同ト < ヨト < ヨト

Element	Туре	$\Delta E(eV)$
As	Donor	0.014
Р	Donor	0.013
Sb	Donor	0.010
Bi	Donor	0.013
Li	Donor	0.093
AI	Acceptor	0.011
В	Acceptor	0.011
Ga	Acceptor	0.011
In	Acceptor	0.012
ΤI	Acceptor	0.013

<ロト < 四ト < 三ト < 三ト

- Two types of Germanium detectors:
 - Lithium-drifted Detectors
 - High Purity Germanium detectors
- \bullet Nowadays only HPG used, less than $10^{10} \mbox{ impurities per cm}^3$
- Depletion depth of few cm
- Because of the relatively low energy gap of Ge should be operated at cryogenic temperatures (77 K)
- Basically used for gamma spectroscopy because of:
 - Small radiation length (23 mm) (because of his high Z)
 - Excellent energy resolution

$$\mathsf{FWHM}[\mathsf{eV}] = 2.35 \sqrt{\frac{2.96F}{E[\mathsf{eV}]}}$$

$$E_{\gamma} = 1.33\,\mathrm{MeV}
ightarrow \Delta E = 1.33\,\mathrm{eV}$$

- E > - E >

Figure 12.6 Diagram showing the location of a HPGe detector within its vacuum capsule. In this design, the capsule can be connected, without using vacuum pumps, to a variety of cryostats or cryostat-dewar

80 / 95

Figure 12.7 Comparative pulse height spectra recorded using a sodium iodide scintillator and a Ge(Li) detector. The source was gamma radiation from the decay of 10^{8m} Ag and 11^{0m} Ag. Energies of peaks are labeled in keV. (From Philippot.¹³)

• • = • • = •

80 / 95

Feeling of efficiency

Figure 13-15 Calculated peak emclency for five different detectors as a function of incident X- or gamma-ray energy. The thicknesses in the direction of the incident radiation are indicated on the figure. The detectors are a xenon-filled proportional counter, an Si(Li) detector, two different germanium detectors, and an NaI(TI) scintillator. (From Israel et al.²⁶)

June 2021 80 / 95

DQC

Section 6

Semiconductor Photodetectors

LPHYS2102

June 2021 82 / 95

(日)

Semiconductor-based Photodetectors: Photodiodes

• (Visible) light is converted into e-h pairs in the depletion region

λ	E	Mean free path
300 nm	4.1327 eV	5.7 nm
400 nm	3.0995 eV	0.1 μ m
500 nm	2.4796 eV	0.9 μ m
600 nm	2.0663 eV	2.4 μ m
700 nm	1.7711 eV	5.2 μ m
1050 nm	1.1808 eV	613 μ m

LPHYS2102

Semiconductor-based Photodetectors: Photodiodes

- Silicon photodetectors are also known as photodiodes
- Main characteristics of photodiodes are:
 - Light should reach the depleted region. One of the electrodes should be as thin as possible and transparent to light
 - Insensitive to magnetic fields
 - High quantum efficiency: 60% at 400 m and 80% at 800 nm
 - They have NO internal gain!!!! Useful for high intensity applications, but hard to be used as photodetectors where the number of photons can be quite reduced!!!

Avalanche Photodiode (APD)

- An avalanche photodiode is a silicon photodiode with internal gain
- To make an avalanche, an special doping profile is needed
 - Electric field \propto doping
 - \blacktriangleright Gain $\sim 10^{2-3}.$ Depends strongly on applied voltage and temperature
- Based in the p-i-n configuration
 - Reduced capacitance $(\Delta V \propto \frac{Q}{C})$ s
 - Intrinsic region used to convert photons to e-h pairs
- Conceptually quite simple but very difficult to realize
 - In order to control fields is needed an extremely good control of doping profiles
 - High purity bulk materials needed
- Two type of APDs:
 - Reach-trhough
 - Reverse type

・ 何 ト ・ ヨ ト ・ ヨ ト

Reach-trhough APD

- Low field region where photons convert into e-h pairs
- High field region (severe doping) where the field is sufficient to cause electron multiplication
- Main drawback is that the (large) dark current in the drift region is also multiplied
- If the drift region is reduced, detector capacitance is increased

Reverse type APD

- High field region where multiplication takes place close to the entrance window
- Followed by a drift region, mainly to maintain low the capacitance
- Leakeage current is not any more an issue but the material to create e-h pairs is smaller

Excess Noise Factor

- Statistical behavior of the output signal from an APD resembles that of proportional counters
- In both cases pulse-to-pulse fluctuations appears:
 - Variations in the number of initial charges (e-h) pairs in the case of APDs
 - Stochastic differences in the multiplication processes
- Let's assume that on average we have

 n_0 =number of e-h created

 $N = n_o M$ M=Gain of the APD

N=Number of the electrons making up the signal

• The relative fluctuations in the output signal are:

$$\left(\frac{\sigma_N}{N}\right)^2 = \left(\frac{\sigma_{n_0}}{n_0}\right)^2 + \left(\frac{\sigma_M}{M}\right)^2$$

Excess Noise Factor

- $\sigma_{n_0}^2 = n_0$, just follows Poisson statistics
- The multiplication factor is the sum of the independent avalanches (with gain A_i) triggered by a simple charge carrier

$$M = \frac{1}{n_0} \sum_{i=1}^{n_o} A_i = \overline{A} \qquad \sigma_M^2 = \frac{1}{n_0} \sigma_A^2$$

• Then the relative fluctuations can be written as:

$$\left(\frac{\sigma_N}{N}\right)^2 = \frac{1}{n_0} \left[1 + \left(\frac{\sigma_A}{A}\right)^2\right]$$

For avalanche photodiodes the excess noise is defined as

$$J = 1 + \left(\frac{\sigma_A}{A}\right)^2$$

- It reflects the variability of the avalanches
 - If all avalanches are identical $\sigma_A = 0$ and J=1
 - Typically $J \simeq 1.5 3$
 - It depends on applied voltage but not on temperature.

Silicon Photomultiplier (SiPM)

- It's possible to obtain large electric fields in APD increasing the applied voltage
 - Gain $\sim 10^6$
 - APD goes into discharge in the amplification region as soon as e-h pair is formed
 - In analogy with gas detectors the APD is operated in "Geiger" mode
 - The discharge is quenched with a resistor to the power supply.
- As a result there is a non negligible recovering time
- In order to avoid the whole sensor to be non-operational
 - SiPM have been designed as a matrix of independent pixels, each containing an APD
 - Typical sizes of micropixels is $50\mu m \times 50\mu m$
 - When a discharge occurs in a pixel is not spread to the neighbors
- As soon as the number of fired pixels is small response remains linear
- Ideally: 1 (optical) photon = 1 e-h pair = 1 pixel fired
- Quantum efficiencies are smaller than APD because of the unavoidable dead area between pixels

LPHYS2102

Semiconductor Detectors

Silicon Photomultipliers (SiPM)

SiPM are also known as:

- MPPC: Multipixel Photo Counter
- SSPM: Solid State Photomultiplier
- MGMP: Multipixel Geiger Mode Photodetector

Hybrid Photodetector (HPD)

• Photodetectors that combines elements from normal PMs and SiPMs

- Vacuum tube with a photocathode
- In front of photocathode there is an APD array
- Between the cathode and the APD a large HV is applied
- Photons are converted to electrons in the photocathode
- Photoelectrons are accelerated in the HV
- The electrons generate e-h pairs in the APD.
- Gain is directly proportional to HV applied

$$G = \frac{E_e}{w} = \frac{V}{3.62eV}$$

i.e. to reach a G=10000, a V = 36000 V should be applied

• Technically feasible but the system is complicated to operate and expensive

Charge Coupling Device (CCD)

- Introduced in 1970 for visible light: cameras.
- Extended to all wavelenghts
- Used from the 80's as particle detectors (IR,HE, X-ray). Scientific CCD
- "Pixel" sensor fabricated on standard wafers with standard microelectronic techniques
 - Pixel size \sim 25 μ m, total size \sim 4-9 cm²
 - Depletion regions created under each pixel
 - Potential wells for electrons created under each pixel (few microns depth) in the so called epitaxial layer
 - Wells generated by MOS structures or p-n junctions controlled by electrodes
- Serial readout:
 - Only one electronic device to readout
 - Charges transported
 - "Slow" readout
- Highly efficient device with low noise

Charge Coupling Device (CCD)

Charge Coupling Device (CCD)

A D N A B N A B N A B N

Applications in Basic Research

High Energy Physics

Diode array for position measurement

Strip or pixel detectors as inner trackers \rightarrow position resolution

Applications in Basic Research

X-Ray Astronomy

Spectroscopy of cosmic x-ray sources Fully depleted pn-CCD on ESA's x-ray multi-mirror mission (XMM)

Application

X-Ray Fluorescence Analysis (XRF)

Excitation of sample with X-rays

XRF-Analyse (X-Ray Fluorescence)

Untersuchung eines Leichentuchs (Antinopolis, III. Jahrhundert n.Chr., Vatikanische Museen)

Photographie des Detektor-Moduls

