Two Body Scattering

Radiation-Matter Interaction

Th. Cocolios, N. Severijns (KU Leuven) E.Cortina (UCLouvain)

Two Body Scattering

- One of the most important processes in considering the radiation-matter interaction is the energy losses by collision
- It can be considered as a two body scattering:
- the target (usually an electron) can be considered to be at rest
- Relativistic kinematics should be used to study this process

Two Body Scattering

1) Relation between kinetic energy T and rest mass

$$
\begin{gather*}
T+m_{e} c^{2}=\sqrt{p_{e}^{2} c^{2}+m_{e}^{2} c^{4}} \\
p_{e}^{2}=\frac{\left(T+m_{e} c^{2}\right)^{2}-m_{e}^{2} c^{4}}{c^{2}} \tag{A}
\end{gather*}
$$

2) Momentum conservation

$$
\begin{gather*}
\vec{p}_{i}=\vec{p}_{f}+\vec{p}_{e} \rightarrow \vec{p}_{f}=\vec{p}_{i}-\vec{p}_{e} \\
p_{f}^{2}=\left(\vec{p}_{i}-\vec{p}_{e}\right)^{2}=p_{i}^{2}+p_{e}^{2}-2 \vec{p}_{i} \cdot \vec{p}_{e} \cos \theta \tag{B}
\end{gather*}
$$

3) Energy conservation

$$
\begin{gather*}
\sqrt{p_{i}^{2} c^{2}+m^{2} c^{4}}+m_{e} c^{2}=\sqrt{p_{f}^{2} c^{2}+m^{2} c^{4}}+T+m_{e} c^{2} \\
p_{f}^{2}=\frac{p_{i}^{2} c^{2}+T^{2}-2 T \sqrt{p_{i}^{2} c^{2}+m^{2} c^{4}}}{c^{2}} \tag{C}
\end{gather*}
$$

Two Body Scattering

(A) \rightarrow (B)

$$
\begin{equation*}
p_{f}^{2}=p_{i}^{2}+\frac{\left(T+m_{e} c^{2}\right)^{2}-m_{e} c^{4}}{c^{2}}-2 p_{i} \cos \theta \sqrt{\frac{\left(T+m_{e} c^{2}\right)^{2}-m_{e} c^{4}}{c^{2}}} \tag{D}
\end{equation*}
$$

$(B)=(D)$

$$
\begin{gathered}
T \sqrt{p_{i} c^{2}+m^{2} c^{4}}=-T m_{e} c^{2}+2 p_{i} c \cos \theta \sqrt{\left(T+m_{e} c^{2}\right)^{2}-m_{e}^{2} c^{4}} \\
p_{i} c \cos \theta \sqrt{\frac{T^{2}+2 T m_{e} c^{2}}{T^{2}}}=m_{e} c^{2}+\sqrt{p_{i}^{2} c^{2}+m^{2} c^{4}}
\end{gathered}
$$

$$
T=\frac{2 m_{e} c^{4} p_{i}^{2} \cos ^{2} \theta}{\left(m_{e} c^{2}+\sqrt{p_{i}^{2} c^{2}+m^{2} c^{4}}\right)^{2}-p_{i}^{2} c^{2} \cos ^{2} \theta}
$$

Two Body Scattering: Maximum Energy Transfer

- Maximum energy transfer occurs in head-on collision: $\cos \theta=1$

$$
T_{\max }=\frac{p_{i}^{2} c^{2}}{\frac{1}{2} m_{e} c^{2}+\frac{1}{2} \frac{m^{2}}{m_{e}} c^{2}+\sqrt{p_{i}^{2} c^{2}+m^{2} c^{4}}}
$$

- taking into account that $E_{i}=m \gamma c^{2}=\sqrt{p_{i}^{2} c^{2}+m^{2} c^{4}}$

$$
\begin{aligned}
& T_{\max }=\frac{2 m_{e} c^{2} \beta^{2} \gamma^{2}}{1+2 \gamma \frac{m_{e}}{m}+\left(\frac{m_{e}}{m}\right)^{2}} \\
& T_{\max } \approx \begin{cases}2 m_{e} c^{2}(\gamma \beta)^{2} & \text { for } \gamma m_{e} \ll m \\
\gamma m c^{2}=E & \text { for } \gamma \rightarrow \infty \\
m_{e} c^{2}(\gamma-1)=E-m_{e} c^{2} & \text { for } m=m_{e}\end{cases}
\end{aligned}
$$

Two Body Scattering: Maximum Energy Transfer

- Let's consider the case $m_{e} \ll m$: collision of a heavy particle with an orbital electron
- In case of very high energy $p \gg \frac{m^{2}}{m_{e}} c$

$$
T_{\max } \simeq p_{i} c \simeq E_{i} \quad \begin{aligned}
\frac{m^{2}}{m_{e}} c & =36 \mathrm{GeV} / \mathrm{c} \text { for pions } \\
& =1.7 \mathrm{TeV} / c \text { for protons }
\end{aligned}
$$

This means that a massive particle (i.e. proton) can be stopped by an electron.

- For lower energies: $p \ll \frac{m^{2}}{m_{e}} c$

$$
T_{\max } \simeq 2 m_{e} c^{2} \beta^{2} \gamma^{2}
$$

- In the case that $m=m_{e}$ we have:

$$
T_{\max }=m_{e} c^{2}(\gamma-1)=E-m_{e} c^{2}
$$

