**Theory of Optimality for Statistical Inference**

The concept of sufficiency, in particular when applied to the important and rich class of exponential families, delivers a non-asymptotic theory of optimality of statistical procedures. The applications are numerous: for risk-optimal point estimation one can define the concept of UMV(U) estimators, i.e. "uniformly minimal variance (unbiased)" estimators. For the theory of statistical hypothesis testing, to be more abstractly formalised following the Neyman principle, it is possible to characterise the optimality of existing tests via the concept of UMP(U) tests, i.e., "uniformly most powerful (unbiased)" tests. A particular challenge here is the treatment of multi parameter families. Finally, the results from test theory can be directly transferred to define optimality of confidence regions.

- Teacher: von Sachs Rainer