Protontherapy gains more and more importance as an alternative treatment modality to radiotherapy with photons for specific types of patients and cancers. Compared to photons, protons deposit their energy in a much more localized area, which allows for both more focused tumor targeting and reduced side effects.
The course builds upon 4 pillars:
Pillar 1: radiation oncology.
-
Basis of cancer and carcinogenesis
-
Treating cancer with radiations: principles and elements of radiobiology
-
Main steps of a radiotherapy workflow
-
Introduction to particle therapy: principles and current status
-
Radioprotection: treatment facility shielding, personnel and patient protection
-
Health economics: treatment options and patient referral, reimbursement and impact on social security service.
Pillar 2: technologies for protontherapy. This pillar provides a specific focus on the proton beam delivery process, i.e. from proton generation and acceleration (synchrotron/cyclotron) to energy deposition into a well-defined location in the patient, including magnetic beam steering.
-
Producing and accelerating protons: cyclotrons and synchrotrons
-
Detailed design of cyclotrons (and synchro-cyclotrons)
-
Beamlines, magneto-optics
-
Robotics: rotating structures, positioning systems
-
Therapeutic beam: pencil beam scanning
-
Safety and quality assurance in medical technologies : safety automats, interlocks, redundancies, beam measurement devices (monitor ion chambers) and beam data analysis
Pillar 3: ancillary technologies for proton therapy. This pillar covers the devices and
data flows associated with treatment preparation, execution, and verification, with all
their specificities, compared to conventional radiotherapy treatment (X-rays).
-
Treatment planning system (TPS), oncology information system (OIS), imaging; the role of software integration
-
Dose calculation including analytical and Monte Carlo dose engines, treatment optimization, treatment robustness against uncertainties, and robust optimization
-
Imaging in or out of the room (computed tomography (CT), on-board cone-beam CT (CBCT), magnetic resonance imaging (MRI)). Image reconstruction and analyses.
-
Range verification: prompt gamma camera, proton radiography, positron emission tomography (PET))
Pillar 4: treatments of the future.
-
Image guidance: status and perspectives, and the way towards adaptive treatments
-
Overcoming challenges of PT: innovation tracks (range uncertainties, proton imaging, etc.)
-
Emerging treatments: introduction to ion beam therapy
-
Emerging treatments: combining radiations and medication
- Profesor: Barragan Montero Ana Maria
- Profesor: Draguet Camille
- Profesor: Janssens Guillaume
- Profesor: Lee John
- Profesor: Souris Kevin
- Profesor: Sterpin Edmond
- Profesor: Wuyckens Sophie